
The C Language

… you wouldn’t start from here!

Andrew Banks

Explainable Real-Time Systems and Their Analysis

(ERSA) 2024

The Speaker

▪ Software Engineer & Standards Evangelist

Focus: helping YOU to get your software right, first time!

▪ Biography
▪ Over 35 years' experience in developing real-time embedded software

systems, across a number of industries

▪ Chartered Fellow of the British Computer Society

▪ Member of the Institution of Engineering & Technology

▪ Standards
▪ Chairman of MISRA C Working Group since June 2013...

... Working Group member since 2007

▪ Chairman of the BSI Software Testing Working Group

… UK Head-of-Delegation to ISO/IEC JTC1/SC7

▪ Contributor to ISO 29119 “Software Testing”

▪ Contributor to ISO 26262 2nd Edition “Functional Safety”

▪ etc

Andrew Banks
Andrew.Banks@LDRA.com

2

Why Use MISRA…

... Or, in fact, any other Static Analysis

5

Agenda

3

Functional Safety Standards

… and how MISRA fits in

The C Language...

... and what is wrong with it

An introduction to MISRA C

MISRA C in an

... ISO 26262 context

1

2

3

4

International Standards
Safety, Security and AI

4

Setting the scene…

The nice thing about standards
... is that you have so many to choose from!
Andrew S. Tanenbaum

5

Functional Safety Standards

 LDRA

▪ IEC 61508 Functional Safety of E/E/PES X

▪ IEC 61511 Industrial Process Equipment [X]

▪ IEC 61513 Nuclear X

▪ IEC 62304 Medical Devices X

▪ ISO 13849 Machinery [X]

▪ ISO 25119 Agriculture & Forestry [X]

▪ ISO 26262 Road Vehicles X

▪ EN 50126/7/8/9 Railway X

▪ DO-178 Airborne Systems X

6

Information Technology

7

SC7

Software & Systems

Engineering

SC22

Programming

Languages

ISO/IEC 12207

ISO/IEC 15288

ISO/IEC 29119

ISO/IEC 250xx

ISO/IEC 9899

ISO/IEC 14882

ISO/IEC 24772

SC42

Artificial

Intelligence

Various!

Functional Safety and Security 1/2

8

TC22

Road Vehicles

SC32

E&E Components &

General System

Aspects

ISO 26262

ISO/SAE 21434

ISO 21448

SC/65A

IEC 61508 etc

TC/65

Industrial PMC&A

PMC&A = Industrial process measurement, control and automation

SC27

Security

ISO/IEC 270xx

Functional Safety and Security (2/2)

9

TC/210

QM & GA for MD

TC/215

Health Infomatics

ISO 82304 etc

ISO 13485 etc

JWG7

IEC 62304 etc

TC/62

Med Equip,S/W&Sys

JWG1,2,3

Various!

JTC1/SC42

JWG2

JTC1/SC42 + SC7
JTC1/SC7

Artificial Intelligence Life Cycle Processes

10

ISO/IEC TR 29119-11

Testing of

AI systems

ISO/IEC 25058

Guidance for Quality

Eval’n of AI systems

ISO/IEC 25059

Quality model

for AI systems

ISO/IEC 5338

AI system life cycle

processes

ISO/IEC 15288

System-engineering

life cycle processes

ISO/IEC 12207

Software-engineering

life cycle processes

ISO/IEC TR 29119-1..5

Software Testing

ISO/IEC 25010

Software Quality

Model

ISO/IEC 42119 (TBC)

Testing of

AI systems

TC65/SC65AJTC1/SC42

ISO TC22/SC32

JWG

Safety and Artificial Intelligence

11

ISO/IEC DTR 5469

Functional safety and

AI systems

ISO PAS 8800

Safety and

artificial intelligence

ISO/IEC 5338

AI system life cycle

processes

ISO 26262

Functional safety

ISO DTS 5053

Safety for automated

driving systems

ISO 21434

SOTIF

IEC 61508

Functional safety

The C Language...
... and what is wrong with it

In the beginning, the Universe was created.

This has made a lot of people very angry
… and been widely regarded as a bad move.

The Restaurant at the End of the Universe
Book 2 of the Douglas Adams’ 5-part Trilogy
The Hitch Hiker’s Guide To The Galaxy

13

Far back in the mists of ancient time…

▪ 1963 CPL Cambridge Programming Language
 Christopher Strachey et al of University of Cambridge

 Later known as the Combined Programming Language
 with the involvement of the University of London

▪ 1967 BCPL Bootstrap CPL (or Basic CPL)
 Martin Richards at the University of Cambridge

▪ 1969 B Ken Thompson and Dennis Ritchie at Bell Labs.

14

The C Language – A Quick History

▪K&R C

▪ 1972 First created by Dennis Ritchie

▪ 1976 Lint, the first C static analyser
 ... created by Stephen Johnson

▪ 1978 The C Programming Language published

▪ANSI C

▪ 1989 First standardized version
 ANSI X3.159-1989 (aka C89)

15

The C Language – A Quick History

▪ ISO C

▪1990 ISO/IEC 9899:1990 aka C90 Equivalent to C89

▪1995 Amendment 1 aka C95

▪1999 ISO/IEC 9899:1999 aka C99

▪2011 ISO/IEC 9899:2011 aka C11

▪2018 ISO/IEC 9899:2018 aka C18 A “TC” in all but name (aka C17)

▪2024 ISO/IEC 9899:2024 aka C24 Also known as C23!

Very few (if any) of you will be using ANSI C any more!

16

We don't demand solid facts!

What we demand is a total absence of solid facts.

We demand rigidly defined areas of doubt and uncertainty!

Vroomfondel the Philosopher, in
The Hitch Hiker’s Guide To The Galaxy
by Douglas Adams

17

▪Despite its popularity, there are several drawbacks with
the C language, eg:

▪ The ISO Standard language definition is incomplete:

▪ Behaviour that is Undefined 61 incidences
▪ Behaviour that is Unspecified 211 incidences
▪ Behaviour that is Implementation Defined 120 incidences
▪ Behaviour that is Locale-dependant 15 incidences

▪ Language misuse and obfuscation

▪ Language misunderstanding

▪ Run-time error checking

▪MISRA C is one solution...

The C Language – What is the problem?

C

18

The C Language – What is the problem?

▪ The ISO Standard language definition is incomplete

▪ Undefined behaviour is behaviour, upon use of a nonportable or erroneous program
construct or of erroneous data, for which the International Standard imposes no
requirements

▪ An example of undefined behaviour is the behaviour on integer overflow

 211 instances

▪ Unspecified behaviour invokes the use of an unspecified value, or other behaviour
where the International Standard provides two or more possibilities and imposes no
further requirements on which is chosen in any instance

▪ An example of unspecified behaviour is the order in which the arguments to a function
are evaluated.

61 instances

19

If not C, then what?

So, if not C, then what?

▪ 1977 etc Modula, Modula-2

▪ 1980(?) Perspective Pascal

▪ 1983 Ada (also including SPARK)

▪ 1993 Lua

▪ 1995 Java

▪ 2010 Rust

▪ 2024 ?

There is another way…
20

An introduction to
MISRA C

Original MISRA publications

▪ November 1994

Development guidelines for vehicle based software

(aka The MISRA Guidelines)

▪ The first automotive publication concerning functional safety

▪ Commenced more than 10 years before work started on ISO 26262

▪ April 1998

Guidelines for the use of the C language in vehicle based

software (aka MISRA C)

▪ December 1998

IEC 61508 (first edition) published!

22

MISRA C – A Quick History

MISRA-C:1998

▪ “Guidelines for the use of the C language in vehicle based software”

▪Compatible with ISO/IEC 9899:1990 (aka C90)

MISRA-C:2004

▪ “Guidelines for the use of the C language in critical systems”

▪Remains compatible with ISO/IEC 9899:1990 (aka C90)

23

MISRA C – A Quick History

MISRA C:2012 (3rd Edition)

▪Adds compatibility with ISO/IEC 9899:1999 (aka C99)

▪Amendment 1 in 2016 included additional security guidelines

MISRA C:2012 (3rd Edition, 1st Edition) [published 2019]

▪Consolidated enhancements introduced by AMD1 and TC1

▪ Further enhancements in 2020 (AMD2), 2022 (TC2, AMD3) and 2024 (AMD4)

MISRA C:2023 (3rd Edition, 2nd Revision)

▪Latest version, consolidating all recent work, to mark 25th anniversary!

24

The MISRA C Guidelines define a subset of the C language
in which the opportunity to make mistakes is either removed
or reduced.

Many standards for the development of safety-related
software require, or recommend, the use of a language
subset, and this can also be used to develop any
application with security, high integrity or high reliability
requirements.”

25

MISRA C in one slide!

▪ 221 Guidelines: 21 Directives (5 sections) and 200 Rules (23 sections)

26

Directives

▪ The implementation

▪ Compilation and build

▪ Requirements traceability

▪ Code design

▪ Concurrency considerations

Rules

▪ A standard C environment

▪ Unused code

▪ Comments

▪ Character sets & lexical conventions

▪ Identifiers

▪ Types

▪ Literals & constants

▪ Declarations & definitions

▪ Initialization

▪ The essential type model

▪ Pointer type conversions

▪ Expressions

▪ Side effects

▪ Control statement expressions

▪ Control flow

▪ Switch statements

▪ Functions

▪ Pointers and arrays

▪ Overlapping storage

▪ Preprocessing directives

▪ Standard libraries

▪ Resources

▪ Generic Selections

MISRA C in an

... ISO 26262 context
3

MISRA C – In an ISO 26262 Context

ISO 26262-6:2018, Section 5.4.3

▪ Criteria for suitable modelling, design or programming languages that are
not sufficiently addressed by the language itself shall be covered by the
corresponding guidelines, or by the development environment, considering
the topics listed in Table 1

▪ Example 1: MISRA C is a coding guideline for the programming language C
and includes guidance on automatically generated code

28

MISRA C – In an ISO 26262 Context

ISO 26262-6:2018, Table 1

29

MISRA C – In an ISO 26262 Context

▪ ISO 26262-6:2018, Section 8.4.5

▪Design principles for software unit design and implementation at the source code
level as listed in Table 6 shall be applied to achieve the following properties:

▪ correct order of execution of subprograms and functions within the software
units, based on the software architectural design;
▪ consistency of the interfaces between the software units;
▪ correctness of data flow and control flow between and within the software units;
▪ simplicity;
▪ readability and comprehensibility;
▪ robustness;
▪ suitability for software modification; and
▪ verifiability

30

MISRA C – In an ISO 26262 Context

ISO 26262-6:2018, Table 6

31

MISRA C – In an ISO 26262 Context

Static Analysis, control flow analysis and data flow analysis are
mentioned twice as a set:

▪ Table 7 ... software unit verification

▪ Table 10 ... verification of software integration

Control-flow and data-flow analysis are also mentioned in Table 4:

▪ Table 4 ... verification of software architectural design

32

MISRA C – In an ISO 26262 Context

ISO 26262-6:2018, Table 7 (unit)

33

MISRA C – In an ISO 26262 Context

ISO 26262-6:2018, Table 10

This also maps to the MISRA C guideline scope:

▪Unit Verification Single-translation-unit guidelines

▪ Integration System-wide guidelines

34

Why Use MISRA…
... Or, in fact, any
other Static Analysis

Introduction

Software Testing is…

1. An integral part of the software development life-cycle

2. Often reduced due to budget, resource, and timeline pressures

3. Frequently seen as a mystical black art

Caution!

Program testing can be used to show the presence of bugs,
… but never to show their absence!

Edsger Dijkstra

37

Checking Compliance

▪Check the code manually
▪ Needs to be done on MISRA C “undecidable” rules
▪ But don’t really want to do it on all the code!

▪Use a lightweight tool, such as is often built into compilers
▪ Fast (Checks just a subset)
▪ Detects the easy to find defects
▪ Tends to be “Optimistic” – False Negatives

▪Use a heavyweight tool
▪ Slow (Deep analysis, Check all rules)
▪ Detects the easy and hard to find defects (The “once a year” ones!)
▪ Tends to be “Pessimistic” – False Positives

38

Section 8.10 “The Essential Type Model”

▪ The rules in this section collectively define the essential type model and restrict the
C type system so as to:

▪ Support a stronger system of type-checking;

▪ Provide a rational basis for defining rules to control the use of implicit and explicit type
conversions;

▪ Promote portable coding practices;

▪ Address some of the type conversion anomalies found within ISO C.

▪ The essential type model does this by allocating an essential type to those objects
and expressions which ISO C considers to be of arithmetic type.

▪ For example, adding an int to a char gives a result having essentially character
type rather than the int type that is actually produced by integer promotion.

39

Use of defensive implementation techniques

▪MISRA C has guidance relating to:

▪ Control flow
▪ If / else if / else

▪ Switch / default

▪ While / do

▪ For loops

▪ Unreachable code
▪ There shall be no unreachable code

▪ There shall be no unused code

40

Defensive Implementation Techniques

▪Consider the Required MISRA C:2012 Rule 2.1
▪ A project shall not contain unreachable code

▪Consider the Required MISRA C:2012 Rule 15.6
▪ The body of an iteration-statement or a selection-statement shall be a

compound-statement. eg:
if (condition)

{

action();

}

▪Some suggest that these Rules are (to be polite) unnecessary...

▪ I wonder if Apple’s software team agree?
▪ CVE-2014-1266

41

The Apple iPhone SSL Bug

if ((err = SSLFreeBuffer(&hashCtx)) != 0)

 goto fail;

if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)

 goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

 goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

 goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

 goto fail;

42

The Apple iPhone SSL Bug

if ((err = SSLFreeBuffer(&hashCtx)) != 0)

 goto fail;

if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)

 goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

 goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

 goto fail;

 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

 goto fail;

 goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

 goto fail;
43

 Now unconditional

 Now unreachable!

The Apple iPhone SSL Bug

if ((err = SSLFreeBuffer(&hashCtx)) != 0)

 goto fail;

if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)

 goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

 goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

 goto fail;

 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

{ would this have helped?

 goto fail;

 goto fail;

} not forgetting this one...

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

 goto fail;

44

 Now unreachable!

 Now reachable!

In Summary…

In Summary

▪ The C Language is in widespread use, despite its limitations
… many attempts have been made to supplant it, without success

▪MISRA C is
▪ widely respected as guiding good practice

▪ appropriate for use in all high-integrity and high-reliability environments

▪Writing high-integrity and high-reliability needs the right language
… C, on its own, leaves a lot to be desired

▪You may not want to start from here, but at least with MISRA C, we
offer you a guide.

46

Need more information?

Image result for linkedin logo vectorImage result for linkedin logo vector

LDRA Software Technology LDRA Limited @ldra_technology LDRA Tools

info@ldra.com

info@ldra.com

Leading the way in Software Testing since 1975 47

https://www.facebook.com/ldratechnology
https://www.linkedin.com/company/ldra-limited
http://www.ldra.com/
https://www.youtube.com/user/ldraltd/
https://twitter.com/ldra_technology
mailto:info@ldra.com

Q A&

48

	Default Section
	Slide 1: The C Language
	Slide 2: The Speaker
	Slide 3: Agenda

	Functional Safety Standards
	Slide 4: International Standards Safety, Security and AI
	Slide 5: Setting the scene…
	Slide 6: Functional Safety Standards
	Slide 7: Information Technology
	Slide 8: Functional Safety and Security 1/2
	Slide 9: Functional Safety and Security (2/2)
	Slide 10: Artificial Intelligence Life Cycle Processes
	Slide 11: Safety and Artificial Intelligence

	The C Language
	Slide 12: The C Language... ... and what is wrong with it
	Slide 13
	Slide 14: Far back in the mists of ancient time…
	Slide 15: The C Language – A Quick History
	Slide 16: The C Language – A Quick History
	Slide 17
	Slide 18: The C Language – What is the problem?
	Slide 19: The C Language – What is the problem?
	Slide 20: If not C, then what?

	MISRA C
	Slide 21: An introduction to MISRA C
	Slide 22: Original MISRA publications
	Slide 23: MISRA C – A Quick History
	Slide 24: MISRA C – A Quick History
	Slide 25
	Slide 26: MISRA C in one slide!

	MISRA C in an ISO26262 context
	Slide 27
	Slide 28: MISRA C – In an ISO 26262 Context
	Slide 29: MISRA C – In an ISO 26262 Context
	Slide 30: MISRA C – In an ISO 26262 Context
	Slide 31: MISRA C – In an ISO 26262 Context
	Slide 32: MISRA C – In an ISO 26262 Context
	Slide 33: MISRA C – In an ISO 26262 Context
	Slide 34: MISRA C – In an ISO 26262 Context

	Static Analysis
	Slide 35: Why Use MISRA… ... Or, in fact, any other Static Analysis
	Slide 36: Introduction
	Slide 37: Caution!
	Slide 38: Checking Compliance
	Slide 39: Section 8.10 “The Essential Type Model”
	Slide 40: Use of defensive implementation techniques
	Slide 41: Defensive Implementation Techniques
	Slide 42: The Apple iPhone SSL Bug
	Slide 43: The Apple iPhone SSL Bug
	Slide 44: The Apple iPhone SSL Bug
	Slide 45: In Summary…
	Slide 46: In Summary
	Slide 47
	Slide 48

