A Hybrid, Dynamic Logic for Hybrid-Dynamic Information Flow

Brandon Bohrer
Carnegie Mellon University
Pittsburgh, PA
bbohrer@cs.cmu.edu

André Platzer
Carnegie Mellon University
Pittsburgh, PA
aplatzer@cs.cmu.edu

Abstract
Information-flow security is important to the safety and privacy of cyber-physical systems (CPSs) across many domains: information leakage can both violate user privacy and reveal vulnerabilities to physical attacks. CPSs face the challenge that information can flow both in discrete cyber channels and in continuous real-valued physical channels ranging from time to motion to electrical currents. We call these hybrid-dynamic information flows (HDIFs) and introduce dHL, the first logic for verifying HDIFs in hybrid-dynamical models of CPSs. Our logic extends differential dynamic logic (dL) for hybrid-dynamical systems with hybrid-logical features for explicit program state representation, supporting relational reasoning used for information flow arguments. By verifying HDIFs, we ensure security even under a strong attacker model wherein an attacker can observe time and physical values continuously. We present a Hilbert-style proof calculus for dHL, prove it sound, and compare the expressive power of dHL with dL. We develop a hybrid system model based on the smart electrical grid FREEDM, with which we showcase dHL. We prove that the naïve model has a previously unknown information flow vulnerability, which we verify is resolved in a revised model. This is the first information flow proof both for HDIFs and for a hybrid-dynamical model in general.

CCS Concepts • Theory of computation → Logic and verification; Modal and temporal logics; • Security and privacy → Logic and verification; • Computer systems organization → Embedded and cyber-physical systems;

Keywords dynamic logic, hybrid logic, hybrid systems, information flow, cyber-physical systems, formal verification, smart grid

1 Introduction
Cyber-physical systems (CPSs), which feature discrete computer control interacting with a continuous physical environment, are ubiquitous. They include critical infrastructure such as electricity, natural gas, and petroleum transportation grids, medical devices such as pacemakers and insulin pumps, and transportation systems including aircraft, trains, and automobiles. Because of their criticality, it is essential to ensure their safe, correct operation, and formal methods for safety (e.g., collision-free) in CPS have had important successes [14, 18, 29].

There is less work on formal methods for CPS (information-flow) security, which is often as critical as physical safety. We focus on nondeducibility [4] of information flow, which captures the notion that an attacker cannot infer private information for certain in a system with non-observable nondeterminism. We choose this focus because for many nondeterministic systems, nondeducibility is the strongest property one can hope to achieve. As consumer-facing infrastructure such as electrical and telecommunication networks are increasingly computerized, the risk of leaking confidential customer information increases. Beyond leaking customer information, it has been suggested [3] that information flow leaks have the potential to aid attackers in identifying vulnerable infrastructure targets.

The common feature is that information flows in both computer communication channels and physical channels such as transmission lines, pipelines, the human body [31], and roadways. Because information flows through both computation and physics, CPSs demand a notion of flow which accounts for both. While information flow in CPS has been explored [1, 3, 16, 20, 36], prior works either model physics discretely or ignore physics altogether [3]. These abstractions constitute a significant model gap: Formal analyses of any model can only be trusted to the extent that the model is faithful to reality and to the abilities of attackers. Event-based models such as the prior model of the FREEDM grid [3], for example, assume attackers cannot observe time or exact physical quantities. Our hybrid (i.e., mixed continuous and discrete) dynamics narrow the gap greatly, modeling attackers that observe continuous time and real-valued physical quantities. In doing so, our FREEDM model reveals a leak undetected by the prior model.

A discrete-time model would also allow a smaller gap than and reveal more bugs than an event model. A key advantage of a hybrid model is that we support continuous time and thus know for certain that we have accounted for the timing abilities of all possible attackers, while a discrete-time model would leave us uncertain whether the model is precise enough to reveal all practical attacks.

We investigate properties of hybrid-dynamic information flows (HDIFs), which combine discrete and continuous flows. We provide an approach for verifying HDIF security by introducing the logic dHL. The dHL logic features two forms of hybridness which should not be confused: it extends differential dynamic logic (dL) for reachability of hybrid-dynamical systems with first-order hybrid logic [7], which provides first-class representation of program states. This combination of hybrid dynamics with first-class program states enables us to verify HDIF security. In capturing physical and temporal phenomena, hybrid dynamics also provide a flexible...
framework for modeling side-channels and verifying them with the same techniques as other cyber-physical channels.

The distinguishing feature of information flow (vs. safety and liveness properties) is that it is not a trace property, but a 2-trace hyperproperty [12], i.e., a property of pairs of program traces. This poses a hurdle for program verification calculi: Hoare calculi extending the dynamic logic (D logic, and write Θ for an arbitrary term θ or ω, and write ε when an expression can be either a term Θ or a formula ϕ, but not a program α.

Definition 1 (Real-valued terms of dHL).

\[\theta ::= c \mid x \mid f(\bar{\theta}) \mid F \mid \theta + \theta \mid \theta \cdot \theta \mid \varepsilon \]

Here $c \in \mathbb{Q}$ is a literal and x is a real-valued program variable, said to be *flexible* because it can be bound in quantifiers. Their rigid counterparts are *nullary function symbols* $f(), g()$ that cannot be bound. The meaning of a function symbol $f(\bar{\theta})$ depends on an arbitrary number of real-valued arguments. Functionals F are a generalization of functions whose meaning depends on all flexible symbols. Functionals and functionals are used to express axioms in Sec. 5. Terms in dHL extend dL with at-terms $@\omega, \theta$ denoting the value of term ω in the state denoted by the world-valued term ω.

Definition 2 (World-valued terms of dHL).

\[w ::= s \mid \bar{\pi} \]

The language of world-valued terms w is simple, consisting only of *world variables* s, t and *nominals* $\bar{\pi}, \bar{\tau}$, which differ only in that world variables are flexible while nominals are rigid.

Definition 3 (Programs of dHL).

\[\alpha, \beta ::= ?(\phi) \mid x := \theta \mid x := * \mid x' = \theta \land \phi \mid \alpha \lor \beta \mid \alpha \land \beta \mid \alpha^* \mid a \]

The hybrid program constructs of dHL are simply those of dL. Hybrid programs combine discrete programming constructs with continuous equations to provide a program representation of hybrid systems. The atomic dL programs are tests $?(\phi)$ that abort execution if formula ϕ is false, assignments $x := \theta$ and $x := *$ which update program variable x to the value of term θ or a nondeterministic value, differential equation evolution $x' = \theta \land \phi$, and object-level program constants a which range over fixed, arbitrary programs. They should not be confused with the similar-looking program metavariables α used in schemata and theorems. Differential equations are the defining feature of dL; the effect of $x' = \theta \land \phi$ is to evolve the differential equation $x' = \theta$ nondeterministically for any duration, but only so long as the formula ψ is always true.

They are composed with nondeterministic choice $\alpha \lor \beta$ that runs exactly one of α or β, sequential composition $\alpha ; \beta$, and nondeterministic iteration α^* that runs α any finite number of times sequentially. Traditional deterministic programming constructs can be derived from the nondeterministic hybrid program constructs, e.g., if $(\phi)[\alpha] \vDash \exists \xi (\psi) \equiv ?(\phi)[\alpha] \lor (?(-\phi)[\beta])$.

Definition 4 (Formulas of dHL).

\[\phi, \psi ::= \phi \land \psi \mid \neg \phi \mid \exists x : \mathbb{R} \phi \mid \theta_1 \geq \theta_2 \mid (\alpha)\phi \mid \exists x : W \phi \mid w \mid @\omega \phi \mid \downarrow s \phi \mid p(\bar{\theta}) \mid P \]

Formulas $\phi \land \psi, \neg \phi, \exists x : \mathbb{R} \phi$, and $\theta_1 \geq \theta_2$ are as in first-order logic. As in dL, the diamond modality $(\alpha)\phi$ says there exists an execution of the (nondeterministic) program α where formula ϕ holds in the ending state. Its dual, the box modality $[\alpha]\phi$, says all end states satisfy ϕ, and is derived: $[\alpha]\phi \equiv \neg (\alpha)\neg \phi$.
The following features are added from first-order hybrid logic. The quantifier $\exists s::\mathcal{W} \phi$ says there exists a world (program state) s in which ϕ holds (where ϕ can mention the world variable s). We will also use the universal quantifier $\forall s::\mathcal{W} \phi$, which is a derived construct by the duality $\forall s::\mathcal{W} \phi \equiv \exists s::\mathcal{W} \neg \phi$. We support nominal propositions \mathcal{w} that hold in exactly the one state denoted by the world-valued term w. These allow testing equality of the current state against w. Note the same syntax is used regardless whether w appears as a term or formula; these usages are distinguished by syntactic context. The hybrid satisfaction modality $@_w \phi$ says that ϕ is true at the unique state named by w. In addition to the typical existential and universal quantifiers, hybrid logic features the local quantifier $\downarrow s \phi$ which binds the current state to the world variable s within the formula ϕ, whereas the universal quantifier $\forall s::\mathcal{W} \phi$ binds an arbitrary state to s. The local quantifier $\downarrow s \phi$ can be derived as $\downarrow s \phi \leftrightarrow \exists s::\mathcal{W} (s \land \phi)$ or equivalently $\forall s::\mathcal{W} (s \to \phi)$. We present this quantifier in its entirety regardless, because it is important to information-flow applications and may be unfamiliar to the reader. The connectives $\downarrow s \phi$ and $@_w \phi$ can be understood computationally as well, as storing or loading the current state to s or from w, respectively.

The predicate symbols $p(\theta)$ range over both real-valued terms θ and nominal expressions w, and are used in axioms to stand for propositions. Beyond axioms, predicates will be used widely in bisimulation arguments for information-flow: $R(i,j)$ denotes a binary predicate over nominals. Predications P simply stand for arbitrary formulas and are used in axioms in Sec. 5.

3 Information-Flow Example: FREEDM Grid

In this section, we introduce two variants of a smart grid model based on NSF FREEDM [19], a microgrid which controls a local section of the power grid and interacts with the surrounding macrogrid. Our model is the first hybrid-systems model of FREEDM and follows the published algorithm [2], incorporating detailed dynamics not present in prior models [3]. We show how information-flow security properties and their negations are stated in dHL. We prove them in Secs. 8 and 9 once the proof calculus is introduced.

Smart grids like FREEDM use computer control to make electrical grids more robust, efficient, and cost-effective in face of increasingly diverse power loads and supplies. Computer control in grids makes joint cyber-physical security of this critical infrastructure essential. Not only can information flow violations compromise private consumer information, but it has been suggested they can aid attackers [3] in identifying targets for physical attacks.

Scenario. We look at an exchange (depicted in Fig. 1) that migrates power between two neighboring transformers T_1 and T_2 connected to a macrogrid gr over a shared line. Variable names indicate units: energy is uppercase, power (derivative of energy, e.g. $B_i' = b_i$) is lowercase, and migration rates (derivative of power, e.g. $b_i'' = bm_i$) end in m. Each transformer T_i carries power p_i and is connected to a renewable energy resource r_i, to a household which demands power d_i, and to an energy storage device B_i. The transformers are connected by a communication Link. While real instances of the FREEDM grid have many transformers, each migration involves exactly two transformers, so the two-transformer case provides important insight for the general case.

Each transformer can be in one of three demand states: Low Demand, Normal Demand, or High Demand. The algorithm [2] states:

- Net demand n_i is the difference of gross power demand d_i and the sum of power draw p_i with generation r_i.
- A transformer is in Low Demand if it has net demand $n_i < 0$.
- A transformer is in High Demand if net demand exceeds a provided threshold $n_i \geq \text{thresh} > 0$ or Normal otherwise.
- If any transformer i is Low (has excess power) while the other (written j) is High, power migrates at a provided constant rate $m := \text{maxm}$ until at least one of them is Normal.
- Any excess power supply $-n_i > 0$ not used in migration is accumulated as energy $0 \leq B_i \leq B_{\text{max}}$ in battery i.
- Any excess demand $n_i > 0$ not met by migration is drawn from the battery B_i with power b_i and migration rate bm_i, or sold to the grid if the battery is full ($B_i = B_{\text{max}}$).
- If T_i’s corresponding battery B_i is empty, it draws power gr (with migration rate $gr' = grm$) from the macrogrid instead.

The grid is modeled in Fig. 2 as a hybrid program α_I, which contains the controller (ctrl) and physical model (plant). The controller migrates power (migrate) and operates the battery (bat), which has two implementations: a deterministic implementation $\alpha_{I_{\text{bat}}}^I$ of the above algorithm, which we show to be insecure, and a nondeterministic version $\alpha_{I_{\text{bat}}}^N$, which we show to be secure. We abbreviate $\alpha_I \equiv \alpha_{I_{\text{bat}}}^I$ and $\alpha_S \equiv \alpha_{I_{\text{bat}}}^N$ for the instantiation of α_I with the insecure or secure battery, respectively.

Our treatment of d_i and r_i is general, assuming only that they are non-negative and can change countably often. Time $t' = 1$ is not used for control, but will factor into our proofs because it is observed by attackers and we prove that, e.g., observing the ODE duration does not leak the continuous variables p_i, B_i, b_i.

Defining Information Flow. We give the general formulation:

Definition 5 (Nondeducibility Information-Flow Security). Let α be a program and let L be the set of publicly observable expressions, e.g., $L = \{gr, t\}$ for FREEDM with publicly-known time t and macrogrid flow gr. At its simplest, binary relation $R(i,j)$ worlds i and j agree on all public expressions L, and is defined by:

$$R(i,j) \equiv \left(\bigwedge_{\theta \in L} (\alpha_1 \theta = \alpha_2 \theta) \right) \land \left(\bigwedge_{\phi \in L} (\alpha_1 \phi \leftrightarrow \alpha_2 \phi) \right)$$

In practice, $R(i,j)$ often also states that i and j satisfy any problem-specific constraints, e.g. on the range of system parameters. Now we define nondeducibility information flow:

$$\forall i_1, i_2, \alpha_1 :: W \left(\alpha_{i_1}(\theta) = R(i_1, i_2) \rightarrow \alpha_{i_2}(\alpha_1) \cup \alpha_2(\alpha_1, \alpha_2) \right)$$

Nondeducibility means an observer can never deduce anything about the input value $\alpha(x)$ of a private variable $x \notin L$ from the final values of public expressions $\alpha(\alpha_1(\theta \text{ or } \phi))$, when the observer
αF ≡ (ctrl; plant)*
ctrl := migrate; bat
migrate ⊨ \{ d1 := \ast; (d1 ≥ 0); r1 := \ast; (r1 ≥ 0); n1 := d1 - (r1 + p1);
 \text{if} (n1 ≥ \text{thresh} \land n1 < 0) \quad \text{m} := (−1)^i \cdot \text{maxm} \\
 \text{else} \quad \text{m} := 0 \}
plant := \{ p_i = -1^i \cdot m, B_i = b_i, \bar{B}_i = b_m, \bar{g}^r := \text{grm}, t' = 1 \land B_i ≥ 0 \}

\begin{align*}
\text{bat}_f & \equiv \{ \text{gr} := 0; \text{bm}_1 := 0; \text{grm} := 0; \\
 & \quad \text{if} (n_i ≤ 0 \land B_i < \text{maxm}) \lor (n_i > 0 \land B_i > 0) \quad \{ \\
 & \quad \quad \text{b}_1 := -n_i; \text{bm}_1 := \text{bm}_i + (-1)^{i+1} \cdot m \\
 & \quad \text{else} \quad \text{b}_1 := 0; \text{gr} := \text{gr} + n_i; \text{grm} := \text{grm} + (-1)^{i+1} \cdot m \}
\end{align*}

\begin{align*}
\text{bat}_S & \equiv \{ \text{gr} := 0; \text{bm}_1 := 0; \text{grm} := 0; \\
 & \quad \{ ?(B_i < \text{maxm}) \lor (n_i > 0 \land B_i > 0); \\
 & \quad \quad \text{b}_1 := -n_i; \text{bm}_1 := \text{bm}_i + (-1)^{i+1} \cdot m \\
 & \quad \lor \{ \text{b}_1 := 0; \text{gr} := \text{gr} + n_i; \text{grm} := \text{grm} + (-1)^{i+1} \cdot m \} \}
\end{align*}

\text{Figure 2. FREEDM model with insecure and secure batteries}

The language of world terms is quite simple, containing only polyadic means that the meaning of real term θ in the state denoted by world term w.

The language of world terms is quite simple, containing only rigid nominals G and flexible world variables s, deriving their meaning from the interpretation I or galaxy g, respectively. We write \([w]Ig[\theta] for symmetry with real terms \(\theta\) even though \(\omega\) is unused.

\text{Definition 6 (Real term semantics).} Let \(\omega \in W, g \in G, I \in \mathcal{F}\), then:

\[
\begin{align*}
\|x\|Ig[\omega] & = \omega(x) \\
\|c\|Ig[\omega] & = c \\
\|\theta_1 + \theta_2\|Ig[\omega] & = \|\theta_1\|Ig[\omega] + \|\theta_2\|Ig[\omega] \\
\|\theta_1 \cdot \theta_2\|Ig[\omega] & = \|\theta_1\|Ig[\omega] \cdot \|\theta_2\|Ig[\omega] \\
\|@_{\omega} \theta\|Ig[\omega] & = \theta[Ig[\theta]] \\
\|f(\theta)\|Ig[\omega] & = I(f)(\|[\theta]\|Ig[\omega]) \\
\|F\|Ig[\omega] & = I(F)(g_\omega)
\end{align*}
\]

Equations (1)–(4) describe polynomial terms as in dl. The new term construct of dHL is the at-term @, whose meaning is identifying \(w\) rather than \(\omega\) for symmetry with real terms \(\theta\) even though \(\omega\) is unused.

\text{Definition 7 (World term semantics).} Let \(g \in G, I \in \mathcal{F}\), then:

\[
\begin{align*}
\|\pi\|Ig[\omega] & = I(n) \\
\|[s]\|Ig[\omega] & = g(s)
\end{align*}
\]

\text{Definition 8 (Program semantics).} As in dl with the addition of galaxies g. Let \(\omega, v \in W, g \in W, I \in \mathcal{F}\), then:

\[
\begin{align*}
(\omega, \omega) & \in [\psi]Ig \iff \omega \in [\psi]Ig \\
(\omega, v) & \in [x := \theta]Ig \iff v = o^\omega_\theta \text{ for } r = \|\theta\|Ig[\omega] \\
(\omega, v) & \in [x := *]Ig \iff v = o^\omega_{\ast} \text{ for } r \in R \\
(\omega, v) & \in [x' = \theta \& \psi]Ig \iff (\omega, v) = (\varphi(0), \varphi(t)) \text{ and } \varphi \text{ solves } x' = \theta \text{ on } [0, t] \text{ and } \varphi(s) \in [\psi']Ig \text{ for all } s \in [0, t] \\
(\omega, v) & \in [x \in \mathcal{A} \cup \mathcal{B}]Ig \iff (\omega, v) \in [x]Ig \text{ or } (\omega, v) \in [\mathcal{A}]Ig \text{ or } (\omega, v) \in [\mathcal{B}]Ig \\
(\omega, v) & \in [x \in \mathcal{A}]Ig \iff (\omega, v) \in ([\mathcal{A}]Ig) \circ (\mathcal{B}Ig) \\
(\omega, v) & \in [x \in \mathcal{A}]Ig \iff (\omega, v) \in ([\mathcal{A}]Ig)^* \\
(\omega, v) & \in [a]Ig \iff (\omega, v) \in I(a)(g)
\end{align*}
\]

Galaxy g is untouched by execution. Equations (8)–(11) are the atomic hybrid programs. Differential equations (11) evolve according to the solution of the ODE for any duration t ≥ 0, but must stop while the formula \(\psi\) still holds. In (13), \(\circ\) is composition. In (14), \([\mathcal{A}]Ig^*\) is the reflexive, transitive closure of \([\mathcal{A}]Ig\). Program constants (15) receive their meaning from the interpretation (and galaxy, since formulas inside programs can mention nominals).
Definition 9 (Formula semantics).
\[\omega \in \{ \phi \land \psi \} I g \iff \omega \in \{ \phi \} I g \text{ and } \omega \in \{ \psi \} I g \] (16)
\[\omega \in \{ \neg \phi \} I g \iff \omega \not\in \{ \phi \} I g \] (17)
\[\omega \in \{ \exists x : \mathbb{R} \} I g \iff \omega \in \{ \phi \} I g \text{ for some } r \in \mathbb{R} \] (18)
\[\omega \in \{ \theta_1 \geq \theta_2 \} I g \iff \{ \theta_1 \} I g \geq \{ \theta_2 \} I g \omega \] (19)
\[\omega \in \{ \langle \alpha \phi \rangle \} I g v \iff \omega \in \{ \phi \} I g \text{ for some } v \text{ s.t. } (\omega, v) \in \{ \alpha \} I g \] (20)
\[\omega \in \{ \exists s : W \} \phi I g \iff \omega \in \{ \phi \} I g \phi^s \text{ for some } v \in W \] (21)
\[\omega \in \{ @ w \phi \} I g v \iff \omega \in \{ \phi \} I g \text{ for } v = \{ w \} I g \] (22)
\[\omega \in \{ \exists s \phi \} I g \iff \omega \in \{ \phi \} I g^s \] (23)
\[\omega \in \{ w \} I g \iff \{ w \} I g \omega = \omega \] (24)
\[\omega \in \{ p(\phi) \} I g \iff \{ \phi \} I g \omega \in \{ p \} I (g) \] (25)
\[\omega \in \{ P \} I g \iff \omega \in \{ P \} (g) \] (26)

Equations (16)–(19) are a standard definition of first-order logic connectives, wherein \[\{ \theta \} I g: \mathbb{R} \] is the denotation of real-valued term \(\theta \) (Def. 6). Equation (20) defines the diamond modality \(\langle \cdot \rangle \): we employ a Kripke semantics where possible worlds are program states (Def. 8). Equations (21)–(24) define the hybrid-logical operators, where \[\{ w \} I g: W \] (Def. 7) is the denotation of a world term. Equations (25)–(26) say predicates and predicationals derive their meaning from the interpretation \(I \), with the difference that predicates depend only on their arguments while predicationals depend on all flexible symbols. We say formula \(\phi \) is valid when the relation \(\omega \in \{ \phi \} I g \) holds for all states \(\omega \), galaxies \(g \), and interpretations \(I \).

5 Proof Calculus
We present a sound proof calculus for dHL, which is used for deductive verification. The calculus is given in Hilbert style, i.e., axioms are used wherever possible, with a minimal number of proof rules. Axioms are instantiated with a uniform substitution [30][11, §35] rule: from the validity of \(\phi \) we can conclude validity of \(\sigma(\phi) \) where substitution \(\sigma \) specifies concrete replacements for some or all rigid symbols in a formula \(\phi \):

\[
\text{US} \quad \frac{\phi}{\sigma(\phi)}
\]

The side-conditions determining which substitutions \(\sigma \) are sound are non-trivial, and make up much of the soundness proof in Sec. 6, with the benefit that soundness arguments and implementation for individual axioms are greatly simplified.

Program Axioms. The axioms for programs in diamond modalities in Fig. 3 are as in dl [27]. Axioms for box modalities \([\cdot] \phi \) can be derived by duality (axiom \(\langle \cdot \rangle \), Fig. 3). With the exception of the loop axioms, these axioms can be read off directly from the semantics of hybrid programs. The axiom \(\langle \cdot \rangle \) replaces a differential equation with a global solution, represented here by the expression \(y(t) \). Loops can be finitely unfolded with the axiom \(\langle \cdot \rangle \). More often, we reason by induction using axiom I or its derived rules.

Modal Axioms and Hilbert Rules. Generic modal axioms and Hilbert rules are as in dl [27] and are listed in Fig. 3. The axiom \(\langle \cdot \rangle \) relates the diamond and box modalities, and is used to derive axioms for box modalities \([\cdot] \phi \). As is typical for Hilbert calculus, axioms are combined with rules G, US, and MP. Axiom V says nullary predicates \(p() \) are preserved under program execution because they depend on no program variables.

Hybrid rules and axioms. Our hybrid modality and quantifier axioms come from first-order hybrid logic [7] and Combinatory Dynamic Logic [24] and are listed in Fig. 4. Axiom \(@id \) says nominal constant formulas \(\bar{\sigma} \) are satisfied at the state named by \(\bar{\sigma} \). Axiom 3W introduces a name for the current state. Rule G@ and axiom K@ are the Gödel generalization rule and Kripke axiom for the @ modality. Axioms \(\forall \bar{\sigma} \) and \(\exists \bar{\sigma} \) are Skolemization and elimination for universal world quantifiers. Axiom @l introduces an @\(\bar{\sigma} \) modality when \(\bar{\sigma} \) is the current state. Axiom @@ collapses nested @ modalities to the inner modality. Axiom @+ replaces equal states in context. Axiom (\(\bar{\sigma} \)) introduces an @ modality for any state \(\bar{\sigma} \) reachable by a program \(a \). Axiom ↓ reduces the local quantifier to its definition in terms of the existential operator. Homomorphism axiom family @hom completely captures the meaning of at-terms. Barcan axiom schema BW swaps a quantifier \(\exists s: W \) with a program \(a \) where \(s \) does not appear free (s is never bound in any program). To make schematic program \(a \) into a constant \(a \) and make BW a concrete axiom, it would suffice to prohibit nuclei inside programs.

6 Theory
We now develop the theory of dHL, showing that the proof calculus is sound and comparing the expressiveness of dHL with other logics. Complete definitions and proofs are in the companion report [8].

6.1 Soundness
We show soundness of dHL by extending the soundness proof for the uniform substitution calculus for dl [30]. Uniform substitution allows for a modular soundness proof: the soundness proof is separated into proving that a finite list of dl axioms are valid and that uniform substitution and the remaining Hilbert rules preserve validity. We prove that all valid dl formulas are valid dHL formulas, and thus dl axioms are also sound in dHL automatically.
null
dHL with a finite number of program variables in dL, resulting in an equivalent, finite dL formula. This approach is subtle primarily because dHL states contain infinitely many program variables:

1. The size of worlds is not a cosmetic decision, but rather affects validity of some formulas. Consider the formula:

 \[\phi \equiv (x := *) s \]

 This is valid iff \(\forall V \equiv \{x\} \), i.e. iff reaching all values of \(x \) suffices to reach all states. We consider this behavior too surprising, and eliminate it by requiring infinite states. The formula is then invalid because program \(x := * \) cannot, e.g., transition between any \(\omega \) and \(v \) where \(\omega(r) \neq v(r) \) for \(r \neq x \).

2. Program constants and predications depend on every variable, in order to capture the notion that programs and formulas can use arbitrary variable names. Since there are infinitely many variables, they have infinitely many dependencies.

 We show that for formulas without program constants and predications (called concrete formulas), infinite worlds are not an obstacle, while for formulas with program constants or predications (called abstract formulas), they are. Concrete formulas are reducible: even though each state contains infinitely many variables, it suffices to employ a single fresh variable \(r \) (consider example above). To make this claim formal, we introduce a notion of finite domains for states, galaxies and interpretations.

Definition 10 (Finite-domain states). State \(\omega \) has finite domain \(S \subseteq V \) if \(S \) is finite and \(\omega(x) = 0 \) for all \(x \not\in S \). Galaxies and interpretations are analogous. A formula \(\phi \) is finite-domain valid for domain \(S \) if \(\omega \in [[\phi]]_g \) for all \(\omega, I, g \) with finite domain \(S \).

We outline the proof here, with full proofs in the report [8]. The proof proceeds by showing that in both dHL and dL, validity and finite-domain agree for concrete formulas, then showing that our reduction preserves finite-domain validity. Thus our reduction preserves validity for concrete formulas. The converse also holds because dL is a fragment of dHL (Prop. 2).

Lemma 4 (Finitization). Let \(\phi \) be any concrete dHL formula. Then let \(r \not\in FV(\phi) \cup BV(\phi) \) (where \(BV(\phi) \) is everything bound in \(\phi \)). Then \(\phi \) is valid iff \(\phi \) is finite-domain valid with domain \(\{r\} \cup (FV(\phi) \cup BV(\phi)) \).

Lemma 5 (Finite-domain reducibility). There exists a computable reduction \(T(\phi) \) such every dHL formula \(\phi \) is finite-domain valid iff the dL formula \(T(\phi) \) is finite-domain valid.

Proof Sketch [8]. We present the translation \(T(\phi) \). In this translation we write \(\vec{x} \) for the vector of all variables \(x_1, \ldots, x_n \) in the domain \(S \), and \(e^\phi \) for the vectorial substitution of all \(\ell \) \(\ell \) for the corresponding \(x_\ell \). For each of the finitely-many world terms \(w \) in \(\phi \), let \(\vec{x}^w \) be a vector of \(|S| \) fresh symbols implementing \(@_w \vec{x} \). When convenient, we implicitly assume \(S \supseteq FV(\phi) \cup BV(\phi) \).

\[
T(@_w \phi) = T(\phi) \vec{x}^w \quad (27)
\]

\[
T(@_w \phi) = [\vec{x} : = \vec{x}^w] T(\phi) \quad (28)
\]

\[
T(\omega) = (\vec{x} : = \vec{x}^w) \quad (29)
\]

\[
T(V s : W \phi) = [\vec{x} : = \vec{x}^w] T(\phi) \quad (30)
\]

\[
T(3 s : W \phi) = [\vec{x} : = \vec{x}^w] T(\phi) \quad (31)
\]

\[
T(\exists s : W \phi) = [\vec{x} : = \vec{x}^w] T(\phi) \quad (32)
\]

\[
T(\otimes (e_1, \ldots, e_2)) = \otimes(T(e_1), \ldots, T(e_2)) \quad (33)
\]

In Equation (33), the notation \(\otimes (e_1, \ldots, e_n) \) stands for any of the other dL connectives. In Equation (29), vector equality \(\vec{x} = \vec{y} \) stands for the conjunction \(\wedge_i x_i = y_i \). The result proves by induction.

Lemma 6 (De-finitization). A concrete dL formula \(\phi \) is valid iff it is finite-domain valid over domain \(FV(\phi) \cup BV(\phi) \).

Theorem 7 (Concrete reducibility). Concrete dHL (i.e., with no rigid symbols) reduces to concrete dL. That is, for all concrete dHL formulas, the concrete dL formula \(T(\phi) \) is valid iff \(\phi \) is.

Proposition 8 (Complexity of \(T \)). \(|T(\phi)| \in O(|\phi|^2) \) for concrete \(\phi \).

Proof Sketch [8]. To prove the upper bound, note the function \(T(\phi) \) expands \(\phi \) by at most a factor of \(|S| \). By Lem. 4, \(|S| \in O(|\phi|) \) suffices for finitely-valid \(\phi \). To prove the lower bound, simply observe there exist formulas where the number of program and world variables are both linear in the size. We give a concrete example:

\[
\phi_n = \exists s_1 : W \cdots \exists s_n : W (\exists r \cdot x_1 > 0 \land \cdots \land \exists r, x_n > 0)
\]

Now observe that applying \(T \) with \(S = \{r\} \cup FV(\phi_n) \cup BV(\phi_n) \) results in \(|T(\phi_n)| \in \Omega(n^2) \).

We note these theorems do not entail (infinite) validity reduction for abstract dHL formulas. Thm. 5 does however preserve finite validity even in the presence of abstract formulas. In summary, reduction fails if and only if abstract constants are allowed to introduce arbitrary new variables.

Corollary 9 (Relative semi-decidability). Concrete dHL is semi-decidable relative to properties of differential equations.

Sketch [8]. By relative semi-decidability [27] of dL and Thm. 7.

We reflect on the practical implications of the reducibility results. The reduction requires a finite variable domain, but the natural domain for abstract formulas is infinite. This means verification by reduction is especially ill-suited for proofs using advanced proof techniques like refinement [21] which rely on abstract formulas. Most dHL axioms are also abstract, and so cannot be translated to concrete dL axioms! Even on concrete formulas, the reduction exhibits quadratic blowup and obscures the more convenient proof techniques available in dHL. Thus, direct proof in dHL is strongly preferable to dL reduction for practical purposes.

7 Derived Rules for Bisimulation

The proof calculus of Sec. 5 provides a hybrid-logical core for hyperproperty verification. We connect nondeducibility to this core by deriving a library of rules for information-flow proofs which, being derived, lie outside the core calculus. Our derived rules show that bisimulation, the core proof technique for information flow, derives from nominals in hybrid logic. Because information flow arguments specifically equate values from initial and ending states, we also derive rules for equalities over at-terms. In Sec. 8 and Sec. 9, we apply our library to our smart grid example and see it raises the level of abstraction. Derivations are given in the report [8].

Bisimulation Rules. In Fig. 6, \(R \) refers to a relation over world expressions, i.e., \(R(i_1, i_2) \) means that worlds \(i_1 \) and \(i_2 \) are related in \(R \), and \(m_1, m_2 \) refer to any middle states. The rules proceed by destructuring a trace on the left; any nondeterminism is resolved identically on the right. Rule \(@ \text{ind} \) is an auxiliary rule for loop induction with nominals, derived from loop induction axiom I. It is in turn used to
we have leaked the information that some battery is at capacity. In principle, this could be useful to an attacker, because high charge is associated with vulnerability to (explosive) thermal runaways [13].

To prove that a system is nondeducibility-insecure, we prove the negation of nondeducibility security, i.e., we prove:

Proposition 10 (bad is insecure). Let a_1 be the insecure version of the grid α and $R(i, j) \equiv \langle @i t = @j t \land @i gr = @j gr \land pre(i) \land pre(j) \rangle$ and define $pre(i) \equiv @t (max(v > 0 \land B_{max} > v \land thresh > 0))$. Then $\exists i_1, i_2, o_1 : W(\langle @i_1 i_2 \land @i_1 (a_1) o_1 \land @i_2 (a_2) o_2 \rangle) = valid$.

Proof Sketch [8]. We begin by constructing the states i_1, i_2, o_1, i_2. Let i be an arbitrary state. Then let i_1 be the unique state such that $@i_1 (B_1 = B_{max}, t = 0, gr = 0)$ and i_2 the unique state such that $@i_2 (B_2 = B_{max}, t = 0, gr = 0)$. Let i_1 be any state such that $@i_1 (a_1) o_1$ and $@i_2 (t = 0 \land gr > 0)$.

9 FREEDM: Ensuring and Proving Security

We learned that bad leaks $B_1 = B_{max}$, ultimately because it is too deterministic: If $gr > 0$ we learn for a fact some $B_i = B_{max}$. The simplest solution, as taken in bad of Fig. 2, is to add the nondeterministic option to use the macrogrid even when a battery has capacity. Now that the macrogrid is always an option, an attacker who observes $gr > 0$ cannot infer $B_1 = B_{max}$ for certain.

We now prove bat is nondeducibly secure, i.e., an attacker observing only gr and t deduces nothing else. We instantiate Def. 5 to arrive at the theorem statement:

Proposition 11 (Nondeducibility for FREEDM). First, we define $R(i, j) \equiv \langle @i t = @j t \land @i gr = @j gr \land pre(i) \land pre(j) \rangle$ and define $pre(i) \equiv @t (max(v > 0 \land B_{max} > v \land thresh > 0))$. Then formula $\forall i_1, i_2, o_1 : W(\langle @i_1 (a_1) o_1 \land R(i_1, i_2) \land @i_1 (a_2) o_2 \rangle)$ is valid, where a_1 is the secure version of the grid α.}

Proof Sketch [8]. Recall from Sec. 3 that the heart of the proof is choosing a trace $@i_1 (a_1) o_2$ which shows the public outputs $@o_1 gr$ and $@o_1 t$ of trace $@i_1 (a_1) o_2$ are possible from all related input states i_2. We apply loop rule BS with $R(i, j) \equiv @i t = @j t \land @i gr = @j gr \land pre(i) \land pre(j)$.

At-Terms. Fig. 7 derives rules for at-equivalent terms. Rule NTV says a term θ is unchanged if its variables never appear bound in α. The remaining rules are derived from the program actions and capture the effect of each program on a term. In rule NT, $y(t)$ is a global solution to $x' = f(x)$.
The second case is representative, the rest are in the report [8].

Case \(\sigma_{m_1} (gr = n_1 \land grm = m) \): By inspection, it suffices to set \(n_1 = \sigma_{m_1} n_1 \) and \(n_2 = 0, m = 0 \). If \(\sigma_{m_1} n_1 - \sigma_{i_2} p_1 \geq 0 \) then we set \(r_1 = -\sigma_{m_1} n_1 - \sigma_{i_2} p_1 \) and \(d_1 = 0 \) else we set \(r_1 = 0 \) and \(d_1 = \sigma_{i_2} p_1 + \sigma_{m_1} n_1 \). By algebra, in each case \(\sigma_{m_1} n_1 = \sigma_{m_1} n_1 \).

Then for \(i = 2 \) if \(\sigma_{i_2} p_2 \geq 0 \) then set \(r_2 = -\sigma_{i_2} p_2 \) and \(d_2 = 0 \) else set \(r_2 = 0, d_2 = \sigma_{i_2} p_2 \). By algebra, \(\sigma_{m_2} n_2 = 0 \). Executing the load balancer, we get \(m = 0 \) because \(n_2 = 0 \) (thus \(T_2 \) is Normal). Each case takes the second branch of the battery controller, getting \(gr = n_1 + n_2 = n_1 \) and \(grm = m \cdot -1^2 + m \cdot -1^1 = 0 = m \) as desired. This completes the proof of Prop. 11. \(\square \)

We have shown how to use dHL to find and resolve hybrid-dynamic information flow (HDIF) vulnerabilities in CPSs. We reflect on how verified safety of a model can contribute to the safety of real-world implementations as well.

Our first model was insecure because a deterministic branch in the battery controller leaked information. This was fixed by introducing a nondeterministic branch. Implementations can simulate the same effect, e.g., with randomized branching. Our models taught us that the battery controller needs such measures, but the load balancing controller, in contrast, is secure even with deterministic control. This knowledge is helpful in practice because measures like randomization typically reduce operational suitability of a controller, so verifying that a deterministic controller is secure enables using the efficient deterministic controller with confidence.

In comparison with many other formal security models, our approach is especially well-suited to verifying security in the presence of side-channels. Many would-be side-channels for cyber systems (time, electrical flow, etc.) are primary channels in CPSs and, as shown in our models, are modeled naturally as hybrid systems. Once these channels are modeled in our hybrid system, they can be verified with the same techniques as any other HDIF!

10 Related Work

Dynamic Logics and Hybrid Logics. The logic dHL is a hybrid version of the dynamic logic dL, adding the ability to verify hyperproperties in addition to safety and liveness properties. The logic dL\(_k\) [26] is a proposed extension of dL with propositional hybrid connectives, but lacks world quantifiers and at-terms, which are essential for information flow. Dynamic logic and first-order hybrid logic have been combined in Combinatory PDL [23], which extends Propositional Dynamic Logic (PDL) with additional set-theoretic program combinators, but has neither at-terms nor assignments, let alone differential equations as dHL does. Hybrid logic has been used in distributed systems [25] reasoning as well. While many CPSs are distributed systems, distributed systems reasoning alone does not suffice to verify hybrid discrete and continuous dynamics. The logic QdL\(_k\) [28] allows verification of distributed hybrid dynamics, but is not a hybrid logic, and faces the same challenges with hyperproperties as dL does. First-order hybrid logic [7] (without dynamic-logical or continuous features) and its proof theory [10] have been studied in detail.

Static Information Flow Security. Logics and type systems for information-flow security have been widely studied for discrete programs. Sebelfeld and Myers [32] provide a survey of language-based security approaches. Approaches can be broadly categorized into automatic vs. interactive (or manual) approaches. Automation increases the potential user base, typically at the cost of greatly reduced completeness. When the proof is done automatically, the simplicity of the proof is of little concern, and self-composition [5] can be used to reduce information-flow proofs to a safety property suitable for Hoare and dynamic logics.

In interactive use, self-composition has been noted [35] to make proofs awkward by reducing locality: bisimulation techniques consider the local effect of each statement \(a \) on two traces, but self-composition may move the original statement \(a \) far from its copy. For humans, a usable calculus as provided by dHL is far more important. As our smart grid example demonstrates, typical HDIFs rely on fine-grained interactions between discrete and continuous dynamics within system loops. This suggests that automated approaches would struggle and that our approach, which is amenable to interactive proof, is merited. An approach analogous to proof by reduction from dHL to dL has been implemented for the dynamic logic JAVA\(_dL\) in the theorem prover Ke\(v\) (which supports both automatic and interactive proof, but not nominals). To avoid the awkwardness of the reduction approach, calculi meant for interactive use [6, 22] typically build in special-purpose relations for information flow. The disadvantage of such calculi is that baking these relations prevents generalizing to other hyperproperties.

We strike a middle ground with dHL. The proof techniques we would expect of a dedicated calculus are easily implemented as derived rules, yet we maintain the generality to express arbitrary safety and liveness properties and hyperproperties as well. Our development hints that the relationship between hybrid logic and hyperproperties is general and deserves further exploration.

While we present the first HDIF result for a CPS, information flow has been verified for discrete models of several different CPSs via model-checking; e.g., Akella [3] has verified process algebra models of FREEDM and Wang [36] has verified a Petri-net model of a pipeline network. The absence of continuous dynamics amounts to a significant model gap between these models and reality. HDIFs greatly narrow the model gap: for example, our HDIF analysis of our FREEDM model revealed a vulnerability that was not visible in the discrete model of Akella [3].

11 Conclusion and Future Work

We introduced dHL, a hybrid logic for verifying information-flow security properties of hybrid dynamical systems in order to ensure the security of critical cyber-physical systems (CPS). In contrast with previous approaches, it allows verifying cyber-physical hybrid-dynamic information flows (HDIFs), communicating information through both discrete computation and physical dynamics, so security is ensured even when attackers observe continuously-changing values in continuous time. It achieves this by combining dL, a logic for hybrid dynamical systems, with hybrid-logical features enabling explicit reference to program states. This provides a novel way to verify information flow: information flow properties are hyperproperties, which are expressed naturally in hybrid logic via its ability to refer freely to states from multiple traces simultaneously. The foundation of hybrid logic allows verification (and falsification) of security in a common system at no added complexity, and we expect the same system can support additional notions of information flow such as non-interference, as well as arbitrary hyperproperties. We introduced a calculus for dHL, proved it sound, and derived high-level bisimulation rules for information flow proofs. Our use
of uniform substitution provides modularity: we can instantiate all existing dL axioms with dHL formulas and need not individually reprove that each axiom is a valid formula of dHL. Uniform substitution also provides a clear path for extending the dL theorem-prover KeYmaera X [15] and soundness formalization [9] with dHL.

We showed that dHL is capable of verifying the presence or absence of information-flow vulnerabilities in realistic hybrid models. As an example, we debugged and then verified a hybrid model of the FREEDM [19] smart grid controller based on the published algorithm [2] with load-balancing and distributed energy generation and storage, all important features for practical grids. Moreover, the proof demonstrates both i) the close correspondence between dHL information-flow proofs and natural-language proofs and ii) the non-trivial proof arguments that quickly arise when mixing cyber and physical dynamics.

The main places where dHL proofs require more effort than an informal proof were in introducing names for intermediate states and observing the effect of a program on an individual term. We plan to provide a proof format in the eventual KeYmaera X implementation that allows us to automate the majority of these low-level steps, making proofs efficiently match to human intuition. Our information-flow arguments depend closely on the exact semantics of the program and do not follow from, e.g., simple syntactic checks on variable dependencies, meaning the expressive power provided by dHL’s deductive calculus is essential for verifying realistic CPS information-flow problems. A major novelty in both the logic dHL and our model of FREEDM is the presence of HDIFs that mix discrete cyber and continuous physical flows. These cyber-physical flows arise naturally in many other critical applications, such as oil and natural gas networks, canals, smart homes, medical devices, and vehicles, which deserve future exploration.

Lastly, we also wish to explore other uses of dHL beyond hyperproperty verification. Derived features such as refinement and universal modalities have been explored in Combinatory Dynamic Logic [23], and may have applications [21] in modular hybrid systems modeling and verification.

Acknowledgments
We thank Hannah Gommerstadt, Yong Kiam Tan and Stefan Mitsch for feedback and discussions on earlier drafts of this paper, and thank the anonymous referees for their detailed comments.

This material is based upon work supported by the National Science Foundation under NSF CAREER Award CNS-1054246 and by the AFOSR under grant number FA9550-16-1-0288. The first author was supported by the Department of Defense through the National Defense Science & Engineering Graduate Fellowship Program.

References

[34] Christoph Schepen and Peter H. Schmitt. 2011. Verification of information flow properties of Java programs without approximations. In FoVeOOS (LNCS), Bernhard Beckert, Ferruccio Damiani, and Dilian Gurov (Eds.), Vol. 7421. Springer.