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Abstract
We explore the extent to which newly available CPU-based secu-
rity technology can reduce the Trusted Computing Base (TCB) for
security-sensitive applications. We find that although this new tech-
nology represents a step in the right direction, significant perfor-
mance issues remain. We offer several suggestions that leverage
existing processor technology, retain security, and improve perfor-
mance. Implementing these recommendations will finally allow ap-
plication developers to focus exclusively on the security of their own
code, enabling it to execute in isolation from the numerous vulnera-
bilities in the underlying layers of legacy code.

Categories and Subject DescriptorsC.4 [Performance of Systems];
D.2.11 [Software Architectures]; K.6.5 [Security and Protection]

General Terms Measurement, Design, Security

Keywords Trusted Computing, Late Launch, Secure Execution

1. Introduction
The architecture of today’s computer systems is layered, with appli-
cations forming the highest layer and the hardware forming the low-
est. With the layered architecture, each application’s Trusted Com-
puting Base (TCB), and hence security, depends on many layers of
code, including the system firmware (BIOS), the firmware of vari-
ous peripheral devices, the bootloader, the OS kernel, and the appli-
cation’s own code. With the trend towards increasingly feature-rich
and complex systems, the code size and complexity of each layer has
grown tremendously. For example, today’s OSes consist of several
million lines of code and support a wide variety of hardware plat-
forms. With the explosion in size and complexity of an application’s
TCB, securing applications has become a daunting task.
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On a modern computing device, the minimal TCB for executing
a piece of code consists of the CPU, the memory, and the interface
between them. The challenge then is to develop an architecture that
executes application code while relying only on this mandatory TCB,
yet simultaneously maintains compatibility with the existing layered
systems architecture.

In earlier work [16, 17], we proposed a Secure Execution Archi-
tecture (SEA)1 that executes the security-sensitive code of an appli-
cation while trusting only the mandatory TCB and a Trusted Platform
Module (TPM). SEA achieves this property by executing an applica-
tion’s security-sensitive code in isolation from all other software on
the system. The isolation is achieved using the CPU-based isolation
technologies present in modern commodity CPUs from AMD and
Intel, namely AMD’s Secure Virtual Machine (SVM) technology [1]
and Intel’s Trusted Execution Technology (TXT) [11].

In this paper, we evaluate the performance of SEA on commodity
systems. Unfortunately, SVM and TXT were designed for extremely
infrequent usage, say once per boot cycle. As a result, we find that the
SEA approach on current hardware suffers from performance issues
that undermine its appeal. Fortunately, our investigation also reveals
that by combining alterations to SEA with hardware modifications
to improve performance and concurrency, we can achieve efficient
minimal TCB code execution. In other words, we can execute appli-
cation code while trusting only the mandatory TCB and avoid today’s
performance issues.

Although other researchers have proposed compelling hardware
security architectures, e.g., XOM [14] or AEGIS [23], we focus on
hardware modifications that tweak or slightly extend existing hard-
ware functionality. We believe this approach offers the best chance
of seeing hardware-supported security deployed in the real world.
Through a series of experiments on existing commodity hardware,
we show that our recommendations promise significant performance
improvements.

In summary, this paper makes the following contributions:
• We specify the hardware requirements for executing application

code with a minimal mandatory TCB.
• Using our own implementation of primitives for minimal TCB

code execution, we show that current hardware renders it imprac-
tical, e.g., paralyzing the processor for a full second to set up a
trusted execution session.

• We recommend modifications of commodity hardware to se-
curely improve the performance and concurrency of SEA. In our
recommendations, we seek to minimize the changes required,
thereby increasing the likelihood of their adoption.

1 We present a list of acronyms in the appendix.



2. Background
We provide information on the hardware technologies we explore.

2.1 Trusted Platform Modules (TPMs)

The TPM is a chip designed by the Trusted Computing Group to
strengthen platforms against software attack [25].

2.1.1 TPM-Based Attestation

A computing platform containing a Trusted Platform Module (TPM)
can provide anattestationor quote—essentially a digital signature on
the current platform state—to an external entity. The platform state
is detailed in a log of software events, such as applications started
or configuration files used. Each event is reduced to ameasurement,
m, using a cryptographic hash function,H. The hash value is stored
in one of the TPM’s Platform Configuration Registers (PCRs) by
cryptographicallyextendinga particular PCR’s current value,vt, i.e.,
the PCR’s value is updated asvt+1 ← H(vt||m), where|| denotes
concatenation. By using this construction of a PCR register and a
cryptographic hash function, a single PCR value records all values
extended into it and the order in which those extensions occurred.
The TPM can sign the values of the PCRs, effectively signing the
entire event log.

To sign its PCR values, the TPM uses the private portion of an
Attestation Identity Key (AIK) pair. The AIK pair is generated by
the TPM, and the private AIK never leaves the TPM in cleartext. A
certificate from a Privacy Certificate Authority (CA) attests that the
AIK corresponds to an AIK generated by a legitimate TPM.

Attestation allows an external party (orverifier) to make a trust
decision based on the platform’s software state. The verifier authen-
ticates the public AIK by validating the AIK’s certificate chain and
deciding whether to trust the issuing Privacy CA. It then validates the
signature on the PCR values and checks that the PCR values corre-
spond to the events in the log by hashing the log entries and compar-
ing the results to the PCR values in the attestation. Finally, it decides
whether to trust the platform based on the events in the log. As origi-
nally envisioned, the verifier must assess a list of all software loaded
since boot time (including the OS) and its configuration information,
and decide whether the platform should be trusted.

2.1.2 TPM-Based Sealed Storage

TPMs also provide sealed storage, whereby data can be encrypted
using an asymmetric key whose private component never leaves
the TPM in unencrypted form. The sealed data can be bound to a
particular software state, as defined by the contents of various PCRs.
The TPM will only unseal (decrypt) the data when the PCRs contain
the same values specified by the seal command. Thus, only specific
software can retrieve the sealed values.

2.1.3 Dynamic (Resettable) PCRs

The TPM v1.2 specification [24] allows forstaticanddynamicPCRs.
Only a system reboot can reset the value in a static PCR, but under
the proper conditions, the dynamic PCRs 17–23 can be reset to zero
without a reboot (a reboot sets the value of PCRs 17–23 to−1, so that
an external verifier can distinguish between a reboot and a dynamic
reset). Only a hardware command from the CPU can reset PCR 17,
and the CPU will issue this command only after performing a late
launch (as described below). Thus, software cannot reset PCR 17,
though it can be read and extended before or after a late launch.

2.2 Late Launch

Recently, processor vendors AMD and Intel have both released CPU
technology designed to eliminate several of the lower layers of soft-
ware from a system’s TCB. The capability of performing alate
launchis included in AMD CPUs as part of their Secure Virtual Ma-
chine (SVM) technology [2], while Intel includes it in their Trusted

Execution Technology (TXT) [10], formerly LaGrande Technology
(LT). Both AMD and Intel are shipping processors with these capa-
bilities; they can be purchased in commodity computers.

The key new feature offered by theSKINIT instruction on AMD
(or SENTERon Intel) is the ability tolate launcha Virtual Machine
Monitor (VMM) or Security Kernel at an arbitrary time with built-
in protection against software-based attacks. At a high-level, the
CPU’s state is reset and memory protections for a region of code are
enabled. The CPU measures the code in the memory region, extends
the measurement into a PCR of the TPM, and begins executing the
code. Essentially, a late launch provides many of the security benefits
of rebooting the computer (e.g., starting from a clean-slate), while
bypassing the overhead of a full reboot (i.e., devices remain enabled,
the BIOS and bootloader are not invoked, etc.).

We now describe AMD’s implementation of late launch, followed
by Intel’s differences in terminology and technique.

2.2.1 AMD Secure Virtual Machine (SVM)

To “late launch” a VMM with AMD SVM, software in CPU pro-
tection ring 0 (e.g., kernel-level code) invokes theSKINIT instruc-
tion, which takes a physical memory address as its only argument.
AMD refers to the memory at this address as the Secure Loader Block
(SLB). The first two words (16-bit values) of the SLB are defined to
be its length and entry point (both must be between 0 and 64 KB).

To protect the SLB launch against software attacks, the proces-
sor includes a number of hardware protections. When the proces-
sor receives anSKINIT instruction, it disables direct memory access
(DMA) to the physical memory pages composing the SLB by setting
the relevant bits in the system’s Device Exclusion Vector (DEV). It
also disables interrupts to prevent previously executing code from re-
gaining control. Debugging access is also disabled, even for hardware
debuggers. Finally, the processor enters flat 32-bit protected mode
and jumps to the provided entry point.

SVM also includes support for attesting to the proper invocation
of the SLB. As part of theSKINIT instruction, the processor first
causes the TPM to reset the values of the dynamic PCRs to zero, and
then transmits the (up to 64 KB) contents of the SLB to the TPM so
that it can be measured (hashed) and extended into PCR 17. Note that
software cannot invoke the command to reset PCR 17. The only way
to reset PCR 17 is by executing anotherSKINIT instruction. Thus,
future TPM attestations can include the value of PCR 17 to attest to
the use ofSKINIT and to the identity of the SLB loaded.

2.2.2 Intel Trusted Execution Technology (formerly LT)

Intel’s TXT is comprised of processor support for virtualization (VT-
x) and Safer Mode Extensions (SMX) [11]. SMX provides support
for the late launch of a VMM in a manner similar to AMD’s SVM, so
we focus primarily on the differences between the two technologies.
Instead ofSKINIT, Intel introduces an instruction calledSENTER.2

A late launch invoked withSENTERis comprised of two phases.
First, an Intel-signed code module—called the Authenticated Code
Module, or ACMod—must be loaded into memory. The platform’s
chipset verifies the signature on the ACMod using a built-in public
key, extends a measurement of the ACMod into PCR 17, and finally
executes the ACMod. The ACMod is then responsible for measuring
the equivalent of AMD’s SLB, extending the measurement into PCR
18, and then executing the code. In analogy to AMD’s DEV protec-
tion, Intel protects the memory region containing the ACMod and the
SLB from outside memory access using the Memory Protection Ta-
ble (MPT). However, unlike the 64 KB protected by AMD’s DEV,
Intel’s MPT covers 512 KB by default.

2 Technically, Intel created a new “leaf” instruction calledGETSEC, which
can be customized to invoke various leaf operations (includingSENTER).
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Figure 1. Chipset configuration for a modern x86 computer. Shaded com-
ponents are part of the minimal TCB for our execution model. The TPM is
shaded differently because it is included for practical reasons but is not an
essential part of a stored-program computer architecture.

3. Execution and Threat Model
We define our execution model and its requirements, and detail the
threat model motivating our design.

3.1 Execution Model and Requirements

We focus on an execution model designed to execute small blocks of
code with the smallest possible TCB. We term each block of code a
Piece of Application Logic (PAL).

Ideally, we would like to enable PAL execution while continuing
to support legacy code (both operating systems and applications), but
without suffering significant performance penalties.

On a modern stored-program computer, the minimal hardware
TCB includes the CPU, memory (RAM), and the interface between
the CPU and memory (memory controller, commonly known as the
north bridge). Figure 1 shows a modern system, with shaded TCB
components. To avoid expanding the TCB any further, we require the
following properties.

Isolation. Execution of the PAL must be protected from legacy
software on the platform, as well as the hardware components not
included in the TCB shown in Figure 1. At the same time, to main-
tain reasonable performance, we need to be able to execute a PAL
concurrently with legacy software.

On a system with a single CPU, virtual concurrency is achieved by
rapidly context switching between threads of execution. This requires
a secure mechanism to protect the secrecy and integrity of PAL
execution state while other code executes. Given the trend towards
multi-core CPUs, PAL state must also be protectedduringexecution,
since malicious code may be running concurrently on another CPU.

Secure Initialization. The isolation described above is only useful
if PAL execution can be securely initiated. In other words, the legacy
software cannot be trusted to properly initialize the protections nec-
essary for the PAL’s protection. Hence a mechanism is needed that
provides a “clean slate” for PAL execution without actually rebooting
the platform.

External Verification. The isolation and secure initialization prop-
erties allow a PAL to execute unmolested. However, an external party
that depends on outputs from the PAL must be able to distinguish be-
tween a PAL that was executed with full hardware protections and a
PAL that was executed in a malicious, e.g., virtual, environment.

3.2 Threat Model

At the software level, the adversary can subvert all of the legacy
software on the platform, including the OS or VMM. He can also
compromise arbitrary applications and monitor all network traffic.
Since the adversary can run code at ring 0, he can invoke theSKINIT
or SENTERinstruction with arguments of its choosing. We do not
consider DoS attacks, since a malicious OS can always simply power
down the machine or otherwise halt execution to deny service.

At the hardware level, we make the same assumptions as the
Trusted Computing Group with regard to the TPM [25]. In essence,
the attacker can launch simple hardware attacks, such as opening the
case, power cycling the computer, or attaching a hardware debug-
ger. The attacker can also compromise add-on hardware such as a
DMA-capable Ethernet card with access to the PCI bus. However,
the attacker cannot launch sophisticated hardware attacks, such as
monitoring the high-speed bus linking the CPU, the north bridge, and
memory. Again like the Trusted Computing Group, we omit treat-
ment of covert channels and side-channel attacks though they would
be interesting material for future work.

Of course, the PAL itself must be trusted to perform its assigned
task securely. The relatively small size of the PAL may facilitate the
use of formal analysis techniques to verify the code’s security and
correctness properties [6].

3.3 The Secure Execution Architecture (SEA)

In our SEA [16, 17], the core idea for minimizing the software TCB
is to use the late launch operation to execute a Piece of Application
Logic (PAL) in complete isolation from all other software on the sys-
tem. To frame it in terms of our requirements from Section 3.1, the
late launch operation providessecure initialization, since it reinitial-
izes the CPU to a known, trusted state without clearing the contents
of memory or device state.

The late launch also helps achieveisolation, since it sets up DMA
protections in the north bridge to isolate the PAL from the unshaded
hardware components shown in Figure 1. Since the late launch wipes
out the previous execution state, SEA efficiently suspends the un-
trusted system software before launching the PAL. The suspend of
the untrusted system is efficient because all necessary system state
can simply remain in-place in memory, provided that the PAL is con-
figured so as not to interfere with the state of the suspended system.
Resuming the suspended system after the PAL terminates is efficient
for similar reasons.

With SEA, the PAL can protect state between executions or con-
text switches by taking advantage of the TPM’s sealed storage capa-
bility. During late launch, the TPM’s dynamic PCRs are reset to zero,
and then PCR(s) 17 (and 18 on Intel systems) are extended with a
measurement of the code that begins executing. Thanks to the prop-
erties of the CPU, chipset, and the hash function used for measure-
ment [12], these PCR(s) represent the identity of the code loaded for
execution, and they cannot be made to contain the measurements of
any code without actually loading and executing it.3 Finally, since the
late launch places a measurement of the PAL in the TPM, the system
executing a PAL can provide anattestationto an external party.

Since SEA requires the TPM for sealed storage and attestations,
the TPM must be added to SEA’s TCB (see Figure 1). However, the
south bridge is not included in the TCB since the TPM is capable of
creating a secure channel to the PAL (by engaging in secure transport
sessions [25]).

3 To be precise, this is a load-time measurement. If the code accepts input
parameters and contains a vulnerability, it may be possible tooverwrite some
of the code after measurement and before execution completes. This is a well-
known time-of-check, time-of-use problem with load-time attestation, and is
not unique to our execution model [19].
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Figure 2. Breakdown of overheads that will be incurred by generic applica-
tions implemented in the SEA model. Measurements were takenusing an HP
dc5750 containing a 2.2 GHz AMD processor and a Broadcom TPM.PAL
Gen represents the overhead for an application that generates data and seals
it for later use. PAL Use unseals previous state, modifies it,and optionally
reseals it.

4. Evaluation of Existing Hardware
Through macro and microbenchmarks of our implementation on
commodity hardware, we evaluate the performance of SEA, and then
conclude with a summary of the issues we identify.

4.1 Implementing SEA Applications

To evaluate the overheads with which nearly every practical appli-
cation built on SEA will have to contend, we have implemented a
generic framework based on our earlier abstract design [17]. To im-
plement the SEA model, we developed a Linux kernel module that
suspends the current execution environment and uses late launch to
run a PAL. The PAL is then responsible for resuming the previous
execution environment once it finishes its application-specific task.

On top of this architecture, we built a number of SEA-enhanced
applications [16]. We implemented a kernel rootkit detector and a
distributed factoring program that use our architecture to provide
isolation and integrity protection. We also use the architecture to
protect the confidentiality of a certificate authority’s private signing
key, and to secure an SSH server’s password handling routines. The
performance issues we encountered in creating these applications
inspired the current paper.

Rather than analyze the performance of specific applications, we
focus on the performance of two generic PALs. The first PAL (PAL
Gen) launches, generates application-specific data, seals the data us-
ing the TPM’s sealed storage capability, and exits. For example, our
certificate authority and SSH PALs each generate a key, seal the pri-
vate portion for later use, and then return the public key. The second
PAL (PAL Use) launches, unseals data sealed during a previous ses-
sion, and operates on that data. It optionally reseals the data and exits.
In the certificate authority example, the PAL might unseal the private
key and sign some data with it. This example would not require a sub-
sequent seal, since the unsealed key could simply be erased. On the
other hand, an application performing a distributed computing task
(such as our factoring application or SETI@Home [3]) might per-
form a limited amount of work and then seal its intermediate state so
that it can later resume its computations.

4.2 End-to-End Benchmarks

To evaluate at a macro level the amount of overhead encountered by
UseandGenPALs, we measured the performance of our implemen-
tation on an HP dc5750, which contains a 2.2 GHz AMD Athlon64

X2 Dual Core 4200+ processor and a v1.2 Broadcom TPM. In Sec-
tion 4.3, we present additional microbenchmarks on other platforms
to establish a broader baseline for what kind of performance is avail-
able today.

Figure 2 summarizes our results (taken over 100 runs with negligi-
ble variance) and indicates both the total time taken by each PAL, as
well as the breakdown of the overhead for each. Note that these num-
bers represent pure overhead—the time necessary for application-
specific work would be added on top of these measurements. We also
include the time required to perform a TPM Quote operation, since
this operation is needed to create an attestation that will convince an
external party that a PAL was executed successfully.

Looking at the breakdown of the execution time, each PAL re-
quires a late launch, represented by theSKINIT region (the PAL uses
the full 64 KB supported by AMD). The PAL Gen session experi-
ences the additional overhead of sealing data using the TPM’s 2048-
bit RSA Storage Root Key. The PAL Use session must perform a
TPM Unseal, and may also perform a Seal operation before exiting.
Both TPM Quote and TPM Unseal perform a private RSA operation
(digital signature and decrypt, respectively), which is their dominant
source of overhead.

Our results indicate that the TPM’s role in protecting PAL state
during a context-switch creates significant amounts of overhead.
Storing data for later use requires approximately 200 ms (PAL Gen),
but accessing, modifying, and then storing state (PAL Use) requires
over a second. Note also that this experiment was run on the Broad-
com TPM, which had the fastest seal operation of all TPMs that we
tested, as we discuss in the next section.

The above overheads are exacerbated by the constraint that no
other code can execute during PAL execution. Thus, while a PAL
Use module executes, all other operations on the computer will be
suspended for over a second. This overhead is particularly egregious
on a multi-processor machine, as the late launch operation requires
all but one of the processors to be in a special idle state. As a result,
most of the computer’s processing power and responsiveness vanish
for over a second during PAL execution.

4.3 Microbenchmarks

To determine if the overheads described above are representative
of current hardware, we perform a number of microbenchmarks to
measure the time needed by late launch and various TPM operations
on two AMD machines and one Intel machine.

In addition to the AMD HP dc5750 described above, we employ
a second AMD test machine based on a Tyan n3600R server mother-
board with two 1.8 GHz dual-core Opteron processors. This second
machine is not equipped with a TPM, but it does support execution of
SKINIT. This allows us to isolate the performance ofSKINIT with-
out the potential bottleneck of a TPM. Our Intel test machine is an
MPC ClientPro Advantage 385 TXT Technology Enabling Platform
(TEP), which contains a 2.66 GHz Core 2 Duo processor, an Atmel
v1.2 TPM, and the DQ965CO motherboard.

Since we have observed that the performance of different TPM
implementations varies considerably, we also evaluate the TPM per-
formance of two other machines with a v1.2 TPM: a Lenovo T60
laptop with an Atmel TPM, and an AMD workstation with an Infi-
neon TPM.

All of our timing measurements use theRDTSCCPU instruction
to count CPU cycles. We convert cycles to milliseconds based on
each machine’s CPU speed, obtained by reading/proc/cpuinfo.

4.3.1 Late Launch with an AMD Processor

AMD SVM supports late launch via theSKINIT instruction. The
overhead of theSKINIT instruction can be broken down into three
parts: (1) the time to place the CPU in an appropriate state with pro-
tections enabled, (2) the time to transfer the PAL to the TPM across



TPM CPU System Configuration PAL Size
Vendor 0 KB 4 KB 8 KB 16 KB 32 KB 64 KB

Yes AMD HP dc5750 Avg (ms): 0.00 11.94 22.98 45.05 89.21 177.52
No Tyan n3600R Avg (ms): 0.01 0.56 1.11 2.21 4.41 8.82
Yes Intel TEP Avg (ms): 26.39 26.88 27.38 28.37 30.46 34.35

Table 1. SKINIT and SENTER benchmarks. We run SKINIT benchmarks on AMD systems with and without a TPM to isolate the overhead of theSKINIT
instruction from the overhead induced by the TPM. We also runSENTER benchmarks on an Intel machine with a TPM.

the low pin count (LPC) bus, and (3) the time for the TPM to hash the
PAL and extend the hash into PCR 17. To investigate the breakdown
of the instruction’s performance overhead, we ran theSKINIT in-
struction on the HP dc5750 (with TPM) and the Tyan n3600R (with-
out TPM) with PALs of various sizes. We invokeRDTSCbefore ex-
ecutingSKINIT and invoke it a second time as soon as code from the
PAL can begin executing.

Table 1 summarizes the timing results. The measurements for the
empty (0 KB) PAL indicate that placing the CPU in an appropriate
state introduces relatively little overhead (less than 10µs). The Tyan
n3600R (without TPM) allows us to measure the time needed to
transfer the PAL across the LPC bus. The maximum LPC bandwidth
is 16.67 MB/s, so the fastest possible transfer of 64 KB is 3.8 ms [9].
Our measurements agree with this prediction, indicating that it takes
about 8.8 ms to transfer a 64 KB PAL, with the time varying linearly
for smaller PALs.

Unfortunately, our results for the HP dc5750 indicate that the
TPM introduces a significant delay to theSKINIT operation. We in-
vestigated the cause of this overhead and identified the TPM as caus-
ing a reduction in throughput on the LPC bus. The TPM slows down
SKINIT runtime by causinglong wait cycleson the LPC bus.SKINIT
sends the contents of the PAL to a TPM to be hashed using the fol-
lowing TPM command sequence:TPM HASH START, zero or more in-
vocations ofTPM HASH DATA (each sends one to four bytes of the
PAL to the TPM), and finallyTPM HASH END. The TPM specifica-
tion states that each of these commands may take up the entirelong
wait cycleof the control flow mechanism built into the LPC bus that
connects the TPM [24]. Our results suggest that the TPM is indeed
utilizing most of thelong wait cyclefor each of the commands, and
as a result, the TPM contributes almost 170 ms of overhead. This may
be either a result of the TPM’s low clock rate or an inefficient imple-
mentation, and is not surprising given the low-cost nature of today’s
TPM chips. The 8.82 ms taken by the Tyan n3600R may be represen-
tative of the performance of future TPMs which are able to operate at
maximum bus speed.

4.3.2 Late Launch with an Intel Processor

Recall from Section 2.2.2 that Intel’s late launch consists of two
phases. First, the ACMod is extended into PCR 17 using the same
TPM HASH START, TPM HASH DATA, and TPM HASH END command
sequence used by AMD’sSKINIT. The ACMod then hashes the PAL
on the main CPU and uses an ordinaryTPM Extend operation to
record the PAL’s identity in PCR 18. Thus, only the 20 byte hash of
the PAL is passed across the LPC to the TPM in the second phase.

The last row in Table 1 presents experimental results from invok-
ing SENTERon our Intel TEP. Interestingly, the overhead ofSEN-
TERis initially quite high, and it grows linearly but slowly. The large
initial overhead (26.39 ms) results from two factors. First, even for
a 0 KB PAL, the Intel platform must transmit the entire ACMod to
the TPM and wait for the TPM to hash it. The ACMod is just over
10 KB, which matches nicely with the fact that the initial overhead
falls in between the overhead for anSKINIT with PALs of size 8 KB
(22.98 ms) and 16 KB (45.05 ms). The overhead forSENTERalso
includes the time necessary to verify the signature on the ACMod.

The slow increase in the overhead ofSENTERrelative to the size
of the PAL is a result of where the PAL is hashed. On an Intel
platform, the ACMod hashes the PAL on the main CPU and hence
sends only a constant amount of data across the LPC bus. In contrast,
an AMD system must send the entire PAL to the TPM and wait for the
TPM to do the hashing.4 Table 1 suggests that for large PALs, Intel’s
implementation decision pays off. Further reducing the size of the
ACMod would improve Intel’s performance even more. The gradual
increase inSENTER’s runtime with increase in PAL size is most
likely attributable to the hash operation performed by the ACMod.

On an Intel TXT platform, the ACMod verifies that system con-
figuration is acceptable, enables chipset protections such as the initial
memory protections for the PAL, and then measures and launches the
PAL [8]. On AMD SVM systems, microcode likely performs similar
operations, but we do not have complete information about AMD
CPUs. Since Intel TXT measures the ACMod into a PCR, an Intel
TXT attestation to an external verifier may contain more information
about the challenged platform and may allow an external verifier to
make better trust decisions.

4.3.3 Trusted Platform Module (TPM) Operations

Though Intel and AMD send different modules of code to the TPM
using theTPM HASH * command sequence, this command sequence is
responsible for the majority of late launch overhead. More significant
to overall PAL overhead, however, is SEA’s use of the TPM’s sealed
storage capabilities to protect PAL state during a context switch.
To understand whether the generic overheads from Figure 2 are
representative, we perform TPM benchmarks on four different TPMs.
Two of these are the TPMs in our already-introduced HP dc5750 and
Intel TEP. The other two TPMs are an Atmel TPM (a different model
than that included in our Intel TEP) in an IBM T60 laptop, and an
Infineon TPM in an AMD system.

We evaluate the time needed for relevant operations across sev-
eral different TPMs. These operations are: PCR Extend, Seal, Un-
seal, Quote, and GetRandom. Figure 3 shows the results of our TPM
microbenchmarks. The results show that different TPM implementa-
tions optimize different operations. The Broadcom TPM in our pri-
mary test machine is the slowest for Quote and Unseal. Switching
to the Infineon TPM (which has the best average performance across
the relevant operations) would reduce the TPM-induced overhead for
a combined Quote and Unseal by 1132 ms, although it would also
add 213 ms of Seal overhead. Even if we choose the best performing
TPM for each operation (which is not necessarily technically feasible,
since a speedup on one operation may entail a slowdown in another),
a PAL Gen would still require almost 200 ms (177 ms forSKINIT
and 20.01 ms for the Broadcom Seal), and a PAL Use could require
at least 579.37 ms (177 ms forSKINIT, 390.98 ms for the Infineon
Unseal, and 11.39 ms for the Broadcom Seal). These values indicate
that TPM-based context-switching is extremely heavy-weight.

4 There is no technical reason why a PAL for an AMD system cannotbe
written in two parts: one that is measured as part ofSKINIT and another that
is measured by the first part before it receives control. This will enable a PAL
on AMD systems to achieve improved performance, and suggests that AMD’s
mechanism is more flexible than Intel’s.
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Figure 3. TPM benchmarks run against the Atmel v1.2 TPM in a Lenovo
T60 laptop, the Broadcom v1.2 TPM in an HP dc5750, the Infineonv1.2 TPM
in an AMD machine, and the Atmel v1.2 TPM (note that this is notthe same as
the Atmel TPM in the Lenovo T60 laptop) in the Intel TEP. Errorbars indicate
the standard deviation over 20 trials (not all error bars arevisible).

4.4 Major Performance Problems

Our experiments reveal two significant performance bottlenecks for
minimal TCB execution on current CPU architectures: (1) on a multi-
CPU machine, the inability to execute PALs and untrusted code
simultaneously on different CPUs, and (2) the use of TPM Seal and
Unseal to protect PAL state during a context switch between secure
and insecure execution.

The first issue exacerbates the second, since the TPM-based over-
heads apply to the entire platform, and not only to the running PAL,
or even only to the CPU on which the PAL runs. With TPM-induced
delays of over a second, this results in significant overhead. While
this overhead may be acceptable for a system dedicated to a partic-
ular security-sensitive application, it is not generally acceptable in a
multiprogramming environment.

5. Architectural Recommendations
In this section, we make hardware recommendations to alleviate the
performance issues we summarize in Section 4.4, while maintaining
the security properties of SEA. Specifically, the goal of these recom-
mendations is twofold: (1) to enable the concurrent execution of an
arbitrary number of mutually-untrusting PALs alongside an untrusted
legacy OS and legacy applications, and (2) to enable performant con-
text switching of individual PALs. A system achieving these goals
supports multiprogramming with PALs, so that there can be more
PALs executing than there are physical CPUs in a system. It also
enables efficient use of the execution resources available on today’s
multicore computing platforms. Figure 4 shows an example of our
desired execution model. Note that we assume that a PAL only exe-
cutes on one CPU core at a time, but Section 6 discusses extension to
multiple cores.

We have two requirements for the recommendations we make.
First, our recommendations must make minimal modifications to the
architecture of today’s trusted computing technologies: AMD SVM
and Intel TXT. Admittedly, such a requirement narrows the scope of
our creativity. However, we believe that by keeping our modifications
minimal, our recommendations are more likely to be implemented by
hardware vendors. Second, in order to keep our execution architec-
ture as close to today’s systems architectures as possible, we require
that the untrusted OS retain the role of the resource manager. With
this requirement, we open up the possibility that the untrusted OS
could perform denial-of-service attacks against the PALs. However,
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Figure 4. Physical platform running a legacy OS and applications along
with some number of PALs.

we believe this risk is unavoidable, as the untrusted OS can always
simply power down or otherwise crash the system.

There are two new hardware mechanisms required to achieve our
desired execution model (Figure 4) while simultaneously satisfying
the two requirements mentioned in the previous paragraph. The first
is a hardware mechanism for memory isolation that isolates the mem-
ory pages belonging to a PAL from all other code. The second is
a hardware context switch mechanism that can efficiently suspend
and resume PALs, without exposing a PAL’s execution state to other
PALs or the untrusted OS. In addition to these two mechanisms, we
also require modifications to the TPM to allow external verification
via attestation when multiple PALs execute concurrently.

In the rest of this section, we first describe PAL launch (Sec-
tion 5.1), followed by our proposed hardware memory isolation
mechanism (Section 5.2). Section 5.3 talks about the hardware con-
text switch mechanism we propose. In Section 5.4 we describe
changes to the TPM chip to enable external verification. We de-
scribe PAL termination in Section 5.5. Section 5.6 ties these recom-
mendations together and presents the life-cycle of a PAL. Finally,
Section 5.7 summarizes the expected performance improvement of
our recommendations.

5.1 Launching a PAL

We propose a mechanism for securely launching a PAL to achieve
theSecure Initializationsecurity property from Section 3.1.

5.1.1 Recommendation

First, we recommend that the untrusted OS allocate resources for
a PAL. Resources include execution time on a CPU and a region
of memory to store the PAL’s code and data. We define aSecure
Execution Control Block(SECB, Figure 5(a)) as a structure to hold
PAL state and resource allocations, both for the purposes of launching
a PAL and for storing the state of a PAL when it is not executing. The
PAL and SECB should be contiguous in memory to facilitate memory
isolation mechanisms. The SECB entry for allocated memory should
consist of a list of physical memory pages allocated to the PAL.

To begin execution of a PAL described by a newly allocated
SECB, we propose the addition of a new CPU instruction,Secure
Launch(SLAUNCH), that takes as its argument the starting physical
address of a SECB. Upon execution,SLAUNCH:
1. reinitializes the CPU on which it executes to a well-known trusted

state,
2. enables hardware memory isolation (described in Section 5.2) for

the memory region defined in the SECB and for the SECB itself,
3. transmits the PAL to the TPM to be measured (described in

Section 5.4),
4. disables interrupts on the CPU executingSLAUNCH,
5. initializes the stack pointer to the top of the memory region

defined in the SECB (allowing the PAL to confirm the size of
its data memory region),

6. sets theMeasured Flagin the SECB to indicate that this PAL has
been measured, and

7. jumps to the PAL’s entry point as defined in the SECB.



5.1.2 Suggested Implementation based on Existing Hardware

We can modify the existing hardware virtual machine management
data structures of AMD and Intel to realize the SECB. Both AMD and
Intel use an in-memory data structure to maintain guest state.5 The
functionality ofSLAUNCHwhen used to begin execution of a PAL is
designed to give the same security properties as today’sSKINIT and
SENTERinstructions.

5.2 Hardware Memory Isolation

To securely execute a PAL using a minimal TCB, we need a hardware
mechanism to isolate its memory state from all devices and from
all code executing on other CPUs (including other PALs and the
untrusted OS and applications). This mechanism will achieve the
Isolationproperty from Section 3.1.

5.2.1 Recommendation

We propose that the memory controller maintain an access control
table with one entry per physical page, where each entry specifies
which CPUs (if any) have access to the physical page. The size of
this table will beM ×N , whereM is the number of physical pages
present on the platform andN is the maximum number of CPUs.
Other multiprocessor designs use a similar partitioning system to
protect memory from other processors [13]. To use the access control
table, the memory controller must be able to determine which CPU
initiates a given memory request.

Figure 5(b) presents the state machine detailing the possible states
of an entry in the access control table as context switches (described
in Section 5.3) occur. Memory pages are by default markedALL
to indicate that they are accessible by all CPUs and DMA-capable
devices. The other states are described below.

When PAL execution is started usingSLAUNCH, the memory
controller updates its access control table so that each page allocated
to the PAL (as specified by the list of memory pages in the SECB)
is accessible only to the CPU executing the PAL. When the PAL is
subsequently suspended, the state of its memory pages transitions to
NONE, indicating that nothing currently executing on the platform
is allowed to read or write to those pages. Note that the memory
allocated to a PAL includes space for data, and is a superset of the
pages containing the PAL binary.

5.2.2 Suggested Implementation based on Existing Hardware

We can realize hardware memory isolation as an extension to existing
DMA protection mechanisms. As noted in Section 2.2, AMD SVM
and Intel TXT already support DMA protections for physical mem-
ory pages.6 In both protection systems, the memory controller main-
tains a bit vector with one bit per physical page. The value of the
bit indicates whether the corresponding page can be accessed (read
or written) using a DMA operation. One implementation strategy for
our recommendations may be to increase the size of each entry in this
protection table to include a bit per CPU on the system.

Existing memory access and cache coherence mechanisms can
be used to provide the necessary information to enforce memory
isolation. Identifying the CPU from which memory requests originate
is straightforward, since memory reads and writes on different CPUs
already operate correctly today. For example, every memory request
from a CPU in an Intel system includes anagent ID that uniquely
identifies the requesting CPU to the memory controller [21].

The untrusted OS will be unable to access the physical memory
pages that it allocates to the PALs, and so supporting the execution of
PALs requires the OS to cope with discontiguous physical memory.

5 These structures are the Virtual Machine Control Block (VMCB) and Virtual
Machine Control Structure (VMCS) for AMD and Intel, respectively.
6 The protection mechanisms are the Device Exclusion Vector (DEV) and the
Memory Protection Table (MPT) for AMD and Intel, respectively.
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Figure 5. State machine for the possible states of a memory page in our
proposed memory controller modification. The states correspond to which
CPUs can access an individual memory page.

Modern OSes support discontiguous physical memory for structures
like the AGP graphics aperture, which require the OS to relinquish
certain memory pages to hardware. These mechanisms can be modi-
fied to tolerate the allocation of memory to PALs.

5.3 Hardware Context Switch

To enable multiplexing of CPUs between multiple PALs and the
untrusted OS, a secure context switch mechanism is required. Our
mechanism retains the legacy OS as the primary resource manager
on a system, allowing it to specify on which CPU and for how long a
PAL can execute.

5.3.1 Recommendation

We first treat the mechanism required to cause an executing PAL to
yield, and then detail how a suspended PAL is resumed.

PAL Yield. We recommend the inclusion of a PAL preemption
timer in the CPU that can be configured by the untrusted OS. When
the timer expires, or a PAL voluntarily yields, the PAL’s CPU state
should be automatically and securely written to its SECB by hard-
ware, and control should be transferred to an appropriate handler in
the untrusted OS. To enable a PAL to voluntarily yield, we propose
the addition of a new CPU instruction,Secure Yield(SYIELD). Part
of writing the PAL’s state to its SECB includes signaling the memory
controller that the PAL and its state should be inaccessible to all en-
tities on the system. Note that any microarchitectural state that may
persist long enough to leak the secrets of a PAL must be cleared upon
PAL yield.

PAL Resume. The untrusted OS can resume a PAL by executing
an SLAUNCHon the desired CPU, parameterized with the physical
address of the PAL’s SECB. The PAL’sMeasured Flagindicates
to the CPU that the PAL has already been measured and is only
being resumed, not started for the first time. Note that theMeasured
Flag is honored only if the SECB’s memory page is set toNONE.
This prevents the untrusted OS from invoking a PAL without it
being measured by the TPM. During PAL resume, theSLAUNCH
instruction will signal the memory controller that the PAL’s state
should be accessible to the CPU on which the PAL is now executing.
Note that the PAL may execute on a different CPU each time it is
resumed. Once a PAL is executing on a CPU, any other CPU that
tries to resume the same PAL will fail, as that PAL’s memory is
inaccessible to the other CPUs.

5.3.2 Suggested Implementation based on Existing Hardware

We achieve significant performance improvements by eliminating the
use of TPM sealed storage as a protection mechanism for PAL state



Operation AMD SVM Intel TXT
Avg (µs) Stdev Avg (µs) Stdev

VM Enter 0.5580 0.0028 0.4457 0.0029
VM Exit 0.5193 0.0036 0.4491 0.0015

Table 2. Benchmarks showing the average runtime of VM Entry and VM
Exit on the Tyan n3600R with a 1.8 GHz AMD Opteron and the MPC Client-
Pro 385 with a 2.66 GHz Intel Core 2 Duo.

during context switches. Existing hardware virtualization extensions
of AMD and Intel support suspending and resuming guest VMs.7

We can enhance these mechanisms to provide secure context switch
by extending the memory controller to isolate a PAL’s state while
it is executing, even from an OS. Table 2 shows that with current
hardware, VM entry and exit overheads are on the order of half
a microsecond. Reducing the context switch overhead of between
approximately 200 ms and a full second for the TPM sealed storage-
based context switch mechanism (recall Figure 2) to essentially the
overhead of a VM exit or entry would be a pronounced improvement.

5.4 TPM Support for SEA

Thus far, our focus has been on recommendations to alleviate the
two performance bottlenecks identified in Section 4.4. Unfortunately,
the functionality of today’s TPMs is insufficient to provide measure-
ments, sealed storage, and attestations for multiple, concurrently ex-
ecuting PALs. These features are essential to achieve theExternal
Verificationproperty from Section 3.1.

As implemented with today’s hardware, SEA always uses PCR 17
(and 18 on Intel systems) to store a PAL’s measurement. The addition
of theSLAUNCHinstruction introduces the possibility of concurrent
PAL execution. When executing multiple PALs concurrently, today’s
TPMs do not have enough PCR registers to securely store the PALs’
measurements. Further, since PALs may be context switched in and
out, there can be many more PALs executing than there exist CPUs
on the system.

Ideally, the TPM should maintain a separate measurement chain
for each executing PAL, and the measurement chain should indicate
that the PAL began execution via theSLAUNCHinstruction. These
are the same properties that late launch provides for one PAL today.

We propose the inclusion of additionalsecure executionPCRs
(sePCRs) that can be bound to a PAL duringSLAUNCH. The number
of sePCRs present in a TPM establishes the limit for the number of
concurrently executing PALs, as measurements of additional PALs do
not have a secure place to reside. The PAL must also learn the identity
of its sePCR so that it can output a sePCR handle usable by untrusted
software to generate a TPM Quote once execution is complete.

However, the addition of sePCRs introduces several challenges:
1. A PAL must be bound to a unique sePCR (Section 5.4.1).
2. A PAL’s sePCR must be inaccessible to all other code until the

PAL terminates (Section 5.4.2).
3. TPM Quote must be able to address the sePCRs when invoked

from untrusted code (Section 5.4.3).
4. A PAL that used TPM Seal to seal secrets to one sePCR must

be able to unseal its secrets in the future, even if that PAL ter-
minates and is assigned a different sePCR on its next invocation
(Section 5.4.4).

5. A hardware mechanism is required to arbitrate TPM access from
multiple CPUs (Section 5.4.5).

Below, we present additional details for each of these challenges and
propose solutions.

7 A guest yields by executing VMMCALL / VMCALL. A VMM resumes a
guest by executing VMRUN / VMRESUME for AMD and Intel, respectively.

5.4.1 sePCR Assignment and Communication

Challenge 1 specifies that a PAL must be bound to a unique sePCR
while it executes. The binding of the sePCR to the PAL must prevent
other code (PALs or the untrusted OS) from extending or reading the
sePCR until the PAL has terminated. We describe how the TPM and
CPU communicate to assign a sePCR to a PAL duringSLAUNCH.

As part of SLAUNCH, the contents of the PAL are sent from
the CPU to the TPM to be measured. The arrival of these messages
signals the TPM that a new PAL is starting, and the TPM assigns a
free sePCR to the PAL being launched. The sePCR is reset to zero and
extended with a measurement of the PAL. If no sePCR is available,
SLAUNCHmust return a failure code.

As part of SLAUNCH, the TPM returns the allocated sePCR’s
handle to the CPU executing the PAL. This handle becomes part of
the PAL’s state, residing in the CPU while the PAL is executing and
written to the PAL’s SECB when the PAL is suspended.8 The handle
is also made available to the executing PAL. One implementation
strategy is to make the handle available in one of the CPU’s general
purpose registers when the PAL first gets control.

TPM Extend, Seal, and Unseal must be extended to optionally ac-
cept a PAL’s sePCR as an argument, but only when invoked from
within that PAL. The CPU, memory controller, and TPM must pre-
vent other code from invoking TPM Extend, Seal, or Unseal with a
PAL’s sePCR. Enforcement can be performed by the CPU or memory
controller using the CPU’s copy of the PAL’s sePCR handle. These
restrictions do not apply to TPM Quote, as untrusted code will even-
tually need the PAL’s sePCR handle to generate a TPM Quote. We
describe its use in more detail in Section 5.4.3.

Note that the TPM in today’s machines is a memory-mapped de-
vice, and access to the TPM involves the memory controller. The ex-
act architectural details are chipset-specific, but it may be necessary
to enable the memory controller to cache the sePCR handles during
SLAUNCHto enable enforcement of the PAL-to-sePCR binding and
avoid excessive communication between the CPU and memory con-
troller during TPM operations.

5.4.2 sePCR Access Control

Challenge 2 is to render a PAL’s sePCR inaccessible to all other code.
This includes concurrently executing PALs and the untrusted OS.
This condition must hold whether the PAL is actively running on a
CPU or context switched out.

The binding between a PAL and its sePCR is maintained in hard-
ware by the CPU and TPM. Thus, a PAL’s sePCR handle need not be
secret, as other code attempting any TPM commands with the PAL’s
sePCR handle will fail. PAL code is able to access its own sePCR to
invoke TPM Extend to measure its inputs, or TPM Seal or Unseal to
protect secrets, as described in the previous section.

A PAL needs exclusive access to its sePCR for the TPM Extend,
Seal, and Unseal operations. Allowing, e.g., a TPM PCR Read by
other code does not introduce a security vulnerability for a PAL.
However, we cannot think of a scenario where it is beneficial, and
allowing sePCR access from other code for selected commands may
unnecessarily complicate the access control mechanism.

5.4.3 sePCR States and Attestation

The previous section describes techniques that give a PAL exclusive
access to its sePCR. However, Challenge 3 states our aim to allow
TPM Quote to be invoked from untrusted code. To enable these
semantics, sePCRs exist in one of three states:Exclusive, Quote,
and Free. While a PAL is executing or context-switched out, its
sePCR is in theExclusive state. No other code on the system can
read, extend, reset, or otherwise modify the contents of the sePCR.

8 This is similar to the handling of Machine Status Registers (MSRs) by AMD
SVM and Intel TXT for virtualized CPU state today.



When the PAL terminates, untrusted code is tasked with generat-
ing an attestation of the PAL’s execution. The purpose of theQuote
state is to grant the necessary access to the untrusted code. Thus, as
part of PAL termination, the CPU must signal the TPM to transition
this PAL’s sePCR from theExclusive to theQuote state.

To generate the quote, the untrusted code must be able to specify
the handle of the sePCR to use. It is the responsibility of the PAL
to include its sePCR handle as an output. The TPM Quote command
must be extended to optionally accept a sePCR handle instead of (or
in addition to) a list of regular PCR registers to include in the quote.

After a TPM Quote is generated, the TPM transitions the sePCR
to the Free state, where it is eligible for use by another PAL
via SLAUNCH. This can be realized as a new TPM command,
TPM SEPCR Free, executable from untrusted code. We treat the case
where a PAL does not terminate cleanly in Section 5.5.

5.4.4 Sealing Data Under a sePCR

TPM Seal can be used to encrypt data such that it can only be
decrypted (using TPM Unseal) if the platform is in a particular
software configuration, as defined by the TPM’s PCRs. TPM Seal
and Unseal must be enhanced to work with our proposed sePCRs.

A PAL is assigned a free sePCR by the TPM whenSLAUNCHis
executed on a CPU. However, the PAL does not have control over
which sePCR it is assigned. This breaks the traditional semantics
of TPM Seal and Unseal, where the index of the PCR(s) that must
contain particular values for TPM Unseal are known at seal-time. To
meet Challenge 4, we must ensure that a PAL that uses TPM Seal to
seal secrets to its assigned sePCR will be able to unseal its secrets
in the future, even if that PAL terminates and is assigned a different
sePCR when it executes next.

We propose that TPM Seal and Unseal accept a boolean flag that
indicates whether to use a sePCR. The sePCR to use is specified
implicitly by the sePCR handle stored in the PAL’s SECB.

5.4.5 TPM Arbitration

Today’s TPM-to-CPU communication architecture assumes the use
of software locking to prevent multiple CPUs from trying to access
the TPM concurrently. With the introduction ofSLAUNCH, we re-
quire a hardware mechanism to arbitrate TPM access from PALs ex-
ecuting on multiple CPUs. A simple arbitration mechanism is hard-
ware locking, where a CPU requests a lock for the TPM and obtains
the lock if it is available. All other CPUs learn that the TPM lock is
set and wait until the TPM is free to attempt communication.

5.5 PAL Exit

When a PAL finishes executing, its resources must be returned to the
untrusted OS so that they can be allocated to another PAL or legacy
application that is ready to execute. We first describe this process for
a well-behaved PAL, and then discuss what must happen for a PAL
that crashes or otherwise exits abnormally.

Normal Exit. The memory pages for a PAL that are inaccessible to
the remainder of the system must be freed when that PAL completes
execution. It is the PAL’s responsibility to erase any secrets that it
created or accessed before freeing its memory. To free this memory,
we propose the addition of a new CPU instruction,Secure Free
(SFREE). SFREEis parameterized with the address of the PAL’s
SECB, and communicates to the memory controller that these pages
no longer require protection. The memory controller then updates its
access control table to mark these pages asALL so that the untrusted
OS can allocate them elsewhere. Note thatSFREEexecuted by other
code must fail. This can be detected by verifying that theSFREE
instruction resides at a physical memory address inside the PAL’s
memory region. As part ofSFREE, the CPU also sends a message to
the TPM to cause the terminating PAL’s sePCR to transition from the
Exclusive state to theQuote state.

Abnormal Exit. The code in a PAL may contain bugs or exploitable
flaws that cause it to deviate from the intended termination sequence.
For example, it may become stuck in an infinite loop. The preemption
timer discussed in Section 5.3 can preempt the misbehaving PAL, but
the memory allocated to that PAL remains in theNONE state, and the
sePCR allocated to that PAL remains in theExclusive state. These
resources must be freed without exposing any of the PAL’s secrets to
other entities on the system.

We propose the addition of a new CPU instruction,Secure Kill
(SKILL), to kill a misbehaving PAL. Its operations are as follows:
1. Erase all memory pages associated with the PAL.
2. Mark the PAL’s memory pages as available toALL.
3. Extend the PAL’s sePCR with a well known constant that indi-

cates thatSKILL was executed.
4. Transition the PAL’s sePCR to theFree state.

Depending on low-level implementation details,SKILL may be
merged withSFREE. One possibility is thatSFREEbehaves identi-
cally toSKILL whenever it is executed outside of a PAL.

5.6 PAL Life Cycle

Figure 6 summarizes the life cycle of a PAL on a system with our
recommendations. To provide a better intuition for the ordering of
events, we step through each state in detail. We also provide pseu-
docode forSLAUNCH, and indicate which states of a PAL’s life cycle
correspond to portions of theSLAUNCHpseudocode (Figure 7).

Launch: Protect and Measure. The untrusted OS is responsible for
creating the necessary SECB structure for a PAL so that the PAL can
be executed. The OS allocates memory pages for the PAL and sets
the PAL’s preemption timer. The OS then invokes theSLAUNCH
CPU instruction with the address of the SECB, initiating the tran-
sition from theStart state to theProtect state in Figure 6. This
causes the CPU to signal the memory controller with the address
of the SECB. The memory controller updates its access control ta-
ble (recall Section 5.2) to mark the memory pages associated with
the SECB as being accessible only by the CPU which executed the
SLAUNCH instruction. If the memory controller discovers that an-
other PAL is already using any of these memory pages, it signals the
CPU thatSLAUNCHmust return a failure code. Once the memory
protections are in place, the memory controller signals the CPU. The
CPU inspects theMeasured Flagand begins the measurement pro-
cess since it is clear. TheMeasured Flagin the SECB (Figure 5(a)) is
used to distinguish between a PAL that is being executed for the first
time and a PAL that is being resumed. This completes the transition
from theProtect state to theMeasure state.

The CPU then begins sending the contents of the PAL to the TPM
to be hashed. When the first message arrives at the TPM, the TPM
attempts to allocate a sePCR for this PAL. A free sePCR is allocated,
reset, and then extended with a measurement of the contents of the
PAL. The TPM returns a handle to the allocated sePCR to the CPU,
where it is maintained as part of the SECB. If there is no sePCR
available, the TPM returns a failure code to the CPU. The CPU
signals the memory controller to return the SECB’s pages to the
ALL state, andSLAUNCHreturns a failure code. Upon reception of
the sePCR handle, the CPU sets theMeasured Flagfor the PAL to
indicate that it has been measured. The completion of measurement
causes a transition from theMeasure state to theExecute state.

Execute. At this point, the PAL is executing with full hardware
protections. It is free to complete whatever application-specific task
it was designed to do. If it requires data from an external source (e.g.,
network or disk), it may yield by executingSYIELD. If it has been
running for too long, the CPU may preempt it. These events affect
transitions to theSuspend state. If the PAL is ready to exit, it can
transition directly to theDone state by executingSFREE.
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Figure 6. Life cycle of a PAL. MF stands forMeasured Flag. Note that these
states are for illustrative purposes and need not be represented in the system.

Suspend: Preempted or SYIELD.The PAL is no longer executing,
and it must transition securely to theSuspend state. The CPU signals
the memory controller that this PAL is suspending, and the mem-
ory controller updates its access control table for that PAL’s memory
pages toNONE, indicating that those pages should be unavailable to all
processors and devices until the PAL resumes. Once the protections
are in place, the memory controller signals the CPU, and the CPU
completes the secure state clear (e.g., it may be necessary to clear
microarchitectural state such as cache lines). At this point, the PAL is
suspended. If the OS has reason to believe that this PAL is malfunc-
tioning, it can terminate the PAL using theSKILL instruction.SKILL
causes a transition directly to theDone state.

Resume. The untrusted OS invokes theSLAUNCHinstruction on
the desired CPU to resume a PAL, again with the address of the
PAL’s SECB. The causes a transition from theSuspend state to
theProtect state. The CPU signals the memory controller with the
SECB’s address, just as whenProtect was reached from the initial
Start state. The memory controller enables access to the PAL’s
memory pages by removing theNONE status on the PAL’s memory
pages, setting them as accessible only to the CPU executing the PAL.
The memory controller signals an error if these pages were in use
by another CPU. The memory controller then signals the CPU that
protections are in place. TheMeasured Flagis set, indicating that the
PAL has already been measured, so the CPU reloads the suspended
architectural state of the PAL and directly resumes executing the
PAL’s instruction stream, causing a transition from theProtect to
theExecute state.

Exit. While executing, the PAL can signal that it has completed
execution withSFREE. This causes the CPU to send a message to
the TPM indicating that the PAL’s sePCR should transition to the
Quote state. It is assumed that the PAL has already completed an
application-level state clear. The CPU then performs a secure state
clear of architectural and microarchitectural state, and signals to the
memory controller that this PAL has exited. The memory controller
marks the relevant pages as available to the remainder of the system
by transitioning them to theALL state. This CPU is now finished
executing PAL code, as indicated by the transition to theDone state.
It becomes available to the untrusted OS for use elsewhere.

5.7 Expected Impact

Here, we summarize the impact we expect our recommendations to
have on SEA application performance. First, the improved memory
isolation of PAL state allows truly concurrent execution of secure
and legacy code, even on multicore systems. Thus, PAL execution no
longer requires the entire system to grind to a halt.

With SEA on existing hardware, a PAL yields by simply transfer-
ring control back to the untrusted OS. Resume is achieved by exe-
cuting late launch again. It is the responsibility of the PAL to protect
its own state before yielding, and to reconstruct the necessary state
from its inputs upon resume. Protecting state requires the use of the
TPM Seal and Unseal commands. AnSKINITon AMD hardware can
take up to 177.52 ms (Table 1), while Seal requires 20-500 ms and

Start:
OS: Allocate pages for SECBS and PALP
OS: Initialize SECB.pages
OS: Initialize SECB.timer
Protect:
CPUi: SLAUNCH(S)
CPUi: Reinitialize to trusted state
CPUi: Disable interrupts
CPUi to MC: SECB.pages
MC: if(∃p ∈ SECB.pages s.t.p.accessible = NONE) FAIL
MC: ∀p ∈ SECB.pages:p.accessible = CPUi

MC to CPUi: done
CPUi: ESP=SECB.pages.top
Measure:
if(¬SECB.MeasuredFlag)

CPUi: send PAL to TPM
TPM: Allocate sePCRℓ
MC: if(¬∃ℓ ∈ sePCRs s.t. sePCR [ℓ].state= Quote) FAIL
TPM: h = SHA-1(PAL)
TPM: sePCR [ℓ] = 0
TPM: sePCR [ℓ] = SHA-1(sePCR [ℓ]||h)
TPM to CPUi: done
CPUi: SECB.MeasuredFlag= 1

Execute:
CPUi: EIP=SECB.pages.eip
CPUi: Begin executing

Figure 7. SLAUNCH pseudocode.

Unseal requires 290-900 ms (Figure 3). Thus, context switching into
a PAL (which requires unsealing prior data) can take over 1000 ms,
while context switching out (which requires sealing the PAL’s state)
can require 20-500 ms. Further, existing hardware has no facility for
guaranteeing that a PAL can be preempted (to prevent it from com-
promising system availability).

With our recommendations, we eliminate the use of TPM Seal
and Unseal during context switches and only require that the TPM
measure the PAL once (instead of on every context switch). We
expect that an implementation of our recommendations can achieve
PAL context switch times on the order of those possible today using
hardware virtualization support, i.e., 0.6µs on current hardware
(Table 2). This reduces the overhead of context switches by six orders
of magnitude (from 200-1000 ms on current hardware) and hence
makes it significantly more practical to switch in and out of a PAL.

Taken together, these improvements help make minimal TCB
code execution with our SEA a practical and effective way to achieve
secure computation on commodity systems, while only requiring
relatively minor changes in existing technology.

As an alternative to our recommended hardware modifications,
we could instead consider increasing the speed of the TPM and the
bus through which it communicates with the CPU. As shown in Sec-
tion 4, the TPM is a major bottleneck for efficient SEA applications
on current hardware. Increasing the TPM’s speed could potentially
reduce the cost of using the TPM to protect PAL state during a con-
text switch, and similarly reduce the penalty of usingSKINIT dur-
ing every context switch. However, achieving sub-microsecond over-
head comparable to our recommendations would require significant
hardware engineering of the TPM, since many of its operations use a
2048-bit RSA keypair. Even with hardware support to make the oper-
ations performant, the power consumed by such operations is waste-
ful, since we can achieve similar or superior performance with our
less power-intensive modifications.



6. Extensions
We discuss issues that our recommendations do not address, but that
may be desirable in future systems.

Multicore PALs. As presented, we offer no mechanism for allocat-
ing more than one CPU to a single PAL. First, it should be noted
that a single application-level function that will benefit from multi-
core PALs can be implemented as multiple single-CPU PALs. How-
ever, applications that require frequent communication between code
running on different CPUs (e.g., for locks) may suffer from PAL
launch, termination and context switching overheads. To address this,
a mechanism is needed to join a CPU to an existing PAL. The join op-
eration serves to add the new CPU to the memory controller’s access
control table for the PAL’s pages.

sePCR Sets. As presented, we propose a one-to-one relationship
between sePCRs and PALs. It is a straightforward extension to group
sePCRs into sets and bind a set of sePCRs to each PAL. The TPM
operations that accept an sePCR as an argument will need to be
modified appropriately. Some will be indexed by the sePCR set itself
(e.g.,SLAUNCHwill need to cause all sePCRs in a set to reset), some
by a subset of the sePCRs in a set (e.g., TPM Quote), and others by
the individual sePCRs inside a set (e.g., TPM Extend).

PAL Interrupt Handling. As presented, interrupts are disabled on
the CPU executing a PAL (expiry of the preemption timer does not
cause a software-observable interrupt to the PAL). We believe that a
PAL’s purpose should be to perform an application-specific security-
sensitive operation. As such, we recommend that a PAL not accept
interrupts. However, there may still be situations where it is necessary
to receive an interrupt, e.g., in future systems where a PAL requires
human input from the keyboard. Thus, a PAL should be able to con-
figure an Interrupt Descriptor Table to receive interrupts. However,
this may result in the PAL receiving extraneous interrupts. Routing
only the interrupts the PAL is interested in requires the CPU to re-
program the interrupt routing logic every time a PAL is scheduled,
which may create undesirable overhead or design complexity.

7. Related Work
We are not aware of any other papers analyzing the performance
of the new security features offered by AMD and Intel processors.
However, we divide less related work into three categories: attempts
to define the TCB, reduce the TCB, and invent new hardware to
protect the TCB.

Defining the TCB. Arbaugh et al. proposed secure boot, whereby
each layer of the software stack checks that the integrity of the
next layer matches a known-good configuration, otherwise boot is
aborted [4]. This architecture does not allow a system to attest its
configuration to an external party. Sailer et al. designed an integrity
measurement architecture for Linux that implements trusted boot,
whereby an external party can receive an attestation of all software
that has been loaded since boot and make its own trust decision
depending on the software configuration [19].

In this paper, we have focused on late launch and associated
trusted computing technologies such as the TPM. Seshadri et al. ex-
plore an alternate means for creating a dynamic root of trust at run-
time, called Pioneer [20]. Pioneer is not a realistic alternative today
as the verifier must possess intimate knowledge of the microarchi-
tectural design of the challenged system’s CPU and cannot tolerate
moderate network latency.

Reducing the TCB. Shi et al. proposed BIND, which uses a trusted
kernel with late launch technology to attest the correctness of BGP
update messages [22]. Unfortunately, the secure kernel they rely upon
was never built.

IBM developed the rHype research hypervisor and subsequently
applied their security technology to the sHype hypervisor security
architecture [18]. Their goal is to implement mandatory access con-
trols at the hypervisor level. While compelling, their implementation
is built for Xen [5], which consists of tens of thousands of lines of
code for the hypervisor [15], not to mention the complete Linux ker-
nel running in the privileged domain 0.

Protecting the TCB. New hardware architectures and security co-
processors [26] have been proposed to address security problems
(e.g., XOM [14], AEGIS [23], and the IBM 4758 coprocessor [7]).
Unfortunately, the cost of widespread deployment of these technolo-
gies has proven to be prohibitive. We have focused on recommending
changes that provide strong security and performance with a mini-
mum amount of effort.

8. Conclusions
We have explored the extent to which today’s latest commodity pro-
cessors will support an execution model designed to provide appli-
cations with a minimal TCB. We have found that today’s offerings
do make minimal TCB code execution possible. However, the cur-
rent performance penalty is too severe to be practical in daily use.
We have recommended changes to the CPU, memory controller, and
TPM that alleviate today’s dependence on computationally expensive
TPM operations to protect application state during context switches,
and that allow concurrent execution of secure and insecure code. If
these changes are implemented, application developers will finally
have the opportunity to write secure applications without relying on
the security of layer upon layer of legacy software, and without break-
ing compatibility with today’s commodity systems.
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A. Acronyms Used
This table summarizes the acronyms used in this paper.

Acro. Expansion Def.
TCB Trusted Computing Base Sec. 1
SEA Secure Execution Architecture Sec. 1
TPM Trusted Platform Module Sec. 2.1
PCR Platform Configuration Register Sec. 2.1.1
SVM AMD Secure Virtual Machine Sec. 2.2
TXT Intel Trusted Execution Technology Sec. 2.2
SLB Secure Loader Block Sec. 2.2.1
PAL Piece of Application Logic Sec. 3.1
SECB Secure Execution Control Block Sec. 5.1
sePCR Secure Execution PCR Sec. 5.4


