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ABSTRACT
Consider global-Earliest-Deadline-First scheduling on a mul-
tiprocessor assuming (i) constrained-deadline sporadic tasks:
a task generates a sequence of jobs and the deadline of a job
is at most the minimum inter-arrival time of the task gen-
erating the job; (ii) stage-parallelism: a task comprises at
least one stage, a stage comprises at least one segment, and
a segment is allowed to execute only if all segments of the
previous stage have finished; and (iii) contention for shared
resources in the memory system — cache eviction, reorder-
ing in memory controller (MC), memory bus contention. We
present an algorithm that (i) performs schedulability testing;
(ii) configures virtual-to-physical address translation (VPAT)
so a cache block fetched to the last-level cache by one task is
not evicted by another; (iii) configures VPAT to reduce the
reordering effect (REE) in the MC; and (iv) considers con-
tention for the memory bus. Our algorithm solves a Mixed-
Integer Linear Program (MILP); we have implemented a tool
and tested it. Across all of our experiments, we found that
the maximum time it takes to finish is 18h and the median
time is 2.5h. We have also done preliminary testing on a real
computer platform.

1. INTRODUCTION
Multicore processors are the norm today. The trend is that

the number of processors on a chip increases exponentially
while the clock frequency stays constant. And software prac-
titioners are under pressure to deliver improved functionality
which requires more CPU cycles. This trend makes it increas-
ingly common that a job has execution requirement so large
that executing it sequentially causes a deadline miss; hence,
the only way for a job to meet its deadline is to perform some
execution in parallel. This brings the challenge:

C1. Schedule software where some parts can exe-
cute in parallel so that all deadlines are met; also
prove before run-time that deadlines are met.

The timing of software executing on a COTS multicore pro-
cessor depends not only on the processor scheduler but also on
contention for shared resources in the memory system. This
includes (i) the last-level cache (LLC) shared between proces-
sors, (ii) the row buffer in each memory bank (MB) storing
the most recently accessed row, and (iii) the memory bus
(the bus between the memory controller (MC) and DRAM
modules). A cache memory is typically organized as a set of
cache sets where certain bits of the physical address (PA) of a
memory access determine which cache set the memory access
should use. Hence, if the virtual-to-physical address transla-
tion (VPAT) is set up such that no two memory accesses of
different tasks use the same cache set, then it is guaranteed
that a cache block fetched into the cache by one task cannot
be evicted by another task. Also, DRAM modules are typi-
cally organized as a set of MBs with each MB having multiple
rows and each MB having one row buffer which stores the
data of the most recently accessed row. When a memory ac-

Solution Addresses challenges
C1 C2 C3 C4

[17, 27, 13, 10, 9, 22, 4, 7, 2, 16, 8, 18, 24] Yes No No No
[21, 29] No Yes No No
[19, 25] No No Yes No
[28] No Yes Yes No
[26, 11, 20, 23, 31, 30, 14] No No No Yes
This paper Yes Yes Yes Yes

Table 1: Summary of the state of art.

cess experiences a miss in the LLC, it (i) precharges the MB,
that is, the data in the row buffer of the MB is written back
to its row in the MB and then (ii) activates the MB, that is,
load a row in the MB (given by the address of the PA) to
the row buffer of the MB and then (iii) reads data from this
buffer and transfers the data to the processor (if the memory
access is a read) or writes data to this row buffer (if the mem-
ory access is a write). If the row needed for a memory access
is already loaded in the row buffer, then precharge and acti-
vate are not performed and hence execution is faster. Hence,
MCs reorder memory accesses so memory accesses to the row
that is in the row buffer get ahead in certain queues in the
MC. Thus, a memory access can be delayed because other
memory accesses, of other tasks, get ahead in the queue —
reordering effect (REE). Hence, if VPAT is set up so that a
MB is accessed by at most one task then it is guaranteed that
no task can suffer from this REE. Also, a memory access can
be delayed because other accesses use the memory bus. This
brings the challenges:

C2. Configure VPAT so that a cache block fetched
to the LLC by one task cannot be evicted by an-
other.

C3. Configure VPAT so that reordering of mem-
ory accesses from different tasks are avoided and if
they occur, then the schedulability test computes
an upper bound on extra execution time due to
reordering.

C4. Compute an upper bound on extra execu-
tion time caused by processors sharing the mem-
ory bus.

Unfortunately, the literature offers no solution for all of these
challenges — see Table 1.

Therefore, this paper presents a solution for all of these
challenges. We assume global-EDF (gEDF) and reformulate a
previously-known schedulability test as a Mixed-Integer Lin-
ear Program (MILP) and extend this formulation to (i) configure
VPAT so a cache block fetched to the LLC by one task is not
evicted by another, (ii) configure VPAT to try to eliminate
extra execution time caused by the REE in the MC; if not
possible, the REE is considered in the schedulability test, and
(iii) consider contention for the memory bus. We also present
a tool1 that implements this theory and evaluate it.

1See http://www.andrew.cmu.edu/user/banderss/projects.html
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Figure 1: The parallel task model used in this paper.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the system model. Section 3 adapts a previ-
ously known schedulability test to a MILP. Section 4 presents
constraints that express an upper bound on the execution
time of a segment due to memory contention and how it de-
pends on VPAT, and also expresses other constraints. Sec-
tion 5 puts it all together as a solution for the four challenges.
Discussions, evaluations, and conclusions follow.

2. SYSTEM MODEL
Fig. 1 shows the parallel task model we use and Fig. 2

shows the hardware model we use. We consider a system
with m processors of speed s and a taskset τ . A task τi in τ
is characterized by Ti, Di, nsi, nsegi,j, and Ci,j . The interpre-
tation of these parameters is that (i) τi generates a sequence
of jobs with arrival times of two consecutive jobs of τi sepa-
rated by at least Ti; (ii) a job of τi needs to finish execution
by its absolute deadline (the absolute deadline of a job of τi is
Di time units after its arrival); and (iii) job execution is de-
scribed with stages where nsi denotes the number of stages of
a job of τi and nsegi,j denotes the number of segments in stage
j of a job of τi. A segment executing contiguously for ∆ time
units performs ∆× s units of execution. A segment of a job
finishes when it has performed a number of units of execution
equal to its execution requirement. For a segment of a job, if
the segment is in stage j of τi then its execution requirement
is at most Ci,j assuming that it does not experience memory
contention; if it experiences memory contention then its ex-
ecution requirement may be larger (explained later). When
a job of τi arrives, all the nsegi,1 segments of stage 1 of τi
become eligible for execution. For each j ≥ 2, at the time
when all the nsegi,j−1 segments of stage j − 1 of τi have fin-
ished, all the nsegi,j segments of stage j of τi become eligible
for execution. A segment becomes non-eligible when it has
finished execution. A job of τi finishes when all the nsegi,nsi

segments of stage nsi of this job have finished. We assume
∀τi ∈ τ : Di ≤ Ti — such tasksets are called constrained-
deadline sporadic tasksets.

gEDF works as follows: (i) jobs are assigned priorities such
that if a job has higher priority than another job then the
absolute deadline of the former is no later than the absolute
deadline of the latter, (ii) a segment inherits the priority of
the job it belongs to, and (iii) at each instant, if at most m
segments are eligible for execution at this instant, then all of
them execute at this instant; if m + 1 or more segments are
eligible for execution, then the m highest priority segments
at this instant are selected for execution at this instant. A
taskset τ is gEDF-schedulable on a computer with m proces-
sors of speed s if, for each jobset that τ can generate, for each
schedule that gEDF can generate for this jobset, it holds that
each job finishes no later than its absolute deadline.

Each segment has a virtual address (VA) space. The VA
space is organized into pages of size PAGESIZE bytes. (For
example, PAGESIZE=4096 bytes.) The memory footprint
of a segment of stage j of τi is at most npi,j pages. Each
page is associated with a range of VA and a page is associ-

Processor 0

Private cache(s)

Processor m-1

Private cache(s)
…

Last-level cache (LLC) shared between processors

Cache set       
0

(belongs 
to cache 
color 0)

Cache set       
1

(belongs 
to cache 
color 0)

…
Cache set       

31
(belongs 
to cache 
color 0)

Cache set       
32

(belongs 
to cache 
color 1)

Cache set       
33

(belongs 
to cache 
color 1)

…
Cache set

(belongs 
to cache 

color H-1)

Memory controller

Queue for memory bus

…

memory bus

…

Memory bank 0

Row buffer

Row 0

Row 1

Row …

Memory bank B-1

Row 0

Row 1

Row …

Row buffer

Queue for 
memory bank

B-1

Queue for 
memory bank

0

Figure 2: The hardware model we use.
ated with a frame of physical memory (of size PAGESIZE
bytes) and this frame is associated with a range of PAs. The
log2 PAGESIZE least significant bits of the PA are called
frame offset. The other bits of the PA are called frame index.
The log2 PAGESIZE least significant bits of the VA are called
page offset. The other bits of the VA are called page index. A
VA is mapped to a PA as follows: (i) the frame offset is iden-
tical to the page offset and (ii) the frame index is obtained
through VPAT from the page index (typically through a page
table in an operating system). For convenience, seg(i, j, g)
denotes the gth segment of stage j of τi and page(i, j, g, p)
denotes page p of seg(i, j, g).

In order to allow segments to share data, we introduce shfr
that specifies the requirements that this imposes on VPAT.
shfr is a set containing 8-tuples with the interpretation that
for each 8-tuple 〈i, j, g, p, i′, j′, g′, p′〉 it is required that page(i, j, g, p)
and page(i′, j′, g′, p′) are mapped to the same frame.

In previous work [14], we presented and validated a model
of the memory system of typical COTS multicore processor
based systems. In this paper, we extend this model to a more
fine-grained description of memory accesses. Our model is as
follows. The LLC (see LLC in Fig. 2) is shared between pro-
cessors. This cache is organized as a set of cache sets where
certain bits in the PA determine which cache set a memory
access is associated with. Some of these bits are part of the
frame index and some are part of the frame offset. When a
memory access experiences a miss in LLC, the memory access
is passed on to the MC and identifies which MB the mem-
ory access is associated with (certain bits in the frame index
determine this) and which row in this MB it is associated
with (other bits in the frame index determine this) and it
is inserted in a queue for memory accesses to this MB. The
queuing discipline First-Ready-First-Come-First-Served (FR-
FCFS) is used. With this queuing discipline, FCFS is used
but with the following exceptions (i) a memory access can
be prevented (to be explained later) from being performed
at certain instants because there are DRAM timing parame-
ters which state that a certain part of a DRAM access must
wait until a certain timing requirement (based on previous
memory accesses) is satisfied and (ii) elements in the queue
of a MB can be reordered so that a memory access gets to
the head of the queue when this memory access is associ-
ated with the row that is currently loaded in the row buffer.
When a memory access gets to the head of the queue of the
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MB, it contends for the memory bus with memory accesses
of other MB. When a memory access is granted the memory
bus, the memory access precharges its associated MB (that
is, the data in the row buffer is written back to its row in the
MB) and then the memory access activates its associated row
in its associated MB (that is, the data in this row is loaded
to the row buffer) and finally it transfers data (from the row
buffer of the MB to the MC if the memory access is a read;
the other direction if it is a write). If the row associated with
the memory access is already in the row buffer then precharge
and activate are not performed.

In many of today’s processors, the bits in the PA from
which the cache set index of LLC is obtained overlap with
the bits that determine the frame index (see [28]). Also, in
many of today’s processors, the bits in the PA from which
the MB index is obtained overlap with the bits that deter-
mine the frame index (see [28]). Therefore, one can use a
technique called cache coloring [21, 29, 28, 15] which parti-
tions memory frames of physical memory into cache colors so
if two memory accesses belong to different frames and these
two memory frames belong to two different cache colors, then
one memory access cannot evict a cache block fetched to LLC
by the another memory access. Also, one can use a technique
called bank coloring [28] which partitions memory frames of
physical memory into MB colors so if two memory accesses
belong to different frames and these two memory frames be-
long to two different MB colors, then one memory access
cannot evict a row in a MB that another memory access has
loaded. Typically an MB color is a single MB. But a cache
color typically consists of multiple cache sets. Let H denote
the number of cache colors and let B denote the number of
MB colors. MEMCAP denotes the amount of physical mem-
ory in the computer, measured in the number of frames. Let
CAP = MEMCAP/(H ×B). (For example, in a typical per-
sonal computer: MEMCAP = 231/4096 = 219,H = 32,B =
16, and this yields CAP = 219/(32 × 16) = 210). Note that
in some modern multicore chips, the number of cache colors
is affected by a hash function within the LLC [15].

One factor that determine the execution time of a program
is its self-eviction of blocks in its cache which, in turn, de-
pends on VPAT. Hence, if map is the VPAT of all tasks in the
system then Ci,j(map) is an upper bound on the execution
requirement of a segment in stage j of τi for the case that this
segment does not experience contention for resources in the
memory system from other segments. Also, MAi,j,p(map) is
an upper bound on the number of memory accesses reaching
the MC from page p of a segment in stage j of τi for the
case that this segment does not experience contention for re-
sources in the memory system from other segments. Let Ci,j
be a value such that ∀map : Ci,j(map) ≤ Ci,j . Let MAi,j,p

be a value such that ∀map : MAi,j,p(map) ≤ MAi,j,p. In
practice, if the VPAT map is known, then it is possible to
obtain Ci,j(map) and MAi,j,p(map) (e.g. using a worst-case
execution-time analysis tool) but obtaining Ci,j and MAi,j,p

is very expensive because they describe behavior of the soft-
ware for all possible VPAT of the system. Even if Ci,j and
MAi,j,p are obtained, it can happen that we choose a VPAT
map such that Ci,j is much higher than Ci,j(map) (and anal-
ogously for MAi,j,p(map)). This would result in large pes-
simism. Also, note that in real systems, there are private
caches. Typically, the cache set in the private cache that is
used by a memory access is detemined by the VA of the mem-
ory access. Thus, cache coloring cannot control the eviction
in private caches. We defer discuss of these issues to Sec-
tion 6. For now, assume Ci,j and MAi,j,p are known.

Let MBCF denote the memory bus clock frequency and let
tCK = 1/MBCF. We assume (as do many previous studies

[30, 23, 20, 11]) that a processor is stalled when it waits for
memory. Let LPRE

inter denote the time required for precharge;
LACTinter is the time required for activate; LRW

inter is the time for
data transfer. Then, using [14], these can be computed from
parameters available in DRAM datasheets [12] as follows:

LPRE
inter =tCK

LACTinter = max(tRRD, tFAW − 3× tRRD)× tCK

LRW
inter = max(WL +

BL

2
+ tWTR,CL +

BL

2
+ 2−WL)× tCK

Linter =LPRE
inter + LACTinter + LRW

inter

We will also use parameters which describe how one mem-
roy access can experience interference from other memory
accesses. Lconf denotes row-conflict service time. Lconhit(x)
is a function which describes the time it takes to serve x con-
secutive memory accesses to the same row in the same MB if
the row was already activated. These can be computed [14]
from parameters available in DRAM datasheets [12] as:

Lconf =(tRP + tRCD + max(CL +
BL

2
+ 2,

WL +
BL

2
+ max(tWTR, tWR)))× tCK

Lconhit(x) =(d
x

2
e × (WL +

BL

2
+ tWTR)+

b
x

2
c × CL + max(tWR − tWTR))× tCK

For convenience, we use the following notation. P de-
notes the least common multiple of Ti values. DMAX =
maxτi∈τ Di. Nre is a hardware limit on reordering (to be
discussed later). {a..b} denotes the set of integers greater
than or equal to a and less than or equal to b. Let s.t.
mean such that and : mean it holds that. (∀t ≥ 0 : x)
means the predicate (∀t s.t. t ≥ 0 : x). lhs means left-hand
side and rhs means right-hand side. We define UBNOMR =∑
τi∈τ (maxj∈{1..nsi} nsegi,j) meaning upper bound on the number

of outstanding memory requests and define LL = min(m −
1,UBNOMR− 1) and LH = LL +Nre.

Tasks typically perform execution and access memory in
an initialization phase which does not have real-time require-
ments. This execution and memory accesses are not con-
sidered as a job but the pages accessed need to be mapped
to memory frames. Therefore, INO indicates the number of
pages accessed during initialization.

3. SCHEDULABILITY ANALYSIS FOR GEDF
OF PARALLEL TASKS WITHOUT MEM-
ORY CONTENTION

The literature offers many sufficient schedulability tests for
gEDF for tasks that are not parallel — see for example [3, 6,
5]. Of particular interest is [5] which offers a schedulability
test with speedup factor two. The key to its good perfor-
mance is the use of ffdbf — forced-forward demand-bound
function — for describing the maximum amount of execution
a task can demand in a time interval, rather than using the
traditional dbf — demand-bound function. This schedulabil-
ity test [5] states that if there exists a σ such that σ is at least
as large as the density of each task and for each value of t the
sum of ffdbf of tasks is at most a certain value then the taskset
is gEDF-schedulable. (If such a σ exists then it is called a wit-
ness.) Later work [2] extended this for parallel tasks by defin-
ing ffdbf for parallel tasks. Fig. 3 shows it. In Fig. 3, f(τ,m, s)
is a schedulability test. It takes as input a taskset τ , m, and
s and outputs a boolean such that if this boolean is true then
τ is gEDF-schedulable on m processors of speed s. f(τ,m, s)
is evaluated by checking if there exists a σ such that σ is at
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ffdbf(τi, t, v, s)
def
= b

t

Ti
c × Ci + Ci −WJ(τi, (Di − (t mod Ti))× v, s)

h(τ,m, s, σ, t)
def
= (

∑
τi∈τ

ffdbf(τi, t,
σ

s
, s) ≤ ((m− (m− 1)×

σ

s
)× t× s))

f(τ,m, s)
def
=
(
∃σ s.t. (σ ≥ max

τi∈τ

ηi

Di
) ∧ (∀t ≥ 0 : h(τ,m, s, σ, t))

)
f(τ,m, s)⇒ τ is gEDF schedulable on m processors of speed s if tasks do not experience memory contention

Figure 3: Previously known schedulability analysis for gEDF scheduling of parallel tasks [2].

least as large as the density of each task and for each value of
t the sum of ffdbf of tasks is at most (m−(m−1)× σ

s
)×t×s.

Intuitively, ffdbf(τi, t, v, s) expresses an upper bound on the
amount of time that a task τi can perform in a time inter-
val of duration t if a deadline miss occurred at the end of
this time interval and the parameter v is used to describe
the amount of idleness in the system. Hence, ffdbf(τi, t, v, s)
comprises two parts: execution of jobs of τi that arrived be-
fore the beginning of this time interval and execution of jobs
of τi that arrived after this time interval. An upper bound
on the former is Ci −WJ(τi, (Di − (t mod Ti)) × v, s). An
upper bound on the latter is b t

Ti
c ×Ci. Together, this yields

ffdbf(τi, t, v, s) as expressed in Fig. 3. See [5] for a discussion
about ffdbf(τi, t, v, s) and [2] for WJ for parallel tasks

We will now discuss how to modify this schedulability test
and then rewrite it as MILP. Note that evaluating f(τ,m, s)
in Fig. 3 is non-trivial because it requires that one finds a
σ such that a certain condition is true and here σ is a real
number. If instead, we change this expression so that we only
check a finite number of possible values of σ then we get a
schedulability test with a slight increase in pessimism but it
comes with the benefit of being easier to express as MILP. We
choose a value of K that is a positive integer (e.g. K = 20)
and check only those σ such that there is a k ∈ {1..K} such
that σ = (k/K)× s. This yields:

h∗(τ,m, s, k,K, t)
def
= (

∑
τi∈τ

ffdbf(τi, t,
k

K
, s) ≤

(m− (m− 1)×
k

K
)× t× s)

f∗(τ,m, s,K)
def
=
(
∃k ∈ {1..K} s.t. (

k × s
K
≥ max
τi∈τ

ηi

Di
) ∧

(∀t ≥ 0 : h∗(τ,m, s, k,K, t))
)

f∗(τ,m, s,K)⇒ τ is gEDF schedulable on m processors of

speed s if tasks do not experience memory contention

Clearly, t = bt/P c×P+t mod P . Thus
∑
τi∈τ ffdbf(τi, t,

k
K
, s)

= bt/P c×P×(
∑
τi∈τ Ci/Ti)+

∑
τi∈τ ffdbf(τi, t mod P, k

K
, s).

Thus, (∀t ≥ 0 : h∗(τ,m, s, k, K, t)) can be evaluated by only
considering t ≤ P . Hence, f∗(τ,m, s,K) is true if and only if

the following is satisfiable:
∑K
k=1 wik ≥ 1 and

∀k ∈ {1..K} : wik ∈ {0, 1}
∀〈i, k〉 s.t. (τi ∈ τ) ∧ (k ∈ {1..K}) :

(wik = 1)⇒ (ηi ≤
s× k ×Di

K
)

∀k ∈ {1..K} : (wik = 1)⇒ (∀t ∈ [0, P ] : h∗(τ,m, s, k,K, t))

(In the above expression, wik should be read as witness.)
Observe that lhs of the inequality defining h∗(τ,m, s, k,K, t)
is a piecewise linear function of t and rhs of the inequality
defining h∗(τ,m, s, k,K, t) is a linear function of t. Hence,
when evaluating (∀t ∈ [0, P ] : h∗(τ,m, s, k,K, t)) it is only
necessary to evaluate h∗(τ,m, s, k,K, t) for the following val-
ues of t: (i) values of t such that the derivative of the piecewise
linear function changes, (ii) t = P , and (iii) t = 0. With re-
spect to (iii), note that h∗(τ,m, s, k,K, 0) is true and hence
it does not need to be checked. With respect to (ii), note
that h∗(τ,m, s, k,K, P ) can be rewritten as ((

∑
τi∈τ Ci/Ti) ≤

(m − (m − 1) × (k/K)) × s). With respect to (i), note that
for t such that there is a positive integer q′ and a task τi′ ∈ τ
such that t = (q′−1)×Ti′ +Di′ − (ηi′/s)× (K/k), the above
mentioned derivative changes but this t is dominated by an-
other t in the condition and hence, this t does not need to
be checked. Hence, f∗(τ,m, s,K) is true if and only if the

following is satisfiable:
∑K
k=1 wik ≥ 1 and

∀k ∈ {1..K} : wik ∈ {0, 1}
∀〈i, k〉 s.t. (τi ∈ τ) ∧ (k ∈ {1..K}) :

(wik = 1)⇒ (ηi ≤
s× k ×Di

K
)

∀〈i′, q′, j′, f ′, k〉 s.t. (τi′ ∈ τ) ∧ (q′ ∈ {1..
P

Ti′
}) ∧

(j′ ∈ {1..nsi′}) ∧ (f ′ ∈ {0, 1}) ∧ (k ∈ {1..K}) : ti′,q′,j′,f ′,k =

(q′ − 1)× Ti′ +Di′ − ((
∑

j′′∈{1..j′−1}
spi′,j′′ ) + f ′ × bspi′,j′ )×

K

k

∀〈i′, q′, j′, f ′, k〉 s.t. (τi′ ∈ τ) ∧ (q′ ∈ {1..
P

Ti′
}) ∧

(j′ ∈ {1..nsi′}) ∧ (f ′ ∈ {0, 1}) ∧ (k ∈ {1..K}) : (wik = 1)⇒

(
∑
τi∈τ

ffdbf(τi, ti′,q′,j′,f ′,k,
k

K
, s) ≤

(m− (m− 1)×
k

K
)× ti′,q′,j′,f ′,k × s)

Note that in the expressions above, we use primed variables
to indicate variables that are used for computing t. For ex-
ample, i = 3 means that we are computing ffdbf for task
τ3. But i′ = 3 means that we are computing a t and it is
approximately three times T3.

We will now rewrite ffdbf(τi, ti′,q′,j′,f ′,k,
k
K
, s) to a form

closer to MILP. Define Ii,q,i′,q′,j′,f ′,k so that Ii,q,i′,q′,j′,f ′,k =
1 if bti′,q′,j′,f ′,k/Tic = q; otherwise Ii,q,i′,q′,j′,f ′,k = 0. De-
fine ri,i′,q′,j′,f ′,k = ti′,q′,j′,f ′,k mod Ti. Define aji,i′,q′,j′,f ′,k
so that (Ii,q,i′,q′,j′,f ′,k = 1)⇒ (aji,i′,q′,j′,f ′,k = (q+ 1)×Ci).
(Intuitively, Ii,q,i′,q′,j′,f ′,k can be read as an integer num-
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cui =

nsi∑
j=1

(
nsegi,j × cui,j

)
etaui =

nsi∑
j=1

(
d

nsegi,j

m
e × cui,j

)
bspui,j =

cui,j

s
× b

nsegi,j

m
c spui,j =

cui,j

s
× d

nsegi,j

m
e (1)

∀〈i′, q′, j′, f ′, k〉 : (wik = 1)⇒ (ti′,q′,j′,f ′,k = (q′ − 1)× Ti′ +Di′ − ((
∑

j′′∈{1..j′−1}
spui′,j′′ ) + f ′ × bspui′,j′ )× (K/k)) (2)

∀〈i, i′, q′, j′, f ′, k〉 : ti′,q′,j′,f ′,k = (
∑

q∈{1..P/Ti}
Ii,q,i′,q′,j′,f ′,k × q × Ti) + ri,i′,q′,j′,f ′,k (3)

∀〈i, i′, q′, j′, f ′, k〉 :
∑

q∈{0..P/Ti}
Ii,q,i′,q′,j′,f ′,k = 1 (4)

∀〈i, i′, q′, j′, f ′, k〉 : ri,i′,q′,j′,f ′,k ≤ Ti (5)

∀〈i, q, i′, q′, j′, f ′, k〉 : (Ii,q,i′,q′,j′,f ′,k = 1)⇒ (aji,i′,q′,j′,f ′,k = (q + 1)× cui) (6)

∀〈i, i′, q′, j′, f ′, k〉 : fii,i′,q′,j′,f ′,k + (
∑

j∈{1..nsi}
sfi,j,i′,q′,j′,f ′,k) + (

∑
j∈{1..nsi}

ssi,j,i′,q′,j′,f ′,k) + thi,i′,q′,j′,f ′,k = 1 (7)

∀〈i, i′, q′, j′, f ′, k〉 : (fii,i′,q′,j′,f ′,k = 1)⇒ ((Di − ri,i′,q′,j′,f ′,k)× (k/K) ≤ 0) (8)

∀〈i, j, i′, q′, j′, f ′, k〉 : (sfi,j,i′,q′,j′,f ′,k = 1)⇒ (
∑

j′′∈{1..j−1}
spui,j′′ ≤ (Di − ri,i′,q′,j′,f ′,k)×

k

K
≤ (

∑
j′′∈{1..j−1}

spui,j′′ ) + bspui,j) (9)

∀〈i, j, i′, q′, j′, f ′, k〉 : (ssi,j,i′,q′,j′,f ′,k = 1)⇒ ((
∑

j′′∈{1..j−1}
spui,j′′ ) + bspui,j ≤ (Di − ri,i′,q′,j′,f ′,k)×

k

K
≤

∑
j′′∈{1..j}

spui,j′′ ) (10)

∀〈i, i′, q′, j′, f ′, k〉 : (thi,i′,q′,j′,f ′,k = 1)⇒ (
∑

j′′∈{1..nsi}
spui,j′′ ≤ (Di − ri,i′,q′,j′,f ′,k)× (k/K)) (11)

∀〈i, i′, q′, j′, f ′, k〉 : (fii,i′,q′,j′,f ′,k = 1)⇒ (wi,i′,q′,j′,f ′,k = 0) (12)

∀〈i, j, i′, q′, j′, f ′, k〉 : (sfi,j,i′,q′,j′,f ′,k = 1)⇒ (wi,i′,q′,j′,f ′,k = (
∑

j′′∈{1..j−1}
nsegi,j′′ × cui,j′′ )+

((Di − ri,i′,q′,j′,f ′,k)× (k/K)− (
∑

j′′∈{1..j−1}
spui,j′′ ))×m× s) (13)

∀〈i, j, i′, q′, j′, f ′, k〉 : (ssi,j,i′,q′,j′,f ′,k = 1)⇒ (wi,i′,q′,j′,f ′,k = (
∑

j′′∈{1..j−1}
nsegi,j′′ × cui,j′′ )+

bspui,j ×m× s+ ((Di − ri,i′,q′,j′,f ′,k)× (k/K)− (
∑

j′′∈{1..j−1}
spui,j′′ )− bspui,j)× (nsegi,j mod m)× s) (14)

∀〈i, i′, q′, j′, f ′, k : (thi,i′,q′,j′,f ′,k = 1)⇒ (wi,i′,q′,j′,f ′,k = cui) (15)

∀〈i′, q′, j′, f ′, k〉 : (wik = 1)⇒ ((
∑
τi∈τ

(aji,i′,q′,j′,f ′,k − wi,i′,q′,j′,f ′,k)) ≤ (m− (m− 1)× (k/K))× ti′,q′,j′,f ′,k × s) (16)

∀k : (wik = 1)⇒ ((
∑
τi∈τ

cui/Ti) ≤ (m− (m− 1)× (k/K))× s) (17)

∀〈i, k〉 : (wik = 1)⇒ (etaui ≤ (k/K)× s×Di) (18)

K∑
k=1

wik ≥ 1 (19)

Figure 4: Schedulability analysis for gEDF scheduling of parallel tasks formulated as a MILP.

cui,j ∈ R≥0, cui ∈ R≥0, etaui ∈ R≥0,bspui,j ∈ R≥0, spui,j ∈ R≥0, ti′,q′,j′,f ′,k ∈ R≥0, Ii,q,i′,q′,j′,f ′,k ∈ {0, 1}, ri,i′,q′,j′,f ′,k ∈ R≥0,

aji,i′,q′,j′,f ′,k ∈ R≥0,fii,i′,q′,j′,f ′,k ∈ {0, 1}, sfi,j,i′,q′,j′,f ′,k ∈ {0, 1}, ssi,j,i′,q′,j′,f ′,k ∈ {0, 1}, thi,i′,q′,j′,f ′,k ∈ {0, 1},wi,i′,q′,j′,f ′,k ∈ R≥0,

wik ∈ {0, 1},mbi,j,g,b ∈ Z≥0,mmboi,j,g,b ∈ Z≥0, oi,j,g,p,h,b ∈ {0, 1}, inoh,b ∈ Z≥0, xi,j,g,h ∈ {0, 1}, cmi,j,g ∈ R≥0, sei,j,g ∈ {0, 1},
b1i,j,g,b ∈ {0, 1}, b2i,j,g,b ∈ {0, 1}, b3i,j,g,b ∈ {0, 1}, b4i,j,g,b ∈ {0, 1}, bui,j,g,b ∈ {0, 1}, coati,j,g,b ∈ R≥0, oaoi,j,g,b ∈ Z≥0, oati,j,g,b ∈ Z≥0

τi ∈ τ, j ∈ {1..nsi}, g ∈ {1..nsegi,j}, p ∈ {0..npi,j − 1}, q ∈ {1..P/Ti}, τi′ ∈ τ, j′ ∈ {1..nsi′}, g′ ∈ {1..nsegi′,j′},

p′ ∈ {0..npi′,j′ − 1}, q′ ∈ {1..P/Ti′}, f ′ ∈ {0, 1}, k ∈ {1..K}, h ∈ {0..H − 1}, b ∈ {0..B − 1}

Figure 5: Domains of variables and domains of indices. Here we also show domains of variables that will be
used in later sections.
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ber of jobs of task τi for a time interval of duration t. The
symbol ri,i′,q′,j′,f ′,k can be read as remainder of time. And
aji,i′,q′,j′,f ′,k can be read as execution from all integer jobs

of task τi.) Then, rewrite ffdbf(τi, ti′,q′,j′,f ′,k,
k
K
, s) as:

aji,i′,q′,j′,f ′,k −WJ(τi, (Di − ri,i′,q′,j′,f ′,k)×
k

K
, s)

Consider WJ(τi, (Di−ri,i′,q′,j′,f ′,k)× k
K
, s) in the expression

above. We will now discuss how to rewrite it so that it is on
a form closer to a MILP. One can observe (from Fig. 3) that
WJ is computed differently for three different cases. Also,
for the second case, it is necessary to compute WJS and this
is done through recursion; hence we need to know for which
value of j this recursion terminates. Therefore, we introduce
fi,sf,ss, and th as variables that indicate if a certain condi-
tion is true. If the condition is true then the variable is 1;
otherwise the variable is 0. fii,i′,q′,j′,f ′,k indicates that when

WJ(τi, (Di − ri,i′,q′,j′,f ′,k) × k
K
, s) is called, the first case in

the definition of WJ is taken. sfi,j,i′,q′,j′,f ′,k indicates that

when WJ(τi, (Di − ri,i′,q′,j′,f ′,k)× k
K
, s) is called, the second

case in the definition of WJ is taken and WJS terminates with
3rd parameter taking the value j and the first case in defi-
nition of WJS is taken. ssi,j,i′,q′,j′,f ′,k indicates that when

WJ(τi, (Di − ri,i′,q′,j′,f ′,k) × k
K
, s) is called, the second case

in the definition of WJ is taken and WJS terminates with
3rd parameter taking the value j and the second case in def-
inition of WJS is taken. thi,i′,q′,j′,f ′,k indicates that when

WJ(τi, (Di − ri,i′,q′,j′,f ′,k)× k
K
, s) is called, the third case in

the definition of WJ is taken. Since exactly one of them is
true, it holds that:

fii,i′,q′,j′,f ′,k + (
∑

j∈{1..nsi}
sfi,j,i′,q′,j′,f ′,k)+

(
∑

j∈{1..nsi}
ssi,j,i′,q′,j′,f ′,k) + thi,i′,q′,j′,f ′,k = 1

For convenience, we can also introduce the variable wi,i′,q′,j′,f ′,k
to mean WJ(τi, (Di − ri,i′,q′,j′,f ′,k)× k

K
, s). With this nota-

tion, we obtain:

(fii,i′,q′,j′,f ′,k = 1)⇒ ((Di − ri,i′,q′,j′,f ′,k)×
k

K
≤ 0)

(fii,i′,q′,j′,f ′,k = 1)⇒ (wi,i′,q′,j′,f ′,k = 0)

We obtain similar expressions for sf,ss, and th.
The above reasoning yields that f∗(τ,m, s,K) is true if and

only if there is an assignment of values to variables such that
the constraints in Fig. 4 are satisfied and the domains of the
variables are as given by Fig. 5. In Fig. 3, Ci,j denotes the
upper bound on the execution requirement of a segment in
stage j of τi but in Fig. 4 cui,j denotes this. (cui,j means
execution requirement that we will use.)

4. MEMORY CONTENTION
Previous work [14] offers a method for computing an upper

bound on the response time of a task considering contention
for resources in the memory system. That method assumes
fixed-priority preemptive non-migrative scheduling and inte-
grates memory contention analysis in the schedulability test.
In this section, we will adapt this memory contention analysis
(i) to compute an upper bound on the extra execution of a
segment of a single job of a task without assuming any specific
processor scheduler, (ii) using our more advanced model for
discussing memory accesses (page-level), and (iii) expressing
it on a form easily translatable to MILP.

cmi,j,g denotes an upper bound on the execution require-
ment of seg(i, j, g) considering contention for resources in the
memory system (the extra execution of this contention is con-
sidered to be part of the execution requirement). Also, recall

that cui,j was defined in Section 3. We will now redefine it.
cui,j denotes an upper bound on the execution requirement of
a segment of stage j of τi considering contention for resources
in the memory system (the extra execution of this contention
is considered to be part of the execution requirement). Hence:

cui,j = max
g∈{1..nsegi,j}

cmi,j,g (20)

(30) in Fig. 7 expresses (20).
Let oi,j,g,p,h,b = 1 indicate that page(i, j, g, p) is mapped

to a memory frame with cache color h and MB color b; oth-
erwise oi,j,g,p,h,b = 0. Clearly, a page can only be mapped to
one frame and one frame belongs to exactly one cache color
and one MB color. Hence, each page belongs to exactly one
combination of cache and MB color. This yields (24). Also,
if a cache and MB color is given then the number of pages
that can be mapped to this combination of cache and MB
color cannot exceed its amount of physical memory. For the
special case that there are no shared frames and there was
no memory required during initialization, considering those
pages that are mapped to frames of cache color h and bank
color h, we can express the limited memory capacity as:

∑
τi∈τ

∑
j∈{1..nsi}

∑
g∈{1..nsegi,j}

∑
p∈{0..npi,j−1}

oi,j,g,p,h,b ≤ CAP

Let us now discuss how to express the constraint of lim-
ited memory capacity for the general case. Let GSi,j,g,p be
a constant that indicates how many pages maps to the same
frame as page(i, j, g, p) maps to. For normal pages, it holds
that GSi,j,g,p = 1 but if a page maps to a shared frame then
GSi,j,g,p is larger. GSi,j,g,p can be computed as follows. Form
a graph, with one vertex for each each 〈i, j, g, p〉 and there is
an edge between two vertices 〈i, j, g, p〉 and 〈i′, j′, g′, p′〉 if
〈i, j, g, p, i′, j′, g′, p′〉 ∈ shfr. Compute the connected compo-
nents of the graph. Then, for 〈i, j, g, p〉, let GSVSi,j,g,p denote
the set of vertices in the connected component to which the
vertex corresponding to 〈i, j, g, p〉 belong. Let GSi,j,g,p de-
note the cardinality of GSVSi,j,g,p. Then, if we consider a
page page(i, j, g, p) and all other pages that map to the same
frame then we know that all of them only consume a sin-
gle frame. We can model that as if each of them consumed

1
GSi,j,g,p

frame. With this observation and letting inoh,b indi-

cates the number of pages accessed during initialization that
maps to frames of which belong to cache color h and MB
color b, we obtain that the limited memory capacity can be
expressed by (25). In addition, the requirement on shared
frames, expressed by the set shfr, yields (31).

For a pair of segments that could possibly execute in par-
allel, we require that the VPAT is set up so that one segment
cannot evict a cache block that another segment has fetched
to the cache. We can express it as follows: xi,j,g,h = 1 indi-
cates that seg(i, j, g) uses cache color h; otherwise xi,j,g,h = 0.
Then, if seg(i, j, g) can execute in parallel with seg(i′, j′, g′),
cache coloring requires: xi,j,g,h+xi′,j′,g′,h ≤ 1, where (xi,j,g,h =
1) ⇔ (

∑
p∈{0..npi,j−1}

∑
b∈{0..B−1} oi,j,g,p,h,b ≥ 1). Rewrit-

ing these to a form close to MILP yields (27),(28), and (29).
Let mbi,j,g,b be an upper bound on the number of memory

accesses from seg(i, j, g) to memory bank b. This yields (22).
For a segment seg(i, j, g), the symbol mmboi,i′,j′,g′,b is an
upper bound on the number of memory accesses on mem-
ory bank b from multiple jobs of all other segments than
seg(i, j, g) such that these memory accesses can impact a job
of seg(i, j, g). (23) expresses it. In the proof of Theorem 1,
we will show that it is an upper bound.

Now consider memory contention. Look at the queues in-
side the MC in Fig. 2. A single memory access accessing MB
b can be delayed by the following:
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coati,j,g,b

mmboi,j,g,b

mbi,j,g,b *LL mbi,j,g,b *(LL+1) mbi,j,g,b *LH

mbi,j,g,b *LL*(Lconf+Linter)

mbi,j,g,b *(LL*(Lconf+Linter)+(WL*BL/2+twr)*tCK)

mbi,j,g,b *(LL*(Lconf+Linter)+Lconhit(Nre))

Figure 6: Contention on MB queue. The vertical axis shows an upper bound on the delay that the mbi,j,g,b
memory accesses from seg(i, j, g) can suffer from because the other mmboi,j,g,b memory accesses from other
segments access memory of MB b and hence contend on the queue for MB b.

1. There are already memory accesses in the queue for
MB b when this single memory access is inserted in the
queue for MB b and because of FCFS queuing, these
other memory accesses are served first.

2. After this single memory access is enqueued in the queue
for MB b, there are other memory accesses enqueued in
the queue for this MB and these other memory accesses’
row is currently loaded in the row buffer and hence they
get ahead in the queue for this MB (reordering).

3. When one of the other memory accesses mentioned in
1) or 2) reaches the head of the queue of MB b, it is
not served immediately; instead it has to wait for the
memory bus being granted and this takes time because
other memory accesses in the queues to other MBs than
MB b use the memory bus.

Consider seg(i, j, g) and its (at most mbi,j,g,b) memory ac-
cesses that it performs on memory locations of MB b and how
the three effects increase the execution time of seg(i, j, g). Let
coati,j,g,b denote an upper bound on the extra execution time
of this segment because other memory accesses (from other
segments) access this MB (MB b). (This includes 1. and 2.
above.) Let oaoi,j,g,b denote an upper bound on the number
of other memory accesses that causes extra execution time
of this segment because other memory accesses (from other
segments) access other MBs (than MB b). (This includes 3.
above.) Each of those oaoi,j,g,b accesses can delay the execu-
tion of seg(i, j, g) for at most Linter time units. Hence, the
extra execution of seg(i, j, g) because of memory contention
is at most coati,j,g,b + Linter × oaoi,j,g,b This can be added
up for all memory banks. Then multiplying by s yields an
upper bound on the number of units of extra execution that
seg(i, j, g) needs because of memory contention. Hence:

cmi,j,g = Ci,j + s× (

B−1∑
b=0

(coati,j,g,b + Linter × oaoi,j,g,b))

(21)

About 1) and 2) We will now discuss coati,j,g,b. Since
we assume a processor stalls until its memory access has been
completed, it follows that from each processor, there can be at
most one outstanding memory access and hence there are at
most LL memory accesses of 1) above. The hardware places
a limit on the number of reorderings that can happen. In
previous work [14], we introduced the parameter to indicate
an upper bound on the number of those reorderings that a
single memory access can experience. In this paper, we let
Nre denote this parameter; a typical value [14] is Nre = 12.
Consequently, the mbi,j,g,b memory accesses from seg(i, j, g)
performing on MB b has to wait for at most mbi,j,g,b× (LL +
Nre) = mbi,j,g,b × LH other memory accesses performing on

MB b (because of 1) and 2) above). Using mmbo yields that:
The mbi,j,g,b memory accesses from seg(i, j, g) performing on
MB b has to wait for at most

min
(
mbi,j,g,b × LH,mmboi,j,g,b) (47)

other memory accesses performing on MB b (because of 1)
and 2) above). Let oati,j,g,b be the expression in (47). (It
means other accesses to this MB.) By inspecting Lconhit(x)
and the parameters in Section 2, one can see that these mem-
ory accesses have different effects; the memory accesses that
are in the queue before a memory access has arrived to the
queue cause more interference than the ones that arrive later
that cause reordering. Fig. 6 shows an upper bound. It gives
us coati,j,g,b.

About 3) We will now discuss oaoi,j,g,b. A memory access
related to MB b is inserted in the queue for the memory bus
only if (i) this memory access is at the head of the queue
of the MB b and (ii) there is no memory access related to
MB b already in the queue of the memory bus. Hence, a
memory access that has reached the head of the queue of its
MB needs to wait for at most B-1 other memory accesses until
it is granted the memory bus. Consequently, the mbi,j,g,b
memory accesses from seg(i, j, g) performing on MB b has to
wait for at most (mbi,j,g,b+oati,j,g,b)×(B−1) other memory
accesses performing on MB b (because of 3)). Using mmbo
yields that: The mbi,j,g,b memory accesses from seg(i, j, g)
performing on MB b has to wait for at most

min
(
(mbi,j,g,b + oati,j,g,b)× (B − 1),∑
b′′∈{0..B−1}∧(b′′ 6=b)

mmboi,j,g,b′′
)

(48)

other memory accesses performing on other MBs than MB b
(because of 3) above). (48) expresses oaoi,j,g,b.

This reasoning yields an upper bound on the execution
requirement on a form close to MILP — see Fig. 7.

5. THE MILP FORMULATION
Let Π denote the computer platform (the parameters m,

s, H, B and the parameters describing the memory system).
fmem(τ,Π,K) is a function which returns the tuple 〈flag, o〉
where flag is a boolean and o is a multi-dimensional array. If
there exists an assignment of values to the variables so that
the constraints in Fig. 4 and Fig. 7 are satisfied then flag is
true and o is the values of the o-variables; otherwise flag is
false and o is undefined.
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∀〈i, j, g, b〉 : mbi,j,g,b =
∑

p∈{0..npi,j−1}

∑
h∈{0..H−1}

MAi,j,p × oi,j,g,p,h,b (22)

∀〈i, j, g, b〉 : mmboi,j,g,b =
∑
τi′∈τ

∑
j′∈{1..nsi′}

∑
g′∈{1..nsegi′,j′}∧(((i′=i)∧(j′=j)∧(g′ 6=g))∨(i′ 6=i))

(d
Di

T ′i
e+ 1)×mbi′,j′,g′,b (23)

∀〈i, j, g, p〉 :
∑

h∈{0..H−1}

∑
b∈{0..B−1}

oi,j,g,p,h,b = 1 (24)

∀〈h, b〉 : (
∑
τi∈τ

∑
j∈{1..nsi}

∑
g∈{1..nsegi,j}

∑
p∈{0..npi,j−1}

(
1

GSi,j,g,p
× oi,j,g,p,h,b)) + inoh,b ≤ CAP (25)

∑
h∈{0..H−1}

∑
b∈{0..B−1}

inoh,b = INO (26)

∀〈i, j, g, h〉 : (xi,j,g,h = 1)⇒ (
∑

p∈{0..npi,j−1}

∑
b∈{0..B−1}

oi,j,g,p,h,b ≥ 1) (27)

∀〈i, j, g, h〉 : (xi,j,g,h = 0)⇒ (
∑

p∈{0..npi,j−1}

∑
b∈{0..B−1}

oi,j,g,p,h,b ≤ 0) (28)

∀〈i, j, g, i′, j′, g′, h〉 s.t. (((i = i′) ∧ (j = j′) ∧ (g < g′)) ∨ (i < i′)) : xi,j,g,h + xi′,j′,g′,h ≤ 1 (29)

∀〈i, j, g〉 : cmi,j,g ≤ cui,j ∀〈i, j〉 :

nsegi,j∑
g=1

sei,j,g = 1 ∀〈i, j, g〉 : (sei,j,g = 1)⇒ (cmi,j,g ≥ cui,j) (30)

∀〈i, j, g, p, i′, j′, g′, p′, h, b〉 s.t. 〈i, j, g, p, i′, j′, g′, p′〉 ∈ shfr : oi,j,g,p,h,b = oi′,j′,g′,p′,h,b (31)

∀〈i, j, g〉 : cmi,j,g = Ci,j + s× (
∑

b∈{0..B−1}
(coati,j,g,b + Linter × oaoi,j,g,b)) (32)

∀〈i, j, g, b〉 : bc1i,j,g,b + bc2i,j,g,b + bc3i,j,g,b + bc4i,j,g,b = 1 (33)

∀〈i, j, g, b〉 : (bc1i,j,g,b = 1)⇒ (mmboi,j,g,b ≤ mbi,j,g,b × LL) (34)

∀〈i, j, g, b〉 : (bc2i,j,g,b = 1)⇒ (mbi,j,g,b × LL ≤ mmboi,j,g,b ≤ mbi,j,g,b × (LL + 1)) (35)

∀〈i, j, g, b〉 : (bc3i,j,g,b = 1)⇒ (mbi,j,g,b × (LL + 1) ≤ mmboi,j,g,b ≤ mbi,j,g,b × LH) (36)

∀〈i, j, g, b〉 : (bc4i,j,g,b = 1)⇒ (mbi,j,g,b × LH ≤ mmboi,j,g,b) (37)

∀〈i, j, g, b〉 : (bc1i,j,g,b = 1)⇒ (coati,j,g,b = mmboi,j,g,b × (Lconf + Linter)) (38)

∀〈i, j, g, b〉 : (bc2i,j,g,b = 1)⇒ (coati,j,g,b = mbi,j,g,b × LL× (Lconf + Linter)+

(mmboi,j,g,b −mbi,j,g,b × LL)× (WL + BL/2 + tWR)× tCK) (39)

∀〈i, j, g, b〉 : (bc3i,j,g,b = 1)⇒ (coati,j,g,b = mbi,j,g,b × LL× (Lconf + Linter) + mbi,j,g,b × (WL + BL/2 + tWR)× tCK+

(mmboi,j,g,b −mbi,j,g,b × (LL + 1))× (WL + BL/2 + tWR + CL)× (1/2)× tCK) (40)

∀〈i, j, g, b〉 : (bc4i,j,g,b = 1)⇒ (coati,j,g,b = mbi,j,g,b × (LL× (Lconf + Linter) + Lconhit(Nre))) (41)

∀〈i, j, g, b〉 : (bc4i,j,g,b = 0)⇒ (oati,j,g,b = mmboi,j,g,b) ∀〈i, j, g, b〉 : (bc4i,j,g,b = 1)⇒ (oati,j,g,b = mbi,j,g,b × LH) (42)

∀〈i, j, g, b〉 : (bui,j,g,b = 0)⇒ (
∑

b′′∈{0..B−1}∧(b′′ 6=b)
mmboi,j,g,b′′ ≤ (mbi,j,g,b + oati,j,g,b)× (B − 1)) (43)

∀〈i, j, g, b〉 : (bui,j,g,b = 1)⇒ (
∑

b′′∈{0..B−1}∧(b′′ 6=b)
mmboi,j,g,b′′ ≥ (mbi,j,g,b + oati,j,g,b)× (B − 1)) (44)

∀〈i, j, g, b〉 : (bui,j,g,b = 0)⇒ (oaoi,j,g,b = (
∑

b′′∈{0..B−1}∧(b′′ 6=b)
mmboi,j,g,b′′ )) (45)

∀〈i, j, g, b〉 : (bui,j,g,b = 1)⇒ (oaoi,j,g,b = (mbi,j,g,b + oati,j,g,b)× (B − 1)) (46)

Figure 7: Expressing increased execution time.
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Theorem 1.

((〈flag, o〉 = fmem(τ,Π,K)) ∧ (flag = true))⇒
τ is gEDF schedulable on m processors of speed s for

the case that tasks experience memory contention and

the VPAT conforms to o

Proof. See Appendix of [1].

Some of the constraints mentioned are not MILP — they
have binary variables and logical operators. We will now
discuss how to convert them to MILP. A constraint of the
form (x = 1) ⇒ (a = b) can be rewritten as: ((x = 1) ⇒
(a ≤ b)) ∧ ((x = 1) ⇒ (a ≥ b)). Note that if x is a variable
with the domain {0, 1} and a and b are non-negative real
variables and BIG is a constant selected so that a ≤ BIG
and b ≤ BIG, then a constraint (x = 1) ⇒ (a ≤ b) can be
rewritten as

a− b+ BIG× x ≤ BIG (49)

Note that in (17), we can use BIG = m and in (28), we can
use BIG = npi,j ×B and (27) can be rewritten without BIG.
Let us now discuss the other constraints. In a feasible solution
to Fig. 4 and Fig. 7, the variables mbi,j,g,b and mmboi,j,g,b
are at most

max
τi∈τ

(
∑
τ ′i∈τ

((dDi
T ′i
e+ 1)×

(
∑

j′∈{1..nsi′}

∑
g′∈{1..nsegi′,j′}

∑
p′∈{0..npi′,j′−1}

MAi′,j′,p′))) (50)

Hence, the lhs of the constraints (33)-(46) is at most

max
(

1, Lconf + Linter

)
× ((50)) (51)

Also, for each of the other constraints, the lhs is at most

(P + DMAX)×m×max(1, s) (52)

Applying the rewriting expressed by (49) (and minor variants
of it), with BIG = max((51), (52)), yields that all of our
constraints can be converted to a MILP.

6. DISCUSSION
fmem(τ,Π,K) and the model it is based on has three short-

comings: (i) it outputs a mapping from a page to a cache
color and MB color but we actually need a mapping from a
page to a memory frame in PA, (ii) it assumes that MAi,j,p

and Ci,j are given and known, and (iii) it ignores the effect of
eviction of cache blocks in a private cache. We can deal with
(i) by simply solving the MILP and if it returns a tuple with
the 1st parameter being true then a VPTA can be obtained
from o (the 2nd parameter in the tuple) as follows:

1. for each 〈i, j, g, p, h, b〉 s.t. oi,j,g,p,h,b = 1 do

2. if (∃〈i′, j′, g′, p′〉 s.t. (〈i, j, g, p, i′, j′, g′, p′〉 ∈ shfr)∨
3. (〈i′,′ j′, g′, p′, i, j, g, p〉 ∈ shfr)) and (for this

4. 〈i′, j′, g′, p′〉, it holds that page(i′, j′, g′, p′) has already

5. been mapped to a frame) then

6. map page(i, j, g, p) to the same frame as

7. page(i′, j′, g′, p′) is mapped to

8. else

9. find an unused memory frame in PA with cache

10. color h and MB b and then map page(i, j, g, p) to it

11. end if

m=4 m=8

min 420 999
q1 7623 8199
median 7655 8253
q3 11251 15446
max 25792 62238

Table 2: Five number summary of the time required,
in our experiments, for performing schedulability
analysis and configuring memory (in seconds).

12. end for

We can deal with (ii) by making an initial guess of the val-
ues of MAi,j,p and Ci,j and then check if the guess is cor-
rect; if it is not, then refine the guess with data obtained
from the checking procedure. Specifically, do it as follows.
Guess values of MAi,j,p and Ci,j and then call the func-
tion fmem(τ,Π,K) and then obtain a new o and then ob-
tain an VPTA map from this o and then obtain Ci,j(map)
and MAi,j,p(map) and check if Ci,j(map) ≤ Ci,j and check
if MAi,j,p(map) ≤ MAi,j,p; if this check fails then use map
and obtain the execution requirement and number of memory
accesses and use that as a new guess of MAi,j,p and Ci,j . An
algorithm based on these ideas is shown below:

1. Choose a value of K (for example K = 20)

2. Choose a value of maxiter (for example maxiter = 3)

3. Choose one o′

4. for iter := 1 to maxiter do

5. choose a VPAT map′ that conforms to o′

6. ∀i, j do

7. obtain Ci,j(map′)

8. assign Cguess
i,j := Ci,j(map′)

9. ∀i, j, p do

10. obtain MAi,j,p(map′)

11. assign MAguess
i,j,p := MAi,j,p(map′)

12. 〈flag, o〉 = fmem(τ,Π,K); in this call, assume that

13. ∀i, j : Ci,j = Cguess
i,j ; ∀i, j, p : MAi,j,p = MAguess

i,j,p

14. if flag then

15. choose a VPAT map that conforms to o

16. if (∀i, j : Ci,j(map) ≤ Cguess
i,j ) and

17. (∀i, j, p : MAi,j,p(map) ≤ MAguess
i,j,p ) then

18. declare SUCCESS

19. else o’ := o end if

20. else

21. choose an o′ that has not been tried before

22. end if

23. end for

24. declare FAILURE

We can deal with (iii) by modifying the pseudo code above
so that on line 7, it not only runs a WCET tool but also
computes an upper bound on the cost of a preemption (e.g.
by considering that the entire private cache needs to get
reloaded) and also computes an upper bound on the num-
ber of preemptions that a job can experience. Line 10 can be
changed analogously to line 7.

Hence, by using these modifications, our solution can be
used in practice.
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7. EVALUATION SUMMARY
We have implemented a tool based on this theory and

tested it on systems with 4 and 8 processors. Table 2 offers
a summary of results — for details, see Appendix in [1]. It
can be seen that the maximum time it takes to finish is 18h
and the median time is 2.5h. We performed a preliminary
evaluation of the guarantee provided by this tool as follows:
We developed a plugin for AADL based on Valgrind2; this
tool obtains an upper bound on the number of memory ac-
cesses, from each page, that reaches the memory controller
and then outputs a model of the software system. We applied
this plugin on a taskset with synthetic benchmark programs
(matrix multiply) and obtained the parameters of our model.
We then ran it on a gEDF implementation in the Linux kernel
and used our previously developed Linux implementation of
coordinated cache and bank coloring [28] configured as spec-
ified by our tool. We ran the software system for 8h and
observed no deadline misses.

8. CONCLUSIONS
Using COTS multicore processors in hard real-time systems

is challenging because (i) taking full advantage of them for
meeting tight deadlines requires parallelization and (ii) the
contention for shared resources in the memory system makes
execution times hard to predict. In this paper, we have de-
veloped a solution that addresses these issues. Our main idea
is to formulate a MILP that configures the memory mapping
and performs schedulability analysis.
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APPENDIX
Proof

Theorem 1.

((〈flag, o〉 = fmem(τ,Π,K)) ∧ (flag = true))⇒
τ is gEDF schedulable on m processors of speed s for

the case that tasks experience memory contention and

the VPAT conforms to o

Proof. If the theorem is false then there exists a τ,m, s,K
and an assignment of the number of jobs that each task gen-
erates and an assignment of arrival time to jobs and execution
requirement of segments and a schedule such that the follow-
ing two statements are true:

1. (〈flag, o〉 = fmem(τ,Π,K)) ∧ (flag = true)

2. for the jobset generated by τ with the aforementioned
assignment, it holds that gEDF can generate the afore-
mentioned schedule and there is at least one job that
misses its deadline in this schedule.

For this schedule, let t0 denote the earliest time when a dead-
line miss occurs. Remove all jobs with arrival time ≥ t0.
There is still a deadline miss at time t0. Let us now reason
as follow: For each job with absolute deadline > t0 such that
it performs execution after time t0, do the following: identify
the latest stage of this job such that there is a segment of
this stage that performs execution after t0. Then reduce the
execution of this segment. Repeated application of this yields
that no job with absolute deadline > t0 performs execution
after time t0. Hence, it holds that: (i) 1) and 2) above are
true, (ii) one or many jobs with absolute deadline at t0 misses
deadlines, (iii) each job with absolute deadline < t0 meets its
deadline, (iv) all jobs have arrival times < t0, and (v) no job
with absolute deadline > t0 performs execution after time t0.

For each job with absolute deadline < t0, we can reason as
follows: Let τi denote the task that generates the job. Let
A denote the arrival time of this job and consider the time
interval [A,A+Di) and consider a task i′ which is not the task
that generated the job of τi. Because of (iii) and (iv), there
can be at most one job of task i′ such that this job arrives
before A and it has execution that overlaps with [A,A+Di).
Also, because of (iii), there can be at most dDi/Ti′e jobs of
task i′ such that this job arrives at or after A and it has
execution that that overlaps with [A,A+Di).

For each job with absolute deadline ≥ t0, we can reason as
follows: Let τi denote the task that generates the job. Let
A denote the arrival time of this job and consider the time
interval [A,A+Di) and consider a task i′ which is not the task
that generated the job of τi. Because of (iii) and (iv), there
can be at most one job of task i′ such that this job arrives
before A and it has execution that overlaps with [A,A+Di).
Also, because of (v), there can be at most dDi/Ti′e jobs of
task i′ such that this job arrives at or after A and it has
execution that that overlaps with [A,A+Di).

Consequently, for each of these cases, there are at most
(dDi
T ′
i
e + 1) × mbi′,j′,g′,b memory accesses on MB b of jobs

of seg(i′, j′, g′) that overlaps with [A,A + Di). Putting it
together yields that there are at most mmboi,j,g,b memory
accesses that can be issued in parallel with seg(i, j, g) for MB
b. Since we know the values of mmboi,j,g,b, using Fig. 7 yields
cmi,j,g. This yields cui,j which provides an upper bound on
the execution requirement. Since cui,j is an upper bound on
execution requirement we can treat the system as if there was
no contention for resources in the memory system and execu-
tion requirements were given by cui,j . Since the constraints
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in Fig. 4 are satisfied, all deadlines are met. This contradicts
2) above. Hence, the theorem is correct.

Solving MILP
Finding a solution to the MILP expressed by Fig. 4 and Fig. 7
is challenging because (i) the number of variables and con-
straints is large and (ii) BIG is much larger than the other
constants causing numerical issues. Therefore, we will rewrite
the MILP to avoid numerical issues. We will also present dif-
ferent methods for solving the MILP; they differ in (i) the
amount of time to finish and (ii) whether a solution is guar-
anteed to be found if a solution exists. They all have in
common, however, that they return a tuple 〈flag, o〉 such
that if flag is true, then the MILP is feasible. It can be
seen in Fig. 7, that changing the domain of mbi,j,g,b from
non-negative integer to non-negative real does not change
the feasiblity of the MILP. The same applies to mmboi,j,g,b,
oati,j,g,b, and oaoi,j,g,b. We will now rewrite the constraints
without changing feasibility but so that numerical issues are
avoided. Let SCALINGFACTORNACCESSES be an inte-
ger that we choose (e.g. SCALINGFACTORNACCESSES =
223). It can be seen that multiplying the right hand sides
of (38),(39),(40),(41) by MBCF and replacing coati,j,g,b in
(32) by 1

MBCF
× coati,j,g,b does not change feasibility. It

can also be seen that dividing the right-hand side of (22)
by SCALINGFACTORNACCESSES and replacing 1

MBCF
×

coati,j,g,b in (32) by SCALINGFACTORNACCESSES
MBCF

× coati,j,g,b
does not change feasibility. Figure 8 shows these rewritten
expressions. This leaves us with discussion on how to choose
SCALINGFACTORNACCESSES. We do it as follows.

1. SCALINGFACTORNACCESSES := 1

2. if (50)> 0 then

3. SCALINGFACTORNACCESSES := smallest number

4. ≥ (51)/(52) such that it is equal to two raised

5. to some integer.

6. end if

In this way, the parameter BIG is kept small. We will now
present the methods.

Method 1
Method 1 is guaranteed to output a solution if a solution
exists. Method 1 is to simply take the constraints in Fig. 4
and Fig. 7 and solve the MILP. If there exists an assignment
of values to the variables so that the constraints in Fig. 4 and
Fig. 7 are satisfied then flag is true and o is the values of the
o-variables; otherwise flag is false and o is undefined.

Method 2
Method 2 is guaranteed to output a solution if a solution
exists. We can reason as follows: If there is a feasible so-
lution, then it holds that for each cache color, the pages
that are mapped to frames of this cache color all belong
to the same task (otherwise (29) would be violated). Let
occupiescachecolori,h be 1 if τi occupies cache color h; oth-
erwise 0. If, for this solution, it holds that there is a task τi
and a task τi′ and a cache color h and a cache color h′ such
that i < i′ and h > h′ and occupiescachecolori,h = 1 and
occupiescachecolori′,h′ = 1, then we can change the o-values
of the solution so that each page of τi that was mapped to h
is mapped to h′ and each page of τ ′i that was mapped to h′

is mapped to h. Also update the x-values accordingly. This
gives us a new feasible solution such that i < i′ and h < h′

and occupiescachecolori,h = 1 and occupiescachecolori′,h′ =
1. Repeating this argument yields that for each τi, tasks with
lower index than τi only occupies cache colors of lower index
and tasks with higher index than τi only occupies cache col-
ors of higher index. If there is a cache color h that is not

occupied by any task, then we can identify all tasks that oc-
cupies cache colors of index greater than h and let each of
their memory allocation use a cache color that has index 1
less. Also update the x-values accordingly.

For this reason, we can, without loss of generality, add the
following constraint:

∀〈i, j, g, h, i′, j′, g′, h′〉 s.t. (i < i′) ∧ (h ≥ h′) :

xi,j,g,h + xi′,j′,g′,h′ ≤ 1

Method 2 is like Method 1 but with the constraint above.

Method 3
Method 3 is not guaranteed to output a solution if a solution
exists. Method 3 is defined as follows.

1. Let the following variables be non-negative real numbers:
loadfactorofcells, utilconsideringcont, loadofdeadlinei, myobj.

2. Let utilconsideringcont, loadofdeadlinei be defined as
follows: utilconsideringcont = (

∑
τi′∈τ

cui′
Ti

)/(m×s) and

loadofdeadlinei = (
∑
τi′∈τ

max(bDi−Di′
Ti′

c+1, 0)×cui′)/(m×
s×Di).

3. Solve the following problem: minimize myobj subject to
cui =

∑nsi
j=1 (nsegi,j × cui,j) and the constraints in Fig. 7

and
∀〈h, b〉 s.t. (h ∈ [0, H − 1]) ∧ (b ∈ {0..B − 1}) :
(
∑
τi∈τ

∑
j∈{1..nsi}

∑
g∈{1..nsegi,j}

∑
p∈{0..npi,j−1}

( 1
GSi,j,g,p

× oi,j,g,p,h,b)) ≤ CAP × loadfactorofcells and

loadfactorofcells ≤ myobj and utilconsideringcont ≤ myobj
and ∀τi ∈ τ : loadofdeadlinei ≤ myobj.

4. Consider the optimization problem of fmem(τ,Π,K) where
the o-values must be equal to the values obtained in step
3 above. Solve this optimization problem.

5. If the optimization problem in step 4 is feasible then
return 〈true, o〉 where o is the o-values obtained in step
3 above.

6. If the optimization problem in step 4 is infeasible then
return 〈false, o〉 where o is undefined.

We solve the optimization problem in step 3 as follows. Keep
running the solver for 3600 seconds and then check the status
and then run the solver for additional 3600 seconds and then
check the status and then run the solver for additional 3600
seconds and check the status and so so. We finish this process
if one of the following conditions are true (i) an optimal solu-
tion has been found or (ii) when checking, a feasibile solution
has been found and at the preceding checking, a feasible so-
lution was found as well and the MIP-gap (the gap between
the objective function of the current solution as compared to
the best bound) has not changed between these checks. As
a result, the solution we obtain from step 3 is either optimal
or it is such that it did not change during the recent 3600
seconds when the solver ran.

The intuition behind the optimization problem of Step 3 is
that we would like to find a memory allocation such that with
this memory allocation, the MILP of Step 4 will be feasible
if the MILP in Method 2 is feasible and the way we do it is
to make sure that the capacity of the memory cell which is
utilized at most is not too high (i.e. loadfactorofcells ≤ 1)
and that conditions that approximate the schedulability test
in the MILP of Method 2 are satisfied. Specifically, when
t = ∞, it holds that whether the ffdbf is at most the sup-
ply is equivalent to checking utilconsideringcont ≤ 1. But
there are many other durations for which we need to check
whether the ffdbf is at most the supply. We only explore
those durations that are equal to a deadline; hence we check
∀τi ∈ τ : loadofdeadlinei ≤ myobj.
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∀〈i, j, g, b〉 : mbi,j,g,b =
∑

p∈{0..npi,j−1}

∑
h∈{0..H−1}

MAi,j,p

SCALINGFACTORNACCESSES
× oi,j,g,p,h,b (53)

∀〈i, j, g〉 : cmi,j,g = Ci,j + s× (
∑

b∈{0..B−1}
(
SCALINGFACTORNACCESSES

MBCF
× coati,j,g,b + Linter × oaoi,j,g,b)) (54)

∀〈i, j, g, b〉 : (bc1i,j,g,b = 1)⇒ (coati,j,g,b = mmboi,j,g,b × (Lconf + Linter)×MBCF) (55)

∀〈i, j, g, b〉 : (bc2i,j,g,b = 1)⇒ (coati,j,g,b = mbi,j,g,b × LL× (Lconf + Linter)×MBCF+

(mmboi,j,g,b −mbi,j,g,b × LL)× (WL + BL/2 + tWR)× tCK ×MBCF) (56)

∀〈i, j, g, b〉 : (bc3i,j,g,b = 1)⇒
(coati,j,g,b = mbi,j,g,b × LL× (Lconf + Linter)×MBCF + mbi,j,g,b × (WL + BL/2 + tWR)× tCK ×MBCF+

(mmboi,j,g,b −mbi,j,g,b × (LL + 1))× (WL + BL/2 + tWR + CL)× (1/2)× tCK ×MBCF) (57)

∀〈i, j, g, b〉 : (bc4i,j,g,b = 1)⇒ (coati,j,g,b = mbi,j,g,b × (LL× (Lconf + Linter) + Lconhit(Nre))×MBCF) (58)

Figure 8: Rewriting some expressions. (22) is rewritten as (53). (32) is rewritten as (54). (38) is rewritten
as (55). (39) is rewritten as (56). (40) is rewritten as (57). (41) is rewritten as (58). After this rewriting,
feasibility has not changed.

Evaluation
In this section, we address the following questions: (i) how
long time does it take to perform the schedulability test (solve
the MILP) and (ii) how pessimistic is our schedulability test.
We will use Method 3. We will solve the MILP with Gurobi
6.0 — a state-of-the-art solver.

Consider the system in Fig. 9. It models a hypothetical
autonomous system with 4 processors and task τ1 perform-
ing sensor fusion (it first reads the sensors in its 1st stage and
then performs parallel processing in its 2nd stage and then
merges the results in its 3rd stage) and task τ2 is a mission
controller task (it takes high-level decisions about the mis-
sion, e.g, whether the mission should be aborted) and task
τ3 recomputes the current plans when a certain critical event
occurs (its 2nd stage performs computations in parallel). We
will run our evaluation by varying parameters of this system.
Specifically, we will vary C1,2 and MAi,j,p. We will vary C1,2

by simply setting it to a new value. We will vary MAi,j,p

of all segments by multiplying them by mult. For example,
mult = 0 means that all segments perform no memory ac-
cesses. mult = 1 means that the upper bounds on the mem-
ory accesses are the same as in Fig. 9. Table 3 shows the
outcome of our evaluation for m = 4 and Table 4 shows the
outcome of our evaluation for m = 8.

The first column shows the value of C1,2. The second col-
umn shows the number of memory accesses to a page relative
to the number of memory accesses stated in Fig. 9. If the
value in the column is 1 then the number of memory accesess
to a page is equal to the number of memory accesses stated in
Fig. 9. The third column indicates the amount of time it takes
to perform the schedulability analysis (with the MILP). The
fourth column indicates whether that schedulability analysis
provides a guarantee that the taskset is schedulable.

Look at the cases C1,2 = 0.005 in Table 3. It can be seen
that mult = 10 results in not-schedulable and mult = 4 re-
sults in schedulable. The reason for this is as follows. For
the case mult = 10, in the first phase (when we obtain o), we
obtain that the objective function is 0.78 and the left-hand
of the inequality in (17) is 0.78 × 4 = 3.12 (because there is
a very large number of memory accesses). This requires that
we choose k/K ≥ 0.78. Since K = 20, we obtain that k ≥ 16
and hence k/K ≥ 0.80 and this makes the right-hand side
of (17) the value 4 − (4 − 1) × 0.8 = 1.6. Hence, the left-
hand of the inequality in (17) is larger than its right-hand
side and consequently this constraint is violated. With larger
k, we obtain the same conclusion: the constraint is violated.

Hence, this MILP is infeasible.
For the case mult = 4, we obtain another outcome though.

in the first phase (when we obtain o), we obtain that the
objective function is 0.302 and the left-hand of the inequality
in (17) is 0.302× 4 = 1.208 (because there are fewer memory
accesses). This requires that we choose k/K ≥ 0.302. Since
K = 20, we obtain that k ≥ 7 and hence k/K ≥ 0.35 and this
makes the right-hand side of (17) the value 4−(4−1)×0.35 =
2.95. Hence, the left-hand of the inequality in (17) is less
than its right-hand side and consequently this constraint is
satisfied. It turns out that there is a solution (we got the
solution for k=18).

We have rerun some of the experiments and found that for a
given setting, the time required can vary. This is because the
MILP solver solves multiple LPs and does this concurrently
and hence the MILP solver is non-deterministic; for a given
setup, the progress that it makes within one hour can vary.
Hence, when using Method 3 for a given setting, the time
required can be different for different runs. Note that this
non-determinism is only about the running time; the output
(true/false) of the algorithm is deterministic and hence it does
not lead to unsafe results.
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m = 4 s=1 τ = {τ1, τ2, τ3}
T1=0.100 D1=0.100 ns1=3 nseg1,1=1 nseg1,2 = 4 nseg1,3=1

C1,1 = 0.001 C1,2 = 0.030 C1,3 = 0.001
np1,1 = 17 np1,2 = 17 np1,3 = 17
MA1,1,0 = 100 MA1,2,0 = 1000 MA1,3,0 = 100
MA1,1,1 = 100 MA1,2,1 = 1000 MA1,3,1 = 100
MA1,1,2 = 100 MA1,2,2 = 1000 MA1,3,2 = 100
MA1,1,3 = 100 MA1,2,3 = 1000 MA1,3,3 = 100
MA1,1,4 = 100 MA1,2,4 = 1000 MA1,3,4 = 100
MA1,1,5 = 100 MA1,2,5 = 1000 MA1,3,5 = 100
MA1,1,6 = 100 MA1,2,6 = 1000 MA1,3,6 = 100
MA1,1,7 = 100 MA1,2,7 = 1000 MA1,3,7 = 100
MA1,1,8 = 100 MA1,2,8 = 1000 MA1,3,8 = 100
MA1,1,9 = 100 MA1,2,9 = 1000 MA1,3,9 = 100
MA1,1,10 = 100 MA1,2,10 = 1000 MA1,3,10 = 100
MA1,1,11 = 100 MA1,2,11 = 1000 MA1,3,11 = 100
MA1,1,12 = 100 MA1,2,12 = 1000 MA1,3,12 = 100
MA1,1,13 = 100 MA1,2,13 = 1000 MA1,3,13 = 100
MA1,1,14 = 100 MA1,2,14 = 1000 MA1,3,14 = 100
MA1,1,15 = 100 MA1,2,15 = 1000 MA1,3,15 = 100
MA1,1,16 = 100 MA1,2,16 = 1000 MA1,3,16 = 100
MA1,1,17 = 100 MA1,2,17 = 1000 MA1,3,17 = 100

T2=0.010 D2=0.010 ns2=1 nseg2,1=1
C2,1 = 0.002
np2,1 = 17
MA2,1,0 = 100
MA2,1,1 = 100
MA2,1,2 = 100
MA2,1,3 = 100
MA2,1,4 = 100
MA2,1,5 = 100
MA2,1,6 = 100
MA2,1,7 = 100
MA2,1,8 = 100
MA2,1,9 = 100
MA2,1,10 = 100
MA2,1,11 = 100
MA2,1,12 = 100
MA2,1,13 = 100
MA2,1,14 = 100
MA2,1,15 = 100
MA2,1,16 = 100
MA2,1,17 = 100

T3=0.100 D3=0.044 ns3=3 nseg3,1=1 nseg3,2=2 nseg3,3=1
C3,1 = 0.002 C3,2 = 0.006 C3,3 = 0.002
np3,1 = 17 np3,2 = 17 np3,3 = 17
MA3,1,0 = 100 MA3,2,0 = 100 MA3,3,0 = 100
MA3,1,1 = 100 MA3,2,1 = 100 MA3,3,1 = 100
MA3,1,2 = 100 MA3,2,2 = 100 MA3,3,2 = 100
MA3,1,3 = 100 MA3,2,3 = 100 MA3,3,3 = 100
MA3,1,4 = 100 MA3,2,4 = 100 MA3,3,4 = 100
MA3,1,5 = 100 MA3,2,5 = 100 MA3,3,5 = 100
MA3,1,6 = 100 MA3,2,6 = 100 MA3,3,6 = 100
MA3,1,7 = 100 MA3,2,7 = 100 MA3,3,7 = 100
MA3,1,8 = 100 MA3,2,8 = 100 MA3,3,8 = 100
MA3,1,9 = 100 MA3,2,9 = 100 MA3,3,9 = 100
MA3,1,10 = 100 MA3,2,10 = 100 MA3,3,10 = 100
MA3,1,11 = 100 MA3,2,11 = 100 MA3,3,11 = 100
MA3,1,12 = 100 MA3,2,12 = 100 MA3,3,12 = 100
MA3,1,13 = 100 MA3,2,13 = 100 MA3,3,13 = 100
MA3,1,14 = 100 MA3,2,14 = 100 MA3,3,14 = 100
MA3,1,15 = 100 MA3,2,15 = 100 MA3,3,15 = 100
MA3,1,16 = 100 MA3,2,16 = 100 MA3,3,16 = 100
MA3,1,17 = 100 MA3,2,17 = 100 MA3,3,17 = 100

K = 20 MEMCAP = 221 H = 32 B = 16 HWSHARE = 1/4 CAP = 210

INO = 970
shfr = {〈1, 1, 1, 0, 1, 2, 1, 0〉, 〈1, 1, 1, 0, 1, 2, 1, 0〉, 〈1, 1, 1, 2, 1, 2, 3, 0〉, 〈1, 1, 1, 3, 1, 2, 4, 0〉, 〈1, 3, 1, 0, 1, 2, 1, 1〉, 〈1, 3, 1, 1, 1, 2, 2, 1〉,
〈1, 3, 1, 3, 1, 2, 4, 1〉, 〈3, 1, 1, 0, 3, 2, 1, 0〉, 〈3, 1, 1, 1, 3, 2, 2, 0〉, 〈3, 3, 1, 0, 3, 2, 1, 1〉, 〈3, 3, 1, 1, 3, 2, 2, 1〉}
MBCF = 1.5× 109,trrd = 4,tfaw = 20,wl = 7,bl = 8,twtr = 5,cl = 9,trp = 9,trcd = 9,twr = 10

Figure 9: One of the systems used in our evaluation.
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C1,2 mult Time
(seconds) MAi,j,p (seconds) Schedulable

0.005 0.000 452.6 yes
0.005 0.010 7659.3 yes
0.005 0.100 25792.5 yes
0.005 0.250 7650.3 yes
0.005 0.500 11253.5 yes
0.005 1.000 7648.4 yes
0.005 2.000 7649.4 yes
0.005 4.000 7649.9 yes
0.005 10.000 11220.3 no
0.010 0.000 451.5 yes
0.010 0.010 7654.9 yes
0.010 0.100 11250.8 yes
0.010 0.250 7650.3 yes
0.010 0.500 7650.5 yes
0.010 1.000 14854.6 yes
0.010 2.000 7649.7 yes
0.010 4.000 7650.8 yes
0.010 10.000 11220.9 no
0.015 0.000 451.0 yes
0.015 0.010 22061.2 yes
0.015 0.100 14859.0 yes
0.015 0.250 7651.5 yes
0.015 0.500 11261.7 yes
0.015 1.000 11248.3 yes
0.015 2.000 7647.7 yes
0.015 4.000 7650.0 yes
0.015 10.000 7622.6 no
0.020 0.000 451.8 yes
0.020 0.010 11248.7 yes
0.020 0.100 11249.6 yes
0.020 0.250 14853.6 yes
0.020 0.500 7655.2 yes
0.020 1.000 11250.5 yes
0.020 2.000 7649.8 yes
0.020 4.000 7650.4 yes
0.020 10.000 7620.4 no
0.025 0.000 452.3 yes
0.025 0.010 7649.7 yes
0.025 0.100 14857.8 yes
0.025 0.250 7650.7 yes
0.025 0.500 7655.1 yes
0.025 1.000 7650.7 yes
0.025 2.000 18469.1 yes
0.025 4.000 18470.3 yes
0.025 10.000 7619.7 no
0.030 0.000 452.5 yes
0.030 0.010 7654.6 yes
0.030 0.100 7650.3 yes
0.030 0.250 18459.4 yes
0.030 0.500 7649.6 yes
0.030 1.000 7649.9 yes
0.030 2.000 11251.7 yes
0.030 4.000 14851.0 yes
0.030 10.000 11224.2 no
0.035 0.000 451.3 yes
0.035 0.010 11257.1 yes
0.035 0.100 7650.3 yes
0.035 0.250 7651.4 yes
0.035 0.500 11249.0 yes
0.035 1.000 11251.8 yes
0.035 2.000 11250.6 yes
0.035 4.000 7620.8 no
0.035 10.000 7619.3 no
0.040 0.000 452.2 yes
0.040 0.010 14864.5 yes
0.040 0.100 11250.7 yes
0.040 0.250 18469.6 yes
0.040 0.500 11249.4 yes
0.040 1.000 7649.2 yes
0.040 2.000 7620.6 no
0.040 4.000 7621.3 no
0.040 10.000 7619.2 no
0.045 0.000 422.1 no
0.045 0.010 18438.2 no
0.045 0.100 11221.7 no
0.045 0.250 18433.1 no
0.045 0.500 7621.2 no
0.045 1.000 14821.3 no
0.045 2.000 7620.6 no
0.045 4.000 7620.1 no
0.045 10.000 7621.2 no

Table 3: Results from evaluation (m = 4).
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C1,2 mult Time
(seconds) MAi,j,p (seconds) Schedulable

0.005 0.000 1053.4 yes
0.005 0.010 8326.8 yes
0.005 0.100 11850.3 yes
0.005 0.250 8249.8 yes
0.005 0.500 8243.0 yes
0.005 1.000 26282.0 yes
0.005 2.000 8247.9 yes
0.005 4.000 8198.8 no
0.005 10.000 11804.9 no
0.010 0.000 1050.3 yes
0.010 0.010 8253.4 yes
0.010 0.100 11848.9 yes
0.010 0.250 8246.6 yes
0.010 0.500 15446.5 yes
0.010 1.000 8252.3 yes
0.010 2.000 11846.2 yes
0.010 4.000 8192.8 no
0.010 10.000 11792.1 no
0.015 0.000 1043.0 yes
0.015 0.010 8252.6 yes
0.015 0.100 19059.0 yes
0.015 0.250 40689.4 yes
0.015 0.500 8243.8 yes
0.015 1.000 8245.1 yes
0.015 2.000 8240.5 yes
0.015 4.000 8193.0 no
0.015 10.000 8204.6 no
0.020 0.000 1047.4 yes
0.020 0.010 8248.1 yes
0.020 0.100 8253.8 yes
0.020 0.250 11848.0 yes
0.020 0.500 8247.2 yes
0.020 1.000 8193.7 no
0.020 2.000 8197.8 no
0.020 4.000 8193.1 no
0.020 10.000 11809.2 no
0.025 0.000 1057.3 yes
0.025 0.010 8261.3 yes
0.025 0.100 15450.2 yes
0.025 0.250 15446.6 yes
0.025 0.500 8253.3 yes
0.025 1.000 8244.3 yes
0.025 2.000 8240.8 yes
0.025 4.000 8192.3 no
0.025 10.000 11794.2 no
0.030 0.000 1054.0 yes
0.030 0.010 8260.0 yes
0.030 0.100 8245.3 yes
0.030 0.250 8246.1 yes
0.030 0.500 8245.9 yes
0.030 1.000 15452.1 yes
0.030 2.000 22666.2 yes
0.030 4.000 19014.3 no
0.030 10.000 26217.4 no
0.035 0.000 1044.5 yes
0.035 0.010 8249.1 yes
0.035 0.100 8333.5 yes
0.035 0.250 8314.2 yes
0.035 0.500 33487.0 yes
0.035 1.000 29875.2 yes
0.035 2.000 8195.5 no
0.035 4.000 11798.2 no
0.035 10.000 22602.0 no
0.040 0.000 1046.8 yes
0.040 0.010 51503.8 yes
0.040 0.100 8322.6 yes
0.040 0.250 26269.1 yes
0.040 0.500 22664.7 yes
0.040 1.000 15450.8 yes
0.040 2.000 19001.0 no
0.040 4.000 8195.0 no
0.040 10.000 11797.1 no
0.045 0.000 1048.0 yes
0.045 0.010 8256.5 yes
0.045 0.100 50665.2 yes
0.045 0.250 37235.9 yes
0.045 0.500 8200.9 no
0.045 1.000 8202.2 no
0.045 2.000 8196.3 no
0.045 4.000 8193.3 no
0.045 10.000 19003.5 no

Table 4: Results from evaluation (m = 8).
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