

3rd International Workshop on Explainability of
Real-time Systems and their Analysis

at the IEEE Real-Time Systems Symposium
York, UK, December 10, 2024

Question

Answer

Explanation

It is our pleasure to welcome you to the 3rd International Workshop on
Explainability of Real-time Systems and their Analysis (ERSA). This
workshop is held on December 10, 2024 in York, UK in conjunction with
IEEE Real-Time Systems Symposium (RTSS). We started this workshop
because we wanted to explore whether the notion of explainability is helpful
for the real-time system research community in order to deliver more value
to software practitionersin particular those involved in certification. This
document is the workshop proceeding for ERSA’24.

We thank several individuals and institutions without whom this workshop
would not have been possible. This includes:

1. the authors of peer reviewed papers, keynotes, and panelists for
providing technical content;

2. the members of the technical program committee for evaluating the
peer-reviewed papers and providing constructive feedback to the
authors;

3. the organizers of RTSS that gave “go-ahead” for ERSA to take place;
this includes Zhishan Guo (Hot-Topics Day Chair of RTSS);

4. the University of York for supporting ERSA;
5. Iain Bate for being willing to help on short notice with the

organization;
6. people working behind the scene to provide (digital and physical)

infrastructure, advice, and proofreading.

The papers in this workshop proceeding provide new ideas on
explainability. This year, we received papers from authors who have not
published at ERSA before. This is a testament to the change of the area
and our community. We believe and hope you will find the papers
interesting; and that they will help you and help us all in defining this new
area of research.

Sincerely,

Philippa Ryan
Bjorn Andersson
Co-Chairs of ERSA’24

Sound WCET Analysis, Explanation of the Method
and of the Results

Reinhard Wilhelm
Informatik

Saarland University
Saarbrücken, Germany

ORCID ID 0000-0002-5599-7560

Jan Reineke
Informatik

Saarland University
Saarbrücken, Germany

ORCID ID 0000-0002-3459-2214

Abstract—Sound WCET analysis computes reliable upper
bounds to all execution times of a program as required by a
schedulability analysis. It is a complex method, composed of
many component methods. Software developers and certification
authorities are interested in understanding the derivation of
the results in order to develop trust in their correctness. The
results cannot be understood without a basic understanding of
the methods. We argue that essentially one of the component
methods, Microarchitectural Analysis, is critical for understand-
ing and accepting the results. In this article we therefore explain
Microarchitectural Analysis and show how its provides local
explanations for the overall result.

In addition, we show that progress monotonicity is a suffi-
cient condition for timing compositionality and that it increases
explainability.

Index Terms—WCET analysis, real-time, instruction execution
times, timing compositionality

I. INTRODUCTION

Sound WCET analysis computes reliable upper bounds to
all execution times of a program. The problems of WCET
analysis are caused by performance-enhancing features of
microarchitectures. They introduce a large variability of exe-
cution times of instructions. This article explains the principle
behind sound solutions of the WCET problem. This principle
is to prove the absence of timing accidents, i.e., events during
the execution of an instruction execution that increase the
execution time compared to the fastest execution. These proofs
are based on the determination of invariants about the set of
potential execution states at each program point. Such invari-
ants can be computed by a fixed-point iteration by Abstract
Interpretation. The particular ingredients of the employed
instances of abstract interpretations are explained and con-
nected to fundamental insights into the timing-predictability
of execution platforms. We show how the computed invariants
are essential for explaining the results of WCET analysis.

II. WCET ANALYSIS—THE PROBLEM

WCET analysis can be seen as the search for the longest
path through the control-flow graph of a program. The nodes
are the instructions of the program, annotated with their
execution times. This task was relatively easy in the (good
old) times of instructions with constant execution times [1],
[2]. Structural induction over the structure of a program was

used to compute global upper bounds on all execution times
of instructions.

Unfortunately, in modern high-performance processors the
execution times of instructions vary widely. This is caused
by their dependence on the execution state of performance-
enhancing features such as caches, pipelines, and all kinds
of speculation. The core of the WCET–analysis problem for
modern high-performance processors thus is, how to safely
bound the execution times of individual instructions in a
program. This is done by the analysis component called
Microarchitectural Analysis in the picture of the tool structure
in Fig. 1. The determination of a safe upper bound on the
execution time of the whole program and of the path on which
this bound is determined is called Global Bounds Analysis in
Fig. 1. This analysis explores all paths in a state space, spanned
by the program and the architecture. It would be desirable to
cut down the size of this space. However, as we will see later, a
ghost that haunts WCET researchers is the existence of Timing
Anomalies [3], [4], namely that cheaper continuations of
execution paths may lead to globally more expensive paths and
vice versa. For microarchitectures exhibiting timing anomalies,
it would be incorrect to explore only worst-case transitions.
The full graph needs to be explored. We will come back to
timing anomalies in the context of timing predictability.

III. WCET-ANALYSIS—A SOLUTION

The different execution times result from different execution
states in which an instruction may be executed. A memory
access is fast if the accessed memory block is in the cache,
it is slow if it has to be fetched from memory, and it is even
slower if the memory load is blocked on the bus. We call cache
misses, pipeline stalls, bus collisions, and mis-speculations
Timing Accidents and the associated extra cycles Timing
Penalties. The search through the annotated graph could safely
assume a cache hit if it were known, for example as results
of a static cache analysis, that the accessed memory block
were in the cache each time execution reaches that program
point. So, the solution consists in computing invariants at each
program point that safely describe the execution states, i.e., the
occupancy of the machine resources.

We now argue that all but one component analysis from Fig.
1 are nor critical for understanding sound WCET analysis.

Binary
Executable

CFG Re-
construction

Control-flow
Graph

Loop Bound
Analysis

Value
Analysis

Control-flow
Analysis

Annotated
CFG

Basic Block
Timing Info

Micro-
architectural

Analysis

Global
Bound

Analysis

Legend:

Data

Phase

Fig. 1. Architecture of WCET tools using static analysis based on an
abstraction of the execution platform such as AbsInt’s aiT tool [5].

The Value Analysis, shown in Fig. 1, computes enclosing
intervals for the values in program variables and machine
registers. The results restrict potential memory accesses to
enable a precise data-cache analysis and support Loop Bounds
Analysis. The Control-Flow Analysis determines facts about
the control flow, like infeasible control flow paths, that cannot
contribute to overall execution times. In case of doubt these
computed approximations can be inspected and compared with
the user’s expectations. The Global Bounds Analysis exhibits
the control-flow paths through the program, augmented by the
paths through the architecture, together with annotations of
the costs. The overall graph shows all cycle-wise evolutions
of the computation. The direct or indirect algorithm, used to
compute this graph, can be taken from textbooks and proved
correct. In case of doubt the annotated graph can be manually
checked.

The Microarchitectural Analysis in this solution to the
WCET-Analysis problem [6] consists in determining at each
program point an invariant that describes a safe approximation
of the set of execution states that are possible when execution
reaches this program point. Based on these invariants our
WCET analysis proves safety properties of the following kind:
A certain timing accident cannot happen when the instruction
at this program point is executed. These approximations are
safe in the sense that any timing accident excluded based on
them will indeed never happen. Each safety property proved in
this way allows WCET analysis to reduce the execution-time
bound of the instruction by the associated timing penalty.

The invariants are computed by an instance of Abstract
Interpretation [7], algorithmically by a fixed-point iteration
over the control-flow graph of the program. Abstract inter-
pretation is a semantics-based static analysis. Unlike most of
the instances of abstract interpretations used in practice or
published, abstraction interpretation used in WCET analysis
needs to include the semantics of the underlying execution
platform. Its core, therefore, is an abstraction of the underlying
microarchitecture. This abstraction is structured into different
components according to the structure of the architecture.
Abstractions of several architectural components are described
in Subsection III-A and Section IV.

A. Execution-state Invariants as Means to Explain the Result
of WCET-Analysis

The execution-state invariants and the transitions between
invariants at consecutive program points are the means to
show local correctness to a user or certification authorities.
Execution-state invariants describe possible occupancies of
machine resources, i.e. what is in the caches, how far have
instructions progressed through the pipeline, and which con-
flicts may they encounter in attempting to access pipeline
units, which part of the bus bandwidth is occupied by running
transfers. Microarchitectural execution states are structured as
a collection of components according to the overall structure of
the machine resources. The occupancy of different components
is represented in different abstract domains. Understanding the
invariants means being able to read the abstract states.

In Abstract–Interpretation terminology, concretization is
the function that returns the set of concrete states represented
by an abstract state. The abstract cache states, for instance,
describe sets of concrete cache contents, together with
replacement information. In the case of an LRU cache the
latter are upper bounds on the ages of the memory blocks
guaranteed to be in the cache. In the case of non–LRU caches
this information may be complex. Abstract pipeline states of
most current architectures are easier to understand since they
are collections of concrete pipeline states.

In addition to the concretization of the abstract cache
states, the transitions between invariants need to be explained.
In principle, one could imagine that all component states
described in an invariant would be concretized, then the
concrete transformation would be applied to all of the concrete
ones, and then the resulting set of concrete states would be
abstracted back into abstract states forming the new invariant
as illustrated by the following diagram:

a a′

c c′

abstract update

concretization
concrete update

abstraction

More realistically, the developer of the microarchitectural
analysis determines a conservative approximation of the com-
position of these three functions and explains the result to
the interested public. The abstract update needs to satisfy
the following local correctness condition: Given a set of

concrete caches states c described by abstract cache state a.
The transition from all the cache states in c yields concrete
cache states collected in a set c′. The application of the abstract
transition relation to a must yield an abstract cache state a′

that contains at least all the concrete cache states in c′. This
is captured by the following diagram:

a a′

c′′

c c′

abstract update

concretization

concretization

⊇

concrete update

Fig. 2 shows an example of an abstract transition in the case
of caches. This figure should be read as follows: Transitions
from one concrete cache state to a successor state happen
under a memory access. In the lower part of Fig. 2 transitions
from four concrete cache states under an access to memory
block C lead to two potential successor states. The initial
four concrete cache states are described by (can be abstracted
to) the abstract cache state pictured above them. This is an
abstract cache state that contains all memory blocks contained
in all of these concrete cache states with an age at least as
large as that of all their ages in the concrete cache states. The
transition from the abstract cache state leads to an abstract
cache state that describes the two resulting concrete cache
states in the same way. We also say that the concretization
of the resulting abstract cache state contains the two concrete
cache states.

In this particular case, the abstraction is exact, i.e., the
resulting abstract cache states represent the two potential
successor states, and no more. In general, the cache abstraction
from the example, and other abstractions, may introduce
additional spurious concrete states, which may result in a loss
of precision, but correctness remains guaranteed by overap-
proximating any set of reachable concrete states.

The local correctness condition we have just explained is
the basis to explain the global correctness of the analysis. If
each abstract transition is locally correct, then it can be shown
that the concretization of the reachable set of abstract states
computed by fixed-point iteration is guaranteed to contain all
reachable concrete states.

Again, abstract transitions on non–LRU abstract cache states
may be complex. However, there is no way to give a simple
explanation of a complex mechanism.

IV. MICROARCHITECTURAL ABSTRACTIONS

Attempting to determine the real worst-case execution time
by exhaustive exploration of the space of all paths is a hopeless
endeavor for all but trivial programs. Not only the space of all
paths through the control-flow graphs needs to be explored,
but also the much larger space of paths through the sets of
execution states of the underlying microarchitecture.

This latter space can be reduced by abstraction, considering
abstract execution states instead of concrete execution states.

0:
1:
2:
3:

0:
1:
2:
3:

Access to C: “hit”

{C}
{}

{A,B}
{D}

{}
{B}
{A,C}
{D}

concretization

C
B
A
D

B
A
C
D

B
C
A
D

A
B
C
D

C
A
B
D

C
B
A
D

Access
to C

concretization

Fig. 2. Transition from one abstract LRU cache state to a successor abstract
cache state and their concretizations

The different components of the execution platform are ab-
stracted as to make the space exploration feasible, but on the
other hand keep enough information for the above mentioned
exclusion of timing accidents. It turns out that different types
of components need different types of abstractions.

A. Abstractions of State–Dependent Resources

The essential property of state-dependent resources as far as
timing of instruction execution is concerned is that their state
influences instruction execution times, that is, the execution
of instructions takes different number of cycles depending on
the state of the resource. For example, an instruction or an
operand fetch takes different number of cycles depending on
the state of the instruction or data cache. The access to a
memory bank takes a different number of cycles depending
on whether the bank is open or closed. The next instruction to
be fetched depends on the state of the branch predictor. Static
cache analysis has been the mother of all WCET analyses.
Compact abstractions of cache states with efficient updates,
such as the one shown in Fig. IV, have been identified for
caches with LRU-replacement policy [8].

B. Abstractions of Bandwidth Resources

We call microarchitectural components such as buses and
other interconnects bandwidth resources since they offer lim-
ited resources in time to different competing actors. Contention
is resolved based on some protocol, sometimes based on the
state of the resource. In contrast to storage resources, where the
actual state of a resource can still be influenced by long-passed
state changes, this state usually results from recent actions, i.e.,
whether two cores are currently competing for access or not.
Abstract states in the static analysis of bandwidth resources
record everything needed to predict guaranteed access to the
resource, such as all potential states of the access protocol,
all maximal delay times caused by running accesses, and the
minimal available bandwidth of the resources.

Bandwidth resources are particularly challenging when they
are shared, as e.g. buses are in multi-core processors, due to
the large number of possible interactions between processes
running on different cores. A promising approach to efficiently

analyze shared bandwidth resources is compositional analysis,
which we discuss in the next section.

C. Abstractions of Progress Resources

Pipelining overlaps the execution of multiple instructions
to improve performance. From an analysis point of view
pipelining is challenging as it prohibits decomposing the
problem into the analysis of one instruction at a time. Flowing
through the pipeline, each instruction gradually progresses
through the resource. We thus regard pipelines as progress
resources. Abstract pipeline states in static pipeline analysis
record the minimum progress instructions under execution can
be guaranteed to have made at a program point.

Efficient abstractions for pipeline states have been par-
ticularly hard to find. Out-of-order pipelines required using
expensive power-set domains [9], [10]. This means that the
pipeline analysis computed (often very large) sets of pipeline
states at each program point instead of small descriptions of
such sets like in the case of caches. Out-of-order pipelines
also unavoidably came with timing anomalies, which we will
discuss further in the following section. In contrast to common
belief, even in-order pipelines can exhibit timing anomalies as
shown in [11].

V. TIMING PREDICTABILITY

The notion of Timing Predictability has been around even
before the WCET problem became exciting [12]. Varying
instruction execution times were not a problem at this time.
The method described in this paper was first instantiated
for two different microarchitectures used by Airbus [6]. It
became immediately clear that these two microarchitectures,
a Motorola Coldfire and a PowerPC 655 had different Timing
Predictabilities [13].

Thiele and Wilhelm [14] published a first recommendation
for the design of timing-predictable microarchitectures based
on empirical evidence. The dissertation of Jan Reineke was
the first to present a formal notion of timing predictability,
namely that of cache replacement strategies [15], [16].

A. Timing Anomalies and Timing Compositionality

Microarchitectures exhibiting timing anomalies force sound
WCET analyses to explore inherently larger search spaces.
On the other hand, microarchitectures that are provably free
from anomalies lead to more scalable WCET analyses and
more explainable results, as the analysis and its explanation
can focus on a smaller set of states. A natural question thus
is how to systematically construct microarchitectures that are
free from timing anomalies.

Similarly, multi-core platforms with shared resources offer
a severe challenge for WCET analysis since different interfer-
ences on the shared resources, in general, lead to different
timing behaviors. Explicitly exploring all interleavings of
accesses to shared resources leads to an enormous increase
in the size of the search space [17], [18]. A promising
approach to scalably analyze WCET in multi-core systems

is compositional analysis [19], [20], where the timing con-
tributions of shared resources are analyzed separately and
then composed. In such an approach, the “base” WCET of
each task is analyzed assuming the task is run in isolation.
Then, the amount of interference on each shared resource is
bounded separately and added to the base WCET to obtain a
bound on the execution time under contention. We argue that
compositional analyses are naturally more explainable than
integrated analyses as each individual analysis is less complex.
Unfortunately, such an approach requires timing composition-
ality [21], the ability to soundly compose contributions from
multiple resources. Complex processors have been shown to
violate timing compositionality.

It turns out that timing compositionality and freedom from
timing anomalies are strongly related. In fact, Hahn and
Reineke [22] showed that progress monotonicity is a sufficient
condition for both properties. More precisely, consider two
microarchitectural states a and b in which every instruction
exhibits more progress towards retirement in b than it does in
a, we say that a ≤ b. A microarchitecture exhibits progress
monotonicity if for any pair of states a ≤ b, the immediate
successor states s(a) and s(b) maintain the ordering, i.e.,
s(a) ≤ s(b). In [22] they also demonstrate how to construct
a processor that provably satisfies progress monotonicity and
thus facilitates fast and explainable WCET analysis.

Computer architects are mainly concerned with increasing
the average-case performance and ignore the requirements of
the embedded real-time domain. The most notable exception
is the Kalray many-core processor which is designed to avoid
interferences and make sound and precise WCET analysis
possible [23].

VI. EXPLAINABILITY CHALLENGES

The correctness of the architectural abstraction is the critical
point for customers and certification authorities when it comes
to the soundness of a WCET–analysis tool. Formal verification
of the soundness is infeasible in the absence of formal models
of the underlying execution platforms. Sophisticated testing
strategies have been used to convince one of the correct-
ness [24].

The ideal would be a formal or at least semi–formal
derivation of the abstract model from an available architecture
description in a HW description language like VHDL or Ver-
ilog. Marc Schlickling and Markus Pister [25] have attempted
this approach, but were bogged down with too many detail
problems as tool support for analysis and verification of HW
description languages was under–developed at the time of their
attempt. The growing ecosystem of RISC-V [26] open-source
cores and systems-on-chip along with open-source synthesis
toolchains such as Yosys [27] make such an approach appear
more viable today.

In this context, it would even be conceivable to generate
two tools from the Verilog code describing the underlying
hardware:

1) An abstract hardware model used within WCET anal-
ysis. Based on this model the WCET analysis would

generate “WCET certificates” explaining the WCET
bound.

2) A WCET certificate checker relying purely on the
concrete hardware model to confirm the correctness
of the WCET analysis result. This would reduce the
trusted compute base by eliminating the need to trust
the correctness of the abstract model.

ACKNOWLEDGEMENTS

We appreciate the comments of the reviewers who helped
us to improve the paper. This work has received funding
from the European Research Council under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement No. 101020415).

REFERENCES

[1] A. C. Shaw, “Reasoning about time in higher-level language software,”
IEEE Trans. Software Eng., vol. 15, no. 7, pp. 875–889, 1989.

[2] P. P. Puschner and C. Koza, “Calculating the maximum execution time
of real-time programs,” Real Time Syst., vol. 1, no. 2, pp. 159–176,
1989.

[3] T. Lundqvist and P. Stenström, “Timing anomalies in dynamically
scheduled microprocessors,” in RTSS, pp. 12–21, 1999.

[4] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger,
and B. Becker, “A definition and classification of timing anomalies,”
in Proceedings of 6th International Workshop on Worst-Case Execution
Time (WCET) Analysis, July 2006.

[5] AbsInt Angewandte Informatik GmbH, “aiT WCET Analyzers.” https:
//www.absint.com/ait/.

[6] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt,
H. Theiling, S. Thesing, and R. Wilhelm, “Reliable and precise WCET
determination for a real-life processor,” in EMSOFT, vol. 2211 of LNCS,
pp. 469 – 485, 2001.

[7] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, (New York, NY,
USA), pp. 238–252, ACM Press, 1977.

[8] C. Ferdinand and R. Wilhelm, “Efficient and precise cache behavior
prediction for real-time systems.,” Real-Time Systems, vol. 17, no. 2-3,
pp. 131–181, 1999.

[9] S. Thesing, Safe and Precise WCET Determinations by Abstract Inter-
pretation of Pipeline Models. PhD thesis, Saarland University, 2004.

[10] M. Langenbach, S. Thesing, and R. Heckmann, “Pipeline modeling
for timing analysis,” in Static Analysis, 9th International Symposium,
SAS 2002, Madrid, Spain, September 17-20, 2002, Proceedings (M. V.
Hermenegildo and G. Puebla, eds.), vol. 2477 of Lecture Notes in
Computer Science, pp. 294–309, Springer, 2002.

[11] S. Hahn, J. Reineke, and R. Wilhelm, “Toward compact abstractions
for processor pipelines,” in Correct System Design - Symposium in
Honor of Ernst-Rüdiger Olderog on the Occasion of His 60th Birthday,
Oldenburg, Germany, September 8-9, 2015. Proceedings, pp. 205–220,
2015.

[12] J. A. Stankovic and K. Ramamritham, “Editorial: What is predictability
for real-time systems?,” Real Time Syst., vol. 2, no. 4, pp. 247–254,
1990.

[13] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm, “The
influence of processor architecture on the design and the results of
WCET tools,” IEEE Proceedings on Real-Time Systems, vol. 91, no. 7,
pp. 1038–1054, 2003.

[14] L. Thiele and R. Wilhelm, “Design for timing predictability,” Real-Time
Systems, vol. 28, no. 2-3, pp. 157–177, 2004.

[15] J. Reineke, Caches in WCET Analysis: Predictability - Competitiveness
- Sensitivity. PhD thesis, Saarland University, 2009.

[16] J. Reineke, D. Grund, C. Berg, and R. Wilhelm, “Timing predictability of
cache replacement policies,” Real-Time Systems, vol. 37, no. 2, pp. 99–
122, 2007.

[17] A. Abel, F. Benz, J. Doerfert, B. Dörr, S. Hahn, F. Haupenthal,
M. Jacobs, A. H. Moin, J. Reineke, B. Schommer, and R. Wilhelm,
“Impact of resource sharing on performance and performance prediction:
A survey,” in CONCUR 2013 - Concurrency Theory - 24th International
Conference, CONCUR 2013, Buenos Aires, Argentina, August 27-30,
2013. Proceedings (P. R. D’Argenio and H. C. Melgratti, eds.), vol. 8052
of Lecture Notes in Computer Science, pp. 25–43, Springer, 2013.

[18] T. Kelter and P. Marwedel, “Parallelism analysis: Precise WCET values
for complex multi-core systems,” Sci. Comput. Program., vol. 133,
pp. 175–193, 2017.

[19] S. Altmeyer, R. I. Davis, L. S. Indrusiak, C. Maiza, V. Nélis, and
J. Reineke, “A generic and compositional framework for multicore
response time analysis,” in RTNS, pp. 129–138, 2015.

[20] R. I. Davis, S. Altmeyer, L. S. Indrusiak, C. Maiza, V. Nélis, and
J. Reineke, “An extensible framework for multicore response time
analysis,” Real Time Syst., vol. 54, no. 3, pp. 607–661, 2018.

[21] S. Hahn, J. Reineke, and R. Wilhelm, “Towards compositionality in ex-
ecution time analysis: definition and challenges,” SIGBED Rev., vol. 12,
no. 1, pp. 28–36, 2015.

[22] S. Hahn and J. Reineke, “Design and analysis of SIC: a provably timing-
predictable pipelined processor core,” Real Time Syst., vol. 56, no. 2,
pp. 207–245, 2020.

[23] B. D. de Dinechin, D. van Amstel, M. Poulhiès, and G. Lager, “Time-
critical computing on a single-chip massively parallel processor,” in
Design, Automation & Test in Europe Conference & Exhibition, DATE
2014, Dresden, Germany, March 24-28, 2014 (G. Fettweis and W. Nebel,
eds.), pp. 1–6, European Design and Automation Association, 2014.

[24] R. Wilhelm, M. Pister, G. Gebhard, and D. Kästner, “Testing implemen-
tation soundness of a WCET analysis tool,” in A Journey of Embedded
and Cyber-Physical Systems - Essays Dedicated to Peter Marwedel on
the Occasion of His 70th Birthday (J. Chen, ed.), pp. 5–17, Springer,
2021.

[25] M. Schlickling and M. Pister, “Semi-automatic derivation of timing mod-
els for WCET analysis,” in Proceedings of the ACM SIGPLAN/SIGBED
2010 conference on Languages, compilers, and tools for embedded
systems, LCTES 2010, Stockholm, Sweden, April 13-15, 2010 (J. Lee
and B. R. Childers, eds.), pp. 67–76, ACM, 2010.

[26] K. Asanović and D. A. Patterson, “Instruction sets should be free: The
case for RISC-V,” Tech. Rep. UCB/EECS-2014-146, Aug 2014.

[27] C. Wolf, “Yosys open synthesis suite.” https://yosyshq.net/yosys/.

Program Co-Chairs

Bjorn Andersson, SEI/CMU, USA
Philippa Ryan, UYork, UK

Program Committee

Ademola (Peter) Adejokun, Lockheed Martin, USA
Ahlem Mifdaoui, UToulouse, FR
Al Mok, Texas, USA
Andrew Banks, LDRA, UK
C. Michael Holloway, NASA, USA
Chi-Sheng (Daniel) Shih, NTU, TW
Dionisio de Niz, SEI/CMU, USA
Elena Troubitsyna, KTH, SE
Ganesh Pai, KBR/NASA ARC, USA
George Romanski, FAA, USA
Guillem Bernat, Rapita, UK
Hyoseung Kim, CR, USA
Isaac Amundson, Collins Aerospace, USA
Jie Zou, UYork, UK
John Lehoczky, CMU, USA
Mallory Graydon, NASA, USA
Mark Klein, SEI/CMU, USA
Rafael Zalman, Infineon, DE
Shige Wang, Motional, USA

Towards Explainable Compositional Reasoning
Isaac Amundson, Amer Tahat, David Hardin, and Darren Cofer

Applied Research and Technology, Collins Aerospace, USA
{first.last}@collins.com

Abstract—Formal verification tools such as model checkers
have been around for decades. Unfortunately, despite their ability
to prove that mission-critical properties are satisfied in both
design and implementation, the aerospace and defense industry
is still not seeing widespread adoption of these powerful tech-
nologies. Among the various reasons for slow uptake, difficulty
in understanding analysis results (i.e., counterexamples) tops the
list of multiple surveys. In previous work, our team developed
AGREE, an assume-guarantee compositional reasoning tool for
architecture models. Like many other model checkers, AGREE
generates potentially large counterexamples in a tabular format
containing variable values at each time step of program execution
up to the property violation, which can be difficult to interpret,
especially for novice formal methods users. In this paper, we
present our approach for achieving explainable compositional
reasoning using AGREE in combination with generative AI. Our
preliminary results indicate this technique works surprisingly
well, and have encouraged us to expand this approach to other
areas in explainable proof engineering.

DISTRIBUTION STATEMENT A. Approved for public
release: distribution unlimited.

I. INTRODUCTION

Formal methods provides a mathematically rigorous means
of verification that one would expect for the development
of high-assurance systems such as those in the aerospace
and defense industries. Certification guidance has even been
published on how formal methods can be used to satisfy air-
worthiness objectives for airborne software in commercial air-
craft [1]. However, despite the effectiveness of these powerful
proof techniques, their adoption into traditional development
processes has been slow and uneven. Reasons for slow uptake
include scalability limitations of the underlying algorithms,
poorly designed user interfaces and other tool usability factors,
and the need for formal training to properly use them [2].

The DARPA Pipelined Reasoning of Verifiers Enabling
Robust Systems (PROVERS) program was recently launched
with the goal of producing scalable and usable formal methods
tools that can be integrated into traditional aerospace and
defense development processes. Specifically, a key outcome
of the program is that product engineers with minimal for-
mal methods background will be able to benefit from these
powerful technologies, further driving their adoption while
simultaneously improving product dependability.

To address these challenges, our team is developing the
Industrial-Scale Proof Engineering for Critical Trustworthy
Applications (INSPECTA) framework1. INSPECTA consists

1https://loonwerks.com/projects/inspecta.html

of ProofOps and BuildOps tools and methods that integrate
with current aerospace DevOps pipelines and achieve provably
correct design and implementation at each level of the system
hierarchy. In order to address the key objectives of PROVERS,
we pay particular attention to addressing scalability and ex-
plainability concerns with respect to the proof tools in our
framework.

Within the ProofOps workflow, INSPECTA uses the
Assume-Guarantee Reasoning Environment (AGREE) [3], a
formal compositional reasoning tool for Architecture Analysis
and Design Language (AADL) [4] models. Compositional
reasoning partitions the formal analysis of a complex system
architecture into verification tasks corresponding to the archi-
tecture’s decomposition. By partitioning the verification effort
into proofs about each subsystem within the architecture, the
analysis will scale to handle large system designs.

Although AGREE does not suffer from some of the scal-
ability issues inherent in other formal methods frameworks
due to the compositional nature of the analysis, generated
counterexamples can still be difficult to understand, especially
for formal methods novices when the counterexamples contain
several steps, each consisting of multiple variables. This prob-
lem is not unique to AGREE, but is common to most model
checkers in use today [5]. Recently, however, a novel approach
to producing explainable counterexamples has emerged in the
form of generative AI.

Research on applying generative AI to formal reasoning has
already gained significant attention. For instance, OpenAI re-
searchers conducted pioneering work in 2020, leveraging large
language models (LLMs) for mechanical theorem proving [6].
This resulted in the development of GPT-f, a proof assistant
for Metamath, which achieved a 56% success rate and proved
200 theorems [7]. Other studies have explored LLMs for proof
generation and repair. First et al. achieved a 50% success
rate in proof repair for Isabelle/HOL [8], using Minerva [9],
a model based on Google’s PaLM [10]. Research has also
examined GPT-3.5 and GPT-4 for Coq theorem proving [11],
primarily focusing on diagnosing failed proofs. LLMs have
further been applied to discover program invariants [12], [13]
and support automated reasoning, as seen in the Clover project
by Stanford and VMware, which emphasizes verifiable code
generation [14].

In previous work [15], [16], Tahat et al. developed a copilot
for large-scale proof repair using multi-shot conversational
learning. The approach achieved a 97% success rate across
58 theorems from a repository containing 20,000 lines of
Coq code from the Copland proofbase. Additionally, they

introduced an evaluation framework to assess the convergence
of dialogues toward predefined proof sets.

In this paper, we present our current work on using genera-
tive AI to provide clear and concise explanations of counterex-
amples generated by AGREE. Although using generative AI
for explainable formal verification has been explored in other
works (e.g., [17]), to the best of our knowledge, this is the
first application of applying generative AI for producing ex-
plainable counterexamples from compositional reasoning over
architecture models. Our initial results indicate this approach
is well-suited for providing clear explanations of root cause,
as well as suggestions for addressing the contract violations.

II. EXPLAINABLE AGREE

A. Overview

AGREE provides a formal contract language for specifying
assumptions (i.e., expectations on a component’s input and the
environment) and guarantees (i.e., bounds on a component’s
behavior). Because AGREE is implemented as an AADL
annex in the Open Source AADL Tool Environment (OSATE),
the contracts are specified directly on components in the
AADL model. AGREE then uses a k-induction model checker
to prove properties about one layer of the architecture using
properties allocated to subcomponents. The analysis proves
correctness of (1) component interfaces, such that the output
guarantees of each component must be strong enough to satisfy
the input assumptions of downstream components, and (2)
component implementations, such that the input assumptions
of a system along with the output guarantees of its sub-
components must be strong enough to satisfy its output
guarantees.

When a contract violation is found (i.e., when an assumption
is determined to be invalid or a guarantee is unsupported),
AGREE produces a counterexample consisting of values
for each system variable at each execution step. A sample
counterexample is depicted in Figure 1. Currently, OSATE
includes the AADL Simulator tool that can accept an AGREE
counterexample as input and walk through the trace in the
graphical editor, but it is of limited help when it comes to
identifying the root cause of the contract violation.

B. Making Counterexamples Actionable

We therefore desire AGREE counterexamples that are ac-
tionable; that is, an explanation of the violation in terms
that will quickly lead to a passing analysis (e.g., by making
changes to the model or formal contract). To achieve this,
we implemented an interactive conversational copilot powered
by GPT-4o (omni) multi-modal generative AI, specifically
developed to assist AGREE users in identifying the root causes
of counterexamples and to support the subsequent model repair
process. It was designed to be user-friendly and integrates with
the OSATE IDE (see Figure 2).

In the remainder of this section, we detail our methodology
and present our key findings using the Integer_Toy and
Car models included with the AGREE distribution.

Fig. 1: AGREE counterexample generated from the Car
model.

C. Contextual Prompt Constraints Problem

The GPT-4o generative multi-modal model exhibits signif-
icant power in translating human instructions into code and
vice versa, particularly when the language in question has
been part of its pre-training data and there exists a substantial
open-source code base, such as C or Python. However, this
capability comes with the drawback of potential hallucinations.
Since AGREE is not as widely adopted as languages like C or
Python, this problem is exacerbated. Consequently, the lack
of relevant context is a significant challenge for generating
explainable AGREE counterexamples.

To mitigate the contextual prompt constraints problem,
we implemented a dynamic Retrieval-Augmented Generation
(RAG) system, allowing it to adjust its context based on user
inquiries.

Despite GPT-4o’s 128k token capacity, which we estimate
can accommodate several thousand lines of AADL in a
single prompt, uploading an entire repository’s contents can
be prohibitively expensive and may well exceed the prompt
token limitations. We therefore implemented a practical two-

Fig. 2: AGREE copilot in OSATE provides an explanation for a counterexample generated on the Car model.

step optimization technique to meet our current needs.
First, the RAG system reads the top-level AADL file. It

then parses the file’s import chain, extracting only the files
in the model workspace that are specified on this chain. This
step significantly reduces the initial prompt size. The second
optimization addresses another practical requirement: handling
parts of the repository that may have been included in the
model’s pre-training data, such as core libraries. To manage
this, the RAG system applies a filtering technique to the file
names, guiding the system to ignore certain files, such as
standard libraries, and retain user-defined files. This approach
further reduces the initial prompt size to include only files that
the model has not previously encountered. Finally, user inputs
are automatically incorporated into the extracted context from
the current file and its import chain, allowing for more accurate
responses to user inquiries.

This approach significantly mitigates contextual constraint-
based hallucinations that can arise from the absence of AADL
model specifications. However, it does not address the absence
of the counterexample itself or the lack of guidance on the
critical system requirements that should be preserved during
the model repair process.

D. Model Repair Problem

Given that counterexamples are generated interactively and
may not be included in the initial context, we dynamically
extend the RAG system. This allows users to upload an
exemplar AADL/AGREE model along with a corresponding
counterexample (in text or CSV format). Upon submission,
the copilot provides a detailed, step-by-step explanation of

Fig. 3: Refined explanation using a requirements file for the
Integer_Toy model.

the counterexample, identifies its root cause(s), and suggests
potential solutions, as shown in Figure 2.

However, a significant challenge encountered was that these
explanations and suggested alternatives could include two
types of hallucinations, both syntactic and semantic. The
former are typically minor and can be detected and resolved
using a multi-shot approach. The latter are more problematic,
as the copilot might suggest altering a component’s guarantee,
which could successfully remove the counterexample but
risk violating core system requirements that should remain
unchanged. We refer to this as the Model Repair Problem.

1) Requirements for Counterexample Explanations: To mit-
igate the Model Repair Problem, we configured the tool to
generate solutions that conform to a predefined set of system
requirements written in natural language, which are uploaded
via a CSV file or directly included in the context.

As a result, the tool was able to more accurately identify
the root cause and suggest appropriate solutions, as demon-
strated in Figure 3. This refinement significantly enhanced the
accuracy of the recommendations.

E. Preliminary Results and Conversational Quality Assess-
ment Problem

Our initial evaluations were conducted manually, focusing
on the copilot’s ability to accurately identify the root cause of
the counterexamples, repair the model, and ensure compliance
with the requirements. The system was evaluated on two case
studies. The first case study involved the Integer_Toy
model, while the second dealt with a larger model that imports
several files, totaling 7 files and approximately 380 lines of
AADL. The copilot successfully identified the root cause of
all counterexamples for the specified guarantees (13 out of 13)
on the first attempt, demonstrating a high degree of accuracy.
However, these manual evaluations highlight the need for
greater automation; consequently, we plan to develop a more
automated evaluation system to enable testing on more realistic
and complex use cases.

We are in the process of selecting a golden set of examples
from a formally verified library we developed previously, and
constructing a testing set by introducing deliberate violations.
These examples will be used by the copilot to evaluate its
ability to correctly identify the root causes. While we have
demonstrated initial success in this area, model repair remains
a more complex challenge. This is because repairing models
can result in multiple solutions, particularly for more intricate
use cases. One of the key limitations is the tool’s ability to
consistently remove counterexamples while ensuring compli-
ance with the specified requirements. To address these issues,
we are developing a toolset aimed at measuring convergence
towards the correct semantics of the golden examples, within a
few-shot learning context. This remains an ongoing challenge
that we will address in our future work.

III. CONCLUSION

In an effort to make AGREE results more explainable, we
have developed a generative AI-based tool that produces natu-
ral language explanations from (potentially complex) AGREE
counterexamples. Although initial results are encouraging,
we will continue to evaluate our approach on increasingly
complex models and formal specifications. In addition, we
believe usability of other AGREE features can also benefit
from generative AI. The most obvious candidates are the
formalization of AGREE contracts from natural language
requirements and the modification of models to conform to
their contracts.

Our prototype implementation is currently loosely coupled
with AGREE and OSATE. In order to truly address AGREE
usability, tighter tool integration is required, and will be the
focus of upcoming work as we continue to refine the tool.
We envision an integrated copilot that smartly parses the
model abstract syntax tree, interacts with the user, and makes
automated updates to the AGREE contracts and AADL model
by using features provided by the IDE.

INSPECTA includes a DevOps Assurance Dashboard for
displaying development status, analysis results, and progress
towards achieving assurance goals. The explainable counterex-
amples will be accessible from the dashboard, and therefore

a mechanism will need to be implemented to retrieve them
from the modeling workspace and display them properly. The
dashboard will also capture and display tool usage metrics
to help us better understand the degree to which a more
explainable counterexample aids the user in addressing a
requirement or design issue (e.g., by tracking the number
of times the model is modified or AGREE is run before
producing a passing result). Metrics analysis will in turn drive
new usability enhancements in AGREE. We look forward to
sharing the outcome of these efforts in the near future.

IV. ACKNOWLEDGMENT

This work was funded by DARPA contract FA8750-24-9-
1000. The views, opinions and/or findings expressed are those
of the authors and should not be interpreted as representing
the official views or policies of the Department of Defense or
the U.S. Government.

REFERENCES

[1] RTCA, DO-333: Formal Methods Supplement to DO-178C and DO-
278A, December 2011.

[2] J. A. Davis, M. Clark, D. Cofer, A. Fifarek, J. Hinchman, J. Hoffman,
B. Hulbert, S. P. Miller, and L. Wagner, “Study on the barriers to the
industrial adoption of formal methods,” in Formal Methods for Industrial
Critical Systems, C. Pecheur and M. Dierkes, Eds. Springer Berlin
Heidelberg, 2013, pp. 63–77.

[3] D. Cofer, A. Gacek, S. Miller, M. W. Whalen, B. LaValley, and L. Sha,
“Compositional verification of architectural models,” in NASA Formal
Methods, A. E. Goodloe and S. Person, Eds. Springer, 2012, pp. 126–
140.

[4] P. H. Feiler and D. P. Gluch, Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Language,
1st ed. Addison-Wesley Professional, 2012.

[5] A. P. Kaleeswaran, A. Nordmann, T. Vogel, and L. Grunske, “A system-
atic literature review on counterexample explanation,” Information and
Software Technology, vol. 145, 2022.

[6] S. Polu and I. Sutskever, “Generative language modeling for automated
theorem proving,” arXiv preprint arXiv:2009.03393, 2020.

[7] N. Megill and D. A. Wheeler, “Metamath: A computer language for
mathematical proofs,” 2019.

[8] E. First, M. N. Rabe, T. Ringer, and Y. Brun, “Baldur: Whole-proof
generation and repair with large language models,” arXiv preprint
arXiv:2303.04910, 2023.

[9] A. Lewkowycz, A. Andreassen, D. Dohan et al., “Solving quan-
titative reasoning problems with language models,” arXiv preprint
arXiv:2206.14858, 2022.

[10] A. Chowdhery, S. Narang, J. Devlin et al., “Palm: Scaling language
modeling with pathways,” arXiv preprint arXiv:2204.02311, 2022.

[11] S. Zhang, E. First, and T. Ringer, “Getting more out of large language
models for proofs,” arXiv preprint arXiv:2305.04369, 2023.

[12] K. Pei, D. Bieber, K. Shi et al., “Can large language models reason about
program invariants?” Proceedings of the 40th International Conference
on Machine Learning, July 2023.

[13] H. Wu, C. Barrett, and N. Narodytska, “Lemur: Integrating large
language models in automated program verification,” arXiv preprint
arXiv:2310.04870, 2023.

[14] C. Sun, Y. Sheng, O. Padon, and C. Barrett, “Clover: Closed-loop
verifiable code generation,” arXiv preprint arXiv:2310.17807, 2024.

[15] A. Tahat, D. Hardin, A. Petz, and P. Alexander, “Proof repair utilizing
large language models: A case study on the copland remote attestation
proofbase,” in Proceedings of International Symposium On Leveraging
Applications of Formal Methods Verification and Validation (AISolA),
2024.

[16] ——, “Metrics for large language model generated proofs in a high-
assurance application domain,” in High Confidence Software and Sys-
tems Conference (HCSS’24), 2024.

[17] R. Martins, “Transforming logic into language: Bridging the gap with
large language models,” in 2nd International Workshop on Explainability
of Real-time Systems and their Analysis (ERSA’23), December 2023.

Strengthening Real-Time Analysis by Evolving
Counterexamples

Leo Bishop and Leandro Soares Indrusiak
School of Computer Science

University of Leeds
Leeds, United Kingdom

Abstract—Analysis models are commonly developed for real-
time systems to provide temporal upper bounds for system
behaviour. However, state-of-the-art analysis models have repeat-
edly been shown to be flawed by the identification of counterex-
amples demonstrating system temporal behaviour that exceed the
model’s upper bound. We propose a novel approach to evaluate
analysis models: automated identification of counterexamples
using heuristic search algorithms. We demonstrate that a simple
genetic algorithm, a popular type of heuristic search algorithm,
is rapidly and reliably able to produce counterexamples for a
Network-on-Chip analysis model across a range of Network-
on-Chip configurations. We provide a proof of concept for
the wider application of genetic algorithms to real-time system
analysis models, aiding in the faster identification of flaws in
existing models and improving confidence in models for which
counterexamples cannot be identified.

Index Terms—real-time systems, analytical models, genetic
algorithms, schedulable analysis, counterexamples

I. INTRODUCTION AND BACKGROUND

Effective safety analysis requires considering worst-case
scenarios [1], but identifying worst-case behaviour in complex
systems is far from trivial. Decades of research and develop-
ment have produced numerous real-time analysis models that
are able to upper-bound the temporal behaviour of a variety of
computing and communication systems. For simple systems, a
few proof sketches can provide enough intuition to convince a
well-informed expert that the model is safe, i.e. that its outputs
will always upper-bound the system’s temporal behaviour even
in worst-case scenarios. As the systems become more complex,
it is increasingly difficult to convince oneself and others that
a particular model is safe for a given system.

Maida et al. [2] discuss the consequences of trusting unsafe
analysis models supported by misleading proof sketches, and
argue for the use of automated proof checking to obtain
trustworthy upper-bounds. While we fully agree with their
argument, we are also aware of the difficulties associated
with automated proof checking in systems where worst-case
scenarios arise out of complex patterns of interdependence
between components. Over the past decades there were sev-
eral analytical models that were initially considered safe and
correct, only to be proven unsafe after years of use in a variety
of domains such as automotive buses [3], on-chip networks [4]
and self-suspending task schedulers [5]. Due to the complexity
of the respective systems, the flaws of those analytical models
were not exposed by failing to pass a proof checker. They

were exposed by counterexamples: scenarios that trigger a
temporal behaviour from the system that exceeds the upper-
bound outputs of the model, proving it to be unsafe.

In this paper, we present techniques that aim to elicit
counterexamples for systems too complex to be described by
formal statements that can be automatically proof-checked.
Our techniques only require an executable model of the system
(e.g. a simulator or prototype) and the analytical model for
which we are seeking counterexamples. Our aim is to find
counterexamples that can help us explain if and why a model
is flawed, and use that information to try to correct it.

Our search for counterexamples is certainly not exhaustive,
as that is prohibitive even for relatively simple systems, so we
can never prove the correctness of a given model. However,
if we can show that our techniques are effective at finding
counterexamples for models that are flawed, we can use them
to increase our confidence in the correctness of models for
which no counterexamples can be found.

II. CASE STUDY

The field of Networks-on-Chip (NoCs) refer to the appli-
cation of wide-area networking techniques such as routers,
switch-based routing and packet based communication to
Systems-on-Chip (SoCs) [6] replacing traditional bus or point-
to-point communication.

For SoCs with hard real-time communication requirements,
traffic flows (packet streams which traverse a consistent route
across the NoC) must be schedulable, i.e. all packets belonging
to a given traffic flow meet a defined deadline even in worst
case scenarios [7]. A seminal 2008 paper by Shi and Burns [7]
proposed a novel analysis model to estimate the upper bound
of packet latency, finally enabling guarantees of traffic flow
schedulability. The analysis, which we refer as S&B, breaks
down the causes of packet latency as:

• Basic latency: network latency experienced by a packet
which doesn’t experience resource contention.

• Direct interference: latency imposed on a packet by
higher priority packets directly competing for the same
network components, e.g. buffer space or interconnect
bandwidth, as shown in Fig. 1(a).

• Indirect interference: latency imposed by packets that do
not directly interfere but impose resource contention on
intermediary packets which impose direct interference on
the packet under consideration, as shown in Fig. 1(b).

a b dc

1 2 3 4

τi
τj

a b dc

1 2 3 4

τk

(a) (b)

τi
τj

Fig. 1. Direct (a) and Downstream Indirect (b) Interference

S&B analysis was widely cited and extended in the years
following its publication, with several works improving the
tightness of its bounds [8] [9]. However, eight years after
publication, Xiong et al. [10] identified counterexamples show-
ing that under a specific combination of traffic flow routes
S&B produces optimistic upper bounds for packet latency.
This combination of routes, termed downstream indirect inter-
ference, is illustrated in Fig. 1(b). A key assumption in S&B
is that each individual flit [11], e.g. from τj , can only apply
interference to a each lower priority packet it contends with,
e.g. from τi, once [4]. However, under the Fig. 1(b) example,
as a flit from τj experiences interference from τk’s packets,
the flit may repeatedly interfere with a single τi packet across
both 1 −→ 2 and 2 −→ 3, violating this assumption and allowing
for the production of optimistic upper bounds by S&B.

Along with the identification of counterexamples for S&B,
Xiong et al. proposed a corrected analysis in [10], which was
also shown to be unsafe by a counterexample by Indrusiak et
al. in [12], along with a correction which paved the way for
safer analyses accounting for the MPB problem [13] [14].

The use of counterexamples has invalidated several NoC
analysis models, one of them after nearly a decade of use,
demonstrating the need for more rigorous validation of the
correctness of real-time system analysis models.

III. EVOLVING COUNTEREXAMPLES

Identifying counterexamples for an analysis model can be
approached as a search problem covering the configuration
space of a given model, enabling the application of search
algorithms to find counterexample configurations. As systems
and their models increase in complexity, the resulting increase
in the size and complexity of the search space will reduce the
efficiency of basic search algorithms. Therefore, the applica-
tion of more complex heuristic search algorithms is proposed.

Genetic algorithms are a popular heuristic search algorithm
inspired by Darwinian evolutionary processes which iteratively
generate and evaluate the fitness of possible solutions to
a given problem, generating improved solutions over time.
Having previously been shown to be suitable for generating
counterexamples for complex models [15] we use genetic
algorithms for the generation of counterexamples in this paper.

This application of genetic algorithms to real-time system
analysis models and the resulting identification of counterex-
amples may enable the faster identification of flawed models
and increase our confidence in models for which counterex-
amples cannot be identified.

Considering the NoC case study outlined in section II,
the set of parameters for S&B include, for each traffic flow:
the period; release jitter; priority; maximum packet size and
route. (Route is required so that direct and indirect interference
relations can be extracted and basic latency calculated.) The
analysis is, of course, affected by: the NoC topology and router
design (which determines which routes are feasible); header
flit routing delay (which affects basic latency); and number of
virtual channels (which limit the number of supported priority
levels). But in this paper we target generating counterexamples
only by manipulating the analysis parameters and therefore use
a fixed topology, header flit routing delay and virtual channel
size when running our genetic algorithm. The simultaneous
exploration of analysis parameters and NoC architectural fea-
tures is an interesting direction for future work.

For n traffic flows, we define a search space with 4n dimen-
sions considering the following four analysis parameters per
traffic flow: period; release jitter; packet size and packet route.
We represent these parameters as integers. Period, release jitter
and packet size are represented as their face value whilst for
routes, a list of all valid routes across the given NoC topology
can be generated and each possible route mapped to an integer
identifier. This allows a set of traffic flows to be represented as
a list of integers, which can be used as a set of genes enabling
the application of a genetic algorithm.

As a result of its iterative nature, S&B analysis is only
valid for traffic flows it considers schedulable, i.e. once
a traffic flow’s upper bound exceeds its deadline S&B no
longer provides a valid temporal upper bound. This introduces
an additional problem that must be handled by the genetic
algorithm: that of generating traffic flows that are schedulable
according to S&B. Whilst an automated process for generating
schedulable traffic flows is an interesting and valuable problem
to address, it is outside of the scope of this paper. As such,
we only consider schedulable sets of traffic flows, discarding
sets of genes generated by the genetic algorithm that result
in unschedulable traffic flows. We therefore define the process
for generating a new individual as:

1) Generate a new individual with a random set of genes.
2) Construct the corresponding set of traffic flows from the

individual’s genes.
3) Calculate each traffic flow’s packet latency upper bound

using S&B.
4) If all traffic flows are schedulable according to S&B,

add the individual to the new population.

We developed a naive fitness function based on the compar-
ison of S&B upper bounds against simulated packet latency.

For each individual, the simulated packet latency values
are produced by simulating the corresponding set of traffic
flows using a cycle accurate, transaction level NoC simulator
adhering to the restrictions imposed by S&B [16].

Given real-time NoCs under the constraints imposed by
S&B are deterministic, traffic flows’ basic latency is consistent
and easily predictable. For traffic flows which don’t experience
interference the simulated latency therefore always matches

the S&B upper bound (as these values are both purely a
function of basic latency).

TABLE I
EXAMPLE INDIVIDUAL’S TRAFFIC FLOWS’ LATENCY AND FITNESS.

Traffic Flow Basic S&B Upper Bound Max Simulated Fitness
t1 99 99 99 0
t2 143 342 332 -10
t3 120 318 312 -6
t4 16 136 184 48

As a result, traffic flows that experience only basic latency
are ignored for the purposes of calculating an individual’s
fitness. These traffic flows are therefore identified by com-
paring the traffic flow’s basic latency prediction with its S&B
value and are then discarded from consideration. All remaining
traffic flows (those experiencing interference) have their excess
simulated latency over S&B upper bound calculated, i.e. Max
Simulated − S&B Upper Bound. Finally, the individual’s
overall fitness is taken as the largest excess latency value
produced by its valid traffic flows.

For the example individual shown in table I, t1 is discarded
as its basic latency matches its S&B value, meaning it ex-
perienced no interference. The excess values for t2, t3 & t4
are then calculated as outlined above, giving −10, −6 & 48
respectively. The individual’s fitness is therefore 48, the largest
excess latency value from the remaining traffic flows which
experienced interference.

All our genetic algorithm runs used a 0.1 elitism rate, and
a simple elitist selection algorithm with a 0.4 selection rate,
single point crossover and a 0.05 mutation rate.

IV. EVALUATION

We show in Table II that across a range of NoC topologies
our simple genetic algorithm is reliably and rapidly able
to generate counterexamples containing traffic flows whose
maximum simulated latency exceeds the S&B upper bound.

Having established the ability of our genetic algorithm
to produce counterexamples, we attempt to use our genetic
algorithm to produce improved and optimised counterexample
configurations, maximising the excess simulated latency over
the S&B upper bound. Our aim is to identify the margin
by which a given analysis model underestimates the actual
behaviour of the system it represents, as that provides more
insight on the potential real-world consequences of using a
system that complies to a flawed analysis model.

As shown in Table III, our genetic algorithm is able to
reliably optimise counterexample configurations, resulting in
significantly larger excess latency than the initial counterex-
ample produced by that genetic algorithm run.

We note several runs experienced premature convergence,
where the genetic algorithm is unable to produce improved
individuals from its existing population via crossover. This is
a common issue with genetic algorithms which is the result
of the repeated reproduction of the best observed individuals
and the use of crossover to produce new individuals [17].

TABLE II
AVERAGE NUMBER OF GENERATIONS TO PRODUCE A

COUNTEREXAMPLE.a

Topology No. Traffic Flows Success Rateb Mean Generationsc

3x3 10 1 1.05
5x2 10 1 1
5x5 10 0.95 2.33

10x10 20 1 1.35

a Population size of 50 individuals.
b Generated a counterexample within 50 generations.
c Excluding runs which failed to produce a counterexample.

TABLE III
GENETIC ALGORITHM OPTIMISATION OF EXCESS LATENCY, EXPRESSED

AS A FRACTION OF S&B UPPER BOUND∗

Gens to Exceed Initial Excess Convergence Gen+ Worst Excess
1 0.18 38 0.28
1 0.12 75 0.4
2 0.12 65 0.23
1 0.04 96 0.43
1 0.14 73 0.44
1 0.05 51 0.34

∗ 5x5 NoC topology with 10 traffic flows & 100 individuals per population.
+ Genetic algorithm capped at 100 generations.

Prior to termination at 100 generations, 1/2 converged with
at least 35 generations remaining whilst 2/3 converged with at
least 27 generations remaining.

V. DISCUSSION

The reliable generation of counterexamples by our genetic
algorithm across a range of NoC topologies provides a proof of
concept for the application of genetic algorithms more widely
to both more complex NoC analysis models and more broadly
to analysis models in other real-time system domains.

The genetic algorithm configuration was selected to pro-
vide the simplest feasible implementation. The use of simple
selection and crossover methods and the naive fitness function,
exploiting only rudimentary knowledge of the characteris-
tics of S&B, demonstrates the simplicity of counterexample
generation for genetic algorithms. This simplicity also pro-
vides space for the application of more complex techniques
when applied to more complex analysis models. Furthermore,
the repeated success of our genetic algorithm at optimising
counterexamples to produce increased excess latency provides
further evidence of the suitability of genetic algorithms for
this problem.

We must note the problem of generating valid configura-
tions. Many analysis models, including S&B, are only valid for
a subset of possible configurations. For these models the search
space is constrained and the generation of counterexamples
becomes dependent upon first being able to generate valid
configurations. For NoCs it is viable to resort to the repeated
generation of configurations to brute force the generation of
a sufficient quantity of viable configurations. This approach

may not, however, be viable when applied to more complex
problem domains where the valid search space is heavily
constricted. This may limit the application of genetic algo-
rithms to problem domains with either relatively large valid
search spaces or those where a viable method of automatically
generating valid configurations has been developed.

We must also address the simplification of the search space
used in this paper. Based on our prior knowledge of the flaws
in S&B’s model, that MPB can arise in any NoC topology
with a sufficiently large virtual channel size, these parameters
were fixed and discarded as irrelevant to the generation of
counterexamples. Whilst the removal of these parameters has
no bearing on the feasibility of genetic algorithms for pro-
ducing counterexamples the inclusion of irrelevant parameters
in the search space may reduce the efficiency of the genetic
algorithm [18] when applied to novel models.

There is also the practical consideration of performance. As
our approach requires the use of a simulator or prototype, for
all but the simplest real-time systems, the execution of this
software is the key component in the runtime and resource
usage of the genetic algorithm. We achieved a significant
reduction in our genetic algorithm’s runtime by utilising
parallelisation, executing the simulator instances, for each
individual in a given population, in parallel. As our NoC
simulator’s execution is primarily sequential the application
of parallelisation reduced our genetic algorithm runtime to a
fraction of a its original sequential runtime.

Moving to our counterexample optimisation, we suggest
that the repeated occurrence of premature convergence in our
results is primarily a result of the limited requirements of
downstream indirect interference and MPB in NoCs. Valid
cases of downstream indirect interference that result in MPB
only require three traffic flows, rendering the individual’s
remaining n-3 traffic flows redundant. By rearranging these
redundant traffic flows, whilst leaving the three critical traffic
flows unaltered, the genetic algorithm can produce additional
novel configurations with the same fitness value. This may
result in a rapid reduction in genetic diversity within the
population, the main factor in premature convergence [19],
as the genetic algorithm produces multiple configuration with
equal fitness and no meaningful difference.

Whilst premature convergence did not pose a significant
issue in the production of counterexamples for S&B, its rapid
onset suggests that when applied to analysis models with a
more complex search space or those where counterexamples
compose a smaller proportion of the search space, premature
convergence may to become a key issue. Premature conver-
gence in genetic algorithms has been widely explored with a
range of mitigation strategies proposed, primarily focused on
preventing a reduction in the population’s genetic diversity as
the genetic algorithm converges [19] [20] [21].

VI. CONCLUSION

We successfully demonstrate the ability of a naive genetic
algorithm to rapidly and reliably generate counterexamples
for Shi & Burn’s NoC analysis model. This provides a proof

of concept for the application of genetic algorithms to the
problem of discovering counterexamples for real-time system
analysis models across a broader range of domains. This will
enable automated evaluation of analysis models whose com-
plexity renders proof sketches unusable. The ability to more
easily identify counterexamples will ultimately enable faster
identification of analysis models’ flaws and the production
of corrections, as well as improved confidence in models for
which counterexamples cannot be identified.

REFERENCES

[1] N. G. Leveson, “The Use of Safety Cases in Certification and Regula-
tion,” J. Syst. Saf., vol. 47, 2011.

[2] M. Maida, S. Bozhko, and B. B. Brandenburg, “Foundational Response-
Time Analysis as Explainable Evidence of Timeliness,” in Proc. of the
34th Euromicro Conference on Real-Time Systems (ECRTS), 2022.

[3] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller Area
Network (CAN) schedulability analysis: Refuted, revisited and revised,”
Real-Time Systems, vol. 35(3), 2007.

[4] L. S. Indrusiak, A. Burns, and B. Nikolic, “Buffer-aware bounds to
multi-point progressive blocking in priority-preemptive NoCs,” in Proc.
of the 2018 Design, Automation and Test in Europe Conference (DATE),
2018.

[5] J. Chen et al., “Many suspensions, many problems: a review of self-
suspending tasks in real-time systems,” Real-Time Systems, vol. 55(1),
2019.

[6] J. Henkel, W. Wolf, and S. Chakradhar, “On-chip networks: A scalable,
communication-centric embedded system design paradigm,” in 17th
International Conference on VLSI Design, 2004.

[7] Z. Shi and A. Burns, “Real-time communication analysis for on-chip
networks with wormhole switching,” in Second ACM/IEEE International
Symposium on Networks-on-Chip, 2008.

[8] H. Kashif, S. Gholamian, and H. Patel, “SLA: A Stage-Level Latency
Analysis for Real-Time Communication in a Pipelined Resource Model,”
IEEE Transactions on Computers, vol. 64(4):1177–1190, 2015.

[9] B. Nikolic, L. S. Indrusiak, and S. M. Petters, “A Tighter Real-Time
Communication Analysis for Wormhole-Switched Priority-Preemptive
NoCs,” arXiv:1605.07888 [cs], 2016.

[10] Q. Xiong, Z. Lu, F. Wu, and C. Xie, “Real-time analysis for wormhole
NoC: revisited and revised,” in Proceedings of the 26th edition on Great
Lakes Symposium on VLSI, 2016.

[11] L. M. Ni and P. K. McKinley, ”A survey of wormhole routing techniqes
in direct networks”, Computer, vol. 26(2):62-76, 1993.

[12] L. S. Indrusiak, B. Nikolic, and A. Burns, “Analysis of buffering
effects on hard real-time priority-preemptive wormhole networks,”
arXiv:1606.02942 [cs], 2016.

[13] Q. Xiong, F. Wu, Z. Lu, and C. Xie, “Extending real-time analysis for
wormhole NoCs,” in IEEE Transactions on Computers, 66(9), 2017.

[14] B. Nikolic, S. Tobuschat, L. S. Indrusiak, R. Ernst, and A. Burns, “Real-
time analysis of priority-preemptive NoCs with arbitrary buffer sizes and
router delays,” Real-Time Systems, vol. 55:63-105, 2019.

[15] T. Zheng and Y. Liu, “Genetic algorithm for generating counterexample
in stochastic model checking,” in Proc. of the 2018 VII International
Conference on Network, Communication and Computing, 2018.

[16] L. Bishop, “CyNoC,” (1.5.4), [Software], Available from:
https://github.com/LBishop234/CyNoC.

[17] D. B. Fogel, “An introduction to simulated evolutionary optimization,”
in IEEE Transactions on Neural Networks, vol. 5(1), 1994.

[18] M. S. Kadu, R. Gupta, and P. R. Bhave, “Optimal design of water
networks using a modified genetic algorithm with reduction in search
space,” in Journal of Water Resources Planning and Management, vol.
134(2), 2008.

[19] H. M. Pandeya, A. Chaudhary, and D. Mehrotrac, “A comparative review
of approaches to prevent premature convergence in GA,” in Applied Soft
Computing, vol. 24, 2014.

[20] K. Jebari and M. Madiafi, “Selection method for genetic algorithm,” in
International Journal of Emerging Sciences, Vol. 3(4), 2013.

[21] A. A. Gozali and S. Fujimura, “Localization strategy for island model
genetic algorithm to preserve population diversity,” in Compute and
Information Science, 2018.

	cover
	welcome
	ERSA24_paper_1
	tpc_members
	ERSA24_paper_2
	ERSA24_paper_3

