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Abstract—Schedulability analysis is commonly performed con-
sidering that all instances of a task (jobs) run with a fixed
execution time, i.e., the WCET. This strategy can be overly
pessimistic because not all jobs need the entire WCET to
finish. In the AUTOSAR context, the so-called sequencer tasks
consist of runnables, which are elementary execution units of
an application. Each job of a sequencer task might execute
a different number of runnables. We take advantage of this
characteristic to perform a less pessimistic schedulability analysis
by considering the task dynamic execution time, i.e., different
WCET for different jobs. A job WCET value is directly obtained
from the set of runnables it executes. Our approach focuses
on the Fixed-Priority Preemptive Scheduling (FPPS) policy, and
we demonstrate the schedulability analysis on an AUTOSAR-
based application model. We propose a budget-based explainable
schedulability analysis that precisely identifies the task, the job,
the point in time when a schedulability violation occurs, and the
additional budget requirement. For a schedulable system, our
results are beneficial for software extensions, e.g., the remaining
budget can be used to add a runnable or task without reanalyzing
the schedulability of the entire system.

Index Terms—Explainable Schedulability Analysis, Runnable
to Task Mapping, Classic AUTOSAR.

I. INTRODUCTION

Modern embedded automotive applications are designed and
implemented according to the AUTomotive Open System AR-
chitecture (AUTOSAR) standards [2]. Each AUTOSAR appli-
cation is decomposed into Software Components (SWCs) [3].
The internal behavior of each SWC is realized using a set
of runnables (R). Runnables are the elementary units of
the application and implement specific functions. Runnables
offsets are calculated to minimize the response time of the
embedded system [5], [6], [14], [8], [13].

In practice, there are numerous runnables in an embed-
ded application. Therefore, for better utilization of hardware
resources [10], [5], runnables are grouped into Sequencer
Tasks (τ ), using mapping techniques mentioned in [10], [7],
[15]. A sequencer task (τm), is scheduled by the Operating
System (OS), and it is used to sequentially execute the mapped
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Fig. 1. Application model, including mapping of runnables to sequencer tasks.

Fig. 2. System schedulability analysis for the AM in Fig. 1: (a) our approach
with different WCETs for different jobs, (b) jobs with the same WCETs.

runnables in a fixed order according to their periods and
offsets [5]. In this work, we consider only the basic sequencer
task, i.e., without the waiting state [4]. Each activation of a
task is called a Job (J). From now on, we use runnables to
refer to mapped runnables in a sequencer task and tasks to
refer to sequencer tasks.

An example of our Application Model (AM), which is a
simplified version of the automotive AM, is shown in Fig. 1
(more details in section II). In our AM, the runnables are spec-
ified by their period and worst-case execution time (WCET).
The other parameters of our AM can be either specified manu-
ally or calculated automatically as follows. For the runnables,
the offsets are derived using the Least Loaded (LL) heuris-
tic [13], which minimizes response times, and runnables are
mapped to tasks using the Multiple Periodic Solution (MPS)
technique [10]. For the tasks, the period is calculated from the
periods and offsets of the runnables using Equ. 1 [5], and the
priority is derived by Rate-Monotonic Scheduling (RMS). Our
approach does not use the task WCET. In related works, the
task WCET is the sum of the WCETs of its runnables [10].

Related Work and Paper Contributions. Previous work



on real-time OSs with FPPS [12], [11], [9], perform schedula-
bility analysis considering that all instances of a task (jobs) run
with a fixed execution time, i.e., the WCET. In contrast, our
approach considers that a job can execute a different number
of runnables, which results in different WCETs for different
jobs of the same task. Considering the AM specified in Fig. 1,
the pessimistic usage of jobs with the same WCETs [12], [11],
[9] determines the AM as un-schedulable, because the higher
priority task τ1 would run permanently and never gives τ2
a chance to run (Fig. 2(b)). Our job-specific WCET allows
less pessimistic schedulability analysis and it shows the AM
is schedulable (Fig. 2(a)).

In [1], the authors considered the dynamic execution time
of jobs, primarily due to dependencies among tasks. In our
AM, we do not consider task dependencies but we still have
dynamic execution time. In our model, this is due to allowing
varying numbers of executing runnables inside jobs of the
same task, see job description in section II.

In addition, we consider the clock frequency, which is not
directly considered in the above-cited works. This is important
because un-schedulable systems may become schedulable by
increasing the clock frequency.

In this paper, we introduce a novel budget-based algorithm
for schedulability analysis, which considers: (i) task dynamic
execution time, (ii) OS context switch costs, and (iii) the clock
frequency of the embedded system. For our AM, the runnables
to task mapping are provided by the system designer, and
we do not propose any (re)mapping technique. Our approach
provides a schedulability analysis of all jobs in the AM, and
enhances explainability through our novel budget list concept
as follows: First, for un-schedulable systems, we identify the
task, the job, the point in time when a schedulability violation
occurs, and the additional budget requirement. Second, for
schedulable systems, we provide the remaining budgets at
the end of the analysis which, e.g., can be used for adding
a new task without reanalyzing schedulability (see Example 1
in Section IV).

II. APPLICATION MODEL

Here, we define the variables of our AUTOSAR-based AM.
Runnable. Let R be the set of all periodic runnables.

Each runnable can be represented as Ri = (Ci, Ti, ϕi) where
Ci is the WCET, Ti is the period, and ϕi is the offset,
which specifies the release time delay of its first job. For all
runnables, 0 ≤ ϕi < Ti. Each runnable can be mapped to only
one sequencer task.

Sequencer Task. A task can be represented as τm =
(Wm, Pm, Om, TRm), where Wm is the execution time, Pm

is the period, Om is the offset, and TRm is the subset
of runnables mapped to τm. For deterministic and precise
time triggering of mapped runnables, Pm must consider the
release time and period of every runnable [5]. If TRm =
R1, R2, . . . , Rk, where k is the number of runnables, then:

Pm = GCD(T1, . . . , Tk, ϕ1, . . . , ϕk) (1)

Job. A single activation of a task is a job. For different jobs
of the same task, the number of executing runnables can vary
from 0 to k, where k is the number of mapped runnables,
which enables task-level dynamic execution time. The term
Empty Job (EJ) refers to a job in which no runnable executes
(k = 0). Every task τm releases a job at each time instant
(k · Pm + Om), which has a deadline at ((k + 1) · Pm+Om),
for k ∈ N. Alg. 1 [5], shows the implementation of tasks.
Each task uses a counter, αm, initialized to zero, to identify
which runnables to execute. The pattern of execution of
mapped runnables on a task τm repeats after Nm jobs, where
Nm = LCM(T1, T2, . . . Tk)/Pm.

Algorithm 1 Counter-Based Runnables Activation Handling
1: procedure SEQUENCERTASK()
2: for Rk ∈ τm do
3: if ((αm mod

Tk

Pm
) =

ϕk

Pm
) then

4: Call Rk

5: αm = (αm + 1) mod Nm

Assumptions. (i) Each task or runnable is periodic, (ii) if
the clock frequency of the embedded board scales, the number
of ticks for every instruction remains constant.

III. PROPOSED APPROACH

The flow chart of the proposed budget-list-based algorithm
for schedulability analysis is shown in Fig. 3. The following
paragraphs explain each step in detail:

Inputs. The following three input models are considered.
(i) The application model (AM), as shown in Fig. 1, where the
execution time of runnables are in ticks. (ii) The embedded
platform model which represents a set of tuples of core ID Ek,
and core frequency Fk. (iii) OS model, that represents a
constant task context switch cost in ticks, H .

Initialization. There are four initialization steps: (i) Length
of Analysis. For the periodic system the pattern of execu-
tion of all runnables in AM starts repeating after a major
cycle, M, which is the LCM of the periods of runnables.
Therefore, schedulability analysis for the time window [0, M]
is considered in our algorithm. (ii) Length of The Budget
List. In the proposed algorithm, the budget list covers the
schedulability analysis over one major cycle, M. To calculate
the number of slots L, we use step-1 of Fig. 3. Afterward, we
create the budget list with L number of slots. (iii) Budget of
Each Slot. Jobs are scheduled in slots as per their task period.
Each slot budget value, B, represents a time length which
represents the minimum time elapsed between any two job
activations in AM. Therefore it is GCD of runnables periods
and offset (Fig. 3, step-2). Moreover, we initialize each slot
of the budget list with this B value in ticks. To convert a
variable unit from time to ticks, its value is multiplied by the
board clock frequency. For example, a board with 5MHz clock
frequency has 5ticks=1µs. Therefore, if B is 3ms, its value in
ticks is B = 3 · 1000µs = 3 · 1000 · 5ticks = 15000ticks.
In summary, each slot of the budget list represents (a) a
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Fig. 3. Flow chart of the proposed algorithm. Using the budget list we analyze the schedulability of every job of every task.

time unit, e.g., 3ms, and (b) a tick budget, e.g., 15000ticks.
Ticks are the atomic computation unit, which enables us to
discretely allocate the execution time of jobs to slots in the
budget list and to incorporate the role of the clock frequency
in the schedulability analysis. (iv) Ordering of Tasks. In
FPPS, lower priority tasks never preempt higher priority ones.
Therefore, in our algorithm, we start with the highest priority
task (Fig. 3, step-3). Then, we assign its jobs to specific slots of
the budget list and update the slots budgets. Once all jobs of
the highest-priority task are assigned, we sequentially move
to the jobs of lower-priority tasks. As an example, see the
timelines in Fig. 2(a), this process is detailed in the next
paragraph.

Simulation of Activation and Execution of Jobs. For
schedulability analysis we use steps 4-10 in Fig. 3 to simulate
the activation and execution of all jobs, allocate their execution
times in the budget list, and determine whether they are
schedulable. In step-4, we start with the highest priority task
and sequentially move to lower priority tasks in the application
model. In step-5, for each task τm, there are M/Pm jobs
within the length of analysis M. In step-6, for each job Jm,i of
a task τm, we calculate the index, q, of the budget list where
we have to place its ith activation using the task’s period and
offset. We also calculate the index, s, of the list that shows
the activation point of the subsequent job of the same task.
For the job Jm,i, the budget list index range is [q, (s-1)]. In
step-7, we calculate the ith job-specific execution time, Wm,i,
using Equ. 2.

Wm,i = Wm,r +Wm,e +H · d (2)

All variables of Equ. 2 are in ticks. The OS task context switch
time, H , is required every time a new slot is used for the same
job. The number of context switches, d, is initialized to 1.
Wm,e is the execution time of the Empty Job (EJ), i.e., which
is the execution time of Alg. 1 with line 4 excluded. Wm,r

is the sum of WCETs of the runnables that will be executed
inside this ith job, using Alg. 2. In step-8, the job-specific
execution time, Wm,i, of a job, Jm,i, can be distributed among

a number of consecutive slots of the list, starting from index q
till (s-1) based on the available budget in each slot. In step-9,
we allocate all or a portion of the remaining Wm,i to the
current slot q, with available budget Bq . If the job, Jm,i, has
execution time remaining, Wm,i > 0, then we go to the next
consecutive slot, and Wm,i is increased by H if Bq was > 0.
The variables are updated as shown in Fig. 3, step-9.

Algorithm 2 Job Specific Execution Time Calculation Based
on Activated Mapped Runnables and Slot Index of Budget List

Input q, TRm, Pm

Output Wm,r

1: procedure DYNAMICEXECUTIONTIMECALCULATOR()
2: Wm,r = 0
3: for all Rk ∈ {TRm} do

4: if (q mod
Tk

Pm
) =

ϕk

Pm
then

5: Wm,r = Wm,r + Ck

Schedulability Condition. If we are able to allocate the job-
specific execution time, Wm,i, in the consecutive slots with
index ranges [q, (s-1)] of the budget list, then the job Jm,i is
schedulable, otherwise it is not (step-10).

Once we have allocated the current job-specific execution
time, Wm,i, and determined its status of schedulability, we
sequentially repeat the same procedure for all jobs of the
same task, τm. Moreover, we sequentially move from higher
priority tasks to lower priority tasks, and in a similar manner
perform the schedulability analysis of every job of all tasks.
Finally, if any single job is not schedulable, then the system
is not schedulable. Through our sequential schedulability
analyses of every job, we can precisely identify every job for
which a schedulability violation occurs. For each of these un-
schedulable jobs, we identify the task, the job, the point in time
when the schedulability violation occurs, and the additional
budget requirement. The time complexity of Alg. 1 and Alg. 2
is O(k), where k is the number of mapped runnables. For the
algorithm in Fig. 3, it is O(N ·L · k), where N is the number



of tasks in the AM and L is the length of the budget list.

IV. DEMONSTRATION

Now, we use our approach (Sec. III) to determine whether
the AM shown in Fig. 1 is schedulable, and we are interested in
the result along with the provided detailed explanation. For the
embedded platform model, we have a single core system with
clock frequency, F1 = 1MHz. For OS overhead modeling,
we have context switch cost in ticks, H = 10ticks. The EJ
execution time is W1,e = W2,e = 6ticks.

Explainable Schedulability Analysis – Example 1. When
we execute our algorithm, it simulates the timeline for one
major cycle of application, i.e., L = 24ms. Our algorithm
generates the following trace Fig. 4 of schedulability analysis
for job-level details output to explain the details of each step.
In short, the algorithm proceeds as follows. For each task, τm,
in descending order of priority, it simulates the activation of
all jobs. For each job, Jm,i, based on the task period, offset
and job count, i, it calculates the start and end index of the
budget list, i.e., [q, s − 1]. Afterward, it calculates the job-
specific execution time based on the index, q, and mapped
runnable periods and offsets using Alg. 2. Then, it allocates
this execution time to a set of consecutive slots of the budget
list that resides within indexes [q, s − 1]. If the allocation of
the execution time, Wm,i, is successful, then this job, Jm,i, is
schedulable, otherwise it is not schedulable.

For the given application, OS overhead, and platform model,
our algorithm shows that the system is schedulable (Fig. 4).

Furthermore, the last state of the budget list informs how
much margin remains in each 2ms time slot. This information
is useful as follows. If we want to introduce a new periodic or
sporadic task, we can analyze what should be its period/inter-
arrival time and its maximum worst-case execution time. For
example, if we add a task of period 6ms and offset 0ms, then
it activates at every 3rd slot, and its maximum available budget
per activation Wm,i is the minimum sum of each 3 consecutive
slots of the last state of the budget in Fig. 4, i.e. [910 2426 910
2426]. Hence, for the system to remain schedulable, this task
with period 6ms needs to have Wm,i ≤ 910ticks (Equ. 2).

****************************** Start of Analysis ******************************
Length of Schedulability Analysis ==> 24 ms
Duration of Each Slot => 2 ms Slot Budget => 2000 Ticks
Current Status of Budget List: [2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000] 
Task Context Switch Cost = H => 10 Ticks
---Analysis of Task ID= 1 , Priority= 10 , Period=  2 ms, and Offset= 0 ms
EJ Execution Time = Wm,e =>  6 Ticks
Schedulability Analysis of Job No.  1
Runnable of Name R1 , Period 6 ms, Offset 0 ms, and  WCET 1000 ticks will be executed.
Distribution of job execution time:

Allocated  1016  Ticks from List Index 0 .
Job  1 Final Execution Time = Wm,i = Wm,r + Wm,e + H . d => 1016 Ticks
Updated Budget List =>  [ 984 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000]
**Schedulable Job  1 of Task 1 . **
... 
****************************** End of Analysis ******************************
Last State of Budget List => [ 0  442 468 984 0 1442 0  442 468 984 0 1442]
***System is Schedulable***

Fig. 4. Details of our algorithm-generated analysis for a schedulable system.

Explainable Schedulability Analysis – Example 2. To
demonstrate the working of our algorithm in the case when
the system is not schedulable, we modify the AM in Fig. 1 by
gradually changing the WCET of runnable R3 and repeating
the schedulability analysis until the system is determined as
un-schedulable. This occurs, at the WCET value of 1943ticks.

The resulting trace along with the provided detailed explana-
tion are shown in Fig. 5.

In this figure, the 4th job of τ2 has missed its 4ms deadline
by 1tick. This job’s execution time Wm,i is 1969ticks. Since
each slot represents a ticks budget for 2ms and τ2 has a period
of 4ms, the execution time of the 4th job of τ2 has to be
allocated on the list indexes [6, 7]. Before allocating this job,
the latest state of the budget for these list indexes is [984 984].
If we consume all available budgets, we still cannot meet the
1969ticks execution time demand. Furthermore, we cannot
take budget from the 8th index of the list, because the 4ms
deadline (period of τ2) does not permit it. We also cannot take
budget from the 5th slot either, because the 4th job of τ2 is
not activated at that time. Therefore, this job is un-schedulable.
Hence, the whole system is un-schedulable.
******************** Start of Analysis********************
Length of Schedulability Analysis ==> 24 ms
...
Updated Budget List =>  [ 0  442   25  984 0 1442  984  984 1984  984  984 1984]
**Schedulable Job  3 of Task 2 . **
Schedulability Analysis of Job No.  4
Runnable of Name R3 , Period 8 ms, Offset 4 ms, and  WCET 1943 ticks will be executed.
Distribution of job execution time:

Allocated  984  Ticks at List Index  6 .
Allocated  984  Ticks at List Index  7 .

Job  4 Final Execution Time = Wm,i= Wm,r + Wm,e + S x d => 1969 Ticks
Updated Budget List =>  [ 0  442   25  984   0 1442  0  0 1984  984  984 1984]
!!Un-Schedulable Job  4  of Task 2 by  1 tick(s). !!
...
******************** End of Analysis********************
Last State of Budget List => [  0 442 25 984 0 1442 0    0  468 984 0  999]
!!!System is Un-Schedulable!!!
Because of [TaskID, Job ID, Lack Of Tick] ==> [[2, 4, 1]]

Fig. 5. Details of our budget-based algorithm-generated analysis. In this case,
the algorithm output explains that job 4 of task 2 is unschedulable, because
it requires 1 tick of additional budget at the list indexes 6 and 7 (or between
the time of 12 ms and 16 ms). Therefore the system is un-schedulable.

Effect of Clock Frequency. If we want to make the
previous system schedulable, one possible way is to increase
the clock frequency, e.g., to F1 = 2MHz. This change in
frequency results in an increased budget for each slot from
2000 to 4000 ticks, and in a schedulable system.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented our budget-based ap-
proach that focuses on the Fixed-Priority Preemptive Schedul-
ing (FPPS) policy, and we have demonstrated the schedulabil-
ity analysis on an AUTOSAR-based application model.

Our approach provides detailed insights, due to the budget
list and through the sequential schedulability analyses of every
job of every task. For un-schedulable systems, our approach
explains which jobs have caused schedulability violations,
along with related informations. For schedulable systems, the
budget list is useful, e.g., to determine a bound on the WCET
of a new task to be added.

Our schedulability analysis can be applied to application
models that only contain the task model, i.e., with fixed
task WCETs. Additionally, since our analysis is based on
pessimistic assumptions, i.e., the execution time always equals
the WCET of runnables, and we do not consider inter-task
dependencies, the schedulability analysis result remains valid
in case of reduced execution times. While this paper considers
only periodic tasks, other task models and scheduling policies
will be addressed in future work.
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Explaining Quadratic Boundedness for Latency Mitigation and Safety
Assurance in Edge-Cloud Computing

Raffaele Romagnoli

Abstract— A novel paradigm of control relocates process
controls to the edge-cloud, offering increased computational
resources and proximity to sensors. However, network la-
tency remains a key limitation, treated as missing updates
in control loops. This study explores the system’s robustness
to missing updates, leveraging Lyapunov-like methods such
as quadratic boundedness. The goal is to identify Lyapunov
level sets that remain bounded despite missing control updates.
This approach, initially designed for edge-cloud control, has
broader applications, including aerospace. This note presents
our approach, focusing on linear time-invariant (LTI) systems.

I. INTRODUCTION

Modern industry is currently undergoing a convergence of
two pivotal domains: information technology (IT) systems
and operational technology (OT) systems [1]. IT systems
encompass the technologies and infrastructure employed for
processing, storing, and transmitting information to users,
applications, and other IT systems. In contrast, OT systems
are responsible for overseeing and controlling physical pro-
cesses. While maintaining a separation between IT and OT
systems remains crucial for safety considerations, contem-
porary industry demands rapid responsiveness. Flexibility
within manufacturing is paramount, and a key component
of achieving this goal lies in integrating IT and OT sys-
tems. In this vein, a groundbreaking paradigm of networked
control has emerged, aiming to shift process controls to the
edge-cloud—an infrastructure situated in close proximity to
process sensors and actuators [2]. This innovative edge-cloud
architecture augments computational resources, enabling the
implementation of more advanced applications that were
previously unattainable with standard industrial devices like
programmable logic controllers (PLCs). Simultaneously, the
proximity to sensors and actuators guarantees availability and
determinism for the controller hosted within the edge-cloud.

One primary limitation of this novel control architecture
pertains to network latency and reliability. Delays within the
control loop pose significant risks as they can compromise
system stability. In this context, these delays are treated as
missing updates to control inputs. When a control update
is absent, the last successfully transmitted control input is
retained until a new, timely update arrives [3].

Our primary objectives involve assessing the system’s
robustness concerning missing updates and establishing
safety conditions. Our chosen approach involves harnessing
Lyapunov-like methods, specifically quadratic boundedness

R. Romagnoli is with the Dept. of Electrical and Computer Engineering,
Carnegie Mellon University (CMU), Pittsburgh, PA, USA 15235. Email:
{rromagno}@andrew.cmu.edu

(QB) [4], [5]. We model the missing updates as external
disturbances, with the goal of identifying a Lyapunov level
set that is quadratically bounded concerning a sequence of
missing control updates. This implies the identification of
a set where all system trajectories, subjected to bounded
disturbances, remain within.

The idea of modeling missing updates as disturbances has
been previously introduced in our work [6], where we dis-
cussed the potential benefits of developing explainable tools
for assessing the safety of a cyber-physical system (CPS). In
this paper, we reframe the concept of quadratic boundedness
in relation to the maximum sequence of admissible missing
updates required to ensure system safety. Additionally, we
introduce an algorithm capable of determining the parameters
that confirm the quadratic boundedness of systems with
respect to missing updates.

The issue we investigate in this study can be situated
within the framework of weakly-hard real-time (WHRT) con-
straints [3], [7], [8]. While these papers tackle the stability
problem, our work is primarily centered on safety, which is
generally considered to be a less stringent requirement than
stability. This distinction serves as one of the motivations
behind our utilization of quadratic boundedness [6].

While this paper is primarily motivated by a novel control
paradigm rooted in edge-cloud computing, the general prob-
lem exposition and the approach presented here for analyzing
the effects of missing updates can be extended to other
scenarios, including aerospace applications. In this concise
note, we present our approach within the context of linear
time-invariant (LTI) systems.

II. PROBLEM STATEMENT

We consider the sampled data version of an LTI dynamical
system represented as follows:

xk+1 = Axk +Buk, (1)

where xk ∈ Rn represents the state vector of the system
with n components, and uk ∈ Rp represents the input
vector with p components. The matrices A ∈ Rn×n and
B ∈ Rn×p describe the sampled-data dynamics and inputs.
The subscript k ≥ 0 corresponds to the sampled time step
with k ∈ N.

We employ the following state feedback controller to
ensure the asymptotic stability of (1):

uk = −Kxk, (2)

where K ∈ Rp×n. If this controller remains unaffected



by missing control updates, then the closed-loop system,
obtained by substituting (2) into (1), becomes:

xk+1 = (A−BK)xk, (3)

where (A−BK) forms a Schur matrix, indicating that all
eigenvalues reside within the unitary circle in the complex
plane.

While the controller (2) can be readily implemented in a
PLC (Programmable Logic Controller), we use it as a proof
of concept in this paper. The approach presented here can be
extended to more advanced controllers that are not feasible
for common PLCs.

In the event of network delays or disruptions, the control
input is not updated, rendering the closed-loop formulation
(3) invalid. Specifically, assuming that the last control input
was applied at k = 0, the evolution of the sampled-data
system is described as:

xk+1 = Axk −BKx0, (4)

where −BKx0 remains a constant value until a new valid
update of the control law −Kxk arrives, and the system can
then be described again using (3).

A. Model Formulation

One way to address (4) is by expressing it as follows,
introducing the term ±BKxk:

xk+1 = (A−BK)xk +BK(xk − x0), (5)

where the second term can be viewed as an external
disturbance dk ≜ K(xk − x0). This formulation enables us
to utilize the quadratic Lyapunov function associated with
the closed-loop system (3):

V (xk) = xT
k Pxk, (6)

where P > 0 is a symmetric positive definite matrix that
satisfies the Lyapunov equation:

(A−BK)TP (A−BK)− P = −Q, (7)

with Q > 0 being a given symmetric positive definite
matrix. Since (3) is asymptotically stable, according to
Lyapunov’s theory [9], we have:

V (xk)− V (xk−1) < 0 for all k ≥ 0.

In summary, during consecutive missing updates, the sys-
tem can be described as an asymptotically stable system
subjected to an external disturbance:

xk+1 = Afxk +Bdk, (8)

where Af ≜ (A − BK). This formulation allows us to
leverage the Lyapunov function (6) to define Lyapunov level
sets, which manifest as ellipsoids:

Ec =
{
x ∈ Rn |xTPx ≤ c

}
, (9)

where c ∈ R. In cases where dk = 0, a Lyapunov level
set is ”positively invariant” [9]. Given that V (xk) continually
decreases, if the system initiates from any point on the border
of (9), its behavior remains confined within (9). However,
in instances of missing control updates (dk ̸= 0), this
perturbation may disrupt the positive invariance of (9). To
explore this scenario, we introduce quadratic boundedness
[4], which is further discussed in the subsequent subsection.

B. Quadratic boundedness

Consider the system (4), with the assumption that ∥dk∥2 ≤
δ for all k ≥ 0. A system is considered ”quadratically
bounded” if there exists a scalar η > 0 and a symmetric
positive definite matrix P satisfying the following conditions:

xT
k Pxk > η →
(Afxk +Bdk)

TP (Afxk +Bdk)− xT
k Pxk < 0, (10)

∀∥d∥2 ≤ δ, ∀k ≥ 0.

In this context, the ellipsoid Eη defines a positively invari-
ant set. The objective is to associate Eη with a maximum
number of missing control updates, ensuring that the system
remains confined within the ellipsoid. This guarantees the
controller’s robustness against network delays. Using the new
formulation (4), the matrix P > 0 can be computed by solv-
ing the Lyapunov equation (7). Additionally, as demonstrated
in [4], it is possible to compute an overapproximation of η,
provided that δ is known.

In practice, δ is often unknown and even if a reasonable
approximation can be obtained, the resulting values of η may
be excessively conservative. This means that the obtained
ellipsoid may not fit the real application requirements. In
the following section, we introduce an alternative approach
to describe quadratic boundedness in cases involving missing
control input updates, along with a procedure for finding a
practical η.

III. PROPOSED SOLUTION

Building upon the previous formulation regarding
quadratic boundedness, we explore an alternative method to
demonstrate the system’s quadratic boundedness concerning
missing control updates for a specific value of η.

We commence by considering a positive scalar, denoted
as η′ > 0, which defines Eη′ in alignment with the practical
specifications of the problem. Subsequently, we contemplate
any initial condition, denoted as x0, situated outside of Eη′ .
Furthermore, we assume that the control input undergoes an
update, yielding x1 = Afx0. This leads us to the following
inequality, utilizing expression (6):

V (x0) > V (x1). (11)

From this point onwards, we shift our focus to a sequence
encompassing k̄ consecutive missing control updates. As per
equation (5):

xk+1 = Afxk −BK(xk − x0) (12)



where k takes values in the range k ∈ [1, ..., k̄]. Subse-
quently, we make the assumption that at k̄ + 1, the control
input is updated. Therefore, xk̄+1 represents the new x0,
and this initiates the repetition of the missing sequence of
control inputs. Within the framework that solely considers
one update following k̄ missing updates, the system is
said to be quadratically bounded concerning a sequence of
consecutive missing k̄ control updates for a given η′ > 0 if
the following condition is satisfied for all x0:

∀x0 : V (x0) > η′ → V (xk̄+1) < V (x0). (13)

Additionally, the above definition implies:

∀x0 : V (x0) < η′ → V (xk̄+1) < η′. (14)

Ultimately, when considering a domain, denoted as D ⊂
Rn, which encompasses Eη′ , if the subsequent condition
holds:

∀x0 ∈ D → V (xk̄+1) < V (x0). (15)

Then, the system is deemed asymptotically stable, directly
implying quadratic boundedness.

The underlying rationale for the aforementioned defini-
tions is that there exists a value of η′ such that for any
x0 where V (x0) > η′, the constant control input −Kx0

maintains its stabilizing effect for a certain duration during
network disruptions. At a certain point, when the error
∥xk−x0∥2 becomes too substantial to sustain that stabilizing
effect, the Lyapunov function begins to increase. However,
this increment remains smaller than the decrease induced by
the lack of an updated control input. If the initial condition
x0 satisfies V (x0) < η′, then the potential increase in the
Lyapunov function cannot exceed η′ for a given k̄. This
behavior is illustrated in Fig. 1.

0 5 10 15 20 25 30 35 40 45
0

η′

k

V
(x

k
)

missed control update
control input update

Fig. 1: Behavior of V (xk) updating the control input after
k̄ = 22 consecutive missing updates.

A. LTI Systems

For LTI systems, we consider a generic initial condition
x0 ∈ D, and we assume that the controls are regularly
updated, leading to:

x1 = (A−BK)x0 = Afx0. (16)

Subsequently, we delve into the evolution of the system
(4) with k̄ consecutive missing control updates:

x2 = Ax1 −BKx0

= (AAf −BK)x0

x3 = Ax2 −BKx0

= (A2Af −ABK −BK)x0.

Generalizing for k̄, we have:

xk̄+1 =

Ak̄Af −
k̄−1∑
j=0

AjBK

x0 = A1(k̄)x0. (17)

Considering the asymptotic stability condition (15):

V (xk̄+1)− V (x0) < 0. (18)

By using (17), this condition is represented as:

xT
0 A1(k̄)

TPA1(k̄)x0 − xT
0 Px0 < 0. (19)

Remarkably, this condition to be verified is independent
of the initial condition x0. It is formulated as:

A1(k̄)
TPA1(k̄)− P < 0. (20)

This result is more in the spirit of the WHRT framework.
In this work, we aim to use a less conservative result based on
quadratic boundedness, which is represented by the following
condition:

xT
0 A1(k̄)

TPA1(k̄)x0 − η′ ≤ 0. (21)

In this formulation, (21) has to be evaluated for any initial
condition outside of Eη′ . In the subsequent subsection, we
describe a procedure to determine the maximum value of k̄
for a given η′.

B. Quadratic Boundedness Procedure

In order to address the issue of initial conditions, we
present a procedure based on reach set analysis. Let us
consider E1 ∈ D as a maximal ellipsoid contained in D.
We approximate it with a polytope:

P1 =

x ∈ Rn : x =

m∑
j=1

αjxj , 0 ≤ αj ≤ 1,

m∑
j=1

αj = 1

 ,

(22)
such that E1 ⊆ P1. The points xj ∈ Rn represent the

vertices of the polytope. By selecting 0 < η′ < 1, in the
case of an LTI system, we can evaluate (17) for each vertex
xj as initial conditions. A pseudo-algorithm to find kmax is
outlined in Algorithm 1.



Algorithm 1 Determine kmax

Input: η′, {x1, x2, . . . , xm} Output: kmax

1: for j = 1 to m do
2: x0 ← xj

3: k̄ ← 1
4: while V (xk̄+1) ≤ η′ ||V (xk̄+1) ≤ V (xk̄) do
5: k̄ ← k̄ + 1
6: xk̄+1 ← evaluate (17)
7: end while
8: k̄j ← k̄
9: end for

10: kmax ← min(k̄j)

Fig. 2 shows the starting point of the algorithm. The
ellipsoid E1 represents an inner approximation of D. The
polytope P1 is an over-approximation of E1, and the rela-
tionship holds: E1 ⊂ P1 ⊂ D.

D

E1

P1

xj

Fig. 2: Initialization of Algorithm 1. The domain D is
approximated with E1, whose over-approximation is the
polytope P1.

We consider η′ < 1, and for each vertex xj , we evaluate
(17). Initially, the control input update has a stabilizing
effect. To capture this effect for the subsequent missing
control updates, the condition to be evaluated for each initial
condition is:

V (xk̄+1) ≤ η′ || V (xk̄+1) ≤ V (xk̄). (23)

At the beginning, the state of the system can still be
outside of Eη′ , but its behavior is moving towards it, meaning
that V (·) is decreasing. Once it is not decreasing, we need to
evaluate if the state of the system is still inside Eη′ , which
is the reason for the OR condition. Fig. 3 describes what
happens to the polytope P1 when Algorithm 1 provides a
value of kmax > 1. Thanks to the stabilizing effect of the
control update, each vertex moves towards Eη′ . This behavior
is maintained during the missing control updates until it
reaches the smallest polytope inside Eη′ . After that, each
vertex begins to diverge until at least one of them reaches
the border of Eη′ .

D

E1

Eη′

P1

xj

xj

Fig. 3: Behavior of P1 when Algorithm 1 provide kmax > 1
for a given η′. The gray polytope is the smallest obtained by
the stabilizing effect of the initial control update.

Algorithm 1 may not provide a solution kmax > 1.
In that case, different values of η′ should be considered.
The algorithm also considers (17), but this method is more
general because it can handle more sophisticated controls
and models. In contrast, the condition (20) is valid only for
assessing asymptotic stability for LTI systems with a linear
state feedback controller (2).

IV. CONCLUSIONS

In this note, we have provided both a theoretical analysis
and a practical procedure for ascertaining the quadratic
boundedness of a system that experiences intermittent control
updates. Our motivation for this endeavor stems from an in-
novative control framework rooted in edge-cloud computing.
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Abstract—We had previously [1] proposed a rigorous definition of
what it means for a safety property to be efficiently explainable:
there should exist a certificate, whose validity may be checked
by a deterministic algorithm in polynomial time, attesting to the
safety of any system satisfying the property. Here we explore a
more generalized notion of efficient explainability in which the
validity of the certificate may be checked in a probabilistic sense
(rather than only a deterministic one).

Index Terms—Schedulability; Polynomial-time Verifiability; Ran-
domized Verification.

The first edition of this workshop threw up several alternative,
all valid, interpretations of ‘EXPLAINABILITY,’ ranging from
Andersson’s rather informal perspective [2] that an explanation
should be understandable to a non-expert, to far more formal
interpretations such as the one articulated by Brandenburg
during a panel discussion at the workshop that an explanation
should be expressible in, and hence rigorously verifiable within,
some machine-checkable formalism such as Prosa [3]. The
authors of this submission had also provided a rigorous and
formal perspective [1] as to what constitutes an acceptable
explanation for a claim that a particular system satisfies a
particular safety property; the central idea in [1] may be
summarized as follows.

By interpreting the set of all system specifications that satisfy a par-
ticular safety property as a formal language [4], and the explanation
for a particular input system specification as a certificate attesting to
the membership of that system specification in this formal language,
the existence of explanations becomes closely related to several
well-studied problems in computational complexity theory [5], [6].
In particular, explainable safety properties are exactly those for
which the associated verification problems belong to well-defined
complexity classes.

(From this perspective the Halting Problem [7] —the problem
of determining, from a description of an arbitrary computer
program P and an input e, whether the program will halt
when executed upon this input— is explainable: for a given
program P on input e, an acceptable certificate is simply the
total number of steps that P executes on e before completing
and halting. However, the complementary problem, that of
determining whether P executes without halting on input e, is
not explainable, as it is well-known that the complement of
the halting problem is not recursively enumerable.)
This particular interpretation of explainability was investigated
further in [8] by the authors of this submission, with a focus on
efficient explainability: what are the safety properties for which
there exist explanations that can be efficiently verified as being

correct (or rejected for being erroneous – for failing to actually
establish safety)? The central idea in [1], [8] can be summarized
in the following proposition. Let us define a safety property to
be efficiently explainable if for any system satisfying the safety
property, there exists an explanation of this fact that can be
validated for correctness by a deterministic procedure in time
no worse than polynomial in the representation of the system;
this definition simply equates efficient explainability with the
complexity class NP.

Proposition 1.

• Any safety property for which the associated verification
problem belongs to the complexity class NP is efficiently
explainable; and

• Showing that the verification problem associated with a safety
property is hard for a complexity class that is unlikely to be
contained within NP offers strong evidence of that property
not being efficiently explainable.

The application of Proposition 1 was illustrated in our prior
work [1], [8] upon several example problems concerning real-
time schedulability analysis, including in particular (i) pre-
emptive uniprocessor fixed-priority (FP) schedulability of
constrained-deadline sporadic task systems (see, e.g., [9]–[11]
for a description of this problem), and (ii) preemptive uniproces-
sor earliest-deadline-first (EDF) schedulability of sporadic task
systems (this problem is described in, e.g., [12], [13]). It was
pointed out that since FP-schedulability of constrained-deadline
sporadic task systems is NP-complete [14], [15], it is in NP and
hence efficiently explainable. In contrast, EDF-schedulability of
sporadic task systems is known to be coNP-complete [16] and
hence coNP-hard; since it is widely believed that coNP 6⊆ NP,
this immediately implies that EDF-schedulability of sporadic
task systems is unlikely to be efficiently explainable. In
[8] this issue was addressed both via identifying efficiently
explainable (NP) subsets of this coNP-hard problem, and via
considering a couple of wider notions of efficient explainability,
the latter in the form of pseudo-polynomial time verifiability
(as captured by the class pseudoNP) and fully-polynomial time
verification approximation schemes (FTPVAS). In this note
we want to make the case for another intriguing possibility,
the explainability of real-time schedulability using interactive
proof systems.
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Fig. 1. Some computational complexity classes

RANDOMIZED VERIFICATION

Verification of safety-critical software has traditionally been
a conservative endeavor, particularly when performed as part
of a certification process in highly regulated domains such as
civilian aviation or nuclear power control. It is interesting to
speculate on the possibilities that open up if we were to settle
for randomized, rather than purely deterministic, verification
of safety claims. That is, rather than requiring, as current
safety standards tend to do, that the correctness of a system
be validated with absolute certainty, what if we would settle
for a safety argument that convinces us of a system’s safety
at an arbitrarily high probability (that is strictly smaller than
one — say, (1− 10−6))? If such randomized verification were
to be considered acceptable, this opens up the possibility
that rather than being a statically-generated certificate, an
explanation be permitted to be of the form of an interactive
dialog whereby a verifier makes repeated queries in order to
develop adequate confidence in the veracity of a claim that a
system satisfies a particular safety property. The reason why this
would be a significant development builds upon a well-known
result in complexity theory from the 1990’s [17], establishing
that the class of decision problems that can be verified in
polynomial time by such an interactive randomized verifier
(which communicates with a prover that is not polynomially
bounded) is exactly the complexity class PSPACE. Hence if
randomized interactive verification of safety properties were
to be considered acceptable practice for the purposes of safety
verification, then the class of efficiently explainable properties
(i.e., the safety properties for which there exist polynomial-time
verifiable interactive explanations for all systems satisfying the
safety property) becomes the class of all safety properties for
which the associated verification problem belongs to PSPACE.
And as we can see in Figure 1, this complexity class is
considerably larger than the class NP (which, recall, is the class
of safety properties currently considered efficiently explainable
– see Propsition 1. For instance, EDF-schedulability of sporadic
task systems was shown to not be efficiently explainable under
the prior definition (of deterministic verification); however since

EDF-schedulability of sporadic task systems is coNP-complete
and coNP ⊆ PSPACE, it can be verified in polynomial time
by a randomized interactive verifier. In a similar vein, global
EDF- and FP-schedulability for sporadic task systems are both
known to be in PSPACE [18], [19], and schedulability analysis
for conditional DAG tasks is PSPACE-complete [20], [21]; hence
such schedulability, too, can be verified in polynomial time by
randomized interactive verifiers.
The possibility of interactive randomized verification of safety-
critical systems becoming accepted practice opens up several
interesting avenues of research, amongst them being the
derivation of interactive proofs for important schedulability
analysis problems that, in addition to having polynomially-
bounded running time, are computationally reasonably efficient
in practice. We point out that there are other, related, ongoing
research efforts in this direction; see, e.g. [22].
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Abstract—Formal verification is used in safety-critical systems
to prevent catastrophic errors. In such domains, certification is
paramount, demanding rigorous verification processes to obtain
the elusive seal of approval. Despite advancements in verification
tools, analysts remain apprehensive when a tool declares a system
“verified” without offering a meaningful human explanation.

This vision paper addresses this critical challenge by intro-
ducing a novel idea to enhance the explainability of formal
verification tools. Our method leverages the power of large
language models (LLMs) to transform intricate logical formu-
lations into comprehensible natural language explanations. By
bridging the chasm between logic and language, our proposed
framework will enable the generation of intelligible explanations
that analysts can readily consume. This, in turn, will engender a
heightened confidence in the correctness of safety-critical systems,
fostering a symbiotic relationship between human expertise and
computational rigor in the pursuit of certifiable trustworthiness.

Index Terms—formal methods, explainability, LLMs

I. INTRODUCTION

Safety-critical systems [1], exemplified by railway control
systems, aviation systems, and electric power grid systems,
play an indispensable role in modern society. They rely heavily
on intricate software components to ensure their reliable
operation. Ensuring the software’s correctness is crucial for the
systems’ functioning. The use of formal methods has become
a strategy to ensure confidence in their performance, allowing
the software to be rigorously proven to have defined properties.

Formal verification tools have enhanced trust in safety-
critical systems, but a significant challenge remains: the ab-
sence of explanations accompanying the assertion of program
correctness. In essence, formal verification tools, though adept
at establishing the veracity of a program, often fall short in
explaining why a program is correct. In contexts such as
aviation, where stringent certification guidance documents like
DO-178C [2], DO-254 [3] and DO-330 [4] describe human
analyst involvement, a pertinent question arises: “Why should
I place trust in the verification tool when it merely asserts
correctness without furnishing compelling evidence?” [5]

Recognizing the critical need for transparency in the formal
verification process, prior work [5] has emphasized that formal
verification tools should not confine their focus solely to
correctness and scalability. Instead, they should figure out why
a program is flawed or sound.

In response to this imperative, this vision paper endeavors
to tackle the challenge head-on by concentrating on enhancing

explainability within formal methods approaches. We propose
to transform complex logical formulations into readily un-
derstandable natural language constructs facilitated by the
deployment of large language models [6]. By bridging the
gap between intricate logic and human-friendly language, we
empower analysts to scrutinize and comprehend the underlying
logic, thereby nurturing a heightened level of trust in the
overall system. This endeavor represents a significant step
towards a more symbiotic relationship between formal veri-
fication tools and human analysts in pursuing safety-critical
system reliability and certification.

This vision paper makes the first step towards using large
language models to improve the explainability of verification
tools. Although the ideas presented in this paper are still in a
very preliminary stage, we hope to encourage researchers in
the real-time systems community and in the formal methods
community to pursue these ideas further and improve the
explainability of formal methods tools. This paper is organized
as follows. First, we show an example of a logical formula and
how large language models can be used to explain its meaning.
Next, we present the overall framework for transforming logic
into language. Finally, we show potential applications of this
framework such as to certification of safety-critical systems.

II. MOTIVATION

Consider a simple real-time system problem of task parti-
tioning [7], where we have n processors and k threads and
want to partition the threads by each processor such that (1)
one thread must be allocated to one processor, and (2) each
processor can have at most one thread.

If we query ChatGPT (version 4) about this problem and ask
it to explain why we cannot assign 5 threads to 4 processors,
ChatGPT clearly explains why the problem has no solution
as shown in Figure 2. 1 The answer given by ChatGPT is
great and clear! However, can ChatGPT do a good job when
logically formulating this problem? If we encode the above
problem into SAT [8] then we will have the representation
depicted in Figure 1.

Each number corresponds to a variable, and each line
corresponds to a disjunction of facts. For instance, “1 2 3 4 5
0” corresponds to having one of the five threads allocated to
the first processor. By mapping the meaning of each variable

1https://chat.openai.com/share/a0fa84de-1a5b-48c4-b21c-350fd6eab2c3
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p cnf 20 49
1 2 3 4 5 0 c thread#1 is in processor#1 OR thread#2 is in processor#1 OR ...
6 7 8 9 10 0 c thread#1 is in processor#2 OR thread#2 is in processor#2 OR ...
11 12 13 14 15 0 c thread#1 is in processor#3 OR thread#2 is in processor#3 OR ...
16 17 18 19 20 0 c thread#1 is in processor#4 OR thread#2 is in processor#4 OR ...
1 6 11 16 0 c thread#1 is in processor#1 OR thread#1 is in processor#2 OR ...
2 7 12 17 0 c thread#2 is in processor#1 OR thread#2 is in processor#2 OR ...
3 8 13 18 0 c thread#3 is in processor#1 OR thread#3 is in processor#2 OR ...
4 9 14 19 0 c thread#4 is in processor#1 OR thread#4 is in processor#2 OR ...
5 10 15 20 0 c thread#5 is in processor#1 OR thread#5 is in processor#2 OR ...
-1 -2 0 c thread#1 is not in processor#1 OR thread#2 is not in processor#1
-1 -3 0 c thread#1 is not in processor#1 OR thread#3 is not in processor#1
-1 -4 0 c thread#1 is not in processor#1 OR thread#4 is not in processor#1
-1 -5 0 c thread#1 is not in processor#1 OR thread#5 is not in processor#1
...

Fig. 1. SAT formula for assigning 5 threads to 4 processors

5 Threads (Tasks): T1, T2, T3, T4, T5
4 Processors (Workers): P1, P2, P3, P4

If you assign one thread to each processor, it might look like
this: P1: T1, P2: T2, P3: T3, P4: T4

Now, you have successfully assigned 4 threads to 4 proces-
sors. However, you are left with one thread (T5) without a
processor to assign it to, because each processor is already
busy handling one thread, and they cannot handle more than
one thread at a time.

...

You would need at least 5 processors to assign 5 threads
following these rules.

Fig. 2. Answer from ChatGPT to the English description of the problem

to natural language, we can have a language representation of
the formula as shown in the comments in each line of Figure 1.

Suppose we feed just the formula to ChatGPT. In that case,
since the logical encoding does not have information about
what represents threads and processors, ChatGPT answer will
be incorrect and it will claim that it does not find any clear
contradiction in the formula.2 However, if we instead provide
the natural language representation and ask for a text summa-
rization of why there is no solution to this problem then Chat-
GPT provides a good explanation as shown in Figure 3.3 While
this serves as a straightforward illustration, it underscores the
potential of Large Language Models (LLMs) in the realm of
text summarization for logical formulas. It also highlights their
capacity to elucidate the reasons behind the unsatisfiability
of a formula, a capability that holds significant promise for
enhancing the comprehensibility of formal verification tools.

III. TRANSFORMING LOGIC INTO LANGUAGE

The traditional workflow of a verification tool, as depicted
in Figure 4, involves taking a specification and a system model
as input and returning one of two outcomes: “verified” or
“failed.” While this binary outcome provides a decisive verdict
on the system’s correctness, it often lacks the granularity

2https://chat.openai.com/share/78f6cc37-ea0f-41f7-92ee-d50284049de0
3https://chat.openai.com/share/37807b38-a3af-4faf-acbb-94e319c0a30a

Here’s a summarized explanation of why there is no solution:

1) Existence on a Processor: Each thread must be on one
of the processors (as per the constraints like ”thread#1
is in processor#1 OR thread#1 is in processor#2 OR
thread#1 is in processor#3 OR thread#1 is in proces-
sor#4”).

2) Mutual Exclusivity: No two threads can solely occupy
the same processor. For each pair of threads, there’s
a constraint ensuring that at least one of them is not
present on each processor (e.g., ”thread#1 is not in
processor#1 OR thread#2 is not in processor#1”).

3) General Distribution: Every processor must have at
least one of the threads (e.g., ”thread#1 is in pro-
cessor#1 OR thread#2 is in processor#1 OR thread#3
is in processor#1 OR thread#4 is in processor#1 OR
thread#5 is in processor#1”).

Considering these constraints, there’s a contradiction that
makes finding a solution impossible. For each processor,
while there must be a thread assigned, the mutual exclusivity
constraints make it so that it’s impossible for all threads to
find a unique processor without violating any conditions.

Fig. 3. Answer from ChatGPT to the natural language representation of the
logical constraints

necessary for in-depth understanding. In response to this
challenge, we propose an extended pipeline that augments this
conventional approach with a layer of intelligibility.

Our proposal hinges on the extraction of a logical formula-
tion generated by the formal verification tool when it returns
a “verified” result. This logical formulation encapsulates the
rationale behind the verification outcome and serves as the
gateway for unlocking the black box. Subsequently, we lever-
age the capabilities of LLMs to transform this logical formu-
lation into natural language. The resulting natural language
explanation can then be readily interpreted by an analyst,
shedding light on the reason the system is deemed “verified.”

However, our approach presents several significant chal-
lenges that require careful consideration.
1) Transforming Logic to Language: The initial challenge is
to transform complex logical formulas into clear and human-
readable natural language sentences. We can begin by associat-

https://chat.openai.com/share/78f6cc37-ea0f-41f7-92ee-d50284049de0
https://chat.openai.com/share/37807b38-a3af-4faf-acbb-94e319c0a30a
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Fig. 4. Transforming Logic into Language using LLMs

ing logical variables with their semantic interpretations. Next,
we create statements for individual clauses in the formula by
combining the meanings of these variables through disjunc-
tions, as shown in the motivation section. While this method
offers basic explanations, it might not fully generate English-
like sentences that are both informative and easily understood.
2) Guidance for LLMs: The choice of prompt provided
alongside the natural language description significantly in-
fluences the comprehensibility of the output generated by
the Language Model (LLM). For example, requesting a text
summarization yields considerably superior results compared
to relying on the LLM for logical reasoning tasks. This is
because LLMs excel in text summarization tasks, showcasing
their strength in this domain compared to logical reasoning.
3) Confidence in the Explanation: LLM explanations may
not always be accurate. To enhance confidence in LLMs
explanation, one can query multiple times, seeking consistency
in responses. LLMs are also more likely to explain well if
they use known concepts. For instance, the task partitioning
problem in Section II can be seen as a variant of the pigeonhole
problem [9]. When interacting with ChatGPT, some answers
apply the pigeonhole principle to our motivating problem.4

Leveraging established arguments relevant to safety-critical
systems in conjunction with the chain-of-thought method [10]
can make explanations from LLM more reliable and insightful.
4) Selecting the Appropriate Logical Formula: The fourth
challenge pertains to selecting the most suitable logical for-
mula for explanation. One approach involves focusing on the
original formula, as demonstrated in the motivating example.
However, alternative strategies warrant exploration. For in-
stance, considering an unsatisfiable subformula, smaller than
the original might offer a more accessible starting point for
explanation. Another option is to harness the proofs emitted
by constraint solvers and task large LLMs by elucidating these
logical formulations instead of the original formula.

These challenges underscore the multidimensionality of our
approach. By addressing how to transform logic into natural
language effectively and selecting the most appropriate logical
formulation for explanation, we aim to create a symbiotic

4https://chat.openai.com/share/3ba78d98-d428-416b-afde-3fb194e487ad

relationship between formal verification tools and LLMs. The
ultimate goal is to empower analysts with clear, interpretable
explanations, enhancing their capacity to discern genuine
verifiability from spurious claims and fostering confidence in
the output of verification tools.

IV. APPLICATIONS

Enhancing Certification of Safety-Critical Systems with
Natural Language Explanations. The certification of safety-
critical systems [1], particularly in domains like aviation,
railway control, and power grid management, demands a
meticulous and reliable process to ensure that these systems
adhere to stringent guidance documents and specifications.
Formal verification tools have played a pivotal role in this
context by rigorously assessing the properties of software
components. However, a glaring challenge persists regarding
the interpretability of the verification results.

In formal verification, it is not uncommon for a verifi-
cation tool to confidently assert that a system is “verified”
without providing any human-readable output that an analyst
can comprehend. This lack of transparency is concerning
for several reasons. Firstly, it opens the possibility that the
verification tool itself might have a bug [11]–[13], leading to
erroneous claims of system correctness. Secondly, and perhaps
more commonly, it raises the specter of logical specification
errors. In such cases, the system may indeed be verified, but
concerning a specification that contains a subtle logical error
or an unintended interpretation [14]. In both scenarios, the
absence of clear, human-understandable explanations poses a
significant challenge for trusting the output of the tool.

The transformative potential of translating complex logic
into natural language empowers analysts. It simplifies the
scrutiny and comprehension of underlying logic and verifi-
cation processes, facilitating error detection, whether tool or
specification-related, and enhancing the certification process.

Consider a scenario where a logical specification error
exists, leading to an incorrect verification result. If the ver-
ification tool can provide a natural language explanation of
the logic it assessed, the analyst is better equipped to spot
the erroneous specification. Similarly, if the explanation aligns
with the analyst’s understanding of the system’s behavior, it

https://chat.openai.com/share/3ba78d98-d428-416b-afde-3fb194e487ad


fosters confidence in the tool’s output. Transforming logic into
natural language improves the certification process, enabling
analysts to engage actively, identify issues, and ensure the
safety and reliability of critical systems.

Leveraging Large Language Models for Debugging Logical
Formulas. Creating and refining logical formulas is a fun-
damental aspect of formal methods and, by extension, the
verification of critical systems. However, it’s an endeavor
fraught with complexity that often tests the limits of hu-
man precision. Crafting logical formulas is notorious for its
inherent difficulty and proneness to errors. Even the most
experienced logicians can inadvertently introduce subtle flaws
into their formulations. In the context of formal verification,
the output of a verification tool holds profound significance.
When such a tool declares that a system is “verified,” it
essentially asserts that the logical formula representing the
system’s behavior is unsatisfiable. In other words, the tool
did not encounter a counterexample, which would indicate a
violation of the system’s specification. However, this binary
outcome—verified or not—merely scratches the surface of
the underlying complexity. There are various potential reasons
why a formula might be unsatisfiable. While the absence of
a counterexample is a positive sign, it does not unequivocally
validate the correctness of the system’s behavior. It could
be that the formula is unsatisfiable for reasons unrelated to
the system’s actual behavior. For instance, the encoding of
the specification itself may contain a logical error, render-
ing the entire verification process invalid. Debugging logical
formulations in the presence of such intricate variables is a
formidable challenge [15]. It is often a time-consuming and
labor-intensive endeavor that demands exceptional expertise.

However, the integration of large language models into this
process introduces a transformative dimension. By transform-
ing complex logical formulas into natural language descrip-
tions, large language models can serve as invaluable aids in
the debugging process. These models possess the capacity to
concisely summarize the essence of a logical formula in a
human-understandable manner. In doing so, they enable ana-
lysts to scrutinize the logic, identify potential discrepancies,
and pinpoint the root causes of any unsatisfiability. This shift
from abstract logic to accessible language offers a critical
advantage, as it significantly reduces the cognitive gap between
the analyst and the system’s formal representation.

Enhancing Constraint Solver Performance through Lemma
Summarization. Constraint solvers [8], [16], integral com-
ponents of formal verification tools, are pivotal in exploring
solution spaces for complex logical problems. These solvers
actively acquire knowledge through lemmas during the search
process. These lemmas serve as critical insights, enabling
the solver to prune the search space efficiently and converge
toward a solution. However, a fundamental challenge arises
when managing the vast and dynamic corpus of lemmas gener-
ated during the search. To maintain reasonable memory usage,
constraint solvers must make selective decisions regarding

which lemmas to retain and which to discard. Traditionally,
heuristic methods [17] have been employed to tackle this
dilemma, prioritizing lemmas based on predefined criteria,
such as recency or perceived importance. The advent of
large language models has ushered in new opportunities for
handling and summarizing complex data [18]. These models
have demonstrated remarkable proficiency in data summa-
rization tasks, distilling vast amounts of information into
concise and informative representations. Given this capability,
a compelling question emerges: can we harness the power
of large language models to summarize the lemmas learned
by constraint solvers? Moreover, can these summaries be
leveraged to discern the relative importance of individual
lemmas, thus guiding the decision-making process of lemma
retention? This novel approach holds the potential to revolu-
tionize the performance of constraint solvers. We can distill
the essential insights gleaned during the search by employing
large language models for lemma summarization, effectively
preserving the most pertinent information while conserving
memory resources. These summarized representations can
then inform the development of novel heuristics, allowing
constraint solvers to make more informed decisions regarding
lemma retention. Enhanced heuristics, informed by summa-
rization techniques, could lead to significant performance gains
in constraint solving and improve verification of safety-critical
systems and other complex logical domains.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In conclusion, the absence of explainability reduces the
widespread adoption of formal methods in safety-critical sys-
tems [1] and real-time scheduling [19]–[21]. This vision paper
has illuminated a promising path forward by advocating for
integrating large language models to bridge the gap between
intricate logical formulations and human understanding.

We envision many far-reaching applications by harnessing
the power of language models to articulate complex logic in
natural language. Even though our examples used verification
using constraint solvers, we believe this approach is general
and can be widely applied to other formal verification ap-
proaches. Although we focused on improving the explainabil-
ity of verified systems, the same approach could also be used
to improve the explainability of buggy systems. When a bug
is found, most verification tools can return a counterexample
that can be used to explain it. However, it may be the case
that this counterexample is hard to analyze, and an explanation
generated by LLMs could improve its interpretability.

In closing, we invite the formal methods and real-time
systems communities to engage with this vision. Together,
we can foster the development of explainable tools that
empower analysts to certify the most intricate and critical
systems confidently. As we continue on this trajectory, we
anticipate a future where the marriage of formal methods
and explainability leads to safer, more reliable, and more
understandable critical systems, ushering in a new era of trust
and dependability in complex software-intensive domains.
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