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Abstract— Robots can help augment human performance in
teleoperation tasks that are difficult to complete, for example,
assisting a user with motor impairment to eat independently.
To do so, robots must intelligently recognize the user’s activity
state and offer the appropriate type of assistance. Prior work has
shown that a user’s teleoperation input (such as a joystick control
signal) can be used to predict their activity. However, basing such
assessments only on direct control signals misses the opportunity to
use rich human behavior signals that can further reveal user state,
specifically user intent. For example, eye gaze is tightly linked to the
target and timing of manipulation, and has been shown to predict
a users actions and identify errors in teleoperation. We propose
a semantically meaningful dictionary of hand-eye coordination
primitives to characterize a user’s state during co-manipulation.
We perform extensive analysis of a human-robot collaboration
dataset, HARMONIC, to extract frequently occurring hand-eye
coordination primitives, and identify a set of five action primitives
(exploration, pursuit, correction, mode switching, and toggle) that
characterize the user’s state. Additionally, we design data-driven
models to automatically classify these primitives. Preliminary
experiments with both synthetic and real data reveal the potential
and limitations of state-of-the-art learning approaches.

I. INTRODUCTION

Without any algorithmic support, it can be extremely taxing
for an individual to directly control, i.e., teleoperate, such a robot.
This is because the number of DOFs of the robot being controlled
is generally far greater than those of the input device. This
challenge is compounded when considering people with motor
disabilities, for whom the expressivity of the input device may
decrease further in order to meet the requirements of their limited
mobility. Additionally, it is not sufficient to allow the robot to
complete these tasks autonomously, as previous work have shown
that retaining the users explicit control is especially important in
assistive domains, where users strongly prefer systems that allow
them to stay in control of assistive robots, even if they are less
efficient at completing the task [1], [2].

To address this, researchers have developed shared autonomy
algorithms that combine user control with autonomous robot
behavior, resulting in co-manipulation of the robot [1], [3], [4]. For
shared autonomy algorithms to be successful, they must have the
ability to accurately characterize a user’s state to support complex
and high-dimensional co-manipulation tasks, such as assisting
a user with motor impairment to eat with a 6 degree of freedom
(DOF) arm. These algorithms use direct control signals, such as
the operator’s joystick inputs, to predict the operator’s goals so
that the robot can take a cooperative action to assist the user.
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However, basing such goal predictions only on direct control
signals, such as explicit joystick behavior, misses the opportunity
to use rich human behavior signals that can further reveal user
state, specifically user intent. For example, eye gaze is tightly
linked to the target and timing of manipulation actions in people
[5], [6]. In human-robot co-manipulation tasks, here cooperative
eating with a 6 DOF robot arm, eyes can be used to predict a
user’s actions or identify errors in teleoperation [7], [8], [9]. Eye
gaze is therefore a natural mechanism to supplement the human
goal prediction that takes place during shared autonomy.

To successfully incorporate this signal into the shared autonomy
paradigm, it is first necessary to understand hand-eye coordination
in co-manipulation. Specifically, we need to determine the
basic building blocks of co-manipulation that will allow us to
coordinate between a user’s eye gaze and how they control the
robot’s end-effector (here by using their hand to manipulate a
joystick). Coordination allows us to relate the varying task-relevant
information contained in the different data streams to each
other. For example, in assisted eating, the joystick can reveal the
immediate vector in which a person wants the robot to travel, but
eye gaze can reveal the ultimate bite of food the user wishes to
spear; here, it is important to perform an action that does not move
too far away from the immediate action, while still optimizing for
the overall goal. By relating the joystick and eye gaze streams in
this example, we can get a more complete vision of the user’s state:
not just where they want to go, but how they would like to get there.

Before coordinating the data though, it must be processed. From
an algorithmic perspective, processing human behavior signals
like eye gaze, head pose, or joystick inputs is non-trivial. These
signals are noisy, and different data streams provide different
task-relevant features. In addition to the algorithmic complexities,
simply obtaining these signals is challenging, as collecting data
from multiple sensors in order to train data-driven models can
require burdensome engineering efforts to set up, calibrate, and
synchronize. Fortunately, there have been a few large-scale
dataset collection efforts for teleoperation and human-in-the-loop
co-manipulation tasks [10], [11].

In this paper, we use a large-scale multi-modal data set
called HARMONIC in order to identify the basic building
blocks of hand-eye coordination exhibited by people during
co-manipulation tasks (Fig. 1). We identify semantic, multi-modal
action primitives that establish the basis for a user’s state. Then,
we apply modern data-driven techniques to classify multi-modal,
multi-view real world data into these action primitives, in order to
verify our choice in primitives as well as show that coordination
between eye gaze and joystick is possible. Finally, we justify the
multi-modal problem by showing that uni-modal analyses are not



sufficient to explain joint behaviors.
We provide several novel contributions toward an understanding

of hand-eye coordination in co-manipulation. We first define
macro action primitives, which segment user actions into mean-
ingful sequences of individual user states, and discuss how they
differ from physiological gaze primitives (Section III-A). In order
to evaluate our data-driven recognition models for macro actions,
we create a synthetic dataset that contains these action primitives
so that we have full control over the generative process and have
perfect access to ground truth annotations (Section III-C). We show
how these semantic macro action primitives can be modelled using
both the synthetic and real raw data (Section IV), and provide a
thorough experimental analysis of our models (Section V).

II. RELATED WORK

Prior work has considered the use of direct control signals in
order to provide robotic assistance. These direct signals can take
the form of deliberate verbal interaction [12], [13], joystick input
[3], [14], or even calculated hand and arm motions that show
a robot how to complete a manipulation task [15]. While these
signals vary drastically in their modalities, all of the control signals
require calculated and deliberate actions from the participant.

Previous work has also modelled uni-modal and multi-modal
primitives in order to aid in human robot co-manipulation. Uni-
modal approaches have focused on recording human behavior,
generating primitives from these recordings, implementing them
as robot actions, and then testing by having a human complete
the task with the robot [16], [17]. Multi-modal approaches have
focused on generating primitives from recordings of various views
of the same or similar direct control input (e.g., EMG and human
arm manipulability) in periodic tasks (e.g., sawing a board with
a robot) [18], [19]. Regardless of the modality, these approaches
focus solely on the direct control inputs.

While these approaches have shown success, they neglect other
signals that people naturally display while engaging with the
world, with no added burden to the user. For example, previous
work has shown that humans naturally elicit a wide range of
nonverbal behaviors [20], [21] when performing collaborative
tasks. In particular, eye gaze is tightly liked to hand movements,
especially during manipulation tasks. When reaching for an object,
gaze to that object typically precedes hand motion by about
600ms [6]. Gaze typically moves to the next object before the
hand reaches its target [21], and gaze rarely rests on objects that
are not involved in the current task [5].

Nonverbal behaviors have been previously used for direct con-
trol in remote robot navigation [22], drone teleoperation [23], and
human-robot co-manipulation in a table carrying task [24]. How-
ever, these approaches do not consider using naturalistic gaze as an
indirect, and supplementary control method, as we do in this work.

In human robot co-manipulation, prior work has begun to
characterize hand-eye coordination when operating a robot under
shared autonomy [7]. Though this work characterized many
important interactions, it did not provide formal primitives or
exhaustively analyze the relationships between joystick and eye
gaze signals in a data-driven manner.

To study this problem in a naturalistic environment, we use
the Human and Robot Multimodal Observations of Natural

Interactive Collaboration (HARMONIC) dataset [10]. This dataset
is described in detail in III-B.

III. PROBLEM DOMAIN

We build models of hand-eye coordination in human-robot
co-manipulation to better understand user state during high
dimensional co-manipulation tasks such as assisted eating. To
describe hand-eye coordination, we define action primitives that
provide a semantic understanding of user state. We draw our action
primitive definitions by semantically analyzing the HARMONIC
dataset, which is described briefly here. Additionally, to test these
primitives in a systematic fashion, we construct a synthetic dataset,
described below.

A. Defining Action Primitives

In our current work, we use the term micro actions to refer
to three low-level gaze action primitives that can be used to
understand attention, or user state. Fixations are eye movements
that focus eye gaze on a single point in space, and are used to
gather visual details. Saccades are fast, point-to-point movements
of the eyes that bring a new area into the center of vision. Finally,
smooth pursuits are when the eyes track a moving object to keep
it in the center of vision.

Micro actions only partially express hand-eye coordination
during co-manipulation, however, because they do not capture
the robot’s movement. For this, we manually analyzed the HAR-
MONIC data and identified five common macro actions (Fig. 2)
comprised of eye gaze and joystick movements. Our five macro ac-
tions are: exploration, correction, pursuit, mode switch, and toggle.

Exploration is defined by minimal joystick activity and high eye
gaze activity. Semantically, this class represents a person exploring
the space with their eye gaze, preparing to make an action with
the joystick. This sequence starts when the joystick moves into
a period of rest and ends once the user activates the joystick.
This can be seen in Fig. 3 where the joystick sits generally at
the bottom of the plot, indicating no movement throughout the
sequence, and the eye gaze is dispersed throughout the plot.

Pursuit is defined by correlated eye gaze and joystick action.
In this class (which is not to be confused with the micro action
primitive smooth pursuit), the participant moves the joystick and
follows the resulting robot action with their gaze. This may result
in large eye gaze movements when the robot is moving across
the visual scene or little eye gaze movement when the robot’s
end effector is rotating. This action begins when the eye gaze
begins to follow the robot’s action (as resulting from the joystick
activation) and ends once the eye gaze moves away from the
previously fixated position. This relationship can be seen in Fig.
3 where the gaze and joystick signals are tightly coupled.

Correction can be categorized by high joystick activity and
consistent eye gaze glances between a “home” point and another
task relevant scene point. Prior work has called these “monitoring”
glances [7]. This action can reveal an operator’s goal or the target
of their current control input. This sequence begins as eye gaze
moves away from a previously fixated position during joystick
activation. It ends once the eye gaze has travelled back to the
original position (after one or more fixations elsewhere in the
scene), the joystick comes to a period of long rest, or the participant



(a) Third person view (b) Egocentric view
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Fig. 1: The HARMONIC data set contains (a) third person video, (b) egocentric video, (c) eye gaze fixations, and (d) joystick data from
a human-robot co-manipulation task.

(a) Exploration (b) Pursuit (c) Correction (d) Mode switch (e) Toggle

Fig. 2: Five macro action labels capture combined eye gaze and end effector dynamics. a) Exploration denotes periods of high eye gaze
movement and low joystick (robot) movement. b) Pursuit denotes periods of highly correlated eye gaze and joystick movements, where
the eye gaze follows the path of the robot. c) Correction denotes successive glances between different parts of the scene while the robot
is moving. d) Mode switch denotes when the user is using modal control to cycle through sets of degrees of freedom. e) Toggle denotes
periods in which the joystick is being moved in rapid, short, consistent activations.
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Fig. 3: A graphical description of the differences between macro action categories from HARMONIC. Eye gaze sequences are red,
while joystick sequences are blue. The y-axis shows the normalized cumulative distance for each sequence. The x-axis shows normalized
sequence lengths. Every trial is plotted, with a representative sequence highlighted in bold.

enters into one of the other semantic categories. This can be seen
in Fig. 3 where the eye gaze initially takes a stair step approach
indicating fast movement initially, a pause and then fast movement
again. This pattern is then followed in the joystick channel.

Mode switch represents when the participant switches control
modes. This class is programatically generated by taking the five
frames before and after the button press that causes a robot control
mode switch.

Toggle is defined by quick, successive joystick taps with the eye
gaze path closely following the end effector. This begins when the
participant makes short bursts with the joystick, and ends either
when the joystick comes to a period of inactivity or consistent
activity. This can be seen in Fig. 3, where the cumulative distance

of the joystick takes a stair step pattern, while the gaze initially
lags behind and then catches up at the end of the sequence.

B. HARMONIC Dataset

As the source of real-world human-robot co-manipulation
data, we used the previously released HARMONIC dataset [10].
HARMONIC includes data from 24 people operating a Kinova
MICO robot in an assistive eating task. Among many data streams,
the dataset provides binocular eye gaze at 120Hz and joystick
signal at 120Hz/100Hz (moving/hold) with time stamps allowing
for the ability to flexibly re-sample.

The full HARMONIC dataset was recorded to examine
people’s use of robot assistance in co-manipulation. Participants
controlled the end effector of a 6-DOF robot using a 2-axis



joystick to complete a food spearing task (Fig. 1). Because the
joystick input has fewer dimensions than the robot end effector,
people operated the robot two DOFs at a time, and pressed
a button on the joystick to switch modes. Participants each
completed five trials of the food spearing action under four
different assistance levels, for a total of twenty trials per person.

As participants completed the eating co-manipulation task, their
eye gaze, joystick inputs, robot position, and other signals were
recorded. Eye gaze was recorded using a Pupil sensor [25], [26],
which captured pixel position of gaze fixation on an egocentric
view of the world (Fig. 1). Joystick signal was recorded as a two
dimensional value, where both the x and y coordinates range from
-1 to 1.

Though the full dataset includes approximately five hours of
data, for the current analysis, we are investigating teleoperation
only. Therefore, we only included the five trials per participant
where people were fully teleoperating the robot (i.e., the robot
assistance signal was set to zero).

C. Synthetic Dataset
Real-world data is noisy, so we developed a synthetic dataset

that allows us to test our models with hypothetically perfect inputs.
Additionally, it provides an opportunity to control and experiment
under a variety of noise parameters, prototype experiments at
scale, have full control over the data generator, and have access
to actual ground truth labels.

This synthetic dataset was designed to mimic the task in the
HARMONIC dataset. The robot end effector navigates to a virtual
goal, while a virtual eye gaze stream is simultaneously overlaid on
the scene. As seen in Fig. 4, the robot is represented as a triangle,
the eye gaze as a square, and the goal as a circle. The robot aims
to navigate to within a threshold of the goal. Trials with fewer
than 200 or more than 1000 frames were discarded. For further
information on how these data were generated, please refer to the
supplemental materials.

Table I shows the distribution of micro and macro actions in
both HARMONIC and synthetic datasets. We can see that the
number of sequences is relatively balanced in the HARMONIC
dataset, with there being fewer toggle sequences overall.

TABLE I: Distribution of class labels in HARMONIC and
synthetic datasets for both the micro and macro classification
tasks.

HARMONIC Synthetic

Micro
Saccade 0.1796 0.4321
Smooth Pursuit 0.5541 0.1743
Fixation 0.2663 0.3936

Macro

Exploration 0.2319 0.3377
Correction 0.2424 0.0993
Pursuit 0.1765 0.1140
Mode Switch 0.2181 0.3377
Toggle 0.1311 0.1113

IV. METHOD

A. Micro and Macro Action Labeling
Micro action labels were automatically classified using

Bayesian Decision Theory Identification (I-BDT) [27] which

classifies gaze-actions in online settings. For an explanation of
this algorithm, we refer readers to the original paper, as well as
our supplementary material.

Macro actions were hand labeled for ten participants in the
HARMONIC dataset. Sequences with significant amounts of low
confidence eye gaze calculations (given by the eye tracker). Two
of the ten labelled participants (p102 and p103) were discarded
completely due to significant missing data. For the remaining
labelled participants, we dropped 62 of 2931 total sequences (2.1%
of sequences) or 2931 of 48135 frames (3.4% of frames) because
of missing gaze data. Supplementary information contains more
details about our exclusion criteria, as well as our subsampling
method.

B. Models and Input Representations

We built models for micro and macro actions using a two-layer
Gated Recurrent Unit Recurrent Neural Network (GRU-RNN)
[28] to encode a given input sequence using the PyTorch neural
network library [29]. We tested four input families: eye gaze only,
joystick only, an early fusion of eye gaze and joystick, and a late
fusion of eye gaze and joystick (Table II. We further considered
different hidden sizes for these models, which are shown in the
hsize column of Table II.

To decode these sequences into classification vectors, we
collect the context vectors for each step in the sequence, and then
feed this into a three layer Multi-Layer Perceptron. In the late
fusion models, the eye gaze and joystick signals are each encoded
by two separate encoders, and then the context vectors are
concatenated prior to being decoded. This is in contrast with the
early fusion models, in which the eye gaze and joystick sequences
are concatenated along the feature axis and then jointly encoded.

The first layer of the decoder is the product of the maximum
sequence length and the hidden layer size. The second layer is
half that, and the final layer is the number of classes. This decoder
model is fully connected, and ReLU [30] is used for non-linearity
after the first and second layers. All models were trained using
the Adam optimizer [31] using a learning rate of 1e-3 and cross-
entropy loss weighted by the class distribution (given in Table I).

The x,y embedding indicates that the inputs are being given to
the model as is, with no modifications. For synthetic data, this is
the x,y position of both eye gaze and joystick. For HARMONIC
data, eye gaze includes the confidence score from the eye tracker,
while joystick additionally includes a one hot vector indicating
the current control mode. The dx,dy embedding indicates that
the difference (or discrete derivative) of the signal is taken before
passing the input to the model. Finally, the binary representation
divides the input space into a 10x10 grid and generates a one hot
vector indicating the pixel closest to the real valued number. This
vector is then passed to the model as input.

C. Problem Setup

For both tasks, we consider a supervised classification problem.
Our goal here is to show a correlation between the segmented
raw data and our provided macro labels. Outperforming chance
and the zero-rule (guessing the majority class) shows that the
chosen macro labels are good segmentations of the raw data. In
future work, the representations learned by these models could
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Fig. 4: Our synthetic dataset was modeled as a simplified version of the eye gaze and joystick signals from the HARMONIC task. Here,
an example of the exploration action, with simulated eye gaze (square), robot position (triangle), and goal (circle).

TABLE II: Results for the synthetic and HARMONIC datasets on the micro and macro classification tasks. We report accuracy (acc) and
mean average precision (mAP). We test a variety of input streams: eye gaze only (eye only), joystick only (joy only), an early fusion of
eye gaze and joystick (eye+joy (e)), and a late fusion of eye gaze and joystick (eye+joy (l)). Additionally, we test different embeddings
(embed) of the inputs: binary, real (x, y), and difference (dx, dy). Finally, we test two different hidden unit sizes (hsize): 16 and 256.

Micro Macro

input embed hsize acc (synth) acc (real) mAP (synth) mAP (real) acc (synth) acc (real) mAP (synth) mAP (real)

eye only binary 256 0.9186 0.6964 0.9670 0.6700 0.8310 0.4884 0.7266 0.4431
eye only x,y 256 0.9620 0.6648 0.9949 0.6666 0.7763 0.4884 0.5981 0.4522
eye only x,y 16 0.9316 0.6774 0.9738 0.6716 0.8539 0.4653 0.7713 0.4459
eye only dx,dy 256 0.8656 0.7076 0.8703 0.7027 0.9185 0.5347 0.9237 0.4805
eye only dx,dy 16 0.9695 0.7006 0.9963 0.7028 0.9195 0.5644 0.9050 0.5054

joy only binary 256 0.8671 0.5182 0.9068 0.5037 0.7783 0.6436 0.6274 0.5886
joy only x,y 256 0.9141 0.5561 0.9464 0.5248 0.8062 0.6931 0.6710 0.6797
joy only x,y 16 0.9016 0.5610 0.9328 0.5148 0.7962 0.6502 0.6599 0.6642
joy only dx,dy 256 0.9456 0.5638 0.9895 0.5112 0.8917 0.5479 0.8230 0.5241
joy only dx,dy 16 0.9486 0.5372 0.9902 0.5079 0.9006 0.5809 0.8203 0.5666

eye+joy (e) binary 256 0.9416 0.6830 0.9804 0.6668 0.7952 0.6205 0.6595 0.6244
eye+joy (e) x,y 256 0.8971 0.6669 0.9242 0.6822 0.8082 0.6997 0.6847 0.7053
eye+joy (e) x,y 16 0.9226 0.6767 0.9555 0.6895 0.8956 0.6832 0.8456 0.6682
eye+joy (e) dx,dy 256 0.9575 0.6522 0.9955 0.6608 0.9652 0.5578 0.9664 0.5452
eye+joy (e) dx,dy 16 0.9650 0.6669 0.9956 0.6915 0.9543 0.5248 0.9706 0.4748

eye+joy (l) binary 256 0.9271 0.6767 0.9776 0.6864 0.8678 0.6271 0.7979 0.6357
eye+joy (l) x,y 256 0.9386 0.6669 0.9861 0.6782 0.8111 0.6238 0.6702 0.6613
eye+joy (l) x,y 16 0.9051 0.6697 0.9434 0.6869 0.7873 0.6964 0.6680 0.6997
eye+joy (l) dx,dy 256 0.9640 0.6957 0.9954 0.6930 0.9612 0.6139 0.9707 0.5889
eye+joy (l) dx,dy 16 0.9710 0.6613 0.9977 0.6709 0.9662 0.5314 0.9792 0.5257

TABLE III: Results for the HARMONIC dataset on the macro task using the best representations from Table II.

Input gaze embed gaze hsize joy embed joy hsize acc mAP

eye+joy(ef) dx,dy 16 x,y 16 0.6799 0.6805
eye+joy(ef) dx,dy 256 x,y 256 0.6403 0.6197
eye+joy(lf) dx,dy 16 x,y 256 0.6997 0.7147

be used as context vectors that can be incorporated into the shared
autonomy paradigm. We give the results on the classification
problem in Section V.

V. EXPERIMENTAL RESULTS

Experiment results for both real and synthetic data sets on both
micro and macro tasks are shown in Table II. Following the initial
experiments, an analysis of individual differences on the real was
performed for both the micro and macro task. For this, we used
k-fold cross validation where each fold was a single participant,
as seen in Table IV. Accuracy and mean average precision (mAP)
are reported for all experiments. For both micro and macro actions,
the chance values were calculated by taking the inverse of the
number of classes (three for micro action classification and five

for macro action classification). The majority class values are
given in Table I for both data sets and tasks. These are calculated
by dividing the total number of sequences of a particular class
and by the total number of sequences in the entire dataset.

A. Micro Action Results

The best performance for the synthetic data on both metrics
came from the joint late fusion model with a hidden size of 16 and
inputs represented as the difference of the raw signal. The accuracy
score of 0.9710 outperforms both guessing at chance (0.3333)
and consistently guessing the majority class (0.4321). Given that
these results are an idealized version of the real world data, these
numbers represent a theoretical upper bound on performance.

The real data outperformed chance and guessing the majority



class (0.3333 and 0.5541), as well. The best results for these data
were with the eye only model (XXX), with the best representation
being the difference of the input signal. Accuracy was best under
the 256 hidden size model, while mAP performed the best under
the 16 hidden size model, but both models performed similarly
on both metrics.

B. Macro Action Results

Synthetic data performed well on all categories for macro
action classification (Table II). In all cases it out-performed
chance (0.2) and guessing the majority class (0.3377). The best
performance (XXX) was realized by the late fusion model with
hidden size of 16 and input streams represented as the difference
of the raw signal. Both fusion models significantly out-performed
the single stream models.

The real data also outperformed chance (0.2) and guessing
the majority class (0.2424) in all experiments, with the best
performance (XXX) resulting from the early fusion model with
hidden size of 256 and the original input stream as the input to
the model. While this model performed the best, performance on
the late fusion model and the joystick only model were similar.

C. Participant Level Cross Validation

Table IV shows accuracy and mAP scores when each
participant is considered as their own test set for the micro and
macro tasks. The micro task should be compared to the eye only,
dx,dy, 256 model, and the macro task should be compared to
the eye+joy (e), x,y, 256 model. Evidence to suggest individual
differences was found in the macro action classification, but not
the micro action classification.

TABLE IV: Micro action cross validation by participant ID (eye
only, dx,dy, 256 model). † Data were excluded due to significant
noise. ‡ Data were not labeled for macro actions.

Micro Macro

ID Accuracy mAP Accuracy mAP

p101 0.7021 0.7571 0.5587 0.6551
p102 0.6651 0.6396 † †
p105 0.7317 0.6690 † †
p106 0.7161 0.7089 0.6818 0.7742
p107 0.6140 0.6658 0.6023 0.5704
p108 0.7901 0.7346 0.7005 0.7010
p109 0.6984 0.6458 0.6447 0.6140
p110 0.6889 0.7492 0.5209 0.5921
p111 0.5305 0.5527 0.6204 0.6111
p112 0.7105 0.7313 0.4638 0.5165
p113 0.6549 0.6851 ‡ ‡
p114 0.7111 0.7250 ‡ ‡
p115 0.7333 0.7019 ‡ ‡
p117 0.8023 0.6709 ‡ ‡
p118 0.8175 0.6650 ‡ ‡
p119 0.5987 0.5872 ‡ ‡
p121 0.7128 0.7097 ‡ ‡
p122 0.6942 0.6745 ‡ ‡
p123 0.6915 0.7144 ‡ ‡

Avg 0.6923 0.6429 0.5951 0.6233

VI. DISCUSSION
Improved performance in the synthetic data for both

classification tasks was realized by jointly modelling eye gaze

and joystick data. For real data the best results for micro action
classification came by modelling eye gaze alone, with the joystick
model only slightly outperforming consistently guessing the
majority class. This indicates that in real data, the patterns of
joystick behavior do not significantly differ across micro action
sequences, further justifying the need to create and analyze the
macro actions to encompass user control input signals.

In macro action classification, the joystick and both fusion
models all performed similarly, with slight improvements coming
from the fusion models. Thus, outperforming the joystick signal
is possible on this task, but the fusion between the eye gaze and
joystick signals is nontrivial and should be explored further. All
models significantly outperformed guessing the majority class,
indicating that eye gaze and joystick do display distinct patterns
within the proposed primitives.

Another finding was that the model’s preferred input representa-
tions were consistent across task and dataset. The best performance
from both synthetic and real data on the micro and macro classi-
fication tasks came from representing the eye gaze as the original,
real valued input. The joystick stream was best represented as the
difference in the synthetic data and as a real value in the real data,
but, as the joystick in the synthetic data actually represents the end
effector of the robot, taking the diff of this signal actually results
in a signal similar to the joystick data in the real dataset.

Additionally, we found no consistent improvement when
considering wider hidden representations, indicating that smaller
models can be used to achieve this task. This finding is important,
as assistance algorithms must be processed online, and using
smaller, lightweight models makes this approach more viable.
Furthermore, there was no appreciable difference between the
early and late fusion models.

Finally, Table IV shows that micro actions are consistent across
participants, as the weighted average of accuracy over the 19-fold
cross validation compared similarly to the accuracy of the best
eye only model (though mAP underperformed). This is in contrast
to the macro action categories, Table IV in which the weighted
average of both accuracy and mAP significantly under performed
the best early fusion model. This indicates that there are individual
differences, and building effective models to account for these
differences should be studied further.

VII. CONCLUSION

In this work we are motivated by the need to understand hand-
eye coordination for human-robot co-manipulation. This problem
is especially important for assistive robotics tasks, in which opera-
tors could benefit greatly from the introduction of indirect control
signals, such as eye gaze, to assistance algorithms. We introduced
a novel concept of macro actions, which are semantic action
primitives that represent high-level task activities. These macro
actions are complementary to micro actions, which represent low-
level behavior. We defined five macro actions that combine eye
gaze and joystick on an assistive eating task drawn from the
HARMONIC dataset. We then developed multi-modal models of
micro and macro actions, and extensively analyzed the models’
performance under different parameters. Our analysis further
justifies the need for semantic macro primitives, and highlights the
benefit of jointly modeling eye gaze and joystick signals within a



single task. Finally, we discussed how participants show individual
differences. This work will enable future research into combining
indirect and direct control signals to comprehensively perceive
human goals in co-manipulation settings.
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