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Urban anomalies bring uncertainties to society, urban transportation systems, and businesses. Some urban

anomalies, such as no-notice and/or unpredictable terrorist attacks or other urban strikes, if not handled

in timely ways, may result in loss of life or property and pose tremendous risks to public safety overall.

Previous studies have focused on developing emergency-management technology but without in-depth anal-

ysis exploring how technology-mediated digital systems perform in reality. Besides, the recent literature has

demonstrated significant interest in analyzing and comparing the traditional on-demand service (i.e., taxies)

and ridesharing platforms (e.g., Uber). A majority of prior studies have focused on their complementary

roles in determining environmental conditions. Little is known, however, regarding how and why the two

types of platforms perform in contexts of uncertainty (e.g., under emergency situations). This paper aims to

bridge this literature gap. Specifically, we consider different types of unexpected urban anomalies (including

terrorist attacks, car crashes, and subway shutdowns) and collect large-scale trip data on taxi and rideshar-

ing services. Empirically, we employ a difference-in-differences (DiD) econometric model to compare the

platform-level performances (measured by the number of fulfilled trips) of a traditional taxi system and

a ridesharing platform after urban anomaly shocks. We observe that the ridesharing platform significantly

outperforms the traditional taxi platform in coping with the uncertainties brought about by unexpected

anomalies. We conduct a set of robustness checks to verify our findings and propose multiple possibilities to

explain them. We conclude, conservatively, that the technological effect, as well as the technology-enabled

supply elasticity of the digital platforms, are the main factors determining the differences between the plat-

forms during an urban anomaly. This work offers important insights into the design of platform strategies,

especially for the stimulation of the labor supply and incentivization of the adoption and use of technology

in urban transportation systems in response to anomalous urban upheavals.
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Effects

1



2

1. Introduction

Urban anomalies, especially unpredictable and/or no-notice events, if not handled properly, could

result in significant economic losses and societal crises (Manelici 2017, Moore 2007, Paizs 2013).

Statistics show the total worldwide losses from both natural and man-made disasters reached 306

billion dollars in 2017 (McCarthy 2017). Manelici (2017) found that for cities, the 2005 London

bombings led to a 6% fall in house prices, as “new firms,” for example, were “less likely to locate

near major stations after the attacks.” Hence, major cities such as New York City (NYC) are

required to respond efficiently to these urban anomalies. Emergency management has always been

an important topic in both academia and practical fields. The literature, especially in computer

science, has devoted significant attention to detecting and predicting urban anomalies (Fang et al.

2019, Xie et al. 2019, Zhang et al. 2020). Studies have conducted analyses with the aim of accurately

detecting urban anomalous patterns/events using spatial-temporal data (Chawla et al. 2012, Pang

et al. 2011). More recently, studies have demonstrated the power of technology in helping to predict

anomalies and support management, specifically by developing IT-based systems based on, for

example, artificial intelligence and remote sensors (Asadzadeh et al. 2020, Sinha et al. 2019).

Although previous studies have focused on developing and evaluating technology for emergency

management, we lack solid empirical evidence regarding how technology-initiated digital systems

actually perform in a realistic environment. This is difficult to predict accurately using simulation

analyses because in many cases, technology’s performance relies on its stakeholders. Realized effi-

ciency depends on how the public reacts to the technology as well as how the technology reshapes

human behavior. The urban transportation system being a crucial component of urban emergency

management, the present study aimed to understand how technology-equipped transportation ser-

vices (i.e., ridesharing platforms) can potentially cope with uncertainty and help facilitate emer-

gency relief.
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It is well known that whereas the taxi industry played the dominant role in past decades, the

emergence of ridesharing platforms has markedly reshaped urban transportation systems. Statistics

show that during the first quarter of 2018, ridesharing platforms took “more than 70% of the

worldwide transportation market for business travelers” (Goldstein 2018). Taxi companies are

centralized with experienced drivers, while ridesharing platforms are a type of gig economy with

self-employed drivers who are equipped with technology-based digital systems throughout the full

working phases (e.g., searching for demands, picking up and locating passengers, and completing

trips). The literature has shown tremendous interest in analyzing this newly emerging type of

transportation service. On the one hand, prior studies have identified diverse patterns between

taxies and ridesharing platforms. For example, schedule flexibility is an important factor among

ridesharing drivers (Cramer and Krueger 2016, Hall and Krueger 2018), who are more likely to

set up hourly than daily work targets. In contrast to this, taxi drivers might stop working when

reaching their daily targets for the number of hours worked (Crawford and Meng 2011, Farber

2015). Meanwhile, findings are rich regarding the entry impacts of Uber/Lyft on reduced traffic

congestion (Li et al. 2022), increased vehicle ownership (Gong et al. 2017), and reduced sexual

assault (Martin-Buck 2017).

Most of the existing knowledge, however, focuses on normal conditions, few studies having

explored irregular urban situations in-depth. The traditional taxi platform, unfortunately, demon-

strates a limited capability to maintain efficiency during urban anomalies. As Camerer et al. (1997)

pointed out, hailing a taxi on inclement-weather days is extremely difficult in large cities such

as NYC. As the competitors of traditional taxi services, ridesharing platforms, though playing

similar roles in urban transportation systems, present systematic differences, which in turn, might

or might not help them to stay efficient in picking up passengers promptly during emergencies.

For example, ridesharing drivers are equipped with embedded automatic navigation tools allowing
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them to better locate their assigned passengers and avoid actual or potential traffic jams, which are

likely to arise during an urban anomaly. Albeit a technological advancement, ridesharing platforms

may not always work as pleasantly, due to, for example, limitations in algorithms or over-reliance

on the “automatic features” of technological applications. This can be problematic when facing

unexpected situations, because computer algorithms might not have been trained for such situa-

tions, and thus, would not know how to react properly. For example, although surge pricing could

be effective in allocating demand and supply, it might go to the extreme with algorithm failure.

In specific, when demand suddenly peaks but supply cannot keep up, the algorithm-based prices

might be unrealistic or even unaffordable. Uber has been accused of charging inflated prices and

taking too long to turn off the “surge pricing” feature after the deadly terrorist attack in the heart

of London on June 3, 2017. Users complained that they were being charged inflated prices on a

Saturday night after a van plowed into pedestrians on London Bridge and three knife-wielding men

attacked revelers in a nearby nightlife district. The backlash on social media was intense, whereas

black cab drivers were praised for giving free rides to take people away from the surrounding area.

Another significant difference between traditional and ridesharing platforms is the labor supply.

Urban anomaly events often cause a temporary imbalance between demand and supply, leading

to a price surge in the market. As Hall et al. (2018) pointed out, ridesharing drivers “respond to

temporarily higher wages by working more hours, which has a business stealing effect.” Thus, with

unexpected urban situations, ridesharing drivers are more likely to adjust their working schedules

and respond positively to potential income opportunities. Hence, the recent literature has offered

burgeoning data and insight into transportation services’ performance under normal situations or

expected scenarios. A key question remains, however: How might unique designs regarding supply,

demand, and technology equipment enable ridesharing platforms to facilitate or improve trans-

portation service during no-notice and unpredictable urban anomalies, such as terrorist attacks,

especially when compared with taxi companies?
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We conducted our study in NYC, where we collected taxi and for-hire-vehicle (FHV) trip records

from January 2015 to December 2017. We considered multiple types of urban anomalies, including

terrorist attacks, subway shutdowns, and car crashes. Given that those events are no-notice and

unpredictable, we employed a difference-in-differences (DiD) econometric model to quantify the

effects on the platform-level utilization of taxi and ridesharing platforms. Specifically, we measured

platform-level utilization based on the hourly number of served trips. Interestingly, we observed

that ridesharing platforms (Uber as an example) performed better than taxi companies after an

urban anomaly. For example, we identified, after two well-known terrorist attacks (the Manhattan

bombing on September 17, 2016; the truck attack on October 31, 2017), a significantly decreas-

ing trend in the utilization of both the taxi and ridesharing platforms post-terrorist-attack. The

ridesharing platforms, in general, showed a statistically significantly smaller utilization decline

than the taxi platforms. We also conducted a sequence of robustness checks, all of which were

consistent with our main findings. Based on our empirical data, we propose multiple possibilities

to explain the better performance of ridesharing platforms. Specifically, we consider the technolog-

ical effect, passengers’ preference changes (from the demand side), and supply elasticity. Based on

our empirical evidence, we conclude conservatively that the technological effect, as well as supply

elasticity, are the main factors explaining the differences between the platforms during an urban

anomaly. Moreover, to offer more insightful implications in terms of the design and adjustment

of preparation or response strategies regarding urban strikes, we extended our analyses by con-

sidering heterogeneous treatment effects. Two main patterns emerged. First, locations with higher

densities are affected less by urban anomalies. Second, from the temporal perspective, the decrease

in taxi utilization is smaller during rush hours or in the evening relative to the two other slots

(i.e., midnight and daytime). In contrast to this fluctuation in taxi utilization, daily ridesharing

platform utilization is relatively stable.
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2. Literature Review
2.1. Two-sided Platforms and Ridesharing Service

One of the key design-side differences between the taxi and ridesharing platforms is that rideshar-

ing imposes a two-sided market component (Gong et al. 2017, Hu and Zhou 2015). The literature

is rich on two-sided markets under different contexts (Parker and Van Alstyne 2005, Rochet and

Tirole 2004). Both sides of the two-sided market benefit from platform design, including network

effects and price discrimination (Parker and Van Alstyne 2005, Rochet and Tirole 2003). As Cohen

and Sundararajan (2015) pointed out, platforms such as Airbnb and Uber serve as third-party

intermediaries and offer solutions to potential market failure using digital technologies to reduce

information asymmetries. With proper designs, platform intermediaries can improve consumer wel-

fare as well as profits (Parker and Van Alstyne 2005). However, Bai et al. (2019) noted that in the

specific ridesharing domain, on-demand platforms (e.g., Uber and Lyft) differ from product-sharing

platforms like Airbnb, where consumers reserve the service in advance. And work participation

of independent providers is primarily driven by earnings. Since the introduction of technology-

enabled ridesharing platforms, the literature has drawn considerable attention to this sharing

economy. Broadly speaking, our paper is related to two ridesharing-based literature streams: (1)

entry impacts of the sharing economy and (2) platform design and mechanism as compared with

incumbent industries. First, the results are equally rich when considering the (entry) impacts of

ridesharing platforms (Babar and Burtch 2017, Cohen et al. 2016, Greenwood and Wattal 2017,

Lam and Liu 2017, Li et al. 2022, Wallsten 2015). Two main issues have been investigated within

this stream. The first is the entry effects of ridesharing platforms on incumbent industries or sys-

tems; the second regards the spillover effects on society. Babar and Burtch (2017), for example,

scrutinized the impact of the Uber platform and found a significant reduction in the utilization

of city buses, but an increase in the usage of subways and commuter rails. Alternatively, the lit-

erature also highlighted the societal impacts of these technology-enabled platforms in increasing
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vehicle ownership (Gong et al. 2017), minimizing sexual assault (Martin-Buck 2017), and reducing

lower-quality entrepreneurial activity (Burtch et al. 2018).

The second stream is more closely related to the present study. Although ridesharing drivers

perform similar functions, their supply mechanisms and information systems are different from

those of taxi drivers (Castillo et al. 2017, Chen and Sheldon 2016, Cohen et al. 2016, Cramer and

Krueger 2016, Hall and Krueger 2018). Flexibility is an important characteristic of ridesharing

platforms’ driver-partners when compared to the traditional taxi companies’ taxi drivers (Cramer

and Krueger 2016, Hall and Krueger 2018). Their unique relationship with the Uber platform allows

drivers to have more flexible working schedules, which in turn, gains higher utilization rates for

them relative to taxi drivers. Alarmingly, unlike street-hail taxies, ridesharing drivers might have

to be dispatched by a technology-based matching system to pick up a rider at a distant location.

This leads to a Wild Goose Chase (WGC) problem, wherein the available supply might be lower

in times of high demand. The surge pricing mechanism provides a good way to solve this problem

(Castillo et al. 2017). This WGC problem and related surge pricing are noteworthy differences

between taxi and ridesharing drivers. Recent studies also have pointed out that this surge pricing

mechanism on ridesharing platforms like Uber significantly increased labor supply and brought a

substantial consumer surplus to the transportation service market (Chen and Sheldon 2016, Hall

and Krueger 2018).

Our study extends this stream of literature by exploiting the systematic differences between

platforms under abnormal and unexpected scenarios, which would help us to better design and

regulate urban transportation systems, especially in terms of the maintenance of stability and

efficiency.

2.2. Urban Anomalies

It is well-recognized that understanding and being well-prepared for urban anomalies are important

practical imperatives for both city planners and service providers. The literature, especially in the
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field of computer science, has made significant efforts to understand and predict urban anomalies

(Fang et al. 2019, Xie et al. 2019, Zhang et al. 2018). Generally speaking, there are two directions in

this specific area. The first one focuses on prediction analyses aiming to accurately detect or forecast

urban anomalous patterns/events using different sources of data, including spatial-temporal data

(Pang et al. 2011, Chawla et al. 2012, Kuang et al. 2015, Zhou et al. 2016, Zhang et al. 2018). For

example, Kuang et al. (2015) presented a new method to leverage taxi GPS data to detect traffic

anomalies, and their experimental results demonstrated that such a method could identify more

than 70% anomalies. Another direction is to study the impacts of urban anomalies (Fang et al.

2019, Xie et al. 2019). For example, Fang et al. (2019) studied the effects of both expected (e.g.,

concerts) and unexpected (e.g., subway delays, accidents, and facility malfunction) events on travel

time. Specifically, they compared taxies, buses, subways, and private vehicles. They found that

unexpected anomalies had a larger impact on travel time than did expected events, and that taxies

tended to have a lower delay in travel time compared with private vehicles. Studies in this stream

of literature have investigated multiple types of urban anomalies. As summarized by Zhang et al.

(2020), prior studies focused on “traffic anomaly, unexpected crowds, environment anomaly, and

individual anomaly”. This study takes a close eye on the traffic anomaly and unexpected crowds.

Among the different types of urban anomalies, terrorist attacks strike a community without

notice (Sayyady and Eksioglu 2010). Studies have shown the significant economic effects of terror-

ism (Manelici 2017, Moore 2007, Paizs 2013). For example, Manelici (2017) found that the 2005

London bombings led to a 6% fall in house prices, and that “new firms [were] less likely to locate

near major stations after the attacks.” Therefore, urban planning, especially transportation plan-

ning or response, becomes essential for such urban upheavals (Sayyady and Eksioglu 2010, Wolshon

et al. 2005). Prior studies have put more emphasis on the macro and long-term effects of terrorism

(e.g., the September 11 terrorist attack) on urban design, or the specific practices regarding evac-

uation orders. The present study, contrastingly, targets the micro perspective. Although studies
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like Fang et al. (2019) explored the travel time distribution in different urban transportation sys-

tems, little is yet known about how ridesharing platforms might perform after no-notice terrorist

attacks, especially as compared with taxi platforms. Moreover, prior studies have focused more on

exploring statistical phenomena related to urban anomalies. This study adds to the literature on

urban anomalies by decomposing the underlying mechanisms to explain, both theoretically and

empirically, the trends of urban riding platforms during anomalies. Such in-depth analyses provide

more insights into the design of urban transportation systems and strategies for their response to

such no-notice urban anomalies. And it is worth noting that such empirical evidence is rare in prior

studies and simulation results might not be sufficient. This is because the realized performance

relies on not only technology efficiency, but also the public’s reactions toward technology during

urban anomalies.

2.3. Technology and Emergency Management

Considering the potential scale of critical threats to cities, emergency management has always been

an important area in both academia and practical fields. Extensive research has examined the use

of technology in disasters as well as under other emergency conditions (Jefferson 2006, Pine 2017).

Prior studies have demonstrated the power of technology in disaster management by developing

diverse technology-based systems to help predict and support management throughout all phases

(Fiedrich and Burghardt 2007, Sinha et al. 2019). Recently, with the outbreaks of COVID-19,

studies have explored how IT-based systems (including artificial intelligence and remote-sensing

sensors) help to control spreads (Asadzadeh et al. 2020) and how related technologies (e.g., collab-

orative tools) develop and cope with environmental changes (e.g., remote working) brought about

by the COVID-19 outbreaks (Fatimah et al. 2021, Raza et al. 2021). In the area of urban trans-

portation, although studies have explored the development and effects of technological systems

in dealing with future disasters and hazards (Jia and Du 2020, Korkmaz 2017), little in-depth
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has been done on the existing commuting services (e.g., technology-initiated ridesharing services)

in helping individual passengers to cope with unexpected urban anomalies. This study aimed to

bridge this gap.

3. Context and Data

We conducted this study in NYC. Our research context was the taxi industry and ridesharing

platforms (e.g., Uber and Lyft) there. As shown in the 2019 annual report released by the NYC

Taxi and Limousine Commission (TLC),1 in NYC, there were approximately 197,000 taxi drivers

and over 130,000 licensed for-hire vehicles, the majority of which were connected with Uber and

Lyft. According to the trip data provided by the TLC, over the past 4 years, ridesharing-based

trips have grown from 0 to 15 million per month, while the number of taxi trips per month

has decreased by around 5 million. In NYC, taxies are operated by multiple private companies

and licensed by the TLC. Taxi fares are pre-determined by the TLC.2 Most taxi drivers lease

their taxi medallions (a required permit allowing a taxi driver to operate3) from different private

companies/owners (Liu et al. 2021). Therefore, in addition to certain fixed annual costs (including

the TLC licensing and training fees), taxi drivers pay a certain percentage of their gross fares or

a fixed daily/weekly/monthly rental fee to the taxi cab companies.4 To find an accessible ride,

a passenger can call the dispatch center directly, use an E-hail app, or hail on the street. The

TLC handles compliments and complaints from passengers and regulates the operations of taxi

drivers. On the other hand, on ridesharing platforms such as Uber Technologies Inc., Uber fares

are affected dynamically by real-time factors like traffic, and Uber drivers pay a service fee for each

trip to the Uber platform.5 All Uber trips are matched by the platform through the Uber App.

1 https://www1.nyc.gov/assets/tlc/downloads/pdf/annual_report_2019.pdf
2 https://www1.nyc.gov/site/tlc/passengers/taxi-fare.page
3 https://www1.nyc.gov/site/tlc/businesses/medallion-owners-and-agents.page
4 https://careertrend.com/how-2090790-become-taxi-driver-new-york.html
5 https://www.uber.com/us/en/marketplace/pricing/service-fee/

https://www1.nyc.gov/assets/tlc/downloads/pdf/annual_report_2019.pdf
https://www1.nyc.gov/site/tlc/passengers/taxi-fare.page
https://www1.nyc.gov/site/tlc/businesses/medallion-owners-and-agents.page
https://careertrend.com/how-2090790-become-taxi-driver-new-york.html
https://www.uber.com/us/en/marketplace/pricing/service-fee/
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Geographically, NYC is divided by the TLC into 263 taxi zones, 69 of which are located in the

Manhattan borough. We treat the taxi zones as our mega geographical units of analysis.

3.1. Observational Data of Trip Records

We first collected taxi trip records and for-hire vehicle (FHV hereafter) trip data from the TLC

website.6 Our panel data cover the time window from January 2015 to December 2017. The taxi trip

records include fields capturing pick-up and drop-off time stamps, pick-up and drop-off locations,7

trip distances, trip fares, payment information, and driver-reported passenger counts.8 Note that

the taxies in NYC are generally classified into 2 types: yellow and green. The yellow cabs can pick

up passengers in all boroughs of NYC, while the green ones are allowed to pick up passengers only

within restricted locations (e.g., upper Manhattan, Queens excluding LaGuardia Airport and JFK

Airport). Our empirical analyses focused mainly on the Manhattan area. This would also help us

alleviate potential biases brought by different geographical features (e.g., financial or government

areas with high-security service vs. civilian districts). For consistency, we considered yellow cabs

only in this study.

NYC has four classes of FHV service, including community cars, traditional black cars, luxury

limousines, and high-volume for-hire services (e.g., Uber and Lyft). TLC regulations require that

for-hire service must be arranged through a TLC-licensed base and be performed by TLC-licensed

drivers in TLC-licensed vehicles. A single company may have multiple bases through which it

dispatches trips. In the data, we could identify only two Lyft bases, while the Uber platform

covered 28 bases. The FHV trip records include fields capturing dispatched base numbers, pick-up

locations (i.e., taxi zone ID), and time stamps. Starting from July 2017, TLC provides information

6 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
7 Before July 2016, the TLC offered coordinate information (i.e., latitude and longitude) or each pick-up/drop-off
location. Since July 2016, the TLC has provided only taxi zone information. For consistency concerns, we treat the
taxi zones as the mega units in all of our analyses.
8 From 2013, taxi trip data cannot track individual trajectories, due to the lack of information on driver IDs.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Table 1 Descriptive Statistics of Raw Data

Variables Mean Std. Dev Min Max N

Taxi

# Trips/day 356,420.23 59,514.36 78,133 515,540 1096

Trip fare 12.9859 11.2102 0.01 999.99 390,636,573

Trip distance 2.9792 3.6957 0.01 199.7 390,636,573

FHV

# Uber trips/day 189,836.57 90,503.37 21,974 497,204

1096# Lyft trips/day 37,026.29 30,040.45 0 146,605

#s FHV trips/day 284,658.48 164,763.48 29,124 822,770

on drop-off locations as well. We identified Uber and Lyft trips based on the dispatching base

information.9

In total, we collected 390,636,573 taxi trip records and 282,628,256 FHV trip records. Table 1

summarizes the descriptive statistics of those records.

3.2. Information on Urban Anomalies

In this study, our initial focus was on unexpected types of urban anomalies.10 On the one hand,

efficient and effective responses to these uncertain urban anomalies are of prime importance to

any urban services, especially to urban transportation systems. Second, given that they are unpre-

dictable, we could treat them empirically as exogenous shocks wherein the taxi and ridesharing

platforms would respond to completely unexpected incidents. This, in turn, allowed us to identify

the causal impacts and disentangle the potential underlying mechanisms. Specifically, we consid-

ered terrorist attacks, subway shutdowns, and car accidents. First, we considered two widely-known

terrorist attacks that occurred during the same period as our panel trip data (January 2015 to

December 2017) in NYC. Both attacks had dramatic social impacts. The first is the Manhattan

bombing at 8:31 pm on September 17, 2016. This terrorist attack took place in a crowded space on

West 23rd Street between Sixth Avenue and Seventh Avenue, causing 31 injuries. The second is the

truck attack on October 31, 2017. This terrorist attack took place in Lower Manhattan, causing

8 deaths and 15 injuries. Although terrorist attacks are highly unpredictable, they occur rarely

9 https://www1.nyc.gov/assets/tlc/downloads/pdf/exception_approved_bases.pdf
10 Appendix C in the online supplementary materials includes the expected types of urban anomalies to deepen our
understanding of the response efficiencies of the two platforms.

https://www1.nyc.gov/assets/tlc/downloads/pdf/exception_approved_bases.pdf


13

and involve certain confounders such as political interventions. To further validate our analyses

as well as to explore in a more comprehensive way the different patterns between ridesharing and

taxi services, we considered two additional types of urban anomalies: the Times Square car crash

of May 18, 2017, and the subway train derailment of June 27, 2017. The Times Square car crash

caused one death and 20 injuries, and the subway train derailment led to some mechanical issues,

causing delays and suspensions on multiple train lines. Appendix A in the online supplementary

materials provides detailed descriptions of all the above anomalies, which brought non-neglected

impacts to the NYC transportation systems.

3.3. Definitions of Key Variables

We parsed the trip data and extracted the following features for our empirical analyses.

Dependent Variable: ln(NumTripslt) is the natural log of hourly numbers of taxi (or ridesharing-

based) trips picked up in taxi zone l at time t. Inspired by Cramer and Krueger (2016) and Haggag

et al. (2017), we considered the observed number of trips as a measure of platform utilization, which

is our main variable of interest in this paper.11 Specifically, the number of fulfilled trips captures the

throughput of the platform (or, say, the efficiency in providing a specific type of mobility service).

It can be affected by both demand- and supply-side factors. Moreover, the design of a platform

itself also affects the total number of fulfilled trips per hour. Thus, instead of extracting factors

that measure the efficiency of the demand or supply sides separately, we used the total number

of fulfilled trips as a proxy for overall platform utilization. We visualized the trends in Online

Appendix B.

Independent Variables: Geoproximityl measures the closeness between the anomaly location

zone le and any location l. Specifically, we applied the inverse value of the distances (unit: miles)

between the centroid points of two taxi zones. Besides, to capture the time stamp of terrorist

11 Unfortunately, the TLC does not provide information on the number of unique drivers on either the taxi or
ridesharing platform. Thus, we could not measure per capita utilization. Instead, we considered utilization at the
platform/company level, which captured the overall performance of the two platforms.
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Table 2 Summary Statistics of Sampled Key Variables

Variables Definitions Mean Std. Dev Min Max

taxiTrip Hourly # of taxi trips per zone 177.6342 207.3753 0 3108

uberTrip Hourly # of Uber trips per zone 85.1811 89.6846 0 1245

lyftTrip Hourly # of Lyft trips per zone 16.8844 19.8800 0 453

fhvTrip Hourly # of for-hire-vehicle trips per zone 122.1151 125.4147 0 1864

Geoproximity Inverse value of distances to event zone 0.3066 0.1825 0.0735 1

Pick2005 Log # of pick-ups in 2015 per hour 13.0169 3.2704 0 15.4334

Drop2015 Log # of drop-offs in 2015 per hour 13.3373 2.9375 0 15.5064

Notes: The above statistics are based on a sample size that covers 2 weeks before and 1 week after the two
terrorist attacks. Thus, the number of observations is 69552 (21 days, 24 hours/day, 69 zones, and 2 attacks).

attacks, we introduced AfterAnomalyt as an indicator of whether time t is after a certain urban

anomaly.

Other controls: For each taxi zone, we also extracted several spatial features for measuring the

density or popularity of the given zone. Specifically, we considered the average hourly number

of taxi pick-ups and drop-offs before the occurrence of those urban anomalies (i.e., in 2015). All

of the unexpected urban anomalies described above occurred in Manhattan. Thus, our analysis

considered only the Manhattan borough.

4. Empirical Strategies and Results
4.1. Econometric Model and Identification Strategy

To estimate the urban transportation services’ efficiency in handling urban anomaly situations, we

used a difference-in-differences (DiD) model (Angrist and Pischke 2008, Bertrand et al. 2004). All

of the events we considered (i.e., terrorist attacks, subway shutdown, and car crashes) were unlikely

to be predicted in advance, and thus, we considered this type of anomaly event to be an exogenous

treatment. The idea was to compare platform utilization changes between the incident location

and other locations that were not affected. The DiD model is an increasingly popular approach

to the quantification of causal effects, and proceeds by comparing outcome differences before and

after an exogenous shock of a treatment group to that of a control group unaffected by the same
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exogenous shock. Our unit of analysis was the (taxi-)zone-hour. We specified our DiD model as

follows:

ln(NumTripslt) = γl + PERIODt+β1AfterAnomalyt× GeoProximityl + Controls+ εlt, (1)

where ln(NumTripslt) is the log value of hourly numbers of taxi (or ridesharing) trips within location

zone l at time t, γl captures the zone-fixed effects, and PERIODt denotes the time-fixed effects (we

included both the daily effect and time-of-day effect). As noted earlier, AfterAnomalyt is a dummy

variable (1 for yes, 0 otherwise) denoting whether time t is before or after the treatment (i.e., the

specific urban anomaly).

Our key variable of interest was the interaction term AfterAnomalyt×GeoProximityl, the coef-

ficient of which encapsulates the effects of urban anomalies on the outcome measure. Note that

when an urban anomaly occurs in a city, the potential effect is likely to have a ripple aspect that

expands to the vicinity of the incident location. Hence, following Danaher and Smith (2014), our

main identification strategy is based on the difference in the treatment effects across locations

with different geographic distances to the center location of the anomaly event. The intuition is

that a closer location might be affected more by urban anomalies.12 Thus, the coefficient of the

interaction term can identify the average treatment effects. Take terrorist attacks as an example.

It is possible that terrorists might choose locations based on particular features (e.g., higher traffic

density), rather than randomly. But our DiD empirical strategy, using the differences between the

control and treated groups, would eliminate this concern. On the other hand, if the event location

has some short-term variations (e.g., some particular festivals), our estimates might underestimate

the effects, because in most cases, terrorists would choose a targeted location of higher popularity,

12 There are at least two possibilities to explain how distances affect rides. First, it takes time for the information to
be communicated to other areas via different approaches, such as word-of-mouth, radio, and online news reporting.
Second, the level of closeness to the attached area also brings a diverse sense of shock to individual drivers. Besides, our
DiD model captures an average effect and the identification assumption states that locations with a closer distance to
the event area would be affected more on average. This assumption holds unless the districts with the same distances
are the same types of buildings, which we believe is less likely to happen in Manhattan.
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which in turn, would have a potentially higher traffic demand/supply in the short run. However,

based on the parallel trends and multiple robustness tests, as we will discuss later, we did not find

evidence for the latter case. Empirically, we introduced GeoProximityl, the inverse distance (unit:

miles) from taxi zone l to incident taxi zone le. To capture the common time trend specific to

each location zone, we included an interaction term between location-specific features (i.e., location

density proxies with traffic density measures, numbers of pick-ups or drop-offs, in previous years)13

and temporal factors. And the inclusion of location-specific features, to some degree, implies the

change of taxi/Uber supply. We clustered the standard errors at the zone level.

To further quantify the differences between the taxies and ridesharing platforms, we applied a

difference-in-difference-in-difference (DDD) model. The key idea is to jointly estimate the effects of

the urban anomaly events on both platforms while controlling for the differences in pre-treatment

trends between them:

ln(NumTripsljt) =αj + γl + PERIODt+β1AfterAnomalyt× TaxiIndj × GeoProximityl

+β2TaxiIndj × GeoProximityl +β3AfterAnomalyt× TaxiIndj

+β4AfterAnomalyt× GeoProximityl + Controls+ εljt,

(2)

where ln(NumTripsljt) is the log value of the hourly numbers of trips completed by platform j within

location zone l at time t, αj captures the platform-fixed effects, and TaxiIndj is a dummy variable

denoting whether it is a taxi platform (1 if yes, 0 otherwise). Our key variable of interest was the

interactive term AfterAnomalyt × TaxiIndj × GeoProximityl, which captures the differences of

the anomaly effects between the transportation service platforms. We also included all lower-order

interactive terms. Additionally, αj captures the platform-fixed effects. The rest of the variables

remain the same definitions as those in Equation (1).

13 Because the additional spatial features are highly correlated, we present only the estimates after including controls
of previous drop-offs. We also tried pick-ups and average taxi fares as additional controls, and the results are consistent.
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4.2. Effects of Urban Anomalies on Taxies and Ridesharing Services

Table 3 reports the estimation results of our main model (Equation (1)) for the two types of mobility

service (i.e., taxi and Uber), respectively. We considered only Uber trips in our main results because,

in NYC, the Uber platform has most of the ridesharing market share. The time window we consid-

ered here extended from one week before the incident to two days after the incident. Our results with

alternative time windows (e.g., two weeks before or one day after the anomalies) remained highly

consistent. As seen, the coefficients of the key interactive term AfterAnomalyt × GeoProximityl

in Columns (2)-(5) are significantly negative for both taxi and Uber trips, suggesting a decline in

utilization on both platforms. Although an urban anomaly might bring abnormal movements of

crowds, leading to a significant increase in the need for evacuation, it does not necessarily result

in a decrease in the utilization of either platform. For example, the supply side might decrease due

to an uncertain traffic and safety situation, and traffic chaos might also prevent efficient matching

between passengers and drivers. However, when we examined the other two types of urban anoma-

lies (i.e., Columns 6-9), we noticed diverse patterns. The unexpected subway shutdown brought

a significant increase in demand needs but potentially worsened the road traffic conditions. We

observed that the utilization of taxi services stayed constant while Uber achieved a significant

increase in utilization. Meanwhile, the car crash in Times Square decreased the performance of

taxi services significantly while Uber’s performance stayed constant. Taking all things together,

although different types of urban anomalies might affect platform utilization in different directions,

a consistent pattern was observed in that ridesharing platforms, compared to taxies, present better

platform utilization and thus, are more likely to fulfill fluctuating demand in a more efficient way.

The ridesharing platforms’ better performance after an urban anomaly is confirmed in Table 4,

in which we report the estimates of Equation (2) for all four scenarios. For example, when we

compared the taxi companies with the largest ridesharing platform, Uber Inc., we observed an
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Table 3 Main Analysis I: A Difference-in-Difference Model

Variables
2 Terrorist attacks Truck attack Subway Shutdown Time Square Car Crash

Taxi Uber Taxi Uber Taxi Uber Taxi Uber

AfterAnomalyt×
GeoProximityl

-0.3062***

(0.0542)

-0.2600***

(0.0437)

-0.1946**

(0.0758)

-0.1608***

(0.0393)

0.0973

(0.1047)

0.2191**

(0.0960)

-0.1689***

(0.0634)

0.0235

(0.0515)

Fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Num. Observations 29,808 29,808 14,904 14,904 14,904 14,904 14,904 14,904

R-square 0.4558 0.4867 0.4872 0.5632 0.4972 0.5345 0.4945 0.5668

***p<0.01; **p<0.05; *p<0.10; Standard errors are shown in parentheses; We include both the zone- and time-specific fixed effects.

Table 4 Main Analysis II: Differences in the Anomaly Effects among Platforms

Variables Manhattan

Bombing

Truck

Attack

Subway

Shutdown

Time Square

Car Crash

AfterAnomalyt× TaxiIndj × GeoProximityl -0.2658***

(0.0603)

-0.2022***

(0.0394)

-0.4611***

(0.0914)

-0.1367**

(0.0712)

AfterAnomalyt× TaxiIndj 0.0863***

(0.0189)

0.1809***

(0.0139)

0.1797***

(0.0195)

0.1016***

(0.0277)

AfterAnomalyt× GeoProximityl -0.1547**

(0.0621)

-0.1511***

(0.0436)

0.2930***

(0.1015)

-0.0407

(0.0445)

TaxiIndj × GeoProximityl 2.1342***

(0.5487)

0.9648

(0.5975)

-1.8799***

(0.3608)

3.0892***

(0.6683)

Fixed effects Yes Yes Yes Yes

Num. Observations 29,808 29,808 29,808 29,808

R-square 0.4819 0.3685 0.3919 0.4725

***p<0.01; **p<0.05; *p<0.10; Standard errors are shown in parentheses; We include both the zone- and time-specific
fixed effects.

18.31% (e−0.2022 − 1) more decrease in taxies’ numbers of served trips per hour after the truck

attack, with one unit change in GeoProximityl. We also considered comparisons with different

types of ridesharing services (e.g., Lyft) and present consistent results in Table D1 in the online

appendices.

4.3. Robustness Checks

To validate our empirical findings, we implemented an extensive set of analyses to support the

robustness of our results. We elaborated our robustness checks using the truck attack as an exam-

ple.14

14 As described before, the TLC provides the drop-off information on each trip only after July 2017. Thus, we could
obtain only the drop-off information when analyzing the truck attack. For the purpose of consistency, we present only
the robustness checks (and also the mechanism tests and heterogeneity tests) using the truck attack as an example.
Regarding the other three urban anomalies, we validated our findings with the available data. All of the findings are
consistent and the results are available upon request. We also present alternative robustness checks, such as a placebo
test and alternative outcome measures, in Online Appendix F.
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4.3.1 Parallel Pre-Treatment Trends

The validity of the DiD approach (shown in Equation (1)) relies on a critical assumption of pre-

treatment parallel trends. That is, the control and treated groups (i.e., location zones) should have

parallel trends in their number of trips before the treatment (i.e., the urban anomaly) (Angrist and

Pischke 2008, Bertrand et al. 2004). In other words, the parallel trends guarantee that the differ-

ences in the trends between the control and treated groups would not exist before the treatment. To

validate the parallel pre-treatment trend assumption, we applied the relative time model with the

inclusion of both the leads and lags in the periods (Autor 2003, Greenwood et al. 2016). Following

previous studies, we executed the leads and lags model by creating new time dummies indicating

the relative chronological distance between time t and event time te. Theoretically speaking, if we

observed a significant estimate of the time dummy before treatment, it was considered to imply

the existence of a pre-treatment gap between the control and treated groups. Otherwise, our data

met the requirement of a parallel pre-treatment trend assumption. Mathematically, this analysis

estimated the equation:

ln(NumTripslt) = γl + PERIODt+
∑
k

γkPreAnomalylt(k)+
∑
m

γmPostAnomalylt(m)+ εlt, (3)

where
∑

k γkPreAnomalylt(k) allows us to examine potential false significant treatment effects prior

to the urban anomalies. Specifically, PreAnomalylt(k) equals 1 if period t is k periods prior to the

event and location l is in the treated group. Similarly, PostAnomalylt(m) is m periods after time t.

Therefore, the coefficient set γk for k=−J,−J−1, ...,−1,0 captures the pre-treatment trend of the

effects. If γk is negative and significant, it implies that the trend of worse performance of taxi drivers

than ridesharing drivers, relative to the control groups, already existed prior to the terrorist attacks.

The coefficient set γm capture the post-treatment trend of the effects.15 We present the estimated

15 Note that to better interpret our estimated results, instead of using the continuous variable GeoProximityl, we
divided all locations into the treated/control groups using a binary variable: the treated group includes locations
adjacent to the exact event area. In Section 4.3.2, we show that such an alternative definition yields results that are
consistent with our main findings based on continuous GeoProximityl.
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results, with different specifications, in Appendix E in the online supplementary materials. The

coefficients of pre-treatment indicators are statistically insignificant. This insignificance suggests

that no decreasing trends existed prior to the terrorist attacks between the treated and control

location zones. In other words, the observed changes in both platforms’ utilization was unlikely to

have been driven by a false trend starting prior to the urban anomaly.

4.3.2 Alternative Verification of Identification Strategy

We identified the causal effects of urban anomalies using the differences in the treatment effects

across locations with different geographic distances. To further validate this, we conducted multi-

ple robustness checks covering both alternative definitions of the treated/control groups and the

application of an alternative data source.

First, in the above discussions, GeoProximityl was defined as a continuous variable, which is

different from the traditional DiD framework with its clear 0/1 treatment definition. To better

interpret the results, we redefined this location feature as a binary variable using different thresh-

olds. First, we classified a taxi zone into the treated group if the distance between this zone to

the event zone was smaller than the average distance across all zones within the Manhattan bor-

ough. As shown in Columns 2 and 3 in Table 5, the estimates suggest consistent findings, with

observations of declines in both platforms’ utilization. Next, to further test whether the treatment

effects would be limited to locations close to the event area, we included only the adjacent taxi

zones as the treated group. Columns 4 and 5 in Table 5 report the estimates under this threshold.

Again, the results are qualitatively consistent with our main findings. Furthermore, to alleviate

the potential concern that the areas with a distance around the thresholds might bias our find-

ings, we also examined cases where the treated and control taxi zones were separate from each

other. Besides, given that our identification strategy was not a standard presentation of the DiD

model, it is possible that the treatment effect would disproportionately spill over to other units,
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which, in turn, would violate the Stable Unit Treatment Value Assumption (SUTVA). To alleviate

this concern, we excluded taxi zones that were neither adjacent to nor far away from the urban

anomalies. Nonetheless, we observed qualitatively consistent results, as shown in Columns 6 and 7.

Interestingly, we observed a larger decline in the separate areas when compared with the adjacent

areas. This was expected, because changes in traffic and demand flows might spread to adjacent

areas. That is to say, the effects of the urban anomalies might spill over to locations adjacent to

the exact event area. Statistically, if we included adjacent areas as control groups, the difference

between the treated and control areas could be smaller. Moreover, one might be concerned that if

there existed a demand or supply flow from the attack area to the adjacent areas, it could shift the

utilization changes in the “control” areas. To alleviate this concern, we shortened the time window

to 2 hours after the attack and reran the analyses using the above three definitions. This assumed

that within a limited time, the areas far away from the attack location had not been affected by

the attack via demand/supply flows or any related policies. The results (in the last two columns)

support the robustness.

Table 5 Robustness Check I: Alternative Definitions of Treatment

Variables
Mean Distance Adjacent Areas Separate Areas Limited Time

Taxi Uber Taxi Uber Taxi Uber Taxi Uber

AfterAnomalyt×
GeoProximityl

-0.0744***

(0.0211)

-0.0689***

(0.0183)

-0.1289**

(0.0507)

-0.0815**

(0.0344)

-0.1565**

(0.0522)

-0.1052***

(0.0352)

-0.3443**

(0.1471)

-0.1775***

(0.0149)

Constant 3.6543***

(0.4444)

3.7088***

(0.0920)

3.6294***

(0.1046)

3.6859***

(0.0878)

3.2734***

(0.1755)

3.5841***

(0.2131)

3.6410***

(0.1051)

3.6945***

(0.0875)

Fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Num. Observations 14904 14904 14904 14904 9720 9720 7650 7650

R-square 0.4872 0.5633 0.4872 0.5631 0.5565 0.6063 0.5383 0.5941

***p<0.01; **p<0.05; *p<0.10; Standard errors are shown in parentheses; FE includes time- and zone-fixed effects.

Furthermore, we collected an additional dataset from the Chicago Data Portal.16 When an

urban anomaly occurs in NYC, it is impossible to have an immediate impact on the Chicago

16 Data Source: https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew. We did not include
this dataset in our main analyses because it only offers taxi trip data while the ridesharing trip data is only available
from 2018.

https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
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transportation system thereafter. Thus, we could construct an ideal control group using the relevant

Chicago information. If the observed pattern when comparing NYC and Chicago was similar to our

main findings, we could conservatively conclude that our treatment/control group design did not

deviate from the direction. Specifically, we collected individual taxi trip records during the truck

attack (i.e., October and November 2017) and applied the same data processing strategy as for

our main analyses. In total, we obtained 4,049,194 trip records and aggregated them to a (census)

track-hour level. The Chicago dataset includes information on the census track, which is similar to

the taxi zones in the NYC dataset. As presented in Table 6, we observed a highly consistent and

decreasing trend right after the terrorist attack, which implies that our identification strategy did

not alter the direction of the actual effects.

Table 6 Robustness Check II: Additional Identification Strategy Validation

Variables Taxi Case

AfterAnomalyt× GeoProximityl -0.1589*** (0.0262)

Zone and Time-sepcific Fixed-effects Yes

Num. Observations 17,782

R-square 0.1549

***p<0.01; **p<0.05; *p<0.10; Standard errors are shown in parentheses.

4.3.3 Inclusion of MTA Information

NYC has well-developed public transportation involving both subways and buses. In 2018, the

average weekday subway ridership was more than 5.4 million.17 To further examine how public

transportation networks are stressed and affect private mobile services (i.e., taxies and ridesharing

platforms) during times of urban upheaval, we collected an additional dataset from the Metropoli-

tan Transportation Authority (MTA hereafter).18 The dataset records the entry/exit register values

for each turnstile in NYC. Specifically, each record includes the station address, timestamp (at a

17 http://web.mta.info/nyct/facts/ridership/.
18 http://web.mta.info/developers/turnstile.html.

http://web.mta.info/nyct/facts/ridership/.
http://web.mta.info/developers/turnstile.html.
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4-hour level), and cumulative entry and exit counts. We first geocoded the addresses using Google

Map API and then assigned the addresses to the closest taxi zones using the latitude and longitude

information. Because the MTA data is collected at a 4-hour level, we aggregated the number of

trips to the same time window. Based on this dataset, we conducted two extra analyses: (1) MTA

as the outcome, to examine how the public transportation service was stressed, and (2) MTA as an

additional control, to examine whether and how the MTA data affected our main results. Table 7

presents the estimates of the above two analyses. First, we observe no changes in either the entry or

exit counts of the NYC subway stations. And, our main findings remained consistent after adding

the MTA data as additional controls. This indicates the robustness of our main findings and also

implies that the public transportation service was relatively stable after the urban anomaly.

Table 7 Robustness Check III: Inclusion of MTA Information

Variables
MTA Outcome Trips

Entry Exit Taxi Trips Uber Trips

AfterAnomalyt× GeoProximityl 0.0108

(0.0861)

-0.0930

(0.0713)

-0.2867***

(0.0551)

-0.2984***

(0.0531)

-0.1282***

(0.44)

-0.1389***

(0.0418)

MTAEntry 0.0661*

(0.0338)

0.0748**

(0.0327)

MTAExit -0.0506

(0.0325)

-0.0678**

(0.0279)

Constant 4.8905***

(0.0744)

4.7044***

(0.0793)

5.0238***

(0.0747)

4.9369***

(0.1567)

4.3700***

(0.0562)

4.3218***

(0.1381)

Fixed effects Yes Yes Yes Yes Yes Yes

Num. Observations 3,726 3,726 3,726 3,726 3,726 3,726

R-square 0.4423 0.4117 0.4264 0.4297 0.5648 0.5693

Notes: ***p<0.01; **p<0.05; *p<0.10; Standard errors clustered at the zone level in parentheses; FE includes time-
and zone-fixed effects; MTA entry and exit are measured with the log value; The analysis is conducted at a 4-hour
level.

4.3.4 Inclusion of Traffic Information

For safety purposes, after urban anomaly events (especially the terrorist attacks), the police tem-

porarily shut off vehicular traffic on the streets around the site, which meant that the streets could

have been congested due to evacuating traffic. There was a concern that the changes in traffic
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conditions, rather than the terrorist attack itself, might have driven the decreasing trends and

performance divergence that are recorded in our main findings. To alleviate this concern, we collect

an additional dataset to control for the traffic condition and re-estimated the model accordingly.

Specifically, we used the National Performance Management Research Data Set (NPMRDS) Ver-

sion 2.19 The dataset contains average hourly speed data aggregated to each road segment. In total,

it contains more than 1.5 billion traffic records within our data period. We averaged the speed

value across all of the road segments within each taxi zone as a control of the traffic condition

at the hourly level. The results, shown in Table 8, were consistent with our main analyses. In

particular, we again observed a smaller decline in Uber’s utilization rate after controlling for the

traffic condition (i.e., ruling out potential congestion factors).

Table 8 Robustness Check IV: Inclusion of Traffic Conditions

Variables Taxi Case Uber Case

AfterAnomalyt× GeoProximityl -0.2132*** (0.0509) -0.1828*** (0.048)

Speed Value -0.0311*** (0.0089) -0.0207*** (0.0071)

Fixed-effects Yes Yes

Num. Observations 14,904 14,904

R-square 0.5202 0.5948

***p<0.01; **p<0.05; *p<0.10; Standard errors clustered at the zone level in parentheses; FE includes time- and
zone-fixed effects.

4.4. Discussion of Underlying Mechanisms

We discuss in this section the potential explanations for our main findings. It is worth noting that

though the different types of urban anomalies had diverse effects on either the taxies or ridesharing

platforms, we focus herein on the comparisons between platforms (i.e., better utilization of the

ridesharing platforms compared with the taxi companies) and discuss the underlying mechanisms.

The first and also the most important factor is the technological effect. Most ridesharing plat-

forms are built on technological advantages. One such technology is its efficient driver-passenger

19 https://ops.fhwa.dot.gov/perf_measurement/

https://ops.fhwa.dot.gov/perf_measurement/
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matching system (Cramer and Krueger 2016). On the one hand, ridesharing platforms offer real-

time updates on the availability of demand to ridesharing drivers via Uber’s surge pricing maps

or heat maps with Lyft Prime Time information. When an urban anomaly event occurs, it can

dramatically shuffle the distributions and flows of demand calling for mobility services (Castillo

et al. 2017, Bimpikis et al. 2019, Hall et al. 2015). Such real-time information allows ridesharing

drivers to more efficiently respond to sudden demand changes, which likely leads to more efficient

decisions than in the case of taxi drivers. The latter tend to follow similar daily routines and are

not able to access real-time demand information. On the other hand, even though E-hail apps

are available for taxi trips, most of them are completed by traditional methods, like calling the

dispatch center or hailing on the street. As Guse (2020) pointed out, whereas New Yorkers can use

Curb and Arro to hail yellow cabs, they are not very popular.

Another technological affordance is embedded navigation technology, which is widely accepted

on ridesharing platforms. In some cases, platforms might even penalize drivers if they deviate

from the suggested routes. Navigation technology could help ridesharing drivers better adjust their

routes and avoid potential traffic jams due to an urban anomaly, which in turn, allows ridesharing

platforms to perform more efficiently than taxi companies where drivers rely more on experience

and intuition. This is also supported in Liu et al. (2021), who pointed out that the technology

could reduce drivers’ moral hazard and increase efficiency correspondingly. In sum, potentially, the

technological advancements in ridesharing platforms strengthen the capability of ridesharing drivers

not only to quickly cope with immediate demand changes and locate their assigned passengers but

also to efficiently avoid street closures and traffic congestion caused by any unpredictable urban

anomalies.

Apart from the technological advantages, the supply or demand elasticity due to ridesharing plat-

forms’ decentralized system could also explain why they outperform the alternative after an urban
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anomaly. From the supply-side perspective, as gig-economy workers, ridesharing drivers tend to

have a relatively more flexible working schedule than do drivers in a traditional taxi company (Hall

et al. 2018). Thus, the ridesharing platforms, as a digital peer-to-peer type of service, could have

a highly elastic supply (Cullen and Farronato 2021). With unexpected urban situations, rideshar-

ing drivers are more likely to adjust their working schedules and respond positively to observed

demand inflation and potential income opportunities. From the demand side, compared with tax-

ies, ridesharing passengers might perceive ridesharing options as a safer option, because it usually

allows passengers to check drivers’ backgrounds before getting into the car.20 This preference might

stand out during an urban anomaly.

We conducted multiple analyses (in Online Appendix G) to empirically identify the proposed

explanations. Based on our available dataset, we concluded conservatively that the technological

effect (with a focus on the dynamic matching system) and supply elasticity are the main factors

behind the platforms’ differences.

5. Empirical Extensions

We explore the heterogeneous treatment effects with both spatial and temporal factors. Online

Appendix H presents additional extensions regarding how the presence of police stations and media

coverage moderated the observed effects.

5.1. Heterogeneous Effects by Spatial Features

With the distance indicator GeoProximityl in our main analysis, we showed that a location zone

closer to the event area was affected more by the terrorist attack. But even among location zones

with similar distances to an event area, anomaly effects might vary with different spatial features.

For example, a popular location might attract a higher mobile density, which leads to potentially

unexpected demand after an urban anomaly event. On the other hand, a popular location tends to

20 https://www.haffnerlawyers.com/is-uber-lyft-really-safer-than-a-taxi/

https://www.haffnerlawyers.com/is-uber-lyft-really-safer-than-a-taxi/
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have worse traffic conditions, especially when the local area falls into disorder. In this case, fewer

trips would be completed within a given time period. Thus, to further test how the treatment

effects vary with spatial features, we explored the heterogeneous effects by adding the additional

spatial features:

ln(NumTripslt) =γl + PERIODt+β1AfterAnomalyt× GeoProximityl × Densityl +β2AfterAnomalyt

× GeoProximityl +β3AfterAnomalyt× Densityl + εlt,

(4)

where Densityl is a proxy of the popularity/population density of location l and was measured

according to the numbers of pick-ups (or drop-offs) in 2015 (before the times of the two terrorist

attacks considered in this study). Table 9 reports the estimation results. Interestingly, we observed

a general trend on both platforms, which is, that locations of higher popularity are affected slightly

less. In other words, leaving everything else constant, the percentage changes (i.e., decrease) in

platform-level utilization would be smaller in higher-population locations than in others. One

potential causal factor behind this is that a popular area might attract more taxies/Uber cars

to cruise around, which might bridge the gap between supply and demand after urban anomaly

events.

Table 9 Heterogeneous Effects by Spatial Features

Variables Taxi Trips Uber Trips

AfterAnomalyt×GeoProximityl×Densityl 0.0044* (0.0020) 0.0072** (0.0036)

AfterAnomalyt× Densityl 0.0024 (0.0015) 0.0061** (0.0028)

AfterAnomalyt× GeoProximityl -0.4104*** (0.0876) -0.3653*** (0.0943)

Constant 3.8805*** (0.0524) 3.8259*** (0.0347)

Fixed effects Yes Yes

Num. Observations 14,904 14,904

R-square 0.4558 0.4870

***p<0.01; **p<0.05; *p<0.10; Standard errors clustered at the zone level in parentheses; FE includes time- and
zone-fixed effects.
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5.2. Heterogeneous Effects by Temporal Factors

In NYC, traffic conditions and demand/supply flows are time-sensitive, which leads to another

important question about whether effects would be heterogeneous at different times of the day. To

examine such time-varying characteristics, we divided one day into four slots:21 midnight (12-6:30

am), rush hours (6:30-9:30 am, 3:30-8 pm), daytime (9:30 am-3:30 pm), and evening (8 pm-12

am). Then, we decomposed the main analysis by adding the following indicators of those different

time-of-day slots:

ln(NumTripslt) = γl + PERIODt+β11AfterAnomalyt× GeoProximityl × RushHourt

+β12AfterAnomalyt× GeoProximityl × DayTimet+β13AfterAnomalyt× GeoProximityl × Eveningt

+β2AfterAnomalyt× GeoProximityl +β31AfterAnomalyt× RushHourt+β32AfterAnomalyt× DayTimet

+β33AfterAnomalyt× Eveningt+ εlt,

(5)

where RushHourt, DayTimet, and Eveningt are indicators of rush hours, daytime, and evening slots,

respectively. We treated the midnight slot as the baseline. We present the estimates in Table 10

for the separate taxi and Uber cases. First, the average trends (i.e., coefficient of AfterAnomalyt×

GeoProximityl) remained consistent with our main findings. Interestingly, we observed that the

effects were heterogeneous concerning taxi trips: the decrease in taxi utilization was smaller during

rush hours or in the evening when compared with the other two slots (i.e., midnight and daytime).

Unlike such a fluctuating change in taxies’ utilization, the ridesharing platform was relatively stable

within a single day. Probably the flexible working schedules of ridesharing drivers and the surging

price mechanisms that encourage a relatively stable performance in terms of platform utilization

are the explanations.

6. Conclusions

To sum up, anomalies have become critical threats to the stability of urban transportation systems.

Whether the technology-equipped ridesharing platforms can efficiently respond to urban anomalies

21 http://web.mta.info/nyct/subway/howto_sub.htm

http://web.mta.info/nyct/subway/howto_sub.htm
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Table 10 Heterogeneous Effects by Time-of-day

Variables Taxi Trips Uber Trips

AfterAnomalyt × GeoProximityl ×
RushHourt

0.3482*** (0.1238) 0.1434 (0.1050)

AfterAnomalyt×GeoProximityl×DayTimet 0.0259 (0.0870) -0.0659 (0.0698)

AfterAnomalyt×GeoProximityl×Eveningt 0.3443*** (0.0691) 0.0717 (0.0721)

AfterAnomalyt× GeoProximityl -0.4124*** (0.0376) -0.2237*** (0.0556)

GeoProximityl × RushHourt -0.2192 (0.5425) -0.3649 (0.3318)

GeoProximityl × DayTimet 0.3515 (0.5230) -0.1403 (0.2904)

GeoProximityl × Eveningt 0.6493** (0.2709) 0.1669 (0.1791)

Constant 3.7228*** (0.0655) 3.6918*** (0.0391)

Fixed effects Yes Yes

Num. Observations 14,904 14,904

R-square 0.4925 0.5656

***p<0.01; **p<0.05; *p<0.10; Standard errors clustered at the zone level in parentheses; FE includes time- and
zone-fixed effects.

is an essential concern that has gained even more attention recently. In the present study, we

leveraged the natural experimental setup of multiple types of urban anomalies to investigate the

responding behavior of taxi and ridesharing platforms. Specifically, we focused on platform-level

utilization changes, which were measured as the changes in the number of served trips. We applied

a DiD econometric model to a large-scale dataset with fine-grained trip information. We showed

that the Uber platform, in general, performed better than the traditional taxi companies after

no-notice and unpredictable urban anomalies. We herein discuss multiple possibilities to explain

the underlying mechanisms.

Several contributions stem from this work. First, we contribute to the literature streams on the

understanding of urban anomalies and technology/emergency management. We noticed that prior

studies emphasized the detection and forecast of urban anomalies with diverse data sources and

algorithms, while our study started from a distinguished angle by investigating how the existing

transportation services respond to urban anomalies. Meanwhile, although this research is burgeon-

ing in its contributions to the development and improvement of technology-based systems to cope

with abnormal scenarios, the present study, as far as we know, is the first to provide robust empir-

ical evidence of relative transportation platform utilizations in response to urban anomalies. This
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sheds light on how the technology supports emergency management as well as how the public reacts

to the adoption of technology during an urban anomaly. Second, we add to the streams of literature

on both urban transportation and two-sided markets by comparing the platform-level performance

between the traditional on-demand service market (i.e., taxi companies) and the emerging rideshar-

ing platforms under unpredictable urban anomalies. Although prior studies have explored in-depth

the differences between the two types of transportation systems (Bai et al. 2019, Cachon et al.

2017, Gong et al. 2017) under normal scenarios, or within a certain equilibrium, it remains under-

explored in the literature how and why taxies and ridesharing platforms perform when a no-notice

urban anomaly occurs. Furthermore, we decompose and empirically test the potential mechanisms

leading to the above differences. Supplementary to prior studies (Caillaud and Jullien 2003, Cohen

and Sundararajan 2015, Liu et al. 2021) that have emphasized the importance of technological

advantages adopted by emerging industries when compared with traditional firms, our empirical

findings suggest that the supply-side imbalance is one of the main causes of the better performance

of ridesharing platforms under abnormal conditions. The above understanding allows us to offer

practical implications for the design and adjustment of strategies for dealing with urban anomalies.

The present study yields the following notable policy implications. First, we notice that between

the types of urban anomalies explored in this study, taxi companies are less capable of fulfilling

passengers’ needs, as we observed either larger decreases or no change in platform utilization (rela-

tive to Uber’s smaller decreases or even increases after the subway shutdown). Such criticism urges

both service providers and city planners to re-evaluate and improve their systems. For example,

in order to stimulate the labor supply during an urban anomaly, taxi companies could design and

adjust their subsidy strategies to encourage drivers to stay at work or re-allocate the supply across

locations in a more efficient way. Meanwhile, considering the superior role of technology identified

from our mechanism detection, city planners could try to incentivize cooperation between the two
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platforms, because the ridesharing platform is an important element in the urban transportation

ecosystem and may complement the taxi system in various ways, especially when accommodat-

ing uncertainty with multiple advanced techniques such as real-time information presentations of

supply/demand flows. For example, city planners could encourage sharing of information and tech-

nological systems during an urban anomaly. Second, our empirical findings suggest that passengers’

preferences between the different types of transportation systems remain stable even after terrorism.

In order to compensate for the decreasing trend due to a lower supply or technological deficiency,

service providers might need to consider changes in either the demand or platform design during

an emergency. For example, service providers could encourage drivers to take more passengers on

trips. And city planners could set up certain emergency pick-up areas so that drivers outside the

exact event area could have better access to the event location while avoiding potential traffic

jams or road closures. Third, from the passenger perspective, and in light of the current design of

ridesharing platforms, we noticed that Uber, in general, maintains a relatively stable utilization

level. Based on this empirical finding, we suggest conservatively that passengers who have urgent

needs could seek a ridesharing service first, given its relatively stable supply and technological

support.

Our study is subject to several limitations that yet offer fruitful avenues for potential future

research. First, our empirical analysis focused on platform-level utilization, measured as the number

of served trips. This could be generalized to other dimensions, provided that more data were avail-

able. For example, future research may decompose overall platform utilization into a finer-grained

level, such as utilization per capita. Second, our data allowed us only to examine successfully

fulfilled trips, whereas requested but unfulfilled trips were out of our scope. This might not be

problematic for our current research design, as we specifically aimed to investigate the differences

between different platforms with respect to the success of evacuating users during urban anomalies.
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Future studies working with additional available data could further explore how platforms allo-

cate resources in fulfilling passengers’ requests, which would provide insights into platform system

designs. Third, although we conducted multiple robustness checks to verify our empirical iden-

tification strategy, we acknowledge that our main analyses might suffer from multiple potential

confounders, such as reallocation of traffic (especially given that we could conduct only a taxi-

zone-level analysis) or redistribution of drivers. For example, if drivers were redistributed to areas

far away from the attack rather than quit the market, our estimated effect of the urban anomalies

on a single platform could have been underestimated. To address this issue, future research could

consider using finer-grained information. Besides, when comparing directly the efficiency between

ridesharing platforms and taxis, we employed a DDD empirical model. Considering that the two

types are substitutions in normal scenarios, the correlations of demand changes between the two

might bias our results because the increase in one’s demand might directly lead to a decrease in

the other’s. Though the main conclusions of our findings could not be affected (as shown in the

DiD analyses), future studies could leverage some exogenous shocks applied to one platform only

to address this empirical issue. Fourth, due to data limitations, we could not fully tease out all of

the alternative possibilities and empirically identify additional causal factors explaining the main

findings. Future research, with proper experimental designs, could improve our mechanism tests

and offer more concrete practical implications for emergency management thereby.
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