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Fig. 1. (a) We introduce a novel application of augmented reality (AR): providing optimal assistance to users completing quotidian
object-rearrangement tasks, with house-cleaning as our exemplar. By considering the user and AR device as a ‘hybrid’ agent and
solving capacitated vehicle routing problems (CVRP) we compute time-optimal paths that are be displayed to users in AR. (b) We
develop a novel AR simulator using Habitat [39]. This serves as the test-bed of our experiments, an approach that allows us to run
remote, large-scale, controlled user-studies for evaluating AR assistance. (Image courtesy [41]). (c) We deploy our framework on
Amazon Mechanical Turk (AMT) [3] to study the effect of our proposed AR assistance on users’ task performance and sense of agency
over a range of task difficulties.

Abstract—Augmented-reality (AR) glasses—which will have access to real-time, high-fidelity data regarding a user’s environment via
onboard sensors, as well as an ability to seamlessly display real-time information to the user—present a unique opportunity to provide
users with assistance in completing quotidian tasks. Many such tasks—such as house cleaning, packing for a trip, or organizing a
living space—can be characterized as object-rearrangement tasks defined by users navigating through an environment, picking up
objects, and placing them in different locations. We introduce a novel framework for computing and displaying AR assistance for
object-rearrangement tasks that consists of (1) associating an optimal action sequence with the policy of an embodied agent and
(2) presenting this optimal action sequence to the user as suggestion notifications in the AR system’s heads-up display. We make
modeling choices that allow us to formalize the problem of computing AR assistance for any object-rearrangement task as a planning
problem that reduces to solving a capacitated vehicle-routing problem (CVRP), a variant of the classical traveling salesman problem
(TSP). In addition, we introduce a novel AR simulator that can enable web-based evaluation of AR-like assistance and associated
large-scale data collection. Finally, we present the results of a user study that evaluates the effect of the proposed AR assistance
on an exemplar object-rearrangement task—house cleaning—on users’ task performance and sense of agency over a range of task
difficulties. Our results indicate that the proposed form of AR assistance improves overall user performance. Additionally, even though
users report a negative impact to their agency, they may prefer this when presented with a system that aides them in task completion.

Index Terms—digital assistance, vehicle routing problem, 3D simulator, crowdsourcing, augmented reality

1 INTRODUCTION

Compared with current personal computing devices, always-on AR
devices (1) have access to a much larger volume and more diverse
set of sensor data and (2) are able to display real-time information
to the user in a much lower friction manner [24]. This exposes the
exciting potential for such AR devices to provide users with continual,
contextually relevant assistance toward achieving their personalized
goals. Consequently, assistive AR systems have been used quite ex-
tensively in specialized applications such as maintenance and man-
ufacturing [15, 37], education [23], tourism [49], and surgery [46].
However, AR devices hold the promise of providing assistance to users
on a much broader and less specialized class of commonly occurring
quotidian activities. Advancements in AI and sensing technologies
(e.g. Facebook’s Replica [41]) will enable AR devices to reason about

• Anonymous Authors are with Anonymous Organization

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

the structure and state of quotidian tasks (e.g. cooking, cleaning, and
organizing) and environments. In turn, this advanced AR system can
be leveraged to benefit users completing daily tasks by improving per-
formance, reducing physical and cognitive effort while preserving a
user’s sense of agency. We envision such AR assistance as providing
“superpowers for everyday tasks”. Our goal is to develop a framework
for such AR assistance applicable to an important class of everyday
tasks—those involving object rearrangement—and to evaluate its value
to users at scale. AI-driven technology has been shown to suffer from
algorithmic bias arising from unrepresentative data [28]. At-scale data
collection and evaluation can mitigate such issues for AI-powered AR
assistance [28] and can also enable personalization of assistance [36].

Making progress towards the objective of pervasive AR superpowers
is challenging for myriad reasons. First, there has been limited work
towards formalizing the problem of computing and displaying AR
assistance that can lead to improved task performance, reduced effort,
and preserved sense of agency for users; while this has been investigated
for specialized tasks such as AR-assisted assembly [43, 48], it has not
yet been pursued for a broad class of quotidian tasks. Second, no widely
available consumer AR device currently exists; as such there is no large
AR user base or associated infrastructure that can support the evaluation



of AR assistance on users at scale. The field of human–robot interaction
(HRI) faces a similar challenge; to overcome it, they have leveraged
web-based studies that ask users to react to videos of humans and
robots interacting [21, 31]. This reliance on a third-person perspective
lacks immersion and limits the types of interactions that can be studied;
further, no analogous approach to AR assistance would be viable as
the AR assistance is not directly observable from third parties. Finally,
how real users will respond to AR assistance in everyday tasks—in
particular, how it affects their task performance, effort, and sense of
agency—remains an open question [2, 8].

To address the first challenge in the context of object-rearrangement
tasks, we formalize the problem of computing and displaying AR assis-
tance by (1) associating an optimal action sequence with the policy of
an embodied agent and (2) presenting this optimal action sequence to
the user as suggestion notifications in the AR system’s heads-up display.
In our formulation, the embodied agent comprises a user–AR-system
‘hybrid’ in that it has the observation space (i.e., sensor measurements)
of the AR system and the action space (i.e., task-execution actions) of
the user, and its policy is learned by minimizing the time to complete
the task. In this initial study, we assume that the AR-system has full
observability of the environment, which includes a map and real-time
localization of the objects and user within that map. These modeling
choices allow us to formalize the problem of computing AR assistance
for any object-rearrangement task as a planning task that reduces to
solving a capacitated vehicle-routing problem (CVRP) [12, 18] from
combinatorial optimization. Because the optimal action sequence com-
prises a sequence of location visits along shortest paths, we present this
action sequence by displaying the next shortest path to the user in the
form of world-locked digital breadcrumbs in the heads-up display. If
the user ignores the AR-system’s suggestion notifications and deviates
from the optimal action sequence by visiting an alternative pickup or
delivery location, we replan on the fly.

To address the second challenge, we propose a novel AR simulator
that can enable large-scale web-based evaluation of AR assistance
and associated data collection. Scaled data collection is difficult in AR
tasks, as they require specialized hardware and environmentally situated
interactions. We propose interactive web-based studies as a way to
collect large scale data that can then be used in conjunction with data-
driven techniques to improve AR interactions. The current work focuses
on the development and deployment of an AR simulator. The simulator
is based on Habitat [39] for embodied AI and satisfies the key criteria
we have in an AR simulator: (1) it support the observations and actions
of the proposed embodied-agent policy, (2) it emulates a first-person
view through an AR device, including an ability to display suggestion-
notifications in a heads-up display (HUD) in the form of digital objects
and information, (3) it enables a user in the loop to autonomously
perform the task-execution actions, and (4) it is deployable on the
web at scale via integration with Amazon Mechanical Turk (AMT)
and supports data collection related to task performance and sense of
agency via psiTurk [20] integration.

To address the third challenge, we define house cleaning as an
instance of an object-rearrangement task, implement the task and the
proposed CVRP-based assistance using OR-Tools [19] in the proposed
AR simulator, and evaluate it at scale using AMT. We collect user
data across a range of task difficulties and types of AR assistance
in order to evaluate how the proposed form of AR assistance affects
users’ task performance, effort, and sense of agency. We find that
by following the optimal assistance, users are able to decrease their
total distance traveled though this comes at a cost of feeling less in
control over their own actions. This cost may be one users are willing
to pay, however, as we also find that users report preferring the optimal
assistance to a system that does not provide them with the optimal
solution. Additionally, we find that users are not consistent in their
willingness to follow assistance.

Our contributions are: (1) framing daily tasks as object-
rearrangement tasks, formulated and solved as a CVRP using a ‘hybrid’
single agent system (i.e., the user–AR-system), and viewing assistance
as the solution to this formulation (2) a web-deployable, simulated AR
experience that supports real-time interaction and displays in HUD

assistance (a visualization of the solution to the prior formulation)
that can enable large-scale web-based evaluations, and (3) the results
of a large-scale web-based study that assesses how users respond to
the proposed form of AR assistance in a house-cleaning task over a
range of task difficulties. In particular, we envision our web-deployable
framework as being useful beyond the domain of AR assistance, as
it can provide a framework for at-scale user-in-the-loop evaluation of
different kinds of digital assistance. To the best of our knowledge, this
is the first at-scale study of AR assistance for quotidian tasks.

2 RELATED WORK

We review existing work in AR assistance in Sect. 2.1, simulation
frameworks for training and evaluating embodied-agent policies in
Sect. 2.2, and assessing users’ response to digital assistance in Sect. 2.3.
2.1 AR assistance
To date, most work on employing AR devices to assist users has fo-
cused on displaying predefined information overlays that can be useful
in completing a prescribed task; the information overlays are often
spatially registered to objects or locations relevant to the task. For
example, researchers have investigated approaches wherein the AR
device overlays information or instructions on parts to be assembled
or maintained [43, 44], retrieves and displays maintenance documen-
tation using object recognition [13], overlaying medical imaging data
on patients in real time [4], or provides location and activity-based,
world-locked information to the users during indoor navigation [33].

Critically, none of the above approaches are truly robust for complex
multi-step tasks, as they do not leverage the device’s on-board sensors
to infer the current task state; as such, they are unable to provide
the user with up-to-date assistance toward optimal task completion or
properly adapt when users deviate from the system’s suggested steps.
To fill this gap, planning-based1 approaches that track task state in
real time and update assistance accordingly have been proposed for a
variety of AR applications such as robot tele-operation [17,45], assistive
surgery [9], assembly and manufacturing [1], and even an quotidian
task of sandwich assembly [22]. In particular, Abramovici et al. [1]
enable AR assistance for collaborative manufacturing using a complex
back-end infrastructure where smart devices broadcast their status to a
centralized planner with a predefined task dependency graph.

Instead, our proposed approach for AR assistance applicable to com-
plex object-rearrangement tasks described in Sect. 3 leverages only the
sensor measurements of the AR device, and executes a policy whose
state is informed only by these sensor measurements, thus enabling up-
to-date assistance toward optimal task completion. In this initial study,
we assume the device has ‘full environment knowledge’ via its sensors
and can support mapping and localization of the user and objects [35].
This allows us to compute the policy using a planner based on a capaci-
tated vehicle routing problem. Perhaps the most closely related work
to ours is the planning-based cognitive assistant developed by Hu et
al. [22], which employs a perception module driven by computer vision
to identify task state in a sandwich-assembly task and re-plan using a fi-
nite state machine. In contrast to this work, we consider a much broader
category of object-rearrangement tasks and consider planners based on
a general capacitated vehicle routing problem as described in Sect. 3.2.
Further, our embodied AI formulation enables straightforward exten-
sions that go beyond the strict environment-knowledge requirements of
planning to learning policies that can employ perception-based partial
environment observations.
2.2 Embodied-agent simulation frameworks
The robotics and embodied AI communities have leveraged simulation
frameworks to train and evaluate embodied-agent policies in lieu of
expensive real-world experimentation infrastructure [16, 25, 26, 39].
Most efforts consider fully autonomous agents (e.g. robots) whose
actions directly change the physical state of the environment.

Our AR-assistance application is fundamentally different from these,
in that actions that can modify the physical state of the environment be-

1Planning refers to the process of computing an agent’s policy using a model
for the transition dynamics of the environment, i.e., a model that predicts the
effect of the agent’s actions on the environment states [42].



long to the human agent. The AR device (our parallel to the autonomous
system) can only influence the physical state of the environment indi-
rectly via suggestion-notification actions displayed to the human. Thus,
for AR assistance, any realistic evaluation of the how the embodied-
agent policy affects task performance must involve a human in the
loop—or a high-fidelity model of the human’s behavior. Evaluating
how assistance affects important qualitative aspects of the user expe-
rience (e.g., effort, sense of agency) necessitates collecting data from
real users at scale. On the other hand, training of the embodied-agent
policy can be done in a variety of ways that need not rely on a human
in the loop; Sect. 3 describes in detail our proposed formulation for
computing the policy that does not require a human in the loop—only a
planner coupled to a simulator that can compute the geodesic distances
between locations and track task state—although future work will con-
sider human-in-the-loop training loop analogously to Refs. [29, 50].
Thus, for learning assistive AR policies, rather different demands are
placed on the environments used for evaluation and training; the only
strong compatibility requirement is that the evaluation environment
must support the states and actions associated with the trained policy
to deploy it in real time. Here, we focus on the evaluation environment.

Arguably the closest related work is in the field of human–robot
interaction (HRI), where researchers are interested in evaluating users’
response to robotic assistance [10]. In this field, the two most common
evaluation environments comprise either (1) in-person studies where
users are asked to respond to robotic assistance [14], and (2) web-based
studies where users are asked to view third-person videos or photos
of humans and robots interacting and react accordingly [21, 31]. The
former category suffers from lack of scalability, while the latter category
lacks immersion due to its reliance on a third-person perspective.

Thus, we believe that our proposed evaluation framework—which is
based on an AR simulator and is described in Sect. 4—combines the
attractive attributes of each of these paradigms, as it enables scalable,
first-person interaction of a user with an embodied assistant and thus
we hypothesize can capture more realistic user experiences—and thus
yield higher quality user-experience data—at scale.
2.3 Evaluating user response to digital assistance
It is generally challenging to characterize the user experience for digital
assistance owing to a plethora of factors involved and owing to the
difficulty of measuring some of these factors with high fidelity [2].
Past studies on evaluating users’ response to digital assistance have
focused on evaluating factors such as usability, utility, effectiveness, and
agency [8]. In our study, we focus primarily on evaluating effectiveness
as measured by the user’s task performance and sense of agency. We
focus on task performance as it is easy to measure and directly addresses
the key value proposition of AR assistance for complex tasks. We
consider agency due to its central role in human–computer interaction
(HCI) research and its relatively uncharacterized role in immersive
AR-like assistive scenarios.

The sense of agency refers to the feeling of being in the driver’s seat
when it comes to selecting one’s actions [32]. HCI research has long
recognized the sense of agency as a key factor in characterizing how
people experience interactions with technology [30, 32, 40]. In particu-
lar, one of the eight classic rules of interface design places emphasis
on designing interfaces that support the user’s sense of agency [40].
Further, the sense of agency may also influence a user’s acceptance of
technology [6, 27]. Despite the importance of agency, it has received
limited attention in the domain of AR. It is important to address this
topic early in developing novel AR technologies, as enabling user’s
sense of agency is indeed challenging in assistive and immersive sys-
tems; for example, previous research has found a reduction in sense of
agency with increase in automation [7].

The study presented in Sect. 5 evaluates task performance and the
user’s sense of agency on the proposed cleaning-house task. Akin to
other studies on AR assistance that have shown improved task per-
formance for instance in assembly tasks [43, 48], we show shorter
completion distances with the use of the proposed AR assistance. Fur-
ther, we study the effectiveness over a range of task-difficulty and
assistance-fidelity levels. Our study also suggests that while reports of
user agency may be negatively affected by increased assistance in this

scenario, this may be a cost participants are willing to pay in order to
realize improved task performance; these are promising results, and can
serve as a baseline for alternative interfaces for displaying the computed
AR assistance to the user.

3 AR-ASSISTANCE MODEL

The goal of our AR assistance model is to formalize the problem of
computing and displaying AR assistance for object-rearrangement tasks.
We develop this formalization for this general category of tasks because
many daily activities such as following a recipe, packing for a trip,
or grocery shopping could be framed in this way. Quotidian object
rearrangement tasks can be repetitive, mundane, and time-consuming
making them ripe for opportunity to explore how AR assistance could
accelerate the task, or remove the burden of completion by decreasing
a user’s cognitive burden. For the purposes of this work, we con-
sider house cleaning as our exemplar object-rearrangement task. The
specifics of the house cleaning task are described in Sect. 5.1, while in
the following section we describe our generalized object-rearrangement
problem formalization.

To provide assistance in a generalized object-rearrangement tasks,
we adopt the perspective of embodied AI and (1) associate an optimal
action sequence with the policy of an embodied agent, and (2) present
this optimal action sequence to the user as suggestion notifications
in the AR system’s heads-up display. To particularize this setup, we
must define the embodied agent and associated partially observable
Markov decision process (POMDP) ingredients: the states, observa-
tions, actions, and rewards characterizing the environment, agent, and
task.
3.1 Embodied AI formulation
We begin by defining the objective (and associated reward) of the task
as moving each object in question from its initial position to its final
desired position in as little time as possible. Minimal time to task
completion is not only an intuitive choice for an objective and reward,
it also draws inspiration from the long history of AI assistants for task
and time management [34].

Regarding the choice of embodied agent, one could adopt a fully
multiagent perspective and consider the user and AR system to be
independent but cooperating agents with the shared aforementioned
objective but with different observation and action spaces. In this
case, one could learn the AR system’s policy and present its action
sequence to the user as suggestion notifications. Unfortunately, this
approach introduces significant challenges, as the user is included in
the AR system’s environment and thus any simulation-based learning
algorithm for the AR-system’s policy would require modeling the user’s
policy acting on an observation space augmented by the AR-system’s
displayed information [11]. Instead, we simplify this setup and consider
a single-agent formulation with an agent comprising a ‘hybrid’ between
the AR system and the user. Namely, it has the observation space (i.e.,
sensor measurements) of the AR system and the actions (i.e., physical
task-execution actions) of the user; in the case of object-rearrangement
tasks, the latter corresponds to navigation and object pick/place actions.
In this case, learning- or planning-based approaches for computing the
embodied agent’s policy require modeling only the physical dynamics
of object rearrangement.

As mentioned above, the embodied-agent’s observations correspond
to those of the AR system. While many current AR head-mounted
devices are equipped with only RGB video, future devices are likely
to be equipped with much more high-fidelity observations. Indeed, it
is likely that—at least for familiar environments—the AR device will
have access to a complete map and will be able to perform localization
of the user and objects [35]. As such, for this initial study, we assume
that the AR device can has complete observations that include a map of
the environment, the current position of all objects in question, and the
position of the user. Thus, the observations and state coincide in this
case, and the POMDP reduces to an MDP with deterministic transition
dynamics, exposing the use for a deterministic planner as described in
Sect. 3.2.

Finally, we assume that the user can carry only two objects at once,
the AR device has knowledge of the desired final location of all objects



in question (i.e., the ‘goal state’ of the environment), and the AR device
can calculate the shortest path between any two points on the map.
These assumptions allow us to compute the policy of the embodied
agent by a planner that solves a capacitated vehicle routing problem
(CVRP), which we describe in Sect. 3.2 below. We remark that future
work will relax the above assumptions and consider multiagent formula-
tions, partial observations, and model-free learning of embodied-agent
policies.

3.2 Object-rearrangement planner: capacitated vehicle
routing problem

We now formulate the (single-vehicle) CVRP [12, 18] for object-
rearrangement tasks. We assume that we are rearranging n objects
such that each object has an initial location and final (desired) location,
thus yielding 2n+1 total locations of interest (including the initial po-
sition of the user). Given any arbitrary enumeration of these locations
with the zeroth location corresponding to the user’s initial position
(i.e., the depot), we decompose these locations into pickup locations
P ⊂ {1, . . . ,2n} associating with the objects’ current locations and
dropoff locations D ⊂ {1, . . . ,2n} associated with the final locations
such that |P|= |D |= n, P ∩D = /0, and P ∪D = {1, . . . ,2n}. We
assume that transportation costs can be calculated from an operator
d : {0, . . . ,2n}×{0, . . . ,2n}→R+ that calculates the geodesic distance
between any two locations and satisfies d(i, i) = 0, i ∈ {0, . . . ,2n}. If
any two pickup or dropoff locations i and j coincide, we treat them as
separate locations with zero separating distance such that d(i, j) = 0.
This assumes the user’s time to complete the task is proportional to
their total path length. We assume the user has a capacity constraint of
c ∈ N (which we set to be c = 2 in the experiments, which assumes a
user can carry one object per hand). We introduce a delivery operator
f : P→D that maps each pickup location to its corresponding dropoff
location. We associate any solution to the problem with an invertible
operator x : {0, . . . ,2n} → {0, . . . ,2n} that maps the step number to
location index; note that invertibility of this operator assumes that each
location is visited exactly once and a location visit is associated with
the pickup or dropoff of the appropriate object. Assuming the user
has already executed m(≤ 2n) steps of the task by visiting locations
x̄(0), . . . , x̄(m) with x̄(0) = 0 and the task initialized at m = 0, the plan-
ner defines the optimal sequence of location visits (x?(0), . . . ,x?(2n))
as the solution to the combinatorial optimization problem

minimize
(x(0),...,x(2n))

2n

∑
i=1

d(x(i),x(i−1))

subject to
j

∑
i=1

1P (x(i))−1D (x(i))≤ c, ∀ j ∈ {1, . . . ,2n}

x−1( f (i))> x−1(i), ∀i ∈P

x(i) = x̄(i), ∀i ∈ {0, . . . ,m},

(1)

where 1A is the indicator function that evaluates to 1 if its argument is
in the set A and evaluates to zero otherwise.

The objective function in problem (1) corresponds to the transporta-
tion costs (i.e., total distance traveled); the first set of constraints cor-
responds to the capacity constraints; the second set of constraints en-
sures that each object’s pickup location is visited before its dropoff
location; the third set of constraints enforces that the solution is com-
puted from the current state of the task at step m. Given the solution
(x?(0), . . . ,x?(2n)) to problem (1), at step p(≥ m) of the task, the
AR device provides assistance by displaying to the user the shortest
path between locations x?(p)(= x̄(p)) and x?(p+ 1) in the form of
world-locked digital breadcrumbs in the heads-up display. If the user
‘violates’ assistance and instead visits a feasible alternative location
x̄(p+1)(6= x?(p+1)), then the system replans by solving problem (1)
with m← p+1 and resumes. We emphasize that replanning is essential
to ensure robustness to realistic user behavior in complex multi-step
object-rearrangement tasks. In practice, we solve planning problem (1)
using OR-Tools [19].

4 AR SIMULATOR AND DEPLOYMENT AT-SCALE

To evaluate how the proposed AR-assistance model described in Sect. 3
affects the user experience, an AR simulator must (1) support the
observations and actions of the embodied-agent policy, (2) emulate
the first-person view through an AR device, including support of the
display of suggestion-notifications in the form of digital objects and
information in a heads-up display (HUD), (3) enable a user in the
loop to autonomously perform the task-execution actions, and (4) be
deployable on the web at scale and support data collection related to
task performance and sense of agency.

To satisfy the above criteria, we build our AR simulator upon Habi-
tat [39]. We make this choice because Habitat satisfies all four of these
criteria. First, it supports a suite of embodied-agent observations that
mimic the on-board sensors of an AR device (e.g., RGBD video, com-
pass) including those relevant to our current formulation (i.e., mapping
and localization of objects and the user). Second, it can display world-
locked digital objects and other information that can mimic suggestion
notifications in an AR system’s HUD, thus supporting the actions of
the embodied-agent policy. Third, it supports 3D environments based
on real-world reconstructions (e.g., the Replica dataset [41]) rather than
synthetically generated environments. Fourth, with modifications, it
enables users to perform the task-execution actions required for object-
rearrangement tasks. In particular, it natively supports navigation, and
we implemented a rudimentary pick/place action as described below.
Fifth, Habitat supports the WebGL JavaScript API that enables web-
based deployment at scale. Finally, we note that Habitat supports
reinforcement-learning training algorithms (e.g., PPO) [47] that we can
employ to train embodied-agent policies in future studies that assume
reduced observation fidelity (e.g., assume only RGBD video); this ob-
viates the need to employ different platforms for policy training and
evaluation in future work.

We make several modifications to the design and functionality of
Habitat in order to generate our AR simulator. The final interface
design is shown in Fig. 2. We iterated over this design with graphical
and user experience designers to develop an interface sufficient for
measuring our intended effects. Descriptions of the key elements of the
graphical and interaction design follow. First, we implement a virtual
HUD to mimic the first-person view of an AR device, Fig. 2(a); the
HUD supports the display of information relevant to the proposed AR
assistance, as well as the ability to display world-locked digital objects
in the environment. Surrounding the HUD are text based descriptions
that inform the user of the drop-off bins and their locations (left of the
HUD), important interactions such as when the user places an item
successfully or attempts an infeasible action (above the HUD), and the
objects needing to be picked up (right of the HUD). At the suggestion
of designers, we were careful to imbue the breadcrumb trail with a
sense of direction (by utilizing a variable height for each breadcrumb
beginning high at the paths starting location and descending towards
the next object). Additionally, we eliminated the use of a 2D overhead
room display, which would draw user attention away from the HUD
and detract from the situated AR simulation experience.

Second, we introduce a ‘virtual knapsack’ of capacity two that
represents the user’s current inventory; we display the current contents
of this backpack as the user’s inventory in the virtual HUD. Third, we
introduce an object pick and place action that either (1) given capacity,
places an object in the virtual knapsack, or (2) removes an object from
the knapsack and places it in a dropoff location matching the object
type. In both cases, the user must be within a preset radius to either the
object or dropoff location for the action to execute. Fourth, we integrate
Habitat with the OR-Tools planner to support real-time replanning as
described in Sect. 3.2.

By leveraging Habitat’s existing WebGL JavaScript API, we can
deploy our AR simulator at scale on AMT and collect data related
to task performance and sense of agency by leveraging psiTurk [20].
Appendix B describes the details of this setup.

5 STUDY SETUP

The overarching goal of our study is to evaluate user responses to AR as-
sistance generated by the proposed framework on a house cleaning task
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Fig. 2. (a) AR simulator interface with various elements of assistance in the designed virtual HUD. (b) Three assistance conditions from the study are
shown. Optimal Assistance condition uses both object highlighting via flagpoles and path highlighting via breadcrumbs.

using our AR simulator. We describe the task and objective (Sect. 5.1),
study conditions (Sect. 5.2), and the measures employed for qualitative
and quantitative evaluation (Sect. 5.3).
5.1 House-cleaning task
The house cleaning task takes place in our AR simulator. The study
consists of four phases: (1) task setup, (2) house familiarization and
navigation-controls training, (3) cleaning-task execution, and (4) survey.
We first situate the user into the study by explaining the purpose of the
study and anchoring them onto our desired situation: a task that they
are familiar enoguh with to do confidently, but unfamiliar enough with
in order to need the help of the AR assistant. To meet both of these
criteria, we decided on a house cleaning task with familiar objects in
a relatively unfamiliar environment (e.g. a short term rental). This is
explained to them through the following study prompt:

In this HIT, you are a guest at a short-term rental. You
have been staying at the house for the past several days
and checkout time is fast approaching. You must clean up
this house according to the host’s instructions in as little
time as possible. In order to avoid a late fee, you must
navigate through the house to pick up the misplaced items
and place them in the appropriate bins before checkout.
For instance, you will be asked to place socks in a laundry
hamper, books in a bookshelf, dishes in a dish bin, etc...
You will be performing the task in a 3D virtual environment
using keyboard controls, described later.

To acquaint the user with the environment as if they had been using
it as a short term rental, they are shown a pre-recorded fly-through
video. This video displays the room name the video frame currently
inhabits and which receptacles occupy the room, if any. Additionally,
the video takes care to stop in front of each receptacle as they come
into view. We consider six semantic object categories and employ a
specific receptacle bin for each category: dishes (dish bin), toys (toy
box), books (bookshelf), laundry (laundry hamper), office supplies
(office-supply box), recycling (recycling bin). Fig. 1(a) illustrates some
of the objects and bins used in the study. We note that this formulation
leads to a capacitated vehicle routing problem as described in Sect. 3.2,
where n denotes the number objects to be cleaned up, and delivery
locations are repeated when more than one object is associated with
the same bin. Appendix C describes how the bins, objects, and starting
location are determined for a given experiment.

After being familiarized with the environment, the user was given the
opportunity to complete a shortened version of the task, with the goal

of further familiarization with the environment and keyboard controls.
The objective was to pick a single item (a book) and place it into the
appropriate bin (the bookshelf). This was the only bin present for the
training task. Participants use the up arrow key to navigate forward, the
left and right arrow keys to look left and right, and the space bar to pick
and place the book. No time limits nor incentives were employed in
the training task. Once the book was correctly placed, the experiment
progressed to the next stage.

The next phase of the task was the experimental phase, where users
completed the main house cleaning task. This phase executed similarly
to the training phase, but now the participant had to organize a number
of objects dictated by the difficulty condition to which they had been
randomly assigned. Furthermore, they were now provided with one
of the three versions of assistance described in Sect. 5.2.1. As in the
training, no time limits nor incentives were employed in the task.

Finally, the participant was given a survey that collects demographic
information (e.g., age, gender), responses to the subjective questions
described in Sect. 5.3.2, and a free-form response to capture anything
else relevant to their experience. Except for the actual task in the
third phase of the HIT—which varied across participants depending
on the study conditions described in Sect. 5.2—all other phases were
consistent across participants.
5.2 Study conditions: assistance fidelity and task diffi-

culty
We vary two key variables across experiments: assistance fidelity,
which represents how much assistance the AR simulator provides to
the user; and task difficulty measured by the number of objects needing
replacement. We hypothesize that these two variables will be the key
drivers of the user experience and task performance.

5.2.1 Assistance Fidelity
We consider three different levels of assistance fidelity: no assistance,
object-highlighting assistance, and optimal assistance. Each assistance
level is characterized by both a world-locked digital-object component
and a text-information component; see Fig. 2. In all conditions, text-
information assistance includes a list of bins including their picture and
semantic location.

No assistance (None). Participants receive no assistance from the
system in this condition, which serves as our control. The egocentric
frame contains only the scene, rendered objects and rendered bins;
there are no additional visual cues. The text-information assistance
provides a (randomized) list of objects the participant must reorganize
in order to complete the task. Each item in this list contains the name
of the object, a picture of the object, and the bin in which it should be



placed. Once a participant picks up an item, the text corresponding to
the selected item is crossed out and moved to the bottom of the list.

Object-highlighting assistance. This form of assistance is designed
to provide assistance to the participant under the assumption that the
AR device knows the location of the objects and bins salient to the
house-cleaning task and can highlight them. Such assistance—which
does not rely on knowledge of traversable paths in the environment nor
a real-time planner—would be especially helpful in situations where
certain items are obstructed from view or are difficult to spot. This form
of assistance enables participants to understand the rough locations of
all objects at once and form a plan themselves. We implement this form
of assistance by placing a digital flagpole over each object as depicted
in Fig. 2; the corresponding text-information assistance includes all of
the information from the No-assistance condition but with the addition
of the name of the room in which the object can be found. Again, this
list is randomized per participant and list items are crossed off as they
are completed.

Optimal assistance. Optimal assistance corresponds to the form of
AR assistance proposed in Sect. 3. A solution to this problem for the
lowest difficulty setting is shown in Fig. 3. To display this information
to the participant, we display the next segment of the optimal path in the
egocentric frame as a trail of digital breadcrumbs, which we set to red
spheres. After the user executes a feasible pick/place action, we display
the next segment of the optimal path (which may involve replanning
as described in Sect. 3. To prevent the participant from losing their
orientation with respect to these start and end positions of the optimal
path segment, the z-coordinate of the path’s breadcrumbs start at the
participant’s chest level and end at the floor level (see Fig. 2). In
contrast to other assistance conditions, the text-information assistance
is now ordered according to the optimal path: each step lists the action
the participant should take, the object they should perform it on, a
picture of this object, and the object’s location. Additionally, each step
is numbered in order to emphasize the importance of the list’s order.
As before, items are crossed off the list as they are completed.

5.2.2 Task Difficulty

We consider four levels of task difficulty, where we define difficulty
in terms of the number of misplaced objects that must be cleaned up.
To control for certain objects being easier to reorganize (due to visual
salience or bin location), the number of each object type remained
fixed for each difficulty setting. A single difficulty level can thus be
defined by the ratio of the number of objects to the number of bins.
We use four task-difficulty levels, where this ratio corresponds to 1:1
(6 total objects), 2:1 (12 total objects), 3:1 (18 total objects), and 4:1
(24 total objects), respectively. Appendix C describes our approach for
generating the bin, object, and initial user locations for any of these
conditions. Fig. 3 shows the bin locations as squares in each difficulty
setting, with each color representing a specific semantic object category.
5.3 Metrics
To determine the effect of assistance fidelity and task difficulty on
participants’ task performance and experience, we collect an array of
objective and subjective participant-response data.

5.3.1 Objective metrics

We employ four metrics to evaluate task performance: (1) Normalized
Deviations: the number of deviations from the optimal location ordering
(accounting for replanning) normalized by the total number of possible
deviations, (2) Inverse Path Length (IPL): the ratio of the minimal
possible path length for to the sequence of location visits taken by the
participant2 to the total distance traveled by the participant, (3) Task
Distance: the total distance traveled by the participant, and (4) Task
Completion Time: the ratio of the total time taken by a participant to
complete the task to the time taken by a participant to complete the
fly-through familiarization phase; this ratio accounts for any system-
dependent latency that may affect completion time.

2That is, ∑
2n
i=1 d(x̄(i), x̄(i−1)) in the notation of Sect. 3.2.

5.3.2 Subjective metrics
We employ subjective metrics that are measured using a five-point
Likert scale, which focus on the following two categories3:

1. Agency, which is defined as the feeling of being in control [32].

“I am in charge of deciding what step I complete next
during the house cleaning task” (Control what to do)

“I am responsible for the speed at which I completed the
task” (Control of speed)

“I feel that I need to follow the suggestions given to me by
the system” (Need to follow)

“I prefer that the system show me what to do next rather
than figure it out myself during the house cleaning task”
(Prefer to show)

2. Utility and Usability, which is aimed at measuring usefulness,
user-friendliness, and acceptability; it is inspired by the System
Usability Scale (SUS) [5].

“The assistance provided to me by the system during the
house cleaning task helped me complete the task faster than
if I had used the help provided to me during the training
task” (Usable)

“I found the help given to me by the system to be useful”
(Useful)

6 USER STUDY

We conducted a 3×4 between-subjects user study (n= 447 participants,
male= 265, female= 177, other= 1, no answer= 4; three assistance-
fidelity levels; four task-difficulty levels) on AMT using our AR simu-
lator setup described in Sect. 4. Participants were compensated $7.50
for completing the 25-minute-long study. Appendix A reports details
on the number of participants in each condition. We first present and
evaluate the hypotheses related to different assistance fidelity in easiest
task difficulty condition using objective and subjective metrics defined
in Sect. 5. We then show the interaction effects between assistance and
task difficulty.
6.1 Effects of varying assistance fidelity
We now conduct a study that varies the assistance fidelity and fixes task
difficulty to the easiest level (i.e., 6 total objects).

6.1.1 Hypotheses.
Our hypotheses with respect to varying the assistance fidelity are:

H1 Participants will follow optimal assistance when presented.
H2 Presenting optimal assistance will lead to higher performance.
H3 Participant agency will be unaffected by assistance fidelity.
H4 Participants will perceive the AR system equipped with optimal

assistance as more usable and useful than the AR system equipped with
no assistance or object-highlighting assistance.

6.1.2 Results summary
Objective metrics. We performed four one-way ANOVA tests to mea-
sure the effect of assistance on normalized deviations, IPL, task com-
pletion distance, and task completion time. The effect of assistance was
statistically significant on normalized deviations (F(2,116) = 41.48,
p = 0.001), IPL (F(2,116) = 15.39, p = 0.000) and task-completion
distance (F(2,116) = 13.05, p = 0.000) (see Figs. 4–6). No statisti-
cally significant effect of assistance was found on task-completion time
(F(2,116) = 0.652, p = 0.523). We performed post hoc Tukey honest
significant difference tests to measure differences between each group.

In the case of optimal assistance, we observe that participants are
more likely to pick and place items in the optimal order than they are in
either the none or object-highlighting assistance conditions as measured

3These questions only comprise a subset of the questions that we asked in the
original study. We limit our analysis here to this subset due to space constraints;
see the Appendix D for the full list.



nook bathroom office den living room dining room kitchen laundry area

Fig. 3. The four task-difficulty levels (increasing in difficulty going from left to right), with the optimal path (corresponding to the solution of the
associated CVRP) shown in the leftmost panel. Colored polygons represent approximate bounding boxes of the apartment’s floor plan, including the
boundaries for each rooms; circular markers denote objects; square markers denote bins; marker color denotes semantic object category (e.g.,
books); the star represents the initial position.
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Fig. 4. On average participants in the opti-
mal condition deviated from the optimal order-
ing less frequently than participants in object-
highlighting (p < 0.001) and no assistance con-
ditions (p < 0.001).
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Fig. 5. Participants provided with optimal
assistance followed paths that more closely
resembled the optimal paths than in object-
highlighting (p < 0.01) and no assistance con-
ditions (p < 0.001).
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Fig. 6. Participants provided with optimal as-
sistance (p < 0.001) and object-highlighting as-
sistance (p < 0.01) were more likely to find
shorter paths than participants in the no assis-
tance condition.

by normalized deviations (Fig. 4). This suggests that people may not be
able to compute independently the optimal ordering of location visits
for object-rearrangement tasks based on only a first-person perspective,
even with object highlighting. Further, in the case of optimal assistance,
participants follow the shortest-path trajectory between points more
closely than they do in either the no assistance or object-highlighting
assistance conditions (see IPL in Fig. 5). This suggests that either a) the
optimal assistance reduces a user’s burden of planning (the next object
is chosen for them by way of the breadcrumb path) or b) when left to
navigate freely, users do not naturally tend to the shortest path between
objects. Further studies to disambiguate this result would provide for
interesting research questions that could help determine the focus of
AR assistance systems in navigation contexts, but is outside the scope
of the current work. Taken together, these two findings support our
hypothesis H1 that participants will follow optimal assistance when
presented with it.

Even though participants tend to follow optimal assistance, this does
not necessarily translate to improvements in all performance metrics.
We measure task performance in two additional ways: total distance
traveled and total task completion time. We observe that participants
presented with object-highlighting and optimal assistance generated
significantly shorter total paths than those generated in the no-assistance

case, but the average path length traveled with these two forms of
assistance was not substantially different (Fig. 6). This indicates that it
is possible to get users to follow shorter paths than those they might find
on their own, but that simply highlighting objects may be sufficient for
decreasing user path distance. Interestingly, even though participants
found shorter paths in the optimal and object-highlighting conditions,
there was no significant difference in the total task completion time
between the three conditions. This further indicates that even though we
are able to shorten path length, this may come at some cost to the speed
at which a user completes the task (potentially in the interpretation of
the interface). Ultimately, navigating this trade-off is likely user or
task specific, and can likely be made more favorable with alternative
and personalized interface design. Taken together, these two findings
partially confirm our hypothesis H2 that participants will have higher
task performance when presented with optimal assistance.

Subjective metrics. We performed six one-way ANOVA tests to test
for a main effect of assistance type within each question (Sec. 5.3). We
found a statistically significant effect of assistance on Control what to
do (F(2,116) = 11.38, p = 0.000), Need to follow (F(2,116) = 7.59,
p = 0.000), Prefer to show (F(2,116) = 15.56, p = 0.000), Useful
(F(2,116) = 7.83, p = 0.000) and Usable (F(2,116) = 12.72, p =
0.000). Following each ANOVA, we performed a post hoc Tukey test



when a main effect was found; Fig. 7 summarizes these results.
Agency. We found that participants generally felt in control of what

they should do next and how quickly they completed the task. Even
so, participants provided with optimal assistance, while still generally
agreeing with feeling in control, reported that they felt less in control
than in the other assistance conditions. Participants provided with
no assistance and object-highlighting assistance were neutral about
their feelings of needing to follow the assistance; participants provided
with optimal assistance rated that they did feel the need to follow
the assistance. Finally, participants provided with no assistance and
object-highlighting assistance disagreed that they would prefer to have
the system show them what to do next and where to go next. Since
they were not exposed to a condition where they were provided this
information, they are likely rating this against their idea of what such
a system might look like. Participants who actually were exposed to
optimal assistance agreed that they preferred this to not having this
assistive information. So, even though participants in the optimal
assistance condition felt less in control overall, they seemed to prefer
this than to an alternative. Overall, this does not support our hypothesis
H3 that participants’ sense of agency would remain unaffected by
assistance fidelity; however, it seems that despite feeling a slight loss
in their sense of agency, they may actually prefer this sacrifice in order
to obtain useful information for optimal task completion.

Usability and Utility. We found that participants generally felt that
they were faster with assistance than without assistance. Participants
provided with both optimal assistance and object-highlighting assis-
tance believed that they completed the task faster with the additional
information than they would have without it (i.e., with no assistance).
While participants in all assistance-fidelity conditions perceived the
assistance to be useful, those provided with optimal assistance per-
ceived it to be more useful than in either the object-highlighting or no
assistance conditions. These results are especially interesting given
that no significant difference was found in total task completion time
between assistance-fidelity levels. Overall, these findings partially sup-
port our hypothesis H4 that participants will be more likely to perceive
the optimal assistance to be usable and useful than other assistance
types.
6.2 Interactions between assistance and task difficulty
We had an additional hypothesis related to the interaction between
assistance and task difficulty:

H5 As the task difficulty increases, participants will be more willing
to accept the assistance.

To test this hypothesis, we conducted two individual two-way facto-
rial ANOVA tests to measure the main effects of assistance type and
task difficulty on normalized deviations and IPL, and any combined
effects of assistance type and difficulty (see Fig. 8). Assistance type
(F(2,435) = 265.75, p = 0.000) and difficulty (F(3,435) = 76.62,
p = 0.000) had statistically significant effects on normalized devia-
tions. The interaction between the two independent variables was also
statistically significant (F(6,435) = 2.865, p = 0.001). The effect of
assistance type on IPL was statistically significant (F(2,435) = 30.71,
p = 0.000). There was no significant effect of task difficulty on IPL,
and the interaction effect was not statistically significant. We performed
post hoc Tukey honest significant difference tests, where effects were
found.

Across the board, we observed that participants deviated more from
the optimal ordering as task-difficulty increased (Fig. 8). In the cases
of no assistance and object-highlighting assistance, this trend conforms
to our expectation that people have difficulties in finding the optimal
solution in object-rearrangement tasks. We still observe this trend,
however, when people are explicitly given the optimal ordering as in
the optimal-assistance condition. Interestingly, though, the variance
in the optimal-assistance condition is consistently much greater than
those in either the no assistance or object-highlighting assistance cases.
This suggests that the underlying distribution of assistance acceptance
is likely multi-modal, and future work can investigate mechanisms to
increase acceptance among various sub-populations of users.

We also observed that participants were more likely to take shorter
paths in the optimal-assistance condition than in the other two con-

ditions, and that participants provided with object-highlighting assis-
tance were more likely to take shorter paths than those provided with
no assistance (Fig. 8). However, there was no change in IPL as the
task-difficulty level increased. Taken together, this refutes our hypothe-
sis H5 that users would be more likely to accept assistance as the task
became harder. In fact, the data suggest that they are either less likely
or just as likely to accept the assistance as the task difficulty increases.

7 DISCUSSION, LIMITATIONS, AND FUTURE WORK

While completing our work, we made several decisions that lead to
specific limitations of our work. Each limitation, though, leads to
interesting discussion and directions for future work. We group these
limitations into two categories and discuss them as well as the future
work they imply in Sect. 7.1 and Sect. 7.2.
7.1 Scale versus ecological validity
One important limitation in the current work is the lack of a study
verifying the ecological validity of our AR simulation. Unfortunately,
we were unable to run this validation study due to the challenges that
arose for in-person user studies due to the COVID-19 pandemic, when
the development and execution of this study took place. In developing
our AR simulator, we made special care to ensure that it is compatible
with AR/VR devices, and could be deployed in an ecological validation
study in the future. Performing this study and comparing the user behav-
ior in our simulator with behavior in an ecologically valid environment
is an important part of our future research direction.

We believe that work into scaling AR interactions is important for the
future progress of daily AR interactions. Even with limited ecological
validity, there is a benefit to the data that can be collected. Specifically,
the data can provide important insights about user preferences related
to AR-assistance. Furthermore, such data could support the training of
data-driven, personalized AR assistance models. For example, a future
direction for our work is to personalize the assistance model from an
task-optimal model to one that incorporates user path preferences. By
collecting large volumes of data, we would be able to train assistance
algorithms that understand and consider the types of paths users feel
comfortable navigating (e.g., paths without stairs, paths with fewer
turns).

Another important future direction of our work is to relax the con-
straint that our AR system have access to extremely detailed environ-
mental information. Pursuing this work also benefits from a method of
simulated interaction, again, in order to employ data-driven techniques
to train algorithms that are robust to uncertain environments and noisy
perception.
7.2 User interaction with optimal assistance
Our experiments consider a single exemplar task with a singular layout.
Our aims were to test the usefulness of our AR simulator setup and the
effects of the proposed assistance paradigm in controlled experiments.
User acceptance of assistance, though, is likely dependent on a variety
of factors including environment familiarity, prior task knowledge or
experience, or task enjoyment. Some of these factors may not even
be measurable at a population level, and require individual analyses.
Given the positive results from our experiments, alongside the ability
to rapidly prototype and deploy new object rearrangement tasks at
scale, we are excited to explore the effects of optimal assistance in new
contexts and different tasks in order to explore these questions in the
future.

Another facet of our experiment was the reliance on users’ ability
and desire to follow both written (the ‘Instruction’ list) and visual (the
breadcrumbs) instructions. While we refined our interface with the
help expert graphic and user experience designers to develop a task
appropriate interface, this design process was not the main focus of our
study. Further iteration on the interface design as well as inclusion of
additional instruction delivery modalities (e.g., audio or social) would
greatly benefit our understanding of how to best deliver assistance.

Finally, one of our main aims was to determine if users would follow
optimal assistance, when given, and if this assistance would improve
their performance (H1 and H2). While both of these hypotheses were
confirmed, there are still open questions regarding user acceptance
of various assistance paradigms. For example, would users blindly



Fig. 7. Left, When compared against no assistance and object-highlighting assistance, participants in the optimal assistance condition were less
likely to feel in control (both p < 0.001), more likely to feel the need to follow the assistance (both p < 0.01), and more likely to prefer being told
what to do (both p < 0.001). Right, Participants in the optimal assistance were more likely to rate assistance as usable (p < 0.001) and useful than
those provided with no-assistance (p < 0.001). Those in object-highlighting more strongly agreed that the assistance was useful when compared to
no-assistance (p < 0.05). Those in optimal assistance more strongly agreed that the assistance was useful as compared to the object-highlighting
assistance (p < 0.05).
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Fig. 8. Left, participants provided with optimal assistance were less likely to deviate from the optimal ordering than participants provided with
either no assistance or object-highlighting assistance (p < 0.001, both). As the difficulty increased, participants were more likely to deviate in each
group. Right, participants provided with optimal assistance were more likely to follow shortest paths (higher IPL) than those provided with both
object-highlighting (p < 0.01) and no (p < 0.001) assistance. Participants provided with object-highlighting assistance took shorter paths than those in
none (p < 0.001).

follow random, non-optimal, or even worst-case assistance should it be
provided? Does the user’s knowledge of the task affect how they view
the AR assistance system? Would users more readily accept assistance
from a sub-optimal but personalized paradigm? Studies relating to the
user’s trust of the assistance were outside the scope of our own study,
but they are a fruitful and important direction for future work in AR
assistance.

8 CONCLUSION

This work has presented (1) a novel framework for computing and
displaying AR assistance for object-rearrangement tasks, which charac-
terize a broad category of quotidian tasks, (2) a novel AR simulator that
can enable web-based evaluation of AR-like assistance and large-scale
data collection, and (3) a study that assesses how users respond to
the proposed AR assistance in the AR simulator on a specific object-
rearrangement task: house cleaning.

The study illustrated several salient trends. First, by following the
optimal assistance, participants were able to reduce the overall distance
travelled, suggesting that people could benefit from a system like the
one we propose. Second, though participants’ reported feeling less in
control over their own actions when following the optimal assistance
they were also more likely to agree that they preferred a system that
told them what to do than users in either other group. This indicates
that users may be willing to sacrifice a small amount of agency in favor
of a system that provides useful assistance. Finally, users were less

likely or equally likely to accept the assistance as the difficulty of the
task increased, though the population of users in the optimal assistance
condition exhibited a much wider variability of assistance acceptance.
This indicates that there are potential subgroups in the user population,
and that future work should be conducted to discover these groups and
develop personalized assistance systems.

Finally, future work will explore extensions of the current frame-
work and study, including performing ecological validation studies,
developing and assessing perception-based learned policies that assume
lower fidelity of the embodied AR agent’s observations, considering
multi-agent formulations that incorporate models of the user’s behavior
and preferences, and extending the current assistance framework and
AR simulator to other quotidian object-rearrangement tasks.
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Appendices
A PARTICIPANTS STATISTICS IN OUR STUDY

Table 1 shows the number of participant in each of our twelve condi-
tions. Participants were uniformly randomly assigned to one of these
conditions when they accepted to participate in the study.

6 objects 12 objects 18 objects 24 objects
None 40 39 44 40
Obj-highlight 37 38 21 30
Optimal 42 42 32 42
Table 1. The number of participants across conditions in our study.

B WEB APPLICATION IMPLEMENTATION DETAILS

The setup works as follows: we serve a Human Intelligence Task (HIT)
to AMT using a psiTurk server, which also allows us to advertise our
HIT on through the AMT web portal. Through this portal, participants
can view a study description, compensation details, and the estimated
completion time. After accepting a HIT, participants consent to study
participation, which initiates serving the approximately 8 GB Habitat
WebGL application to the user’s web browser using a combination
of a psiTurk server and an NGINX server [38]. The majority of the
application is loaded directly onto the participant’s computer, with
the exception of the OR-Tools replanning module. When a disagree-
ment between the participant’s actual path and the computed optimal
path occurs, the participant’s web browser communicates with the
psiTurk server to recalculate the optimal path and send this back to
the client. After completing the survey, the data collected during the
experiment (e.g., keyboard actions, time spent completing each phase,
survey responses) are transmitted back to the server where it is stored
in a MySQL database for later use. After the participant completes
the experiment, we employ psiTurk to approve and disburse payment
through AMT.
C DISORGANIZED HOUSE GENERATION

We now describe how we generated the disorganized house for the
study described in Sect. 5.1.
C.1 Bin placement
Bins were placed manually within the environment in semantically
reasonable locations. For example, the dish bin was placed on top of
the counter next to the sink and the office supply box was placed on top
of thew desk in the office. Receptacle locations were kept fixed in each
difficulty setting.
C.2 Object placement
To sample object locations within the scene we randomly sampled a
total of 40 navigable scene points using the Habitat simulator. We
used rejection sampling in order to ensure that sampled points were
at least one unit of distance away from every other sampled point and
receptacle location within the scene. We then used the first N points
from this list to define the object locations in the scene. For example,
the lowest difficulty setting (6 objects) contained the first 6 points
from this list, the highest difficulty setting contained the first 30 points.
This way, each scene built on top of the previous scene in order to
control for any single scene having an outlying dispersion between
points. Each point was assigned a semantic object category, as well.
This was kept consistent throughout each difficulty setting. The actual
object model used for any individual point was held constant within
difficulty settings, but was randomly sampled across difficulty settings.
Thus, if a sampled point was assigned to the books and magazines
category in the lowest difficulty setting, it would be assigned to the
books and magazines category in the highest difficulty setting, as well,
but it might not be exactly the same book. Object locations for each
difficulty setting are shown as circles in Fig. 3.
C.3 Starting Location
The starting position of each participant was held constant for any indi-
vidual scene. This position was calculated by first finding the centroid
of all of objects placed in the scene. This point was determined to be

navigable using the Habitat simulator. If the point was not navigable,
rejection sampling was used to find a navigable point within a small
radius surrounding the centroid. This method allowed us to ensure that
the participant’s starting position did not bias their solution by their
starting location. Additionally, this method allowed us to generate our
optimal assistance, discussed in Sec. 3.2.
D SUBJECTIVE METRICS

The full list of Likert-scale questions used in our study is below (a
subset was described in Sec. 5.3 and used for analysis in Sec. 6.1):

1. Agency:

“I am in charge of deciding what step I complete next
during the house cleaning task” (Control what to do)

“I am in charge of deciding where I go next during the
house cleaning task”(Control where to go))

“I am responsible for the speed at which I completed the
task” (Control of speed)

“I feel that I need to follow the suggestions given to me by
the system” (Need to follow)

“I prefer that the system show me what to do next rather
than figure it out myself during the house cleaning task”
(Prefer to show what)

“I prefer that the system show me where to go next rather
than figure it out myself during the house cleaning task”
(Prefer to show where)

2. Utility and Self-efficacy:

“I completed the task as quickly as I could”

“I followed the help given to me by the system”

“I took longer than I needed to to complete the task”

“I found the help given to me by the system to be useful”

“I found a better way to complete the task than offered to
me by the system”

3. Usability:

“I found the house cleaning task more difficult to complete
than the training task”

“I thought the system was easy to use”

“I would imagine that most people would learn to use the
help provided by the system very quickly”

“I would like to use the help provided to me by system
during the house cleaning task frequently in real life house
cleaning scenarios”

“The assistance provided to me by the system during the
house cleaning task helped me complete the task faster than
if I had used the help provided to me during the training
task”

“The help provided to me by the system during the house
cleaning task was sufficient in order to accomplish the
task”.
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