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Abstract—We present EverCrypt: a comprehensive collection
of verified, high-performance cryptographic functionalities avail-
able via a carefully designed API. The API provably supports
agility (choosing between multiple algorithms for the same
functionality) and multiplexing (choosing between multiple im-
plementations of the same algorithm). Through abstraction and
zero-cost generic programming, we show how agility can simplify
verification without sacrificing performance, and we demonstrate
how C and assembly can be composed and verified against
shared specifications. We substantiate the effectiveness of these
techniques with new verified implementations (including hashes,
Curve25519, and AES-GCM) whose performance matches or
exceeds the best unverified implementations. We validate the
API design with two high-performance verified case studies built
atop EverCrypt, resulting in line-rate performance for a secure
network protocol and a Merkle-tree library, used in a production
blockchain, that supports 2.7 million insertions/sec. Altogether,
EverCrypt consists of over 124K verified lines of specs, code,
and proofs, and it produces over 29K lines of C and 14K lines
of assembly code.

I. INTRODUCTION

Application developers seldom write their own cryptographic
code; instead they rely on a cryprographic provider, such
as OpenSSL’s libcrypto [65], Windows Cryptography
API [58], or 1ibsodium [7]. Developers expect their provider
to be comprehensive in supplying all of the functionalities they
need (asymmetric and symmetric encryption, signing, hashing,
key derivation, ...) for all the platforms they support.

Further, a modern cryptographic provider should be agile;
that is, it should provide multiple algorithms (e.g., ChaCha-Poly
and AES-GCM) for the same functionality (e.g., authenticated
encryption) and all algorithms should employ a single unified
API, to make it simple to change algorithms if one is broken.

A modern cryptographic provider should also support multi-
plexing, that is, the ability to choose between multiple imple-
mentations of the same algorithm. This allows the provider to
employ high-performance implementations on popular hardware
platforms (OpenSSL, for example, supports dozens), while
still providing a fallback implementation that will work on
any platform. Ideally, these disparate implementations should
be exposed to the developer via a single unified API, so
that she need not change her code when a new optimized
version is deployed, and so that the provider can automatically
choose the optimal implementation, rather than force the
developer to do so. Historically, this process has been error
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prone (due in part to Intel and AMD reporting CPU features
inconsistently [78]), with various cryptographic providers
invoking illegal instructions on specific platforms [74], leading
to killed processes and even crashing kernels.

Since a cryptographic provider is the linchpin of most
security-sensitive applications, its correctness and security are
crucial. However, for most applications (e.g., TLS, cryptocur-
rencies, or disk encryption), the provider is also on the critical
path of the application’s performance. Historically, it has been
notoriously difficult to produce cryptographic code that is fast,
correct, and secure (e.g., free of leaks via side channels). For
instance, OpenSSL’s 1ibcrypto reported 24 vulnerabilities
between January 1, 2016 and May 1, 2019 (Figure 15).

Such critical, complex code is a natural candidate for formal
verification, which can mathematically guarantee correctness
and security even for complex low-level implementations.
Indeed, in recent years, multiple research groups have produced
exciting examples of verified cryptographic code.

However, as we discuss in detail in §II, previous work has
not produced a verified cryptographic provider comparable to
the unverified providers in use today. Instead, some papers
verify a single algorithm [14, 17, 80], or even just a portion
thereof [26, 67, 75]. Others focus on many variants of a
single functionality, with elliptic curves being a popular
choice [36, 81]. Finally, a few works include several classes of
functionality (e.g., hashing and encryption) but either in small
number for specific platforms [25, 39], or with speeds below
those of state-of-the-art providers [10, 44, 73, 82]. All of these
works contribute important techniques and insights into how to
best verify cryptographic code, but they all fall short of what
application developers want from a cryptographic provider.

Building on previous algorithm verification efforts [25,
39, 82], we present EverCrypt, a comprehensive, provably
correct and secure, cryptographic provider that supports agility,
multiplexing, and auto-configuration. EverCrypt’s agility means
that multiple algorithms provably provide the same API to
clients, and its multiplexing demonstrates multiple disparate
implementations (almost all entirely new, including several
platform-specific implementations that beat state-of-the-art
unverified libraries) verifying against the same cryptographic
specification. The API is carefully designed to be usable by
both verified and unverified (e.g., C) clients. To support the
former, we show that multiple layers of abstraction, both in the



implementation and (more surprisingly) in the specification of
cryptographic algorithms, naturally leads to agile code while
also improving verification efficiency. We also demonstrate
how the judicious use of generic programming can enhance
developer productivity and simplify specifications by cleanly
extracting commonality from related algorithms.

To illustrate the benefits of multiplexing, and as part of our
efforts to ensure state-of-the-art performance for EverCrypt,
we present new verified implementations of a large variety of
algorithms (Figure 4). These include, e.g., Curve25519 [18],
hash functions, and authenticated encryption with additional
data (AEAD) that transparently multiplex between a generic C
implementation and a hand-tuned x64 assembly implementation.
When run on x64, they match or exceed the performance of the
best unverified code, while the C implementations provide
support across all other platforms (and offer performance
competitive with unverified C code as well).

To illustrate the utility of EverCrypt’s API, we develop
two applications atop it. First, a new Merkle-tree [56] library
leverages EverCrypt’s agile hashing API. The Merkle trees
support high-performance secure logging, providing over 2.7M
transactions/s. They also come with comprehensive safety,
correctness, and cryptographic security properties, illustrating
EverCrypt’s value when building formally-verified applications.
Second, we build a verified transport security layer for the QUIC
network protocol [45] and, by connecting it to unverified QUIC
implementations, show that it supports line-rate performance.

All EverCrypt code is proven safe and functionally correct.!
Safety means the code respects memory abstractions (e.g., never
reading outside the bounds of an array) and does not perform
illegal operations (e.g., divide by zero). Functional correctness
means the code’s computational behavior is precisely described
by a pure mathematical function. Further, all EverCrypt code
is proven side-channel resistant; specifically, the sequence of
instructions executed and the memory addresses accessed do
not depend on secret inputs; more informally, EverCrypt prov-
ably implements “constant-time cryptography” [15]. Together,
the guarantees would have prevented all of 1ibcrypto’s
vulnerabilities, except one related to prime generation (§XIII).

EverCrypt does not (yet) include cryptographic proofs of
security (e.g., we do not prove that counter-mode encryption is
secure if the underlying cipher is secure). As future work, we
plan to apply techniques similar to those of Bhargavan et al. [22]
to provide such proofs for common security assumptions atop
EverCrypt’s functionalities. For now, we illustrate such proofs
of high-level security properties on our sample applications,
e.g., we prove that collisions on our Merkle tree can be reduced
to collisions of the underlying hash function.

While EverCrypt provides provably correct and secure
cryptography, like any verified artifact, its guarantees rely on the
correctness of both our specifications and our verification tools.
All EverCrypt code is proven using the F* proof assistant, so
F* and its toolchain are part of EverCrypt’s trusted computing
base (TCB), which we discuss at length in §II-C. EverCrypt
also currently lacks support for older algorithms like RSA and
DES, and it includes hand-optimized assembly only for x64
platforms. We plan to support additional platforms in the future.

!"The specs, proofs, and code of EverCrypt are all available as open source.

In summary, this paper makes the following contributions:

1) EverCrypt, a comprehensive, verified cryptographic
provider that offers agility, multiplexing, and speed;

2) the design of a principled, abstract, agile API, usable by
verified (F*) and unverified (C) clients alike;

3) its multiplexing implementation, coupled with verified
zero-cost generic programming techniques to streamline
the verification of cryptographic algorithms without sacri-
ficing performance;

4) a new approach based on dependently typed generic
programming [12] to prove the safety and correctness
of fine-grained interoperation between C and assembly;

5) new verified cryptographic implementations (including
hashes, Curve25519, and AES-GCM) whose performance
matches or exceeds the best unverified implementations;

6) case studies on real applications of Merkle trees and QUIC
transport security to demonstrate the utility of EverCrypt’s
API and the performance it enables.

The specifications, proofs, and code of EverCrypt are all
available as open source (§IX).

II. BACKGROUND AND RELATED WORK

Multiple research projects have contributed to our understand-
ing of how to produce verified cryptographic code, but none
provide the performance, comprehensiveness, and convenience
that developers expect from a cryptographic provider, and none
investigate the challenges of agility or automatic multiplexing.

Some work verifies parts of individual algorithms, particu-
larly portions of Curve25519. For example, Chen et al. [26]
verify the correctness of a Montgomery ladder using Coq [72]
and an SMT solver, while Tsai et al. [75] and Polyakov et
al. [67] do so using an SMT solver and a computer algebra
system. All three focus on implementations written in assembly-
like languages. Almeida et al. [10], in contrast, use a domain-
specific language (DSL) and verified compilation (via Coq,
Dafny [51], and custom scripting) to verify memory safety
and side-channel resistance, and, in more recent work [11],
correctness for ChaCha20 and Poly1305 using EasyCrypt [16].

Other papers verify a single algorithm, e.g., SHA-
256 [14], HMAC instantiated with SHA-256 [17], or HMAC-
DRBG [80]. Each is written in Coq using the Verified Software
Toolchain [13] and yields C code, which is compiled by
CompCert [52]. Using the Foundational Cryptography Frame-
work [66], they prove the cryptographic constructions secure.

The SAW tool [31] proves the correctness of C code
(via LLVM) and Java code with respect to mathematical
specifications written in Cryptol. Dawkins et al. use it to verify
reference implementations and simple in-house implementations
of AES, ZUC, FFS, ECDSA, and the SHA-384 inner loop [73],
but they do not report performance, nor verify assembly.

Other works verify multiple algorithms for the same function-
ality, typically for elliptic curves. For example, Zinzindohoué et
al. develop a generic library based on templates, and instantiate
it for three popular curves [81], including Curve25519, but
they report 100x performance overheads compared with C
code. FiatCrypto [36] employs a verified, generic compilation
scheme from a high-level Coq specification to C code for



bignum arithmetic, which enables them to generate verified
field arithmetic code for several curves. Even with aggressive
optimization by an unverified C compiler, they still lag hand-
tuned assembly implementations by 0.25-2x. They also report
issues with compilers segfaulting when compiling their code,
or even generating binaries that produce the wrong output,
illustrating an advantage of EverCrypt’s ability to produce
verified assembly code when needed.

Finally, Hawblitzel et al. [44] verify a variety of algorithms
(RSA signing and encryption, SHA-1, SHA-256, and HMAC)
in Dafny, but they are compiled and verified as a part of a larger
application, and they report performance overheads ranging
from 30% to 100x compared with unverified implementations.

In the unverified space, Tuveri and Brumley propose an API
for bridging the gap between cryptographic research results and
deployed cryptographic systems [76], while recent providers
such as 1ibsodium promote simpler APIs that hide most
cryptographic details.

A. Background on EverCrypt

Rather than commit to a single target language (e.g., C or
assembly) as most previous work does, EverCrypt overhauls,
significantly rewrites, and unifies (via multiplexing and an
agile API) two open-source projects, HACL* [82] and Vale-
Crypt [25, 39]. We choose these projects as starting points,
since HACL* produces high-performance C code for cross-
platform support, while ValeCrypt produces assembly code for
maximum performance on specific hardware platforms. Both
employ F* [71] for verification, which allows EverCrypt to
reason about both in a single unified framework. We provide
additional background on all three projects below.

a) F* and Low*: F* [71] is an ML-like programming
language that, like Coq [72] or Nuprl [28], supports dependent
types. This makes it easy to specify, for example, Curve25519’s
field (namely integers modulo the prime 2255 — 19):

let prime = (pow2 255) — 19

type elem = e:int{0 < e A e < prime}

let add (e0:elem) (e1:elem) = (e0 + e1) % prime
let mul (e0:elem) (e1:elem) = (e0 x e1) % prime

Definitions of functions and top-level values are introduced
with let. A type representing field elements (elem) is defined as
a restriction (shown in curly braces) of mathematical integers
(int). Field operations are defined in the obvious way as pure
mathematical functions, the default “effect” for F* functions.
Functions can also be annotated with other effects, e.g., to
indicate stateful operations affecting the heap, or a function
that handles program 10. F* relies on SMT-based automation to
prove properties about programs using a weakest-precondition
calculus [8], and it also includes a tactic system [55] to allow
the programmer greater control over how proofs are discharged.

Programs written in F* can be compiled to OCaml or F#.
They can also be compiled to C, as long as their run-time code
is written in a low-level subset of F* called Low™ [68]. The
programmer can still use high-level F* code in specifications
and proofs, since they are erased before extraction to C.
Low™* programs must obey syntactic restrictions, e.g., avoiding
closures and partial applications, and, after erasure, they

let fmul (output a b: felem): Stack unit
(requires Ah0 — {output,a,b} € h0 A (a == b Vv disjoint a b))
(ensures Ah0 h1 — modifies_only output h0 h1
A elem h1.[output] == mul (elem h0.[a]) (elem hO.[b]))

Figure 1. Type signature for HACL*’s implementation (in Low*) of a field
multiplication for Curve25519. An felem is an array of five 64-bit integers
needed to represent a field element. The input arrays a,b and the output array
output are required to be live (i.e., still allocated). After fmul completes, the
only change from the old heap hO to the new heap h1 is to the output array,
which matches mul, the mathematical spec for field multiplication. The Stack
effect annotation in its type guarantees that fmul is free of memory leaks, since
its allocations are only on the call stack, and hence they are reclaimed as the
function returns.

cannot use high-level libraries, e.g. for lists and mathematical
integers. Instead, the programmer must use explicitly heap-
or stack-allocated arrays and manage their lifetimes manually,
and similarly rely on Low* libraries for machine integers,
endianness, etc.

b) HACL*: HACL* [82] is a collection of cryptographic
primitives: Chacha20, Poly1305, their AEAD combination,
Curve25519, Ed25519, and the SHA2 family of hashes, entirely
written in Low* and compiling to a collection of C files.

Like all code written in Low*, HACL" is, by construction,
devoid of memory errors such as use-after-free, or out-of-
bounds accesses. In addition to basic safety, HACL* proves
functional correctness for its algorithms; e.g., it shows that
optimized field operations in 22°° — 19 are free of mathematical
errors (see Figure 1). Finally, using a restricted model of
constant-time integers HACL* ensures that one cannot branch
on a secret or use it for array accesses, and thus guarantees
that the resulting C code is free of the most egregious kinds
of side-channels.

While HACL* achieves cross-platform compatibility, the
performance of the resulting C code lags that of hand-tuned
assembly used in state-of-the-art cryptographic libraries. As a
cryptographic provider, it does not support multiplexing (e.g., to
switch between a version using compiler intrinsics and a version
in vanilla C) and it lacks agility, making further extensions
to its set of algorithms difficult, and hindering verified clients
from integrating HACL* in their developments. We address
these shortcomings by rewriting HACL* algorithms in a style
that supports agility, generic programming, and multiplexing
with deep integration between Vale and Low*.

c) ValeCrypt: ValeCrypt is a collection of verified assem-
bly programs written in Vale [25, 39], which allows developers
to annotate assembly code with pre- and postconditions, loop
invariants, lemmas, etc. to assist with verification (Fig. 2).

Vale models a well-structured subset of assembly language,
with control flow restricted to blocks of instructions, if/then/else
branching, and while loops. Although limited, this subset is well-
suited to implementations of cryptographic primitives similar
to those found in OpenSSL.

The latest version of Vale [39] can be viewed as a DSL
that relies on deeply embedded hardware semantics formalized
within F*, which also discharges proof obligations demonstrat-
ing the correctness and security of Vale assembly programs.

Vale implementations are verified for safety (programs do
not crash), functional correctness (the implementations match



procedure mull(ghost dst:arr64, ghost srciarré4)
lets dst_ptr @= rdi; src_ptr @= rsi; b @= rdx;
a = pow2_four(src[0], src[l], src[2], src[3]);
reads dst_ptr; src_ptr; b;
modifies rax; r8; r9; rl10; r1l; rl1l2; r13; mem; efl;
requires adx_enabled && bmi2_enabled;
arrays_disjoint(dst, src) || dst == src;
validDstAddrs64(mem, dst_ptr, dst, 4);
validSrcAddrs64(mem, src_ptr, src, 4);
ensures
let d:=pow2_five(dst[0], dst[l], dst[2], dst[3], rax);
d == old(a * b);
Figure 2. Type signature for ValeCrypt’s implementation of multiplying a 256-
bit number (in the src array) by a 64-bit number in b. The arrays themselves
are “ghost” variables, i.e., used only for proof purposes. The signature first
declares some local aliases using lets (e.g., the pointer to the dst array
must be in the rdi register). The procedure then specifies its framing (the
portions of state it reads/modifies). The preconditions show that it expects the
CPU to support the ADX and BMI2 extensions; the input and output arrays
cannot partially overlap; and the pointers provided are valid. It returns the
result of the multiplication in a combination of the destination array and rax.

their specification on all inputs), and robustness to cache-based
and timing-based side-channel attacks.

ValeCrypt includes several implementations of cryptographic
primitives. Some of these achieve good performance, such
as 750 MB/s for AES-CBC [25] and 990 MB/s for AES-
GCM [39], but this still falls short of the fastest OpenSSL
assembly language code, which reaches up to 6400 MB/s for
AES-GCM [39]. ValeCrypt’s implementations are, by design,
platform specific and do not offer fallbacks or even automatic
detection of CPU capabilities.

In addition to improving on verified cryptographic imple-
mentations provided by ValeCrypt, we also improve on the
Vale framework itself, notably the manner in which Vale and
Low™ interoperate. Previous work on Vale [39] presented an
external trusted tool called CCWrap, which would textually
print out Low* wrappers around ValeCrypt routines, relying
on the user to edit the file and finish the proof that the Low*
signature provably summarizes the semantics of the ValeCrypt
code. This approach is vulnerable to accidental modifications
in the generated code that would affect the semantics; and to
mistakes in the tool itself. More importantly, CCWrap generates
a fresh model of assembly calls at each invocation, which F*
then needs to verify. This does not scale up to an entire provider.
In contrast, we provide a new model and verified library in
support of generic interoperability between Vale and Low™ that
specifically addresses all these drawbacks (§V).

Other projects (e.g, CertiKOS [40]) also focused on verified
interoperation by reasoning about deep embeddings of both C
and assembly. We do not have access to a deep embedding of
C semantics in F* as C code is extracted from Low™*, and then
compiled using generic compilers such as CompCert or GCC.
Hence, our interoperation is lighter-weight, at the price of a
slightly bigger TCB that models calls into assembly, and of
not supporting features such as callbacks.

B. Threat Model

EverCrypt proves that all of its implementation code is
functionally correct, meaning that it matches a high-level
mathematical description of its intended effect. As intermediate

lemmas, it also proves memory and type safety. With respect
to security, EverCrypt relies on the techniques developed
by HACL* [82] and ValeCrypt to prove the absence of
common side channels. Specifically, using the techniques
discussed in Section II-A, it proves that secrets never influence
branches, memory accesses, or timing-dependent instructions
(e.g., division), hence preventing leaks based on timing or cache
behavior. This does not necessarily rule out more advanced
side channel attacks based, e.g., on electromagnetic radiation
or speculative execution.

C. Trusted Computing Base (TCB)

As with any verification project, we must trust the correctness
of our specifications and of our verification tools.

Specifications must be trusted, since they mathematically
encode the specific properties we wish to verify. For EverCrypt,
these properties include functional specifications to define
EverCrypt’s cryptographic algorithms, like SHA, and security
properties that define the absence of basic digital side channels
via non-interference. We inherit the latter specs from prior
work [25, 39, 82] and provide a formal description in §V.
Specifications also encode our assumptions about the world
external to our code. Specifically, for our assembly code, we
inherit Vale’s specification of x64 assembly semantics [39],
which define how each assembly instruction affects a model of
the machine state. Because Low* emits C code, we trust our
spec of interoperation between C code and assembly (§V-B).

Since our specifications are trusted, we take multiple
precautions to make them trustworthy. First and foremost,
we endeavor to keep them small and simple. We have a
total of roughly 8 KLOC (§VIII-D), counting whitespace and
comments, compared with over 40 KLOC lines of C and
assembly code. Keeping specs small and simple facilitates
our second precaution: manual spec review. One team member
translates specs into F* while others independently review the
translation against the original informal spec (e.g., from an
RFC). Finally, we ensure our specs are executable, so that
we can extract them via F*’s OCaml backend; the generated
code is quite inefficient but suffices to sanity check the specs
on standard test vectors. This enables early detection of basic
errors, such as typos or endianness issues.

On the tool side, our proofs rely on the soundness of our
verification toolchain (F* and Z3). To produce executable code,
we rely on F*’s backend for extracting Low* to C code [68],
which can be compiled by using a verified compiler (e.g.,
CompCert [52]) or by trusting a faster, unverified C compiler.
We also rely on an untrusted assembler and linker to produce
our final executable. These trusted tools are comparable to those
found in other verification efforts; e.g., implementations verified
in Coq [72] trust Coq, the Coq extraction to OCaml, and the
OCaml compiler and runtime. To provide higher assurance,
multiple research results show that each element of these
toolchains can themselves be verified [24, 48, 52, 60, 71].
Furthermore, several studies have confirmed that, despite the
use of such complex verification toolchains, the empirical
result is qualitatively better code compared with traditional
software development practices [37, 38, 79]. These studies
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found numerous defects and vulnerabilities in traditional
software, but failed to find any in the verified software itself;
the only defects found were in the specifications.

Finally, like any (verified) library, EverCrypt is subject to
bugs in unverified host applications. For instance, an unverified
application may misuse the API and violate a pre-condition
by passing a key with an incorrect length for the chosen
algorithm. For such unverified clients, we plan to add a
defensive EverCrypt API, where each array pointer comes
with an extra length argument. Some other classes of bugs in
unverified clients cannot be trivially mitigated: for instance,
if EverCrypt is used in a web browser that contains a buffer-
overflow vulnerability, then an attacker may be able to read
EverCrypt’s secret keys.

III. CRAFTING AN AGILE, ABSTRACT API FOR EVERCRYPT

A key contribution of EverCrypt is the design of its API,
which provides abstract specifications suitable for use both in
verified cryptographic applications (§VIII) and in unverified
code. While agility matters for security and functionality, we
also find that it is an important principle to apply throughout
our code: beneath the EverCrypt API, we use agility extensively
to build generic implementations with a high degree of code
and proof sharing between variants of related algorithms.

Figure 3 outlines the overall structure of our API and
implementations for hashing algorithms—similar structures
are used for other classes of algorithms. At the top left (in red),
we have trusted, pure specifications of hashing algorithms. Our
specifications are optimized for clarity, not efficiency. Neverthe-
less, we compile them to OCaml and test them using standard
test vectors. We discuss specifications further in §III-A. To the
right of the figure, we have verified optimized implementations.
The top-level interface is EverCrypt.Hash, which multiplexes
new, efficient imperative implementations written in Low™ and
Vale. Each of these implementations is typically proven correct
against a low-level specification (e.g. Derived.SHA2_256) better
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suited to proofs of implementation correctness than the top-level
Spec.Hash—these derived specifications are then separately
proven to refine the top-level specifications. We discuss our
top-level API in §III-B.

For reuse within our verified code, we identify several generic
idioms. For instance, we share a generic Merkle-Damgard
construction [29, 57] between all supported hash algorithms.
Similarly, we obtain all the SHA2 variants from a generic
template. The genericity saves verification effort at zero runtime
cost—using F*’s support for partial evaluation, we extract fully
specialized C and assembly implementations of our code (§1V).

A. Writing Algorithm Specifications for EverCrypt

Trusted specifications define what a given algorithm (e.g.,
SHA-256) should do; in cryptography, these definitions typically
appear in a mixture of English, pseudocode, and math in an
RFC or a peer-reviewed paper. Within EverCrypt, we port
these specifications to pure mathematical functions within F*.
This process is trusted, and hence we take steps to enhance
its trustworthiness. We strive to keep the trusted specifications
concise and declarative to facilitate human-level audits.

1) Taming Specification Explosion via Agility: We fac-
tor common structure shared by multiple specifications into
“generic” functions parameterized by an algorithm parameter,
and helper functions that branch on it to provide algorithm-
specific details. This reduces the potential for errors, makes
the underlying cryptographic constructions more evident, and
provides a blueprint for efficient generic implementations (§IV)

For example, the type below enumerates the hashing algo-
rithms EverCrypt currently supports:

type alg = MD5 | SHA1
| SHA2_224 | SHA2_256 | SHA2_384 | SHA2_512

Although MDS5 and SHA1 are known to be insecure, a practical
provider must supply them for compatibility reasons. At the
application level, cryptographic security theorems can be
conditioned on the security of the algorithms used and, as
such, would exclude MD5 or SHA1. Pragmatically, EverCrypt
can also be configured to disable them, or even exclude their
code at compile time.

All these algorithms use the Merkle-Damgérd construction
for hashing a bytestring by (1) slicing it into input blocks, with
an encoding of its length in the final block; (2) calling a core,
stateful compression function on each block; (3) extracting the
hash from the final state. Further, the four members of the
SHA?2 family differ only on the lengths of their input blocks
and resulting tags, and on the type and number of words in their
intermediate state. Rather than write different specifications,
we define a generic state type parameterized by the algorithm:

let word alg = match alg with

| MD5 | SHA1 | SHA2_224 | SHA2_256 — UInt32.t

| SHA2_384 | SHA2_512 — UInt64.t
let words alg = m:seq (word alg){length m = words_length alg}
let block alg = b:bytes {length b = block_length alg}

Depending on the algorithm, the type word alg selects 32-bit
or 64-bit unsigned integer words; words alg defines sequences
of such words of the appropriate length; and block alg defines



sequences of bytes of the appropriate block length. With these
types, we write a generic SHA2 compression function that
updates a hash state (st) by hashing an input block (b). Note,
this definition illustrates the benefits of programming within a
dependently typed framework—we define a single function that
operates on either 32-bit or 64-bit words, promoting code and
proof reuse and reducing the volume of trusted specifications.

module Spec.SHA2
let compress (alg:sha2_alg) (st:words alg) (b:block alg)
: words_state alg
= let block_words = words_of_bytes alg 16 b in
let st” = shuffle alg st block_words in
seq_map2 (word_add_mod alg) st st’

This function first converts its input from bytes to words, forcing
us to deal with endianness—being mathematical, rather than
platform dependent, our specifications fix words to be little
endian. The words are then shuffled with the old state to produce
a new state, which is then combined with the old state via
modular addition, all in an algorithm-parameterized manner
(e.g., word_add_mod computes modulo 232 for SHA2-224 and
SHA2-256, and modulo 24 for SHA2-384 and SHA2-512).

Beyond the SHA2 family of algorithms, we compose multiple
levels of specification sharing. For instance, we write a single
agile padding function (in Spec.PadFinish) for MDS5, SHA1
and SHA2; a small helper function branches on the algorithm
alg to encode the input length in little-endian or big-endian,
depending on whether the algorithm is MDS5.

2) Untrusted Specification Refinements: EverCrypt’s trusted
algorithm specifications are designed to be concise and easily
auditable, but they are rarely actionable, in the sense of lending
themselves well to an efficient implementation. Hence we often
find it useful to develop untrusted specification refinements
(e.g., Derived.SHA2_256) that provide more concrete details
and are proven equivalent to the trusted specifications. These
refinements introduce representation choices, precomputations,
chunking of the operations in blocks to enable vectorized
implementations, etc. In Curve25519, for example, an algorithm
refinement may introduce a Montgomery ladder for efficiently
computing scalar multiplications. In the case of hashes, instead
of waiting for the entire message to be available and holding all
the data in memory, a refined specification processes its input
incrementally and is verified against the base algorithm. This
process of relating specifications to implementations through a
process of iterative refinement leads to well-structured, modular,
and easier to maintain proofs .

B. EverCrypt’s Top-level API

Verified programming is a balancing act: programs must be
specified precisely, but revealing too many details of an imple-
mentation breaks modularity and makes it difficult to revise
or extend the code without also breaking clients. A guiding
principle for EverCrypt’s API is to hide, through abstraction, as
many specifics of the implementation as possible. Our choice of
abstractions has been successful inasmuch as having established
our verified API, we have extended its implementation with
new algorithms and optimized implementations of existing
algorithms without any change to the APL

We use abstraction in two flavors. Specification abstraction
hides details of an algorithm’s specification from its client,
e.g., although EverCrypt.Hash.compress is proven to refine
Spec.Hash.compress, only the type signature of the latter, not
its definition, is revealed to clients. In addition, representation
abstraction hides details of an implementation’s data structures,
e.g., the type used to store the hash’s internal state is hidden.

Abstract specifications have a number of benefits. They
ensure that clients do not rely on the details of a particular
algorithm, and that their code will work for any present or
future hash function that is based on a compression function.
Abstract specifications also lend themselves to clean, agile
specifications for cryptographic constructions (such as the
Merkle-Damgard construction discussed above). Abstraction
also allows us to provide a defensive API to unverified C code,
helping to minimize basic API usage flaws. Finally, abstraction
also simplifies reasoning, both formally and informally, to
establish the correctness of client code. In practice, abstract
specifications prune the proof context presented to the theorem
prover and can significantly speed up client verification.

Our main, low-level, imperative API is designed around an
algorithm-indexed, abstract type state alg. EverCrypt clients are
generally expected to observe a usage protocol. For example,
the hash API expects clients to allocate state, initialize it,
then make repeated calls to compress, followed eventually by
finalize. EverCrypt also provides a single-shot hash function
in the API for convenience.

The interface of our low-level compress function is shown
below, with some details elided.

module EverCrypt.Hash
val compress (s:state alg) (b:larr uint8 alg)
: Stack unit
(requires Ah0 —inv s h0 A b € hO A fp s hO “disjoint™ loc b)
(ensures Ah0 _ h1 —inv s h1 A modifies (fp s h0) h0 h1 A
repr s h1 ==
Spec.Hash.compress alg (repr s h0) (as_seq h0 b))

Clients of compress must pass in an abstract state handle s
(indexed by an implicit algorithm descriptor alg), and a mutable
array b:larr uint8 alg holding a block of bytes to be added to
the hash state. As a precondition, they must prove inv s hO,
the abstract invariant of the state. This invariant is established
initially by the state allocation routine, and standard framing
lemmas ensure the invariant still holds for subsequent API
calls as long as any intervening heap updates are to disjoint
regions of the heap. Separating allocation from initialization is a
common low-level design decision, as it allows clients to reuse
memory, an important optimization, e.g., for our Merkle tree
library (§VII-B). In addition to the invariant, clients must prove
that the block b is live; and that b does not overlap with the
abstract footprint of s (the memory locations of the underlying
hash state). The Stack unit annotation, as in Figure 1, states that
compress is free of memory leaks and returns the uninformative
unit value (). As a postcondition, compress preserves the
abstract invariant; it guarantees that only the internal hash state
is modified; and, most importantly, that the final value held
in the hash state corresponds exactly to the words computed
by the pure specification Spec.Hash.compress. It is this last



part of the specification that captures functional correctness,
and justifies the safety of multiplexing several implementations
of the same algorithm behind the API, inasmuch as they are
verified to return the same results, byte for byte.

State abstraction is reflected to C clients as well, by compiling
the state type as a pointer to an incomplete struct [70]. Hence,
after erasing all pre- and post-conditions, our sample low-level
interface yields an idiomatic C function declaration in the
extracted evercrypt_hash.h listed below.

struct state_s;
typedef struct state_s state;
void compress (state xs, uint8 xb)

Given an abstract, agile, functionally correct implementation
of our 6 hash algorithms, we develop and verify the rest
of our API for hashes in a generic manner. We first build
support for incremental hashing (similar to compress, but taking
variable-sized bytestrings as inputs), then an agile standard-
based implementation of keyed-hash message authentication
codes (HMAC) and finally, on top of HMAC, a verified
implementation of key derivation functions (HKDF) [47].
The appendix lists the resulting C API and sample extracted
code. We expect this API to be stable throughout future versions
of EverCrypt. Thanks to agility, adding a new algorithm (e.g.,
a hash) boils down to extending an enumeration (e.g., the hash
algorithm type) with a new case. This is a backward-compatible
change that leaves function prototypes identical. Thanks to
multiplexing, adding a new optimized implementation is purely
an implementation matter that is dealt with automatically within
the library, meaning once again that such a change is invisible
to the client. Finally, thanks to abstract state and framing
lemmas, EverCrypt can freely optimize its representation of
state, leaving verified and unverified clients equally unscathed.

IV. AGILE IMPLEMENTATIONS OF THE API
WITH ZERO-COST GENERIC PROGRAMMING

While agility yields clean specifications and APIs, we now
show how to program implementations in a generic manner, and
still extract them to fully specialized code with zero runtime
overhead. To ground the discussion, we continue with our
running example of EverCrypt’s hashing API, instantiating the
representation of the abstract state handle (state a) and sketch-
ing an implementation of EverCrypt.Hash.compress, which
supports runtime agility and multiplexing, by dispatching to
implementations of specific algorithms.

A. Implementing EverCrypt Hash

The abstract type state alg is defined in F* as a pointer to a
a datatype holding algorithm-specific state representations, as
shown below:

type state_s (a: alg) = match a with
| SHA2_256_s: p:hash_state SHA2_256 — state_s SHA2_256
| SHA2_384_s: p:hash_state SHA2_384 — state_s SHA2_384

| ...
let state alg = pointer (state_s alg)

The state_s type is extracted to C as a tagged union, whose
tag indicates the algorithm alg and whose value contains a
pointer to the internal state of the corresponding algorithm.

The union incurs no space penalty compared to, say, a single
voidx, and avoids the need for dangerous casts from voidx to
one of uint32_tx or uint64_t«. The tag allows an agile hash
implementation to dynamically dispatch based on the algorithm,
as shown below for compress:

let compress s blocks = match !s with
| SHA2_256_s p — compress_multiplex_sha2_256 p blocks
| SHA2_384_s p — compress_sha2_384 p blocks

In this code, since we only have one implementation of SHA2-
384, we directly call into Low*. For SHA2-256, however,
since we have multiple implementations in Low™ and Vale, we
dispatch to a local multiplexer that selects the right one (e.g.,
based on other runtime configurations in scope, including CPU
identity, as described in §V).

B. Partial Evaluation for Zero-cost Genericity

Abstract specifications and implementations, while good for
encapsulation, modularity, and code reuse, can compromise
the efficiency of executable code. We want to ensure that
past the agile EverCrypt.Hash nothing impedes the run-time
performance of our code. To that end, we now show how to
efficiently derive specialized Low™* code, suitable for calling
by EverCrypt.Hash, by partially evaluating our verified source
code, reducing away several layers of abstraction before further
compilation. The C code thus emitted is fully specialized and
abstraction-free, and branching on algorithm descriptors only
happens above the specialized code, where the API demands
support for runtime configurability (e.g., only at the top-level
of EverCrypt.Hash). As such, we retain the full generality of
the agile, multiplexed API, while switching efficiently and
only at a coarse granularity between fast, abstraction-free
implementations (Figure 3).

Consider our running example: compress, the compression
function for SHA-2. We managed to succinctly specify all
variants of this function at once, using case-generic types like
word alg to cover algorithms based on both 32- and 64-bit
words. Indeed, operations on word alg like word_logand below,
dispatch to operations on 32-bit or 64-bit integers depending
on the specific variant of SHA-2 being specified.

let word_logand (alg:sha2_alg) (x y: word alg): word alg =
| SHA2_224 | SHA2_256 — UInt32.logand x y
| SHA2_384 | SHA2_512 — UlInt64.logand x y

We wish to retain this concise style and, just like with
specifications, write a stateful shared compress_sha2 once.
This cannot, however, be done naively, and implementing
bitwise-and within compress_sha2 using word_logand would
be a performance disaster: every bitwise-and would also trigger
a case analysis! Further, word alg would have to be compiled
to a C union, also wasting space.

However, a bit of inlining and partial evaluation goes a long
way. We program most of our stateful code in a case-generic
manner. Just like in specifications, the stateful compression
function is written once in a generic manner (in Gen.SHA2);
we trigger code specialization at the top-level by defining all
the concrete instances of our agile implementation, as follows:



module Low.SHA2

let compress_224 = Gen.SHA2.compress SHA2_224
let compress_256 = Gen.SHA2.compress SHA2_256
let compress_384 = Gen.SHA2.compress SHA2_384
let compress_512 = Gen.SHA2.compress SHA2_512

When extracting, say compress_256, F* will partially evaluate
Gen.SHA2.compress on SHA2_256, eventually encountering
word_logand SHA2_256 and reducing it to UInt32.logand. By
the time all reduction steps have been performed, no agile code
remains, and all functions and types that were parameterized
over alg have disappeared, leaving specialized implementations
for the types, operators and constants that are specific to SHA2-
256 and can be compiled to efficient, idiomatic C code.

We take this style of partial evaluation one step further,
and parameterize stateful code over algorithms and stateful
functions. For instance, we program a generic, higher-order
Merkle-Damgard hash construction [29, 57] instantiating it
with specific compression functions, including multiple im-
plementations of the same algorithm, e.g., implementations
in Low™ or Vale. Specifically, the compress_many function is
parameterized by a compression function f, which it applies
repeatedly to the input.

val mk_compress_many (a:hash_alg) (f:compress_st a)
: compress_many_st a

We obtain several instances of it, for the same algorithm,
by applying it to different implementations of the same
compression function, letting F* specialize it as needed.

let compress_many_256_vale: compress_many_st SHA2_256 =
mk_compress_many SHA2_256 compress_sha2_256_vale

let compress_many_256: compress_many_st SHA2_256 =
mk_compress_many SHA2_256 compress_sha2_256

This higher-order pattern allows for a separation of concerns:
the many-block compression function need not be aware of
how to multiplex between Low* and Vale, or even of how many
choices there might be. We extend this higher-order style to
our entire hash API: for instance, mk_compress_last generates
a compression function for the remainder of the input data,
given an implementation of compress and pad; or, mk_hash
generates a one-shot hash function. We then instantiate the
entire set of functions, yielding two specialized APIs with no
branching: one for Low* code, one for Vale code.

This technique is akin to C++ templates, in that both achieve
zero-cost abstractions. F*, however, allows us to verify by
construction that any specialization satisfies an instantiation of
the generic specification, unlike C++ templates which perform
textual expansion and repeated checks at each instantiation for
typability in C++’s comparatively weak type system.

V. SAFELY TRAVERSING ABSTRACTION BOUNDARIES
BETWEEN C AND ASSEMBLY

Implementing cryptography in assembly enables the use of
hardware-specific features, such as the SHA-EXT [43] and AES-
NI [41] instruction sets. It also enables manual optimizations
that general-purpose compilers might not detect. To achieve
high-performance, EverCrypt therefore needs the ability to
verifiably call Vale assembly routines from Low*. To support
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fine-grained interactions between C and assembly, we provide
a verified interoperation framework to reconcile differences in
their execution models (e.g., different memory models) while
ensuring that specifications of verified Low* and Vale code
match precisely.

A. Overview

In contrast to prior work that considers C programs interoper-
ating with potentially malicious assembly language contexts [9],
the setting in EverCrypt is simpler—C code verified in Low*
interacts with assembly code verified in Vale. Given Vale’s
focus on verified cryptography, it has sufficed, so far, for Low*
programs to call Vale while sharing mutable arrays of fixed-
width types, for Vale to read and write those arrays, and to
return word-sized results back to Low*. In the future, we plan
to extend our support for interoperability to other architectures
(beyond x64), while sharing richer, structured types between
Low™* and Vale, should the need arise. We summarize the main
features of our interoperation model below.

o Verified Low™ programs call into verified Vale procedures
or inline assembly fragments.

« Control transfers from Vale back to Low* only via returns;
there are no callbacks from Vale to Low™*.

o The only observable effects of Vale in Low* are:

— updates to memory, observed atomically as the Vale pro-
gram returns (since there are no callbacks, intermediate
memory states are not observable);

— the value in the rax register in the final machine state
of the Vale program as it returns to Low™; and,

— digital side-channels due to the trace of instructions or
memory addresses accessed by the Vale program.

As such, Vale procedures extend the semantics of Low*
with an atomic computational step with effects on memory and
a single word-sized result (but with variable execution time
as a potential side channel). The goal of our interoperation
framework is to safely lift the fine-grained Vale semantics to a
Low™ specification, so that Low* programs containing atomic
Vale steps can be verified within Low*’s program logic.

B. Modeling Interoperation

Abstractly, a verified Vale procedure satisfies a Hoare triple
{P} ¢ {Q}, meaning that for all Vale machine states sg
that satisfies P, it is safe to evaluate the Vale instructions
¢, producing a final state that satisfies @; i.e., the following
property is provable in F*: Vso. P so = Q (eval ¢ so), where
eval is a definitional interpreter for the semantics of Vale in
F*. We make use of this definitional interpreter to lift a Vale
Hoare triple to Low™, as shown in the sketch below:

let call_assembly ¢ arg: ... argn,
: Stack uint64 (requires lift_pre P) (ensures lift_post Q) =
let hg = get () in
let sp = initial_vale_state hy arg:
let s; = eval ¢ sg in
let rax, hy; = final_lowstar_state hg s1 in
put hy; rax

...arg, in

The Low* function call_assembly models calling the Vale
code ¢ with arguments arg; ... arg,. Operationally, the call



is modeled as follows: at line 3, we retrieve the initial Low™
heap ho; at line 4, we construct the initial Vale state so from
ho and all the arguments; at line 5, we run the Vale definitional
interpreter to obtain the final Vale state s1; at line 6, we translate
this s; back to a Low* heap h; and return value rax; finally,

we update the Low™ state atomically with h; and return rax.

Most importantly, at line 2, we prove that whenever the Vale
code satisfies { P} ¢ {Q}, our operational model of Low*/Vale
interoperation is soundly specified by the Low* computation
type:
Concretely, each call to assembly from Low* is extracted by
our compiler as a C extern signature, whereas the assembly
code itself is printed by Vale’s simple assembly printer.

Trust assumptions: The definition of the call_assembly
wrapper is at the core of our trusted assumptions: it defines
the semantics of a call from Low” into Vale. Some salient
parts of this trusted definition include the translation of
the Low* memory into a Vale memory and back, and the
parameter-passing convention. Of course, the Vale evaluator
is part of the trusted assumptions about Vale itself, regardless
of interoperation with Low™*. Notably, the specification of
call_assembly (line 2) is not trusted itself, since it is merely
an abstraction that is proven to be satisfied by the operational
definition. Additionally, we rely on the C compiler, assembler
and linker to concretely implement the call as modeled by our
formal development.

Defining the call_assembly wrapper posed several challenges,
described in the next sub-section. For a sense of the scale, our
full call_assembly wrapper is 17 lines long, and is supported
by a further 1,595 lines of F* specification and modeling code;
2,194 lines of untrusted F* proofs establishing various other
lemmas for convenient use of call_assembly wrapper from
Low™ (including functions analogous to lift_pre and lift_post);
and 11,558 lines of untrusted proofs for 31 specific calls from
Low™ into Vale.

Our work is based closely on prior work relating Low™ and
Vale by Fromherz et al. [39]. However, unlike Fromherz et al.,
who rely on an ad hoc external tool to relate Low* and Vale,
our new approach is generic and modular, and done entirely
within F* without the need for external tools. This has made it
easy for us to extend it with new features, e.g., to add support
for inline assembly. Further, by abstracting interoperation into
a generically programmed and proven layer, we significantly
reduce the verification burden for each Vale procedure that uses
the interoperation layer—in effect, we relate the abstractions of
Vale and Low* once and for all, instead of repeatedly proving
a relation between the abstractions each time we call from
Low* into Vale code, allowing our work to scale to the 31
(and counting) procedures mentioned previously, including the
largest single Vale procedure that we have lifted to Low*, which
takes 17 arguments and is specified in approximately 200 lines
of F* code.

C. Relating Low™ and Vale

There are four main elements of our model, which we
describe in more detail below:

Stack uinté4 (requires lift_pre P) (ensures lift_post Q).

« Relating memory models: Constructing an initial Vale
state from the Low* heap and interpreting the final Vale
state as a Low™ heap requires relating the Low™ structured
memory model to Vale’s “flat array of bytes” memory
model.

o Modeling the calling convention: Constructing the initial
Vale state also requires modeling the calling convention
to place arguments in specific registers.

« Lifting specifications: The lift_pre and lift_post functions
interpret Vale pre- and post-conditions as Low™ pre- and
post-conditions.

« Side-channel analysis: We use a taint analysis to show that
execution traces of Vale programs are secret independent,
and relate this to Low™*’s notion of secret independence.

Relating memory models: The memory models used by
Low* and Vale differ significantly. The Low* memory model
stores values of structured types: the types include machine
integers of various widths (8—128 bits) and signedness; and
arrays of structured values (as in C, pointers are just singleton
arrays). In contrast, Vale treats memory as just a flat array of
bytes. At each call, we may pass several pointers from Low™ to
Vale; to do so, we assume the existence of a physical address
map that assigns a Vale address for each shared pointer. Given
this address map, we can build an explicit correspondence from
the fragment of Low* memory containing the shared pointers
to Vale’s flat memory—this involves making explicit the layout
of each structured type (e.g., endianness of machine integers),
and the layout in contiguous memory of the elements of an
array. For EverCrypt’s specific goal of accelerating the inner
loops of crypto routines, our current focus on just these types
for interoperation has sufficed.

Modeling the calling convention: From Vale’s perspective,
arguments are received in specific registers and spilled on
the stack if needed; in contrast, in Low™ as in C, arguments
are just named. As we construct the initial vale state, we
translate between these (platform-specific) conventions, e.g.,
on an x64 machine running Linux, the first argument of a
function must be passed in the rdi register, and the second in
rsi. Further, the wrapper requires that callee-saved registers (e.g.,
r15 for Windows on x64) have the same value when entering
and exiting the Vale procedure. Aside from x64 standard
calls on Windows and Linux, we also support custom calling
conventions in support of inline assembly (subject to restrictions,
e.g., the stack register rsp cannot be used to pass arguments, and
distinct arguments must be passed in distinct registers). One of
the subtleties of modeling the calling convention is to define it
once, while accounting for all arities (notice the arg; ... argn,
in the sketch of call_assembly of the previous section)—F*’s
support for dependently typed arity-generic programming [12]
makes this possible.

Lifting specifications generically from Vale to Low*: To
preserve the verification guarantees of a Vale program when
called from Low*, the Vale preconditions must be provable
in the initial Low* state and arguments in scope. Dually, the
Vale postconditions must suffice to continue the proof on the
Low* side. A key feature of our interoperation layer is to
lift Vale specifications along the mapping between Vale and



Low* states, e.g., lift_pre and lift_post reinterpret soundly and
generically (i.e., once and for all) pre- and postconditions on
Vale’s flat memory model and register contents in terms of
Low*’s structured memory and named arguments in scope. As
explained in §V-B, relating specifications between Vale and
Low* is untrusted—thankfully so, since this is also perhaps
the most complex part of our interoperation framework, for
two reasons. First, Vale and Low™ use subtly different core
concepts (each optimized for their particular setting) including
different types for integers, and different predicates for memory
footprints, disjointness, and liveness of memory locations.
Hence, relating their specifications involves working deep
within the core of the semantic models of the two languages and
proving compatibility properties among these different notions.
This is only possible because both languages are emdedded
within the same underlying logic, i.e., F*. Second, because
we model the calling convention generically for all arities, the
relations among Vale and Low™ core concepts must also be
generic, since these state properties of the variable number
and types of arguments in scope. However, the payoff for
these technical proofs is that they are done once and for all,
and their development cost is easily amortized by the relative
convenience of instantiating the framework at a specific arity
for each call from Low™ to Vale.

Side-channel analysis: Whereas the relation between
Hoare triples between Low* and Vale is fully mechanized
within F*’s logic (as illustrated by the call_assembly sketch), we
rely on a meta-theorem to connect the side-channel guarantees
provided by Low* and Vale. Specifically, whereas Low™’s
guarantees rely on enforcing constant-time properties using a
syntactic analysis based on abstract types, Vale’s constant-time
guarantees arise from a certified taint analysis that is executed
on the Vale instructions [25, 39]. We extended and improved
Vale’s existing taint analysis, allowing it to more generically
process Vale instructions, but we reuse without change the
Secret Independence for Hybrid Low*/Vale Programs theorem,
proven by Fromherz et al. [39, Theorem 4.2]—we reproduce
the theorem and explain it in Appendix X. This metatheorem is
based on a notion of combined execution traces that include an
abstraction of both Low™ and Vale instruction sequences, and
it proves that when a well-typed Low™ program interoperates
with a Vale program proven constant-time by the Vale taint
analysis, the combined traces produced by these programs are
independent of their secret inputs.

D. CPU-ID Detection

Aside from generic support for relating memories, calling
conventions, correctness and security specifications, our in-
teroperation layer also provides specialized support for CPU-
ID detection—a crucial feature for a cryptographic provider
with platform-specific optimizations. For instance, the Vale
implementation of mul1 expects the CPU to support the ADX
and BMI2 extensions. Otherwise, executing this code would
result in errors due to illegal (unsupported) instructions. To
safely call this code, we need to propagate this precondition
to Low*. Functions calling this procedure will then need to
prove that these CPU extensions are supported. Conditions
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such as the presence of CPU extensions are stated identically
in Low* and Vale, without any reinterpretation—this makes
their lifting trivial, but (rightfully) forces Low* code calling
Vale procedures to establish preconditions about which CPU
extensions are supported. To discharge these proof obligations,
EverCrypt calls into other Vale routines we developed that
make a series of CPUID calls to provably determine the features
supported by the current CPU. EverCrypt caches the results to
avoid costly processor-pipeline flushes.

Guarding CPU-ID detection: A further complication arises
because the CPUID instruction is itself only supported on
x86 and x64 platforms, but not, say, on ARM. Hence, we
add another layer of flags representing static compiler-level
platform information (e.g., TargetConfig.x64). Checks for these
flags are compiled as a C #ifdef. Hence, the emitted code for
auto-detecting CPU features looks as follows:

#if TARGETCONFIG_X64
if (check_aesni () != 0U) cpu_has_aesni[0U] = true;
#endif

This ensures that no link-time error occurs when compiling
EverCrypt for platforms which do not support the CPUID
instruction. The connection of the TARGETCONFIG_ macros
to standard compiler definitions, e.g.,

#if defined(__x86_64_ ) || defined(_M_X64)
#define TARGETCONFIG_X64 1
#elif ...

are hand-written, and as such, must be carefully audited.

VI. ACHIEVING BEST-IN-CLASS RUN-TIME PERFORMANCE

Cryptographic performance is often a bottleneck for security-
sensitive applications (e.g., for TLS or disk encryption). Given
a choice between a complex high-performance crypto library,
and a simple, potentially more secure one, historically much
of the world has opted for better performance.

With EverCrypt, we aim to obviate the need for such a
choice; thanks to verification, we can offer developers best-in-
class performance and provable security guarantees. Below, we
highlight two examples of how we achieve this.

A. AES-GCM

AES-GCM [62] may be the world’s most widely used
cryptographic algorithm; a recent study from Mozilla shows it
in use for 91% of secure web traffic [S9]. AES-GCM provides
authenticated encryption with additional data (AEAD), meaning
that it protects the secrecy and integrity of plaintext messages,
and it can provide integrity for additional data as well (e.g., a
packet header). This makes it a popular choice for protecting
bulk data, e.g., in protocols like TLS and QUIC, which also
places it on the critical path for many applications.

Recognizing the importance of AES-GCM, Intel introduced
seven dedicated instructions to improve its performance and
side-channel resistance [41]. Even given these instructions,
considerable work remains to construct a complete AES-GCM
implementation. For example, the GCM-support instruction
(PCLMULQDQ) performs a carryless multiply of its arguments,
but the GCM algorithm operates over the Galois field GF(2128),



and hence multiplication in the field requires both a carryless
multiply and a further polynomial reduction. As further
evidence of the complexity of using these instructions, in 2013,
a performance enhancement was committed to OpenSSL to
speed-up their implementation of AES-GCM. However, despite
passing the standard test suite, the enhancement introduced a
subtle bug in the GCM calculation that would allow an attacker
to produce arbitrary message forgeries [42]. Fortunately, the
bug was discovered before it trickled into an official release,
but with EverCrypt, we aim to prove that no such bugs exist.
While previous work verified their own implementation of
AES-GCM [39], the result was 6x slower than OpenSSL’s.

Hence, rather than invent our own optimizations, we port
OpenSSL’s implementation (written in over 1100 lines of Perl
and C preprocessor scripts) to Vale. This created numerous
challenges beyond tricky reasoning about GF(2'2®) and the
sheer scale of the code (the core loop body has over 250
assembly instructions). For example, the implementation makes
heavy use of SIMD instructions operating over 128-bit XMM
registers, which require reasoning about all of the parallel
operations happening within the registers. At an algorithmic
level, the simplest way to implement AES-GCM would be to do
a first pass to encrypt the plaintext (in AES-CTR mode) and then
make a second pass to compute the MAC over the ciphertext
and authenticated data. To achieve better performance, AES-
GCM is designed such that both operations can be computed in
a single pass, and of course OpenSSL does so. Further, it deeply
interleaves the instructions for encryption and authentication,
and it processes six 128-bit blocks in parallel to make maximum
use of the SIMD registers. During encryption, it carefully runs
the AES-CTR process 12 blocks ahead of the authentication
calculations to ensure the processor pipeline remains fully
saturated. The OpenSSL GCM computation also rearranges the
carryless multiplies and reductions to improve parallelization,
precomputing six carryless multiply powers during initialization,
delaying reduction steps, and cleverly integrating bitwise
operations into the reduction calculations.

To cope with this complexity, we specified the effects of
many of the XMM instructions in terms of “opaque” functions,
which hide the details of the effects from F*, and hence simplify
reasoning about the basic operations of the code itself. We
then reveal the effect details only within separately written
lemmas that reason about, say, the resulting computations over
GF(2'2%). To simplify the task of deciphering OpenSSL’s code
and reconstructing the invariants the original programmer had in
mind, we initially ported the encryption and the authentication
operations separately, proving that each accomplished its goals
individually. We then manually merged the implementations
and proofs into single implementation and proof. In the future,
we hope to develop techniques to automate such merges.

B. Curve25519

The Curve25519 elliptic curve [18], standardized as IETF
RFC7748 [50], is quickly emerging as the default curve for
modern cryptographic applications. It is the only elliptic curve
supported by protocols like Signal [6] and Wireguard [32], and
is one of two curves commonly used with Transport Layer Secu-
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rity (TLS) and Secure Shell (SSH). Curve25519 was designed to
be fast, and many high-performance implementations optimized
for different platforms have been published [18, 27, 35, 63]
and added to mainstream crypto libraries.

a) Implementing Curve25519: Curve25519 can be im-
plemented in about 500 lines of C. About half of this code
consists of a customized bignum library that implements
modular arithmetic over the field of integers modulo the prime
Passrg = 22°° — 19. The most performance-critical functions
implement multiplication and squaring over this field. Since
each field element has up to 255 bits, it can be stored in 4
64-bit machine words, encoding a polynomial of the form:

€3 %2192 4 252128 1 £1 %264 4 0

where each coefficient is less than 264, Multiplying (or squaring)
field elements amounts to textbook multiplication with a 64-bit
radix: whenever a coefficient in an intermediate polynomial
goes beyond 64-bits, we need to carry over the extra bits to
the next-higher coefficient. To avoid a timing side-channel, we
must assume that every 64-bit addition may lead to a carry and
propagate the (potentially zero) carry bit regardless.
Propagating these carries can be quite expensive, so a
standard optimization is to delay carries by using an unpacked
representation, with a field element stored in 5 64-bit machine
words, each holding 51 bits, yielding a radix-51 polynomial:

ed x 2204 4 63 %2193 4 2% 2102 4 1 % 25T 4 60

While this representation leads to 9 more 64x64 multiplications,
since each product now has only 102 bits, it has lots of room
to hold extra carry bits without propagating them until the final
modular reduction.

b) Correctness Bugs and Formal Verification: Even with
these delayed carries, carry propagation continues to be a
performance bottleneck for modular multiplication, and high-
performance implementations of Curve25519 implement many
low-level optimizations, such as interleaving carry chains, and
skipping some carry steps if the developer believes that a given
coefficient is below a threshold. Such delicate optimizations
have often lead to functional correctness bugs [20, 49], both
in popular C implementations like Donna-64 and in high-
performance assembly like amd64-64-24k. These bugs are
particularly hard to find by testing or auditing, since they only
occur in low-probability corner cases deep inside arithmetic.
Nevertheless, such bugs may be exploitable by a malicious
adversary once they are discovered. Hence elliptic curves have
been a popular target for verification efforts (§II).

c) Faster Curve25519 with Intel ADX: In 2017, Oliveira
et al. [63] demonstrated a significantly faster implementation
of Curve25519 on Intel platforms that support Multi-Precision
Add-Carry Instruction Extensions, also called Intel ADX.
Unlike other fast Curve25519 implementations, Oliveira et
al. use a radix-64 representation and instead optimize the
carry propagation code by carefully managing Intel ADX’s
second carry flag. The resulting performance improvement is
substantial—at least 20% faster than prior implementations.

Oliveira et al. wrote their implementation mostly in assembly.
A year after its publication, when testing and comparing this



code against formally verified implementations taken from
HACL* [82] and Fiat-Crypto [36], Donenfeld and others
found several critical correctness bugs [34]. These bugs were
fixed [30], with a minor loss of performance, but they raised
concerns as to whether this Curve25519 implementation, with
the best published performance, is trustworthy enough for
deployment in mainstream applications.

d) Fast Verified Curve25519 in EverCrypt: In EverCrypt,
we include two new versions of Curve25519. The first is written
in Low* and generates portable C code that uses a radix-51
representation. The second relies on verified Vale assembly for
low-level field arithmetic that uses a radix-64 representation,
inspired by Oliveira et al.’s work.

Notably, we carefully factor out the generic platform-
independent Curve25519 code, including field inversion, curve
operations, key encodings, etc., so that this code can be shared
between our two implementations. In other words, we split our
Curve25519 implementation into two logical parts: (1) the low-
level field arithmetic, implemented both in Vale and in Low?*,
but verified against the same mathematical specification in F*,
and (2) a high-level curve implementation in Low* that can use
either of the two low-level field-arithmetic implementations.

We implement and verify optimizations at both levels. In Vale,
we implement modular addition, multiplication, and squaring
using the double carry flags of Intel ADX. We also implement
functions that can multiply and square two elements at the
same time. In Low*, we optimize our ladder implementation
to reduce the number of conditional swaps, and to skip point
addition in cases where the bits of the secret key are fixed.
With the aid of these optimizations, we are able to produce a
mixed assembly-C implementation of Curve25519 that slightly
outperforms that of Oliveira et al. but with formal proofs of
memory safety, functional correctness, and secret independence
for the assembly code, C code, and the glue code in between.

Our implementation is the fastest verified implementation
of Curve25519 to date, and it is comparable to the fastest
published benchmarks for any implementation (§VIII-B).

VII. SECURE PROGRAMMING ABOVE EVERCRYPT

As discussed in Section III, one of EverCrypt’s contributions
is an agile API designed to support both verified and unverified
clients, while still providing best-in-class performance. In partic-
ular, verified clients should be able to code and reason abstractly
against agile functionalities and their multiple implementations.
To support this claim, we present two representative examples of
verified applications. First, we present a memory-safe, function-
ally correct, constant-time implementation of QUIC’s transport
key derivation and packet encryption, parameterized by the
choice of a TLS ciphersuite. Second, we present the design
and implementation of a Merkle-tree library, parameterized by
a hash algorithm, and we prove its security by reduction to
collision-resistance on the hash function: given any forgery
(that is, any evidence of membership on an element that has not
been inserted in the tree), we efficiently extract two different
bytestrings that yield the same hash.
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A. QUIC Transport Cryptography

QUIC [45] is a new secure transport protocol originally
designed by Google and now undergoing standardization at
the IETF. One can think of QUIC as an alternative to the
TLS record layer (which fragments and encrypts application
data into TCP packets) built on top of UDP. Therefore, it is
similar to DTLS (the UDP variant of TLS), but offers many
new features (such as explicit authenticated acknowledgements,
multiple application data streams, advanced flow control, etc.).

One such feature is packet header protection, which aims
to enhance user privacy by encrypting the sequence numbers
of QUIC packets, thereby restricting the ability of an observer
to correlate the use of the same QUIC session on multiple
networks. QUIC header protection uses an ad hoc cryptographic
construction that combines an authenticated encryption scheme
with a raw block or stream cipher to encrypt some packet
headers. As pointed out by the specification [54, Section 9.4],
if the two schemes are not composed correctly and in constant
time, the sequence number can be inferred from timing side-
channels. Our implementation offers the following functions:

o Packet encryption and decryption: We write a complete
formal specification of packet encryption and decryption,
which includes the formatting and parsing of short and long
headers, and the encryption and decryption of protected
fields (some flags, and the packet number). We prove that
the functional specification of packet encryption is correct,
that is, that a packet produced by the encryption function
correctly decrypts to the same input arguments (with a
caveat in the proof: for short headers, the recipient must
know in advance the size of the connection identifier).
We implement this specification on top of EverCrypt and
prove that the implementation is memory safe and correct.
Additionally, we prove that decryption fails in constant
time if the packet has been tampered with in any way, by
ensuring that the bytes of the encrypted packet number
are treated abstractly (following the approach of HACL*).

o Key derivation: we write a formal specification of the key
derivation operations (for payload AEAD encryption, static
IV, header encryption, and re-keying), using the EverCrypt
interface for HKDF. We write an implementation of QUIC
key derivation that is proved memory safe and correct
with respect to this specification.

We validate our specification by checking interoperability of
our code integrated into two open-source QUIC libraries. We
measure performance in Section VIII-C.

B. Merkle Trees

A Merkle tree [56] is a cryptographic construction for
authenticating large data structures by compressing them into a
single hash tag: the tree root. Our library supports binary Merkle
trees with fast incremental updates. The leaves of the tree are
a sequence of (hashes of) transactions. The root is computed
by recursively hashing pairs of nodes. Compared with a plain
hash of the sequence of transactions, this recursive construction
enables clients to verify the presence of any transaction in the
tree by recomputing the root along its path, given a logarithmic



number of intermediate hashes as auxiliary evidence. Figure 11
shows the structure of our incremental Merkle tree.

a) Using Merkle Trees to Authenticate a Log of Transac-
tions: Our library is used to authenticate the secure ledger of
transactions for an industrial permissioned blockchain [69]. Its
API provides three main functions: i) extend the tree with a
transaction at the next index; ii) compute the current root of
the tree; iii) given an index of a transaction in the tree, return
a sequence of intermediate hashes (the Merkle path) enabling
the recomputation of its root.

Our application provides high throughput for transactions and
their resulting Merkle paths. To this end, it cryptographically
signs the root only from time to time. Signing is significantly
slower than hashing, so each signature computation is amortized
over the evidence for thousands of transactions.

We designed, implemented, and verified our library on top of
the agile EverCrypt API for hash algorithms. We also developed
and verified a generic library of resizable vectors for caching its
intermediate hashes. The Merkle Tree library is parameterized
by the choice of a hash function. In all our experiments, we
instantiate it to the core compression function of SHA2-256
(compressing 64 bytes into 32 bytes).

b) An Optimized, Incremental Implementation: Our im-
plementation computes all intermediate hashes on-demand
and caches them so that we can return paths for any recent
transactions via table lookups. An auxiliary function flushes
older intermediate hashes to reclaim memory, while retaining
the ability to look up paths for all recent indices.

Because all hashes are cached and there are (roughly) as
many intermediate nodes as there are leaves, each transaction
requires on average just one call to the compression function.
Still, as evidence of EverCrypt’s clean API design (and our
efforts to optimize the Merkle tree library), performance is
dominated by these calls, which account for 95% of the total
runtime for our benchmarks (Section VIII-C).

¢) Functional Correctness: In addition to runtime safety,
we verified the correctness of our incremental implementation
against a simple high-level functional specification. The proof
includes auxiliary lemmas on index computations, and a
refinement step to account for the implicit padding of sequences
of transactions up to the next power of 2.

We separately proved high-level properties of our specifica-
tion, showing for instance that any root recomputation from (our
specification of) Merkle paths yields back the root computed
from the whole tree. We also verified its security, as follows.

d) Cryptographic Security: Merkle trees are meant to
provide strong integrity protection: at any tree size, it should
be computationally hard to exhibit two different sequences
of transactions that yield the same root. This property clearly
depends on the concrete strength of the hash function. Even
with a strong hash function, this property should not be taken
for granted for trees; for instance, it took three years to uncover
a design flaw in the Merkle tree used by Bitcoin [61, 77].

Based on our specification, we provide a constructive proof
in F* of the following security property: we program and verify
a pure, total, linear function that takes a collision between two
trees and returns a collision between two inputs of the hash
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[ Algorithm [ C version | Targeted ASM version |

AEAD

AES-GCM AES-NI + PCLMULQDQ + AVX
Chacha-Poly | yes

High-level APIs

Box yes

SecretBox yes

Hashes

MD5 yes

SHA1 yes

SHA2 yes SHA-EXT (for SHA2-224+SHA2-256)
SHA3 yes

Blake2 yes

MACS

HMAC yes agile over hash
Poly1305 yes X64

Key Derivation

HKDF | yes | agile over hash
ECC

Curve25519 | yes BMI2 + ADX
Ed25519 yes

P-256 yes

Ciphers

ChaCha20 yes

AES128, 256 AES NI + AVX
AES-CTR AES NI + AVX

Figure 4. Supported algorithms and systems. All are newly developed for
EverCrypt, with the exception of Box, SecretBox, Ed25519, and Poly1305.

function. We also show that, unsurprisingly, a collision between
the core compression function immediately yields a collision on
the SHA2-256 standards (by completing the hash computation
with the length block). Together, this shows that the security
of our construction perfectly reduces to the collision-resistance
assumption on 64-byte inputs of the SHA2-256 standard.

VIII. EVALUATION

In this section, we evaluate EverCrypt’s success in achieving
the criteria we set out in Section I for a cryptographic provider.
Specifically, we evaluate EverCrypt’s comprehensiveness, sup-
port for agility & multiplexing, performance, and usability by
client applications. We also report on the effort involved in
developing EverCrypt itself. Unless specified otherwise, for all
performance graphs, lower is better.

A. EverCrypt Features

With EverCrypt, we aim to provide both cross-platform
support and optimized implementations for specific platforms.
Figure 4 summarizes our progress in this direction. All imple-
mentations are new to EverCrypt, except the targeted Poly1305
implementation, which we obtained from ValeCrypt [39], and
the implementations of Ed25519, Box, and SecretBox from
HACL* [82]; the latter two are simple, secure-by-default
APIs for performing public-key and secret key encryption,
respectively. As the table highlights, EverCrypt provides a
variety of functionalities, including hashing, key derivation,
cipher modes, message authentication, authenticated encryption
with additional data (AEAD), signatures (Ed25519 [19, 46]),
and elliptic curve operations. In most cases, EverCrypt provides
both a generic C implementation for cross-platform purposes,
as well as an optimized implementation for an x64-based target.
EverCrypt automatically detects whether to employ the latter,
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Figure 5. Avg. CPU cycles to compute a hash of 64 KB of random data.
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and it offers agile interfaces for AEAD, hashing, HMAC, and
HKDF. HMAC and HKDF build on the agile hash interface, and
hence inherit targeted implementations on supported platforms.
EverCrypt does not yet support agility over elliptic curves, nor
does it yet support older asymmetric algorithms like RSA. We
have also, thus far, focused on optimized implementations for
x64, but prior work with Vale [25] demonstrates that it can just
as easily target other platforms, and hence we plan to target
ARM in the future.

With regards to the comprehensiveness of EverCrypt’s
API, the most natural (unverified) comparison is with
libsodium [7], which also aims to offer a clean API for
modern cryptographic algorithms. The functionality exposed by
each is quite comparable, with a few exceptions. EverCrypt does
not yet offer an API for obtaining random data (which would
require axiomatizing calls to the relevant OS-dependent APIs
or hardware instructions like RdRand) or for securely deleting
data. It also currently lacks a dedicated password-hashing API
that uses a memory-hard hash function like Argon2 [23].

B. EverCrypt Run-Time Performance

EverCrypt aims to demonstrate that verification need not
mean sacrificing performance. Below, we compare EverCrypt’s
performance against OpenSSL’s implementations, which prior
work measured as meeting or exceeding that of other popular
open-source crypto providers [25]. We also compare with
representative verified implementations [11, 14, 36, 39].

In our results, each data point represents an average of 1000
trials; error bars are omitted as the tiny variance makes them
indistinguishable. All measurements are collected with hyper-
threading and dynamic-processor scaling (e.g., Turbo Boost)
disabled. We collect measurements on different platforms, since
no single CPU supports all of our various targeted CPU features.

In Figure 5, we report on the performance of our targeted
hash implementations when available (i.e., for SHA2-224
and SHA2-256), and our portable implementation otherwise,
comparing with OpenSSL’s corresponding implementations.
Appel verified [14] an older version of the portable OpenSSL
implementation, which runs about 10% slower than the latest
version reported here. Figure 6 provides further detail on SHA2-
256. We collect the measurements on a 1.5 GHz Intel Celeron
J3455 (which supports SHA-EXT [43]) with 4 GB of RAM.
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Figure 7. Cycles/byte to encrypt blocks of random data using AEAD.

The results demonstrate the value of optimizing for particular
platforms, as hardware support increases our performance for
SHA2-224 and SHA2-256 by 7x, matching that of OpenSSL’s
best implementation. EverCrypt’s portable performance gener-
ally tracks OpenSSL’s, indicating a respectable fallback position
for algorithms and platforms we have not yet targeted.

Similarly, Figures 7 and 8 report on the performance of our
AEAD algorithms, with the latter focusing on targeted imple-
mentations. We also compare against 1ibjc [11], a recently
released library. It includes verified, targeted implementations
of Poly1305 and ChaCha20. It does not yet include a verified
ChaCha-Poly implementation [53], but we combined the two
primitives in an unverified implementation. We measure on a
3.6GHz Intel Core i9-9900K with 64 GB of RAM.
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Figure 8. Cycles/byte to encrypt blocks of random data with targeted AEAD.



Implementation Radix Language | CPU cy.
donnat4 [2] 51 64-bit C 159634
fiat-crypto [36] 51 64-bit C 145248
amd64-64 [26] 51 | Intel x86_64 asm 143302
sandy2x [27] 25.5 Intel AVX asm 135660
EverCrypt portable (this paper) 51 64-bit C 135636
openssl* [5] 64 Intel ADX asm 118604
Oliveira et al. [63] 64 Intel ADX asm 115122
EverCrypt targeted (this paper) 64 64-bit C 113614
+ Intel ADX asm

Figure 9. Performance comparison between Curve25519 Implementations.

For cross-platform performance, we see that EverCrypt with
ChaCha-Poly matches OpenSSL’s equivalent, and both surpass
OpenSSL’s portable AES-GCM implementation. Targeting,
however, boosts both EverCrypt and OpenSSL’s AES-GCM
implementations beyond that of even the targeted version
of ChaCha-Poly. Note that EverCrypt’s targeted performance
meets or exceeds that of OpenSSL and achieves speeds of less
than one cycle/byte for larger messages. This puts EverCrypt
more than 6x ahead of the performance of the previous best
verified implementation of AES-GCM [39].

Meanwhile, the performance of 1ibjc’s targeted ChaCha-
Poly slightly beats that of OpenSSL and EverCrypt’s portable
implementations, but it is ~ 4x slower than OpenSSL’s targeted
ChaCha-Poly and ~9-11x slower than EverCrypt’s targeted
AES128-GCM. We attribute this to the fact that the latter two
each jointly optimize encryption and authentication together,
whereas 1ibjc optimizes the two primitives separately.

Finally, Figure 9 measures the performance of our implemen-
tations of Curve25519 against that of other implementations,
including OpenSSL, Erbsen et al. [36] (one of the fastest
verified implementations), and Oliveira et al. [63] (one of
the fastest unverified implementations). All measurements are
collected on an Intel Kaby Lake i7-7560 using a Linux kernel
crypto benchmarking suite [33]. OpenSSL cannot be called
from the kernel and was benchmarked using the same script,
but in user space. All code was compiled with GCC 7.3 with
flags -03 -march=native -mtune=native.

Our results show that, with optimizations from Section VI-B,
EverCrypt’s combined Low* +Vale implementation narrowly
exceeds that of Oliveira et al. by about 1%, which in turn
exceeds that of OpenSSL by 3%. We also exceed the previous
best verified implementation from Erbsen et al. by 22%. To the
best of our knowledge, this makes EverCrypt’s implementation
of Curve25519 the fastest verified or unverified implementation
on record. Notably, our optimizations also improve our portable
C implementation, which is now the second fastest verified
implementation, beating Erbsen et al.’s implementation by 6.6%.

C. EverCrypt Applications

a) QUIC: To benchmark our verified implementation of
QUIC packet encryption, we integrate our library with two open-
source, OpenSSL-based implementations of QUIC: picoquic [3]
(which uses picotls for the TLS 1.3 handshake), and ngtcp2 [4].
We measure the throughput of each library by downloading
a 1GB random file over a local network interface, using each
library’s respective HTTP3-over-QUIC test application, acting
both as a server and as a client. Our implementation exercises
our Vale x64 implementation of AES-GCM (and AES-CTR, for
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Components LOC
Cryptographic algorithm specs 3782
Vale interop specs 1595
Vale hardware specs 3269
Low™* algorithms 25097
Low* support libraries 9943
Vale algorithms (written in Vale) 24574
Vale interop wrappers 13836
Vale proof libraries 23819
EverCrypt 5472
EverCrypt tests 4131
Merkle Tree 6510
QUIC transport cryptography 2282
Vale algorithms (F* code generated from Vale files) 72039
Total (hand-written F* and Vale) 124310
Compiled code (.c files) 25052
Compiled code (.h files) 4082
Compiled code (ASM files) 14740

Figure 10. System Line Counts.

header protection) and our Low* implementation of ChaCha20-
Poly1305 (and ChaCha20), on a Xeon W-2155 CPU with
128GB of RAM running Windows 10.

QUIC Library AES128-GCM | AES256-GCM | C20-P1305
ngtcp2 (OpenSSL) 41.0 MB/s 40.9 MB/s 42.2 MB/s
ngtep2 (EverCrypt) 41.1 MB/s 41.1 MB/s 41.5 MB/s
picoquic (OpenSSL) 125.2 MB/s 121.5 MB/s 90.9 MB/s
picoquic (EverCrypt) 129.6 MB/s 129.5 MB/s 84.3 MB/s

The reported figures are averaged over 10 runs (removing the
top and bottom decile) and include the respective message
and header overheads of TLS, QUIC and HTTP. These
results show that the performance of current open-source
implementations of HTTP3-over-QUIC is not limited by the
underlying cryptography. In synthetic tests, our implementation
can process over 1.74M packets/s with AES128-GCM and an
MTU set to 1300 bytes, which amounts to over 2.1GB/s of
raw data. The performance for application traffic is lower due
to the TLS, QUIC and HTTP3 overheads.

b) Merkle Tree: Our Merkle tree implementation required
a non-trivial amount of proof effort (6.5K lines of F* code), but
extracts to a relatively small amount of code (2.3K lines of C,
not including EverCrypt and supporting libraries). We measure
the time to fill a tree of various sizes by repeatedly inserting
new nodes, and compute the average rate of of insertions/s.
On a Core 19 9900K CPU, we are able to consistently achieve
over 2.7M insertions/s on trees ranging in size from 1k to 1M
nodes (see Figure 12 in appendix).

To compare with other implementations, we use the built-in
bench_bitcoin tool provided in the Bitcoin [1] source tree.
We run the MerkleRoot benchmark, which fills a Merkle tree
with 9k nodes. The tool reports a median time of 947ms with
the default 800 iterations and 5 measurements, which amounts
to about 950k insertions/s, i.e., 40% of our verified code.

D. Verification Effort

Figure 10 summarizes line counts for EverCrypt and the
applications built atop it. We include white space and comments.
Line counts for Low™ and Vale algorithms include some inline
proofs, since F* makes it tricky to definitively separate imple-
mentation from proof. Yet, to give a sense of the ratio between
actual implementation code and proof overhead, we also report
the lines of C/ASM extracted from our implementations. We
count assembly for one toolchain: Windows/MASM syntax.



Overall, verifying EverCrypt sequentially takes 5 hours
45 minutes. Individual functions/procedures (where developers
mostly spend their time) verify much faster, typically in less
than 10-20 seconds. We also exploit the parallelism of modular
verification to bring the latency of a full system verification
down to less than 18 minutes on a powerful desktop machine.

Altogether, designing, specifying, implementing, and veri-
fying EverCrypt took three person-years, plus approximately
one person year spent on infrastructure, testing, benchmarking,
and contributing bug fixes and other improvements to F*.

IX. CONCLUSIONS

EverCrypt provides application developers with the func-
tionality, ease of use, and speed they expect from existing
cryptographic providers, while guaranteeing correctness and
security of the code. Its API is carefully designed to support
algorithm agility and multiplexing, but seals many details
behind an abstraction boundary to simplify verification for
clients. We program its implementation generically to reduce
specification bloat and increase code and proof reuse, without
harming performance. Indeed, our targeted implementations of
hashes, AEAD, and ECC all meet or exceed the performance
of state-of-the-art unverified implementations, and handily
exceed previous verified implementations. Our QUIC transport
security layer and our Merkle trees demonstrate the utility of
EverCrypt’s API in verifying client applications and meeting
their demands for high performance.

ONLINE MATERIALS

EverCrypt is developed as part of Project Everest [21] and
is available under an Apache 2.0 license on GitHub:

https://github.com/project-everest/hacl-star/tree/fstar-master/

This repository combines HACL*, ValeCrypt, and EverCrypt.
More information on the tools (F*, Vale, KreMLin) and how
to get started with them, is available on our GitHub project
page at https://project-everest.github.io/.
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X. APPENDIX: SECRET INDEPENDENCE

We restate and discuss the Secret Independence for Hybrid
Low*/Vale programs theorem proven by Fromherz et al. [39].

Constant-time properties are proven of Low™ programs using
a syntactic, type-based analysis for secure information flow.
In particular, Low* programmers can designate specific inputs
in their programs as secret and give them abstract types to
force them to be manipulated only through a given interface of
constant-time primitives, e.g., only additions, multiplications,
and bitwise operations, but no comparisons or divisions. A
meta-theorem about Low* establishes that such well-typed
programs produce execution traces (sequences of instructions,
including branches taken and memory addresses accessed) that
are independent of their secret inputs.
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In contrast, Vale programs are analyzed for leakage using a
taint analysis programmed and proven correct with F*. The taint
analysis is proven to only accept programs whose execution
traces (which also includes the sequences of instructions
executed and the memory addresses they access) do not depend
on inputs that are designated as secret.

To compose the two properties, Fromherz et al. [39] define
an extended Low™ syntax and semantics, which includes trace-
instrumented atomic computation steps for the Vale program
fragments executed. This extended language has an execution
semantics that produces traces that are concatenations of Low™
and Vale execution traces. The theorem (stated below) shows
that the two notions of secret independence compose well,
establishing that well-typed Low* programs that call into
leakage-free Vale programs produce combined traces that are
also secret independent.

The theorem is a bisimulation between runs of a pair of
related, well-typed Vale-extended Low™ runtime configurations
(Hy,e1) and (Ha,ez), showing that they either both step to re-
lated configurations maintaining their invariants and producing
identical traces, or they are both terminal configurations.

Theorem: Secret Independence: Given well-typed ex-
tended Low* configurations (Hy,e;) and (Ha,ez), where T' -
(Hy,e1) : 7, T+ (Hs,ez) : 7, Hy =r Hs and e; =r es, and
a secret-independent implementation of the secret interface P,
either both the configurations cannot reduce further, or 31" 2 T’
st. Py b (Hy,er) —=f (Hi,€)), Ps b (Hy ex) =/ (Hj,eh),
I (Hy,ey):m, T (Hbeh) o 7, 6y = by, H] =p H), and
el = e,

XI. APPENDIX: INCREMENTAL MERKLE TREES

Figure 11 shows how our Merkle trees are incrementally
constructed, while Figure 12 gives performance measurements
for tree insertions, given various tree sizes. The results confirm
that the incremental construction keeps insertion a constant-time
operation, regardless of tree size.

New Merkle root (')

@.,
©0000@®a0,

Figure 11. Incremental Binary Merkle Trees. The leaves are individual
transactions. The red fringe of the tree represents the insertion of a new
transaction in the tree. (Note that we skip levels for partial binary trees.)
The green part of the tree represents cached intermediate hashes, enabling
immediate lookup of any paths for the corresponding leaves. For example,
looking up the path from h to the root would return a logarithmic number
of hashes ho,h1,...,ha,... enabling the recomputation of v from h, The
grey part of the tree represents intermediate hashes that have been erased to
reclaim memory.

XII. APPENDIX: CODE SNIPPETS FOR C AND HEADER FILES

Figures 13 and 14 illustrate the C code extracted from
EverCrypt.
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Figure 12. Avg. number of insertions of a node into our verified Merkle
tree of various sizes, per second. Higher is better.

// From the C implementation of hashes.
static void Hash_hash_256(uint8_t *input, uint32_t input_len,
uint8_t xdst)

uint32_t s[8U] = {
0x6a09e667U, 0xbb67ae85U, 0x3c6ef372U, 0xa54ff53aU,
0x510e527fU, 0x9b05688cU, 0x1f83d9abU, 0x5beOcd19U

IR
uint32_t blocks_n = input_len / (uint32_t)64U;
uint32_t blocks_len = blocks_n * (uint32_t)64U;
uint8_t xblocks = input;
uint32_t rest_len = input_len — blocks_len;
uint8_t xrest = input + blocks_len;
bool has_shaext1 = AutoConfig2_has_shaext();
if (has_shaext1) {

uint64_t n1 = (uint64_t)blocks_n;

uint64_t scrut = sha256_compress(s, blocks, n1,

Hash_Core_SHA2_Constants_k224 256);

else {
Hash_SHA2_compress_many_256(s, blocks, blocks_n);

}

Hash_compress_last_256(s, (uint64_t)blocks_len, rest, rest_len)

Hash_Core_SHAZ2_finish_256(s, dst);

Figure 13. A representative snippet of the C code generated for EverCrypt.
This is a specialized instance of the generic Merkle-Damgdrd construction
for a compression function that multiplexes between Low* and Vale.

XIII. APPENDIX: ANALYSIS OF VULNERABILITIES IN
OPENSSL’S CRYPTOGRAPHIC PROVIDER

In Figure 15, we summarize all 24 vulnerabilities reported
against OpenSSL’s cryptographic provider, libcrypto, be-
tween January 2016 and July 2019 [64]. Each row explains what
the vulnerability affected and which of EverCrypt’s properties
(safety, functional correctness, or side-channel freedom) would
have prevented it. The list covers both 1ibcrypto algorithms
that have been re-implemented in EverCrypt, and algorithms
that, if implemented in EverCrypt, would be immune to those
vulnerabilities. The only vulnerability EverCrypt’s methodology
might not have prevented is 2016-0701, in which OpenSSL
added a feature to allow the loading of Diffie-Hellman primes
from X9.42-style parameter files. The library trusted these
primes to be safe, rather than checking them for safety.
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// This type is shared with specifications.
#define Hash_SHA2_224 0

#define Hash_SHA2_256 1

#define Hash_SHA2_384 2

#define Hash_SHA2_ 512 3

#define Hash_SHA1 4

#define Hash_MD5 5

typedef uint8_t Hash_hash_alg;

// Interface for hashes, block-aligned input data
struct Hash_state_s_s;
typedef struct Hash_state_s_s Hash_state_s;

Hash_state_s xHash_create_in(Hash_hash_alg a);
void Hash_init(Hash_state_s xs);
void Hash_compress(Hash_state_s x*s, uint8_t xblock1);
void Hash_compress_many(Hash_state_s xs,
uint8_t xblocks, uint32_t len1);
void Hash_compress_last(Hash_state_s xs,
uint8_t xlast1, uint64_t total_len);
void Hash_finish(Hash_state_s xs, uint8_t xdst);
void Hash_free(Hash_state_s xs);
void Hash_copy(Hash_state_s xs_src, Hash_state_s xs_dst);

void Hash_hash(Hash_hash_alg a,
uint8_t xdst, uint8_t xinput, uint32_t len1);

// Incremental interface for hashes, arbitrary input data,
// relies on an internal array (not covered in the paper).
typedef struct Hash_Incremental_state_s {
Hash_state_s xhash_state;
uint8_t xbuf;
uint64_t total_len;
} Hash_Incremental_state;

Hash_Incremental_state Hash_Incremental_create_in(
Hash_hash_alg a);

Hash_Incremental_state Hash_Incremental_compress(
Hash_hash_alg a, Hash_Incremental_state s,
uint8_t xdata, uint32_t len1);

void Hash_Incremental_finish(Hash_hash_alg a,
Hash_Incremental_state s, uint8_t xdst);

// Specialized versions of HMAC

void HMAC_compute_sha1(uint8_t xmac, uint8_t xkey,
uint32_t keylen, uint8_t xdata, uint32_t datalen);

void HMAC_compute_sha2_256(uint8_t «mac, uint8_t xkey,
uint32_t keylen, uint8_t xdata, uint32_t datalen);

void HMAC_compute_sha2_384(uint8_t *xmac, uint8_t xkey,
uint32_t keylen, uint8_t xdata, uint32_t datalen);

void HMAC_compute_sha2_512(uint8_t *mac, uint8_t xkey,
uint32_t keylen, uint8_t xdata, uint32_t datalen);

// Agile HMAC
bool HMAC_is_supported_alg(Hash_hash_alg x);
void HMAC_compute(Hash_hash_alg a, uint8_t xmac,

uint8_t xkey, uint32_t keylen, uint8_t xdata, uint32_t datalen)

Figure 14. A representative subset of the EverCrypt API. This file is taken
as-is from the output of our toolchain (i.e. from the .h file). The file was
edited only to remove some module name prefixes to make the code more
compact.
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CVE Severity Vulnerability Broken property Prevented?
2019-1543 | Low improper IV handling functional correctness v
2018-5407 | Low EC multiplication timing leak side-channel resistance v
2018-0734 | Low bignum timing leak side-channel resistance v
2018-0735 | Low bignum allocation leak side-channel resistance v
2018-0737 | Low bignum timing leak side-channel resistance v
2018-0733 | Moderate | incorrect hand-written assembly | functional correctness v
2017-3738 | Low buffer overflow functional correctness v
2017-3736 | Moderate | carry propagation bug functional correctness v
2017-3733 | High inconsistent agility parameter functional correctness v
2017-3732 | Moderate | carry propagation bug functional correctness v
2017-3731 | Moderate | out of bounds access memory safety v
2016-7055 | Low carry propagation bug functional correctness v
2016-7054 | High incorrect memset memory safety v
2016-6303 | Low integer overflow functional correctness v
2016-2178 | Low cache timing leak side-channel resistance v
2016-2177 | Low undefined behavior memory safety v
2016-2107 | High missing bounds check functional correctness v
2016-2106 | Low integer overflow functional correctness v
2016-2105 | Low integer overflow functional correctness v
2016-0705 | Low double free memory safety v
2016-0704 | Moderate | key recovery side-channel resistance v
2016-0703 | High key recovery side-channel resistance v
2016-0702 | Low cache timing leak side-channel resistance v
2016-0701 | High load unsafe DH primes misconfiguration X

Figure 15. Recent CVEs in 1libcrypto that would have been prevented by EverCrypt’s methodology.
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