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ABSTRACT

Local robustness ensures that a model classifies all inputs within an `p-ball con-
sistently, which precludes various forms of adversarial inputs. In this paper, we
present a fast procedure for checking local robustness in feed-forward neural net-
works with piecewise-linear activation functions. Such networks partition the input
space into a set of convex polyhedral regions in which the network’s behavior
is linear; hence, a systematic search for decision boundaries within the regions
around a given input is sufficient for assessing robustness. Crucially, we show how
the regions around a point can be analyzed using simple geometric projections,
thus admitting an efficient, highly-parallel GPU implementation that excels partic-
ularly for the `2 norm, where previous work has been less effective. Empirically
we find this approach to be far more precise than many approximate verification
approaches, while at the same time performing multiple orders of magnitude faster
than complete verifiers, and scaling to much deeper networks. An implementation
of our proposed algorithm is available on GitHub1.

1 INTRODUCTION

We consider the problem of verifying the local robustness of piecewise-linear neural networks for a
given `p bound. Precisely, given a point, x, network, F , and norm bound, ε, this entails determining
whether Equation 1 holds.

∀x′.‖x− x′‖p ≤ ε =⇒ F (x) = F (x′) (1)

This problem carries practical significance, as such networks have been extensively shown to be
vulnerable to adversarial examples (Papernot et al., 2016; Szegedy et al., 2014), wherein small-
norm perturbations are chosen to cause arbitrary misclassifications. Numerous solutions have been
proposed to address variants of this problem. These can be roughly categorized into three groups:
learning rules that aim for robustness on known training data (Croce et al., 2019; Madry et al., 2018;
Wong & Kolter, 2018; Zhang et al., 2019; Xiao et al., 2019), post-processing methods that provide
stochastic guarantees at inference time (Cohen et al., 2019; Lecuyer et al., 2018), and network
verification (Balunovic et al., 2019; Cheng et al., 2017; Dutta et al., 2018; Ehlers, 2017; Fischetti &
Jo, 2018; Gowal et al., 2018; Jordan et al., 2019; Katz et al., 2017; 2019; Singh et al., 2019b; Tjeng &
Tedrake, 2017; Wang et al., 2018; Weng et al., 2018).

We focus on the problem of network verification—for a given model and input, determining if
Equation 1 holds—particularly for the `2 norm. Historically, the literature has primarily concentrated

∗First two authors have equal contributions
1Code available at https://github.com/klasleino/fast-geometric-projections
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on the `∞ norm, with relatively little work on the `2 norm; indeed, many of the best-scaling
verification tools do not even support verification with respect to the `2 norm. Nonetheless, the `2
norm remains important to consider for “imperceptible” adversarial examples (Rony et al., 2019).
Furthermore, compared to the `∞ norm, efficient verification for the `2 norm presents a particular
challenge, as constraint-solving (commonly used in verification tools) in Euclidean space requires a
non-linear objective function, and cannot make as effective use of interval-bound propagation.

Existing work on verifying local robustness for the `2 norm falls into two primary categories:
(1) expensive, but exact decision procedures, e.g., GeoCert (Jordan et al., 2019) and MIP (Tjeng &
Tedrake, 2017), or (2) fast, but approximate techniques, e.g., FastLin/CROWN (Weng et al., 2018;
Zhang et al., 2018). While approximate verification methods have shown promise in scaling to larger
networks, they may introduce an additional penalty to robust accuracy by flagging non-adversarial
points, thus limiting their application in practice. Exact methods impose no such penalty, but as they
rely on expensive constraint-solving techniques, they often do not scale well to even networks with a
few hundred neurons.

In this paper, we focus on bridging the gap between these two approaches. In particular, we
present a verification technique for Equation 1 that neither relies on expensive constraint solving nor
conservative over-approximation of the decision boundaries.

Our algorithm (Section 2) leverages simple projections, rather than constraint solving, to exhaustively
search the model’s decision boundaries around a point. The performance benefits of this approach are
substantial, especially in the case of `2 robustness, where constraint solving is particularly expensive
while Euclidean projections can be efficiently computed using the dot product and accelerated on
GPU hardware. However, our approach is also applicable to other norms, including `∞ (Section 3.3).
Our algorithm is embarassingly parallel, and straightforward to implement with facilities for batching
that are available in many popular ML libraries. Additionally, we show how the algorithm can
be easily modified to find certified lower bounds for ε, rather than verifying a given fixed value
(Section 2.3).

Because our algorithm relies exclusively on projections, it may encounter scenarios in which there is
evidence to suggest non-robust behavior, but the network’s exact boundaries cannot be conclusively
determined without accounting for global constraints (Section 2, Figure 1b). In such cases, the
algorithm will return unknown (though it would be possible to fall back on constraint solving).
However, we prove that if the algorithm terminates with a robust decision, then the model satisfies
Equation 1, and likewise if it returns not_robust, then an adversarial example exists (Theorem 1).
Note that unlike prior work on approximate verification, our approach can often separate not_robust
cases from unknown, providing a concrete adversarial example in the former. In this sense, the
algorithm can be characterized as sound but incomplete, though our experiments show that in practice
the algorithm typically comes to a decision.

We show that our implementation outperforms existing exact techniques (Jordan et al., 2019; Tjeng
& Tedrake, 2017) by multiple orders of magnitude (Section 3.1, Table 2a and Section 3.3), while
rarely being inconclusive on instances for which other techniques do not time out. Moreover, we
find our approach enables scaling to far deeper models than prior work — a key step towards
verification of networks that are used in practice. Additionally, on models that have been regularized
for efficient verification (Croce et al., 2019; Xiao et al., 2019), our technique performs even faster,
and scales to much larger models — including convolutional networks — than could be verified using
similar techniques (Section 3.1, Table 2a). Finally, we compare our work to approximate verification
methods (Section 3.2). We find that while our implementation is not as fast as previous work on
efficient lower-bound computation for large models (Weng et al., 2018), our certified lower bounds
are consistently tighter, and in some cases minimal (Section 3.2, Table 2b).

2 ALGORITHM

In this section we give a high-level overview of our proposed algorithm, and present some implemen-
tation heuristics that improve its performance (Section 2.2). We also propose a variant (Section 2.3) to
compute certified lower bounds of the robustness radius. Correctness proofs for all of the algorithms
discussed in this section are provided in Appendix A. Because our algorithm applies to arbitrary `p
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Figure 1: (a) Illustration of the FGP algorithm. We begin in Ā0 (left). We see that activation
constraints, C1 and C2 are in the ε-ball, thus we enqueue Ā1 and Ā2 (center). When searching Ā1,
we see that a decision boundary, CB , is within the ε-ball. The projection p onto CB is an adversarial
example; we return not_robust (right). (b) Illustration of the cases requiring FGP to return unknown
when analyzing a boundary constraint, CB , found within the ε-ball about x. The true boundary is
shown in solid blue; the infinite prolongation of the boundary we are projecting against is shown in
dotted blue. In each case the projection, p, lies outside of Ā, and is in fact not an adversarial example.
In the case on the left, an adversarial example, a, exists in Ā, while on the right local robustness is
satisfied in Ā. However, we cannot distinguish between these cases as p /∈ Ā in both; in both cases
we must return unknown.

norms, we use the un-subscripted notation ‖ · ‖ to refer to a general `p norm for the remainder of this
section.

2.1 THE BASIC FAST GEOMETRIC PROJECTIONS ALGORITHM

We propose the Fast Geometric Projections (FGP) algorithm, which takes a model, F , an input,
x, and a bound, ε, and either proves that Equation 1 is satisfied (i.e., ε-local robustness), finds
an adversarial input at distance less than ε from x, or returns unknown. Our algorithm assumes
F (x) = argmax{f(x)}, where f : Rm → Rn is the function computed by a neural network
composed of linear transformations with ReLU activations (i.e., f is a feed-forward ReLU network).

The algorithm relies on an analysis of all possible activation regions around x. An activation region
is a maximal set of inputs having the same activation pattern of ReLU nonlinearities.

Formally, let fu(x) denote the pre-activation value of neuron u in network F when evaluating x. We
say that neuron u is activated if fu(x) ≥ 0. An activation pattern, A, is a Boolean function over
neurons that characterizes whether each neuron is activated. Then the activation region, Ā, associated
with pattern A is the set of inputs that realize A: Ā := {x | ∀u.(fu(x) ≥ 0) ⇐⇒ A(u)}.
Because we assume that F is a piecewise-linear composition of linear transformations and ReLU
activations, we can associate the activation status A(u) of any neuron with a closed half-space of
Rm (Jordan et al., 2019). The activation constraint, Cu, for neuron u and pattern A is the linear
inequality wT

u x + bu ≤ 0, where wu and bu satisfy ∀x ∈ Rm.wT
u x + b ≤ 0 ⇐⇒ A(u). The

coefficients, wu are equal to the gradient of fu with respect to its inputs, evaluated at a point in Ā.
Crucially, because the gradient is the same at every point in Ā, the constraints can be computed from
the activation pattern alone via backpropagation. More details on this computation are given in
Appendix B.

The intersection of these constraints yields the activation region Ā, and the facets of Ā correspond to
the non-redundant constraints. The convexity of activation regions follows from this observation, as
does the fact that the decision boundaries are also linear constraints of the form f(x)i ≥ f(x)j for
classes i and j.

The FGP algorithm performs a search of all activation regions that might be at distance less than ε
from x. We begin by analyzing the region, Ā0, associated with the activation pattern of the input, x,
as follows.

First, we check to see if Ā0 contains a decision boundary, C, that is at distance less than ε from x;
if so, we take the projection, p, from x onto C. Intuitively, the projection is an input satisfying C
that is at minimal distance from x, i.e., ∀x′.C(x′) =⇒ ‖x− p‖ ≤ ‖x− x′‖. Similarly we define the
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distance, d, from x to a constraint or decision boundary, C, as d(x,C) := minx′:C(x′) ‖x− x′‖, i.e.,
d is the distance from x to its projection onto C. If p does not have the same class as x according
to F (or lies directly on the decision boundary between classes), then p is an adversarial example.
If p has the same class as x, it means that the projection to the decision boundary is outside of the
activation region we are currently analyzing; however, this is not sufficient to conclude that no point
on the decision boundary is inside both the current activation region and the ε-ball (see Figure 1b).
Therefore, we return unknown.

Otherwise, we collect all activation constraints in Ā0; there is one such activation constraint per
neuron u in the network; thus each constraint corresponds to the neighboring region, Āu

0 , which has
the same activation pattern as Ā0, except with neuron u flipped, i.e., A0(u′) 6= Au

0 (u′)⇐⇒ u = u′.
For each constraint Cu, we check whether it might be at distance less than ε from x using a geometric
projection. Although Cu is only valid in the polytope corresponding to the activation region Ā0, we
compute the distance to the hyperplane corresponding to the infinite prolongation of Cu. As such, we
only obtain a lower bound on the distance from x to Cu. If the computed distance is smaller than
ε, we enqueue the corresponding activation region if it has not been searched yet. Thus the queue
contains unexplored regions that might be at distance less than ε from x. The algorithm continues
to analyze each enqueued region in the same way, each explored region enqueuing neighbouring
regions that might be at distance less than ε from x, until the queue is empty. Exhausting the queue
means that we did not find any adversarial examples in any activation region that might intersect with
the ε-ball centered at x. We therefore conclude that x is locally ε-robust. An illustration of a simple
execution of this algorithm is shown in Figure 1a.

Conditions on Adversarial Examples. It is common in practice to include domain-specific condi-
tions specifying which inputs are considered valid adversarial examples. For example, in the image
domain, adversarial examples are typically subject to box constraints requiring each pixel to be in the
range [0, 1]. These constraints can easily be incorporated into the FGP algorithm by checking them
when we check if F (x) 6= F (p), when a decision boundary is found. If p is not a valid adversarial
example, the algorithm would return unknown.

Correctness. We show that when the FGP algorithm returns not_robust, there exists an adversarial
example, and when it returns robust, the model is locally robust at x, with radius ε. However, the
algorithm may also return unknown, in which case we do not claim anything about the robustness of
the model. A complete proof of Theorem 1 is provided in Appendix A.1.
Theorem 1. (1) When the FGP algorithm returns not_robust, there exists an adversarial example, p,
such that ‖x− p‖ ≤ ε and F (x) 6= F (p). (2) When it returns robust, Equation 1 holds.

2.2 HEURISTICS FOR FGP

To improve the performance and precision of our algorithm, we use several additional heuristics.

Batching. The gradient backpropagations for computing constraints and the dot product projections
for calculating distances lend themselves well to batching on the GPU. In our implementation we
dequeue multiple elements from the queue at once and calculate the constraints and constraint
distances for the corresponding regions in parallel, leading to a speedup of up to 2x on large examples
for a well-chosen batch size (∼10-100).

Caching Intermediate Computations. We observe that activation constraints for the first layer are
invariant across all regions, as there is no earlier neuron to depend on. Thus, we can precompute all
such constraints once for all inputs to be analyzed.

Exploring the Full Queue. If the analysis of a decision boundary is inconclusive, the FGP algorithm,
as presented, stops and returns unknown. We also implement a variant where we instead record the
presence of an ambiguous decision boundary but continue exploring other regions in the queue. If we
empty the queue after unsuccessfully analyzing a decision boundary, we nevertheless return unknown.
However, oftentimes a true adversarial example is found during the continued search, allowing us to
return not_robust conclusively.

Table 1 displays the results of experiments evaluating the impact of exploring the entire search queue
instead of stopping at the first decision boundary (as described in Section 2.1). The experimental
results show that this heuristic decreases the number of unknown results by approximately 50% while
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Vanilla Full Queue
Model Time (s) U Time (s) U

mnist20x3 0.012 7 0.012 4
mnist20x6 0.177 8 0.174 5
mnist20x9 4.897 16 7.389 3
mnist40x3 5.417 9 6.712 3

Table 1: Comparison of FGP and its variant with full exploration of the queue

only having a minor impact on the speed of the execution. Moreover, we reduce the number of
unknown results to the extent that we recover the results obtained by GeoCert in every instance for
which GeoCert terminates, except 3 non-robust points on mnist40x3, while nevertheless performing
our analysis two to three orders of magnitude more quickly.

2.3 CERTIFIED LOWER BOUNDS

We now consider the related problem of finding a lower bound on the local robustness of the
network. A variant of the FGP algorithm can provide certified lower bounds by using a priority queue;
constraints are enqueued with priority corresponding to their distance from x, such that the closest
constraint is always at the front of the queue. We keep track of the current certified lower bound in a
variable, β. At each iteration, we set β to the maximum of the old β and the distance from x to the
constraint at the front of the queue.

The algorithm terminates either when all constraints at distance less than the initially specified ε were
handled, or when a decision boundary for which the initial algorithm returns unknown or not_robust
is found. In the first case, we return ε; in the second, we return the value stored in β at this iteration.

The proof of this variant is similar to the proof of the FGP algorithm. It relies on the following loop
invariant, which we prove in Appendix A.2.

Loop Invariant 1. (1) All activation regions at distance less than β from x were previously visited,
(2) β is always smaller than ε, and (3) there is no adversarial point at distance less than β.

3 EVALUATION

In this section, we evaluate the performance of our implementation of the FGP algorithm and its
variant for computing lower bounds. Section 3.1 discusses the performance of FGP compared to
existing tools that perform exact `2 robustness verification. Section 3.2 compares the lower bounds
certified by our FGP variant from Section 2.3 to those of other approximate certification methods. In
short, we find that our approach outperforms existing exact verification tools by several orders of
magnitude (2-4), and produces more precise lower bounds (3-25 times larger) than the relevant work
on approximate certification.

Additionally, in Section 3.1, we explore the scalability of our algorithm. We find that when the
networks are strongly regularized for verifiability, our approach even scales to CNNs. Finally, we
remark on the flexibility of FGP with respect to the norm in Section 3.3, and observe that our approach
is also faster than existing complete verification tools when performing `∞ robustness verification.

We performed experiments on three standard datasets: MNIST, Fashion-MNIST, and CIFAR10. We
evaluated both on models trained for robustness using adversarial training (Madry et al., 2018), and on
models trained for verifiability and robustness using maximum margin regularization (MMR) (Croce
et al., 2019) or ReLU Stability (RS) (Xiao et al., 2019). We refer to each model by the dataset it was
trained on, followed by the architecture of the hidden layers. For example, “mnist20x3” refers to a
model trained on MNIST with 3 hidden layers of 20 neurons each. The “cnn” architecture refers to a
common CNN architecture used to benchmark CNN verification in the literature; details are given
in Appendix C. Models marked with “*” were trained with MMR; models marked with “†” were
trained with RS; all other models were trained using PGD adversarial training (Madry et al., 2018).
The hyperparameters used for training are given in Appendix C.
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FGP GeoCert MIP
Model Time (s) R NR U TO VRA Time (s) R NR TO VRA Time (s) R NR TO VRA VRAUB

mnist20x3 0.012 87 8 4 1 0.82 10.99 82 9 9 0.77 97.02 58 9 33 0.54 0.84
mnist20x6 0.174 79 9 5 7 0.74 78.93 49 9 42 0.44 >120 0 0 100 0.00 0.85
mnist20x9 7.389 44 16 3 37 0.42 >120 10 10 80 0.10 >120 0 0 100 0.00 0.82
mnist40x3 6.712 54 6 3 37 0.51 >120 16 11 73 0.16 >120 0 0 100 0.00 0.89

fmnist200x4* 0.025 81 14 4 1 0.73 54.85 45 14 41 0.41 >120 0 0 100 0.00 0.76
fmnist200x6* 0.087 66 12 3 19 0.60 >120 28 5 67 0.26 >120 0 0 100 0.00 0.75
fmnist100x20* 0.057 86 7 7 0 0.61 >120 42 8 50 0.37 >120 0 0 100 0.00 0.66

cifar-cnn† 0.058 86 14 0 0 0.27 not supported >120 0 0 100 0.00 0.27

(a)
FGPLB FastLin

Model Mean Bound Mean Bound Median Ratio

fmnist500x4 0.124 0.078 0.329
fmnist500x5 0.134 0.092 0.693
fmnist1000x3 0.083 0.021 0.035

(b)

Table 2: (a) Comparison of `2 local robustness certification (FGP vs. GeoCert vs. MIP) on 100
arbitrary test instances, including the median runtime, the certification result — either robust (R),
not_robust (NR), unknown (U), or a timeout (TO) — and the corresponding Verified robust accuracy
(VRA). The upper bound on the VRA (VRAUB) is also given. Each instance is given a time budget
of 120 seconds. Results are for ε = 0.25, except on CIFAR10, where we use ε = 0.1, as was used
by (Croce et al., 2019). (b) Comparison of the lower bound obtained by FGP (Section 2.3) to that
obtained by FastLin.

In each experiment, measurements are obtained by evaluating on 100 arbitrary instances from the test
set. All experiments were run on a 4.2GHz Intel Core i7-7700K with 32 GB of RAM, and a Tesla
K80 GPU with 12 GB of RAM.

3.1 LOCAL ROBUSTNESS CERTIFICATION

We first compare the efficiency of our implementation to that of other tools certifying local robustness.
GeoCert (Jordan et al., 2019) and MIP (Tjeng & Tedrake, 2017) are the tools most comparable to
ours as they are able to exactly check for robustness with respect to the `2 norm. We used commit
hash 8730aba for GeoCert, and v0.2.1 for MIP. Specifically, we compare the median run time over the
analyses of each of the selected 100 instances, the number of examples on which each tool terminates,
the result of the analyses that terminate, and the corresponding verified robust accuracy (VRA), i.e.,
the fraction of points that were both correctly classified by the model and verified as robust. In
addition, we report an upper bound on the VRA for each model, obtained by running PGD attacks
(hyperparameters included in Appendix C) on the correctly-classified points on which every method
either timed out or reported unknown. Results are given for an `2 norm bound of ε = 0.25, with a
computation budget of two minutes per instance. The results for these experiments are presented in
Table 2a.

We observe that FGP always outperforms GeoCert by two to three orders of magnitude, without
sacrificing precision; i.e., we rarely return unknown when GeoCert terminates. MIP frequently
times out with a time budget of 120 seconds, indicating that we are faster by at least four orders of
magnitude. This is consistent with the 100 to 1000 seconds per solve on a MNIST model with three
hidden layers of 20 neurons each reported by Tjeng & Tedrake (2017); their technique performs best
on the `1 or `∞ norms. In addition, we find that FGP consistently verifies the highest fraction of
points, and yields the best VRA. Moreover, on mnist20x3, FGP comes within 2 percentage points of
the VRA upper bound. This suggests that FGP comes close to verifying every robust instance on this
model.

Models Trained for Verifiability. Adversarial training (Madry et al., 2018), used to train the
models in Sections 3.1 and 3.2, attempts to ensure that points on the data manifold will be far from
the model’s decision boundary. Even if it achieves this objective, it may nonetheless be difficult to
verify because the performance of FGP depends not only on the decision boundaries, but also on the
internal activation constraints. Thus, we expect certification will be efficient only when the points to
be certified are also far from internal boundaries, leading to fewer regions to explore. Recent work
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has sought to develop training procedures that not only encourage robustness, but that also optimize
for efficient verification (Croce et al., 2019; Wong & Kolter, 2018; Xiao et al., 2019). Maximum
margin regularization (MMR) (Croce et al., 2019) and ReLU stability (RS) (Xiao et al., 2019) are
particularly suited to our work, as they follow from the same intuition highlighted above.

Using MMR, FGP is able to scale to much larger models with hundreds or thousands of neurons, and
tens of layers, as shown in the bottom half of Table 2a. Here again, we see that FGP outperforms
the other approaches in terms of both time and successfully-verified points. By comparison, while
GeoCert also experienced improved performance on the MMR-trained models, our method remains
over three orders of magnitude faster. MIP continued to time out in nearly every case.

We found that we were able provide even stronger regularization with RS, allowing us to scale to
CNNs (Table 2a), which have far more internal neurons than even large dense networks. We found
that these highly regularized CNNs verified more quickly than some of the less-regularized dense
networks, though, as with other methods that produce verifiable CNNs, this came at the cost of a
penalty on the model’s accuracy.

3.2 CERTIFIED LOWER BOUNDS

We now evaluate the variant of our algorithm computing certified lower bounds on the robustness
radius (Section 2.3). To this end, we compare the performance of our approach to FastLin (Weng et al.,
2018), which is designed to provide quick, but potentially loose lower bounds on the local robustness
of large ReLU networks. We compare the certified lower bound reported by our implementation of
FGP after 60 seconds of computation (on models large enough such that FGP rarely terminates in 60
seconds) to the lower bound reported by FastLin; FastLin always reported results in less than two
seconds on the models analyzed. The results are presented in Table 2b. The mean lower bound is
reported for both methods, and we observe that on the models tested, FGP is able to find a better
lower bound on average, though it requires considerably more computation time.

Because the optimal bound may vary between instances, we also report the median ratio of the lower
bounds obtained by the two methods on each individual instance. Here we see that FastLin may
indeed be quite loose, as on a typical instance it achieves as low as 4% and only as high as 69% of the
bound obtained by FGP. Finally, we note that when FGP terminates by finding a decision boundary,
if the projection onto that boundary is a true adversarial example, then the lower bound is tight. In
our experiments, there were few such examples — three on fmnist500x4 and one on fmnist1000x3 —
however, in these cases, the lower bound obtained by FastLin was very loose, achieving 4-15% of the
optimal bound on fmnist500x4, and only 0.8% of the optimal bound on fmnist1000x3. This suggests
that while FastLin has been demonstrated to scale to large networks, one must be careful with its
application, as there may be cases in which the bound it provides is too conservative.

3.3 GENERALIZATION TO OTHER NORMS

The only aspect of FGP that depends on the norm is the projection and the projected distance
computation, making our approach highly modular with respect to the norm. As such, we added
support for `∞ robustness certification by providing a projection and a projected distance computation
in FGP.

In this section, we compare the efficiency of this implementation to GeoCert (Jordan et al., 2019)
and ERAN (Singh et al., 2019a). ERAN uses abstract interpretation to analyze networks using
conservative over-approximations. As such, the analysis can certify that an input is robust, but can
yield false positives when flagging an input as not robust. In this evaluation, we use the DeepPoly
abstract domain, and the complete mode of ERAN which falls back on constraint solving when an
input is classified as not robust.

Our experimental setup is similar to the one presented in Section 3.1. For each network, we arbitrarily
pick 100 inputs from the test set and report the median analysis time of each tool. We give each
tool a time budget of 120 seconds per input. We report the number of instances on which each tool
terminates within this time frame, as well as the results of the analyses that terminate. Results are
given in Table 3 for an `∞ norm bound of ε = 0.01, which contains roughly the same volume as the
`2 ball used in most of our evaluation.
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FGP ERAN+MIP GeoCert
Model Time (s) R NR U TO Time (s) R NR TO Time (s) R NR TO

mnist20x3 0.004 94 0 6 0 0.017 95 5 0 0.360 95 5 0
mnist20x6 0.016 95 0 4 1 0.054 97 3 0 0.988 97 3 0
mnist20x9 0.021 84 4 8 4 0.080 92 8 0 2.799 89 8 3
mnist40x3 0.094 91 2 5 2 0.040 96 4 0 2.843 94 4 2

fmnist100x6* 0.012 85 7 8 0 0.982 91 9 0 0.750 91 9 0
fmnist100x10* 0.021 92 1 7 0 2.104 94 6 0 1.308 93 6 1

Table 3: Comparison of `∞ local robustness certification (FGP vs. ERAN vs. GeoCert) on 100
arbitrary test instances with a time budget of 120 seconds, including the median runtime and the
certification result: either robust (R), not_robust (NR), unknown (U), or a timeout (TO). Results are
for ε = 0.01.

We refer to each model by the dataset it was trained on, followed by the architecture of the hidden
layers. For example, “mnist20x3” refers to a model trained on MNIST with 3 hidden layers of 20
neurons each. Models marked with an asterisk were trained with MMR (Croce et al., 2019); other
models were trained using PGD adversarial training (Madry et al., 2018).

We observe that we consistently outperform GeoCert by about two orders of magnitude, both on
models trained with MMR and using adversarial training. On models trained for robustness (upper
rows of Table 3), FGP is 0.5x to 5x faster than ERAN. In particular, FGP seems to scale better to
deeper networks, while ERAN performs better on wider networks. Interestingly, ERAN does not
benefit as much from MMR training as FGP and GeoCert. On large models trained with MMR, our
tool is one to two orders of magnitude faster than ERAN, and ERAN is only about 2x faster than
GeoCert.

Finally, while FGP is able to determine robustness for almost all inputs deemed robust by GeoCert
or ERAN, it struggles to find adversarial examples for non-robust points, which results in a higher
number of unknown cases compared to the `2 variant. This is not highly surprising, as projections
are better-suited to the Euclidean space than to `∞ space. While the projection in Euclidean space is
unique, this is not always the case in `∞ space; we pick one arbitrary projection which thus might
not lead to an adversarial example.

4 RELATED WORK

Our work can be grouped with approaches for verifying neural networks that aim to check local
robustness exactly (Jordan et al., 2019; Katz et al., 2017; 2019; Tjeng & Tedrake, 2017); the primary
difference is that our approach avoids expensive constraint solving at the price of incompleteness.

GeoCert (Jordan et al., 2019) is the closest work to ours; it aims to exactly compute local robustness
of deep neural networks for convex norms. Unlike our approach, GeoCert computes the largest `p
ball centered at an input point within which the network is robust. Our experimental comparison
with GeoCert shows that our approach scales much better. This is not surprising as GeoCert relies
on projections to polytopes, which are solved by a quadratic program (QP) with linear constraints.
This enables to compute exactly the distance from a point to an activation constraint, instead of
an underapproximation as our approach does. In contrast, our approach uses projections to affine
subspaces, which have a simpler, closed-form solution. Lim et al. (2020) builds on GeoCert, but
reduces the number of activation regions to consider by exploring the network in a hierarchical
manner. Although Lim et al. reduce the number of QPs required for verification, their variant still
relies on constraint solving. While they improve on GeoCert by up to a single order of magnitude,
our approach consistently outperforms GeoCert by 2-4 orders of magnitude. MIP (Tjeng & Tedrake,
2017) is an alternative to GeoCert based on mixed-integer programming; it also requires solving QPs
for the `2 norm. We could fall back on similar techniques to provide a slower, but complete variant of
our algorithm when our projections cannot reach a conclusion about a decision boundary.

Reluplex (Katz et al., 2017) and its successor, Marabou (Katz et al., 2019) are complete verification
tools based on SMT solving techniques. Unlike our approach, Reluplex and Marabou do not support
the `2 norm. AI2 (Gehr et al., 2018) and its successor, ERAN (Singh et al., 2019b), are based on
abstract interpretation (Cousot & Cousot, 1977), using conservative over-approximations to perform
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their analysis, which leads to false positives, i.e. robust inputs incorrectly classified as not robust. A
mode of ERAN enables complete verification by falling back on a constraint solver when an input is
classified as not robust; however this tool does not support the `2 norm either.

FastLin (Weng et al., 2018) exploits the special structure of ReLU networks to efficiently compute
lower bounds on minimal adversarial distortions. CROWN (Zhang et al., 2018) later expanded this to
general activation functions. Although FastLin has been shown to be very scalable, our experiments
indicate that the computed bounds may be imprecise.

Recently, a quite different approach has been proposed for robustness certification. Randomized
Smoothing (Cohen et al., 2019; Lecuyer et al., 2018) is a post-processing technique that provides a
stochastic robustness guarantee at inference time. This approach differs from our approach in that it
(1) modifies the predictions of the original model (increasing the complexity of making predictions),
and (2) provides a probabilistic robustness guarantee that is quantified via a confidence bound. As
such it provides an alternative set of costs and benefits as compared to static verification approaches.
Its complexity also differs from that of FGP, as it is dependent primarily on the number of samples
required to perform its post-processing of the model’s output. We find that in our experimental
setup, achieving the same probabilistic guarantee as the experiments described in (Cohen et al., 2019)
requires 105 samples, taking approximately 4.5 seconds per instance. Thus, for the models in our
evaluation, FGP is on average faster or comparable in performance.

5 CONCLUSION

In this paper, we presented a novel approach for verifying the local robustness of networks with
piecewise linear activation functions, that relies neither on constraint solving nor conservative over-
approximations, but rather on geometric projections. While most existing tools focus on the `1 and
`∞ norms, we provide an efficient, highly parallel implementation to certify `2-robustness. Our
implementation outperforms existing exact tools by multiple orders of magnitude, while empirically
maintaining the same or better precision under a time constraint. Additionally, we show that our
approach is particularly suited to scale up network verification to deeper networks—a promising step
towards verifying large, state-of-the-art models.
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A CORRECTNESS PROOFS

A.1 PROOF OF THEOREM 1

We show that when FGP returns not_robust, there exists an adversarial example, and when it returns
robust, the model is locally robust at x, with radius ε. However, the algorithm may also return
unknown, in which case we do not claim anything about the robustness of the model.

Proof. In the first case, where FGP returns not_robust, the proof of Theorem 1 is trivial: we exhibit
a point, p, such that ‖x− p‖ ≤ ε, and for which F (x) 6= F (p).

The interesting case is when FGP returns robust. We prove by contradiction that in this case, x is in
fact locally robust with radius ε.

Let us assume for the sake of contradiction that FGP returns robust, but there exists a point, p, such
that ‖x− p‖ ≤ ε and F (x) 6= F (p). Let Āx and Āp be the activation regions associated with x and
p respectively.

We define a path of activation regions as a sequence, Ā0, . . . , Āk, of activation regions such that the
underlying activation patterns Ai and Ai+1 differ in exactly one neuron for all i, and there exists
at least one input, xi, that has activation pattern Ai for all i. For instance, in a network with three
neurons, if A0 = (true, true, false), A1 = (true, false, false), and A2 = (true, false, true),
and there exist inputs, x0, x1, and x2 with activation patterns A0, A1, and A2, then 〈Ā0, Ā1, Ā2〉 is a
path.

Our proof relies on three facts, that we prove hereafter:

1. There exists a path, P , from Āx to Āp where each region in the path contains at least one
input at distance less than ε from x, and either Āx = Āp or all Āi, Āj in the path are
different.

2. Our algorithm visits all regions in the path, P .

3. If a visited activation region contains an adversarial input, our algorithm either detects it,
returning not_robust, or returns unknown.

Together, (1), (2), and (3) imply that if an adversarial point, p, exists, it resides in an activation
region that would have been checked by FGP, which would have resulted in the algorithm returning
not_robust or unknown, contradicting the assumption that it returned robust.

(1) Existence of a Path Consider the segment going from x to p in a straight line. As ‖x− p‖ ≤ ε,
all points on this segment are also at distance less than ε. As f is a neural network with ReLU
activations, f is a continuous function, as are the activation functions, fu for each of its internal
neurons, u. Furthermore, input points at the boundary between two activation regions (i.e., z, such
that fu(z) = 0) belong to both activation regions. Therefore, listing all activation regions on the
segment between x and p yields a path, P , from Āx to Āp, with each region on the path containing
an input point, xi, on the segment, such that ‖x− xi‖ ≤ ε.
That each Āi, Āj in P is unique follows from the convexity of activation regions: If there exist
Āi = Āj in P such that there exists an Āk in between, then Āi = Āj cannot be convex, as there
exists a line segment with its end points in Āi and Āj that is not entirely contained within the region
Āi = Āj . This ensures that paths are of finite length.

(2) Exploration by the Algorithm Given the existence of the path, P , from Āx to Āp, we now
prove that FGP would visit all activation regions in P if it returns robust. We proceed by induction on
the length of paths induced (similarly to as above) by a line segment included in the ε-ball centered
on x.

In the base case, if the path is of length one, then it contains only Āx, and the claim holds trivially
since FGP starts by visiting Āx.

12



Published as a conference paper at ICLR 2021

In the inductive case, let us assume that for any path with length at most k induced by a segment,
s, beginning at x with ‖s‖ ≤ ε, FGP visits all regions in the path. Now consider a path, P ′ =
Ā0, . . . , Āk, of length k + 1, induced by a segment, s′, beginning at x with ‖s′‖ ≤ ε. Since Āk−1 is
on the path, there exists a point, xk−1, on s′ such that the sub-segment from x to xk−1 induces a path
of length k; thus we can apply our induction hypothesis to conclude that FGP visits Ā0, . . . , Āk−1.
Now, since Āk−1 and Āk are neighbors in P ′, they must share some boundary, C, that is intersected
by s′. Thus, since ‖s′‖ ≤ ε, d(x,C) ≤ ε; thus when FGP visits Āk−1, it will add Āk to the queue via
C. Therefore, since FGP returns robust only when all regions in the queue have been visited, FGP
will visit Āk, concluding the proof of (2).

(3) Detection of Adversarial Examples We conclude by proving that if there exists an adversarial
example in a region visited by FGP, then we either return not_robust or unknown.

If p in Āp is an adversarial example, then F (x) 6= F (p). By continuity of f , this means that
there exists an input, p′ on the segment from x to p that is exactly on a decision boundary, C. As
‖x− p′‖ ≤ ‖x− p‖ ≤ ε, C must have been analyzed when exploring Āp.

However, when analyzing a decision boundary, FGP always returns either not_robust or unknown.

Thus, the decision boundary in the activation region containing p would have been analyzed by FGP;
this yields a contradiction, as the algorithm must have returned not_robust or unknown rather than
robust.

A.2 PROOF OF LOOP INVARIANT 1

The proof of lower-bound variant is similar to the proof of FGP in Section A.1. It relies on the
following loop invariant.

Proof. Loop Invariant 1 trivially holds on entry of the loop since bound is initialized to 0. Proving
that the invariant is maintained is more interesting. Suppose that bound increases to bound′. It
must then be shown that there is no unvisited activation region at distance less than bound′. We
proceed again by contradiction: assume there was such a region, Ā, containing a point, p, such that
‖x− p‖ ≤ bound′. Again, let us consider the segment from x to p, and the path, P , it induces. Let us
consider Āi, the first region of P at distance greater than bound that was not previously visited. If no
such region exists, then Ā is at distance less than bound from x, and so by our induction hypothesis,
it was already visited. otherwise, Āi−1 was visited, and the activation constraint, C, between Āi−1
and Āi is such that d(x,C) ≤ bound′ ≤ ε. Therefore, C (which leads to Āi) was already added to
the queue with priority less than bound′, and by virtue of the priority queue, it was explored before
the current iteration, which yields a contradiction.

If bound does not increase, the invariant still trivially holds. This case can happen because our
computation of the distance to constraints is an underapproximation of the true distance to the feasible
portion of the constraint.

B COMPUTING ACTIVATION CONSTRAINTS AND DECISION BOUNDARIES

Recall that an activation constraint, Cu, which is satisfied when fu(x) ≥ 0 ⇐⇒ A(u), is a linear
constraint with coefficients wu, and intercepts, bu. The computation of these weights and intercepts
does not depend on a particular point in Ā — only on the activation pattern, A. Thus, we can compute
the boundaries of an activation region, Ā, knowing only the corresponding activation pattern, A.

In practice, the coefficients, wu, correspond to the gradient of fu with respect to its inputs, evaluated
at a point in Ā. However, frameworks that perform automatic differentiation typically require a
concrete point for evaluation of the gradient. Thus, we compute the gradient via backpropagation
with the activation vectors, ai, where the position in ai corresponding to neuron, u, takes value 1 if
A(u) is true and 0 otherwise. The intercepts, bu, are computed via a forward computation using the
activation vectors, with x set to 0. These operations can easily be implemented to run efficiently on a
GPU.
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Decision boundaries in an activation region, Ā, are computed similarly to internal activation con-
straints; we take the linearization of the network in Ā. Since the network is piecewise linear, and
linear within each activation region, this linearization is exact for the region being considered.

C HYPERPARAMETERS

Here, we provide details on the hyperparameters used to train the models used in our evaluation and
to conduct the PGD (Madry et al., 2018) attacks used to obtain the upper bounds on the verified
robust accuracy (VRA).

CNN Architecture. We used a CNN architecture that has been used for benchmarking verification
by (Wong & Kolter, 2018) and (Croce et al., 2019). It contains 2 convolutional layers, each using
4× 4 filters with a 2× 2 stride, with 16 and 32 channels respectively, followed by a dense layer of
100 nodes.

PGD Adversarially-trained Models. To train models for robustness, we used PGD adversarial
training (Madry et al., 2018). For training, we used the `2 norm, and let ε = 2.5—10 times the ε we
verify with in order to have a higher fraction of verifiably-robust points. We trained each model for
20 epochs with a batch size of 128 and 50 PGD steps.

Maximum-Margin-Regularization-trained Models. To train models for both robustness and
verifiability, we used maximum margin regularization (Croce et al., 2019) (MMR). MMR has several
hyperparameters including γB and γD, which correspond to the desired distance of the training
points from the internal boundaries and decision boundaries respectively (these can be seen as acting
similarly to the choice of ε in PGD training); nB and nD, which specify the number of internal
and decision boundaries to be moved in each update; and λ, which specifies the relative weight of
the regularization as opposed to the regular loss. See (Croce et al., 2019) for more details on these
hyperparameters. We set γB = γD = 2.5, nB = 100, nD = 9, and λ = 0.5, and trained each model
for 20 epochs with a batch size of 128.

ReLU-Stability-trained Models. We also used ReLU stability (RS) (Xiao et al., 2019) to regularize
models for verifiable robustness. We trained using RS with PGD adversarial loss and `1 weight
regularization, as was done by Xiao et al.. We weighted the RS loss by α = 2.0, using an ε (i.e., the
distance over which the ReLU activations should remain stable) of 8/255, and weighted the PGD
adversarial loss by β = 1.0, using an ε (i.e., the target robustness radius) of 36/255. We scheduled
the `1 regularization to decay from 10−2 to 10−3 over the course of training, and trained for 100
epochs with a batch size of 128.

PGD Attacks. We obtained an upper bound on the VRA by performing PGD attacks on all the
correctly-classified points for which every method either timed out or reported unknown; the upper
bound is the best VRA plus the fraction of points that were correctly-classified, undecided, and for
which the PGD attack did not successfully find an adversarial example. We conducted these attacks
with an `2 bound of ε = 0.25 with 1,000 PGD steps.

Arbitrary Test Instances To arbitrarily pick the 100 test instances, we used the random.randint
function from Numpy, setting the initial seed to 4444. The indices of the test instances are 8361,
7471, 8091, 4275, 5205, 6886, 5341, 4026, 4554, 5835, 8181, 6124, 6309, 1875, 7910, 6018, 1985,
6912, 8676, 2376, 9143, 5527, 5540, 4661, 1910, 7498, 2190, 789, 1672, 3393, 1925, 841, 8333,
4644, 5648, 138, 7872, 5204, 441, 3951, 3812, 3983, 8598, 8334, 5666, 5, 1014, 9148, 5993, 2182,
4141, 5385, 2774, 9927, 7507, 9097, 7047, 7319, 1638, 9535, 8889, 1196, 4992, 9223, 6525, 9577,
2266, 1748, 6462, 2969, 4866, 271, 9890, 2814, 9848, 8513, 289, 9002, 1103, 506, 1576, 1035, 9808,
8059, 2424, 6072, 6577, 1463, 5573, 8995, 100, 1457, 8103, 7835, 2491, 9481, 8053, 2478, 8132,
7033.
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D BREAKDOWN OF RUN-TIMES FOR DECIDED POINTS
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Figure 2: Cactus plots showing the time taken for each instance that is decided as either robust or
not_robust. The instances are ordered by increasing time-per-instance. Results are shown for the
PGD adversarially-trained models for both the `2 norm (a) and the `∞ norm (b).

15


	1 Introduction
	2 Algorithm
	2.1 The Basic Fast Geometric Projections Algorithm
	2.2 Heuristics for FGP
	2.3 Certified Lower Bounds

	3 Evaluation
	3.1 Local Robustness Certification
	3.2 Certified Lower Bounds
	3.3 Generalization to Other Norms

	4 Related Work
	5 Conclusion
	A Correctness Proofs
	A.1 Proof of Theorem 1
	A.2 Proof of Loop Invariant 1

	B Computing Activation Constraints And Decision Boundaries
	C Hyperparameters
	D Breakdown of Run-times for Decided Points

