18-100: Intro to Electrical and Computer Engineering LAB9: ML Lab

Writeup Due: Thursday, December 1st, 2022 at 10 PM

Name: Birg Bhaldibhumi

Andrew ID: **Daraheeb**

How to submit labs:

Download from this file from *Canvas* and edit it with whatever PDF editor you're most comfortable with. Some recommendations from other students and courses that use Gradescope include:

DocHub An online PDF annotator that works on desktop and mobile platforms.

pdfescape.com A web-based PDF editor that works on most, if not all, devices.

iAnnotate A cross-platform editor for mobile devices (iOS/Android).

If you have difficulties inserting your image into the PDF, simply append them as an extra page to the END of your lab packet and mark the given box. **Do NOT insert between pages.**

If you'd prefer not to edit a PDF, you can print the document, write your answers in neatly and scan it as a PDF. (Note: We do not recommend this as unreadable lab reports will not be graded!). Once you've completed the lab, upload and submit it to Gradescope.

Note that while you may work with other students on completing the lab, this writeup is to be completed alone. Do not exchange or copy measurements, plots, code, calculations, or answer in the lab writeup.

Your lab grade will consist of two components:

- 1. Answers to all lab questions in your lab handout. The questions consist of measurements taken during the lab activities, calculations on those measurements and questions on the lab material.
- 2. A demonstration of your working lab circuits and conceptual understanding of the material. These demos are scheduled on an individual basis with your group TA.

Question:	1	2	3	Total
Points:	6	16	8	30
Score:				

Lab Outline

This lab introduces you to Google's co-lab and TensorFlow. The goal is for you to learn about machine learning and neural networks as well as to learn how to use these powerful, free tools for your own projects.

Sections

- 1. Reviewing the Source Code
- 2. Training and Evaluating your Model
- 3. Putting your Model on the Web

Required Materials

• 1x Computer w/ Web Browser

Setting Up the Environment

This lab uses the "Google Co-Lab" online environment to run code and train a neural network. For an introduction, please watch the following video: https://www.youtube.com/watch?v=vVe648dJ0dI. ¹ We recommend using Google Chrome as your browser, as Safari and Edge sometimes have issues with Co-Lab.

Option A:

- 1. Login to Google Drive (https://drive.google.com) using your Andrew ID/account and add Google Co-Lab as instructed in the video
- 2. While logged into Google using your AndrewID/account, download the file handwritingv9.ipynb from Canvas and upload it to your own Google Drive
- 3. Open the file by double clicking on it in Google Drive. It should open in the Co-Lab online editor.

Option B:

- 1. Download the file handwritingv9.ipynb from Canvas to your local machine
- 2. Go to https://colab.research.google.com/ and sign in with a Google account, e.g. your AndrewID/account.
- 3. Once logged in, go to "Upload" on the far right tab and select the handwritingv9.ipynb file and upload it.
- 4. It might take a minute or few to load so please be patient, but eventually you will be taken to the Co-Lab page and the file will be uploaded to your drive.

In the upper right, to the left of "Editing" and beneath "Comment", you'll see a "Ram/Disk" pull down. Pull it down and select "Connect to hosted runtime".

Run the code. You can either do it all at once, or step-by-step.

- To do it all at once, click on the "Runtime" menu and select "Run all". It'll take a while. You'll know it is done when a handwriting.zip file is downloaded. This file contains the model you just trained.
- To do it step-by-step, notice the numbered code blocks in the file. If you hover your mouse over a code block number, e.g. [71], it will turn into a play icon that, when pressed, will execute the corresponding code block. Walk down the file, executing each code block and waiting for it to complete, each one in turn.

¹Python 2 is no longer supported, so the choice between Python 2 and Python 3 is no longer available.

1. Reviewing the Source Code

The source code is written in the *Python programming language*. It contains lines beginning with the # character. These lines are *comments*; they explain, in English, what the code does. This lab does not require that you write code. It only requires that, with the help of these comments, you understand the code that is given and can make very small changes to it, as described later in this lab. Please review the code, especially the comments, and answer the following questions.

1 pts

1.1 What is "one hot" encoding, and why is it used?

The method of encoding each category's value as separate Boolean values, giving them their own outputs, which allows the result to be better interpreted.

1 pts

1.2 The code includes this line. In English, what does it do, and why is it needed?

```
model.add(Flatten())
```

converts the data in a 2D array into a 1D vector

1 pts

1.3 The code includes the following lines. In English, what do they do, and why are they needed?

```
for dense_layer in range (HIDDEN_LAYERS):
model.add(Dense(HIDDEN_LAYER_SIZE, activation='relu'))
```

Adds the hidden layers to the model based on parameters given prior in the code. 'relu' means that any negative value is turned into 0.

1 pts

1.4 The code includes the following line. What is achieved by using the "softmax" activation function in the output layer?

```
model.add(Dense(number_of_classes, activation='softmax'))
```

The outputs are summed up to 1.0 so they can be interpreted more as a probability rather than how 'strong' or 'weak' one output is compared to others.

1 pts

1.5 What is accomplished by "compiling" the neural network model?

Turns the model into a usable instance; like compiling a program.

1 pts

1.6 What is accomplished by "fitting" a neural network to training data?

The model is trained so that it is modified to produce a desirable output given a set of inputs.

2. Training and Evaluating Your Model

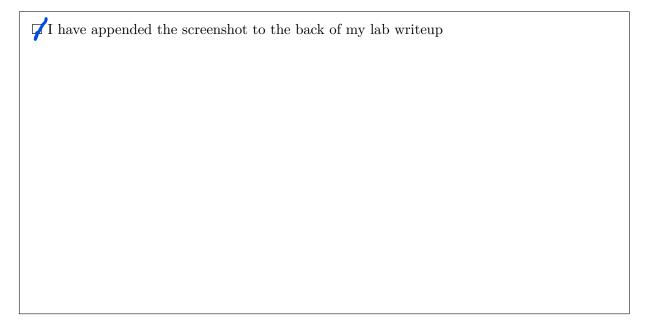

Verifying that the neural network and training parameters are set as below:

Figure 1: NN Training Parameters

Hit "Runtime \rightarrow Run all".

2.1 Get a screen capture of TensorBoard's output, adjusted to see the accuracy and loss lines, without smoothing, for both training and validation data. (Remember to set smoothing to 0.0 and hit the button, if needed, to set the scale to capture both lines.) You may need to wait a minute or two for TensorBoard to process the data and show the plots.

1 pts

2.2 Look at the plots. What do you notice about the relationship between the epoch_accuracy of the training data and the validation data? (*Hint: Recall that accuracy is the rate at which the neural network's strongest output is the correct output*.)

The accuracy of the training data approaches 1 sharply and stays there, while the accuracy of the validation data plateaued around only 0.55. The model performed quite poorly with the validation data despite doing well with the training data.

2.3 What do you notice about the shapes of the epoch_loss curves? (*Hint: Recall that the loss is a measure of how far each output is from the 1 or 0 value it is would ideally exhibit.)*

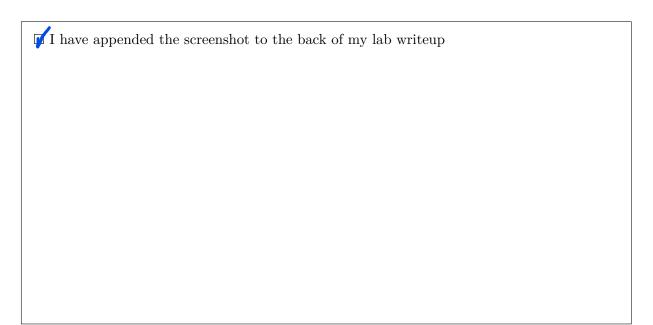
The loss curve of the training data decreases down to 0. Although the loss curve of the validation data was initially decreasing as well, it started increasing to over beyond twice the initial loss value.

1 pts

2.4 Why do you think the validation curve behaves as it does? In other words, why does it actually get worse with more training?

The model is not performing well; the training can be improved.

1 pts


2.5 Why is the effect you saw in the loss curves not apparent in the accuracy curves?

Loss is representative of the magnitude of errors, while accuracy represents the quantity of errors made. The two are not synonymous.

Change the code and reduce the learning rate to 1.0. Re-run the experiment. It is suggested that you "Runtime \rightarrow Run all" again.

2 pts

2.6 Paste a copy of the TensorBoard plot below. Show both the new and old runs without smoothing and with proper scaling.

1 pts

2.7 What do you notice changed most with a reduced learning rate? Why do you think this happened? Was there any benefit to a higher learning rate?

The loss was much lower with a lower learning rate as more tweaks are made to the model compared to higher learning rates. This comes at the cost of time however, as higher learning rates are able to converge much more quickly than lower ones.

2 bonus

1 pts

2.8	Modify the learning rate schedule function to tune the learning rate to achieve the benefit(s) yo listed for (10) above while avoiding the problem(s) you noted in (8) above. To do this, you might consider, for example, during which epoch(s) the benefit(s) of a higher learning rate began to diminish and during which epoch(s) the problems began to arise. To get credit, please paste you modified code and a new TensorBoard plot showing the improvement below.			
	Modified Code			
	TensorBoard Plot			
	\Box I have appended the screen shot to the back of my lab writeup			
2.9	Why do you think the training set continues to outperform the validation set so greatly?			
	The training set is what is used to train and tweak the model, while the validation set evaluates how effective the model actually is. As the current model quite			

1 pts

- **2.10** Change exactly one of the NN training parameters shown in Figure 1 to reduce validation loss below 0.33 or to achieve an accuracy of > 90%. What one parameter did you change, what did you change it to, and why?
 - Hint 1: Consider your answer above.
 - **Hint 2:** Try making big changes, e.g. doubling or halving values and testing.
 - Hint 3: Try making only one change at a time and evaluating it.
 - Hint 4: If something works, try doing it, e.g. doubling it or halving it, again
 - **Hint 5:** Remember, you only need to, and should only, change one variable, not multiple.

I changed TRAIN_SIZE from 20 to 2000. I thought that the model should perform better if it has more data to train with, and it did perform better with every increase of the parameter.

2 pts

2.11 Paste a copy of your new TensorBoard plot below. Please uncheck or delete runs as needed to plot only one pair of training and validation curves that meet the criteria above:

✓I have appended the screenshot to the back of my lab writeup

1 pts

2.12 Set the training set size to 5000 and the number of epochs to 20. This should be plenty to get pretty good results from the presently defined architecture. You can take our word for it, or experiment to find your own personal best. Please give each of the range of validation losses and the range of the validation accuracies shown in the last 3 epochs.

validation loss: 0.1196 - 0.1371

validation accuracy: 0.9800 - 0.9800

1 pts

2.13 Change the number of hidden layers to 2, the size of each hidden layer to 128. Please give each of the range of validation losses and the range of the validation accuracies shown in the last 3 epochs and explain how they compare to your result above?

validation loss: 0.0639 - 0.2634 validation accuracy: 0.92 - 0.99 it performed better than the previous result in both accuracy and loss

1 pts

2.14 What do you think accounts for the change you observed?

Increasing the size and number of hidden layers increase the amount of connections within the neural network, allowing the model to be tweaked more precisely and accommodate for more nuances in the data.

1 bonus

2.15 At this point, feel free to work on your personal best. If you'd like, expand the validation set size to get a better and more consistent metric. If you've improved upon the performance above, paste your metrics, as above, and a screenshot of TensorBoard plots, as were done earlier, below. If not, just check "N/A" below.

validation loss: 0.0032 - 0.3097; validation accuracy: 0.9800 - 1.0000

I have appended the screen shot to the back of my lab writeup \square N/A

Make sure to save and download your best model, even if it's not performing too well. You'll need this model for the next part of the lab. To do this, you'll need to uncomment and run the necessary code segments to download the handwriting.zip file.

3. Putting Your Model On the Web

You previously downloaded a model file, handwriting.zip. If you downloaded multiple copies, please be careful to identify and use the model trained as best as you were able to train it, likely your most recent download. Unzip the model .zip file, leaving you with a directory tree. Important: The .zip archive contains a directory/folder named model. Please be sure it is unzipped into a location where it can do this, or it could overwrite files in an unrelated "model" directory, should one already exist in your file system.

In order to use your model via the Web, you need your own Web space. One easy way to achieve this is with your Andrew File System (AFS) UserWeb page. See here for more information: https://www.cmu.edu/computing/services/comm-collab/collaboration/afs/.

For example, one of your instructors created the following Web space https://www.andrew.cmu.edu/user/tzajdel/. The model uploaded was not trained particularly well, but you can play around with it by visiting handwriting.html. You can also easily upload your own webpage with your trained model by using a series of commands in a terminal window.

Whichever OS you are using, you need to open a command line interface to upload your files to the AFS. On a Windows machine, open a PowerShell window in the directory where your html files and model folder are stored on your computer. Hold Shift while Right Clicking, then select "Open PowerShell window here." On a MacOS machine, navigate to the folder containing your web html files and model folder, then click Finder > Services > New Terminal at Folder. If you are using a Linux machine, you need to open a Terminal window in the appropriate folder (you probably aren't GNU to this, Linux User).

Then, in your command line window on your system of choice, type the following command: scp -r * andrewid@unix.andrew.cmu.edu:~/www/

Replace andrewid with your AndrewID. Enter your AndrewID password when prompted and press Enter. If successful, you will see a list of files and folders uploaded to your www folder on AFS. This is the folder that is publicly accessible on the web. (Command line aside for those interested: To verify that these files exist, you can Secure Shell into your AFS from your command line window: ssh andrewid@unix.andrew.cmu.edu and navigate around your file system. 1s will list all the folders in a directory. cd foldername will navigate to that folder, and cd .. will go back one folder level.)

When your webpage is uploaded to your AFS www folder, you then need to publish it. Open a web browser and go to https://andrew.cmu.edu/kweb/publish/. Enter your AndrewID and then click Publish! Once you've done that, your files should be publicly available on https://www.andrew.cmu.edu/user/andrewid/ where andrewid is of course your AndrewID. If all goes well, you should see these files in your web space.

Go to the handwriting.html page within your web space and play with the applet a bit.

0		
~	nto	

3.1	Draw a single digit number in the black box, click the "Predict" button to see how your neural
	network identifies it, hit the "Clear" button, and repeat a few times. The first time you use the
	page, it might take a few seconds to a minute to load before the "Predict" button will work.
	Paste a screenshot of the output below:

\square I have appended the screenshot to the back of my lab writeup	

1 pts

3.2 Draw a smiley face, a train, plane, automobile, or whatever. Anything but a digit. Hit predict. Paste a screenshot of the result below:

have appended the screenshot to the back of my lab writeup	

1 pts

3.3 How did the neural network react to this non-digit input? Why?

3.5	Consider your answer to the two questions above and think about the use of Machine (ML), such as trained neural networks, in systems which interact with humans and human experience. What might be an important lesson to learn about training real-worl to interact with people? If it helps, consider the population of people used to train neural and the much larger population of people in the world.