

1st International Workshop on Explainability of
Real-time Systems and their Analysis

at the IEEE Real-Time Systems Symposium
Houston, Texas, December 5, 2022

Question

Answer

Explanation

Program Chair

Bjorn Andersson, SEI/CMU, USA

Program Committee

Ahlem Mifdaoui, UToulouse, France
Al Mok, UTexas, USA
Anaïs Finzi, TTTech, Austria
Björn Brandenburg, MPI-SWS, Germany
Dakshina Dasari, Bosch, Germany
Hyoseung Kim, UCR, USA
Insup Lee, UPenn, USA
James Anderson, UNC, USA
John Goodenough, SEI/CMU, USA
John Lehoczky, CMU, USA
John Rushby, SRI, USA
Jonathan Preston, LMCO, USA
Mark Klein, SEI/CMU, USA
Raj Rajkumar, CMU, USA
Sanjoy Baruah, WUSTL, USA
Shige Wang, GM, USA
Stefan Mitsch, CMU, USA
Wang Yi, Uppsala, Sweden

It is my pleasure to welcome you to the 1st International
Workshop on Explainability of Real-time Systems and their
Analysis (ERSA). We started this workshop because we wanted
to explore whether the notion of explainability is helpful for the
real-time system research community in order to deliver more
value to software practitionersin particular those involved in
certification. This document is the workshop proceeding for
ERSA.

I thank several individuals without whom this workshop would not
have been possible; this includes:

1. The authors for providing technical content;
2. The members of the technical program committee for

evaluating the content and providing constructive feedback
to the authors;

3. The organizers of RTSS that gave “go-ahead” for ERSA to
take place; this includes Dionisio de Niz (Hot-Topics Day
Chair of RTSS), Arvind Easwaran (Program Chair of RTSS),
and Liliana Cucu-Grosjean (General Chair of RTSS);

4. People working behind the scene to provide (digital and
physical) infrastructure, advice, and proof reading.

The papers in this workshop proceeding provide new ideas on
explainability. I believe and hope you will find them interesting;
and that they will help you and help us all in defining this new
area of research.

Sincerely,

Bjorn Andersson
Program chair of ERSA

Certificates of Real-Time Schedulability
Sanjoy Baruah

Washington University in Saint Louis
baruah@wustl.edu

Pontus Ekberg
Uppsala University

pontus.ekberg@it.uu.se

Abstract—One method of showing that a hard-real-time system
is schedulable is to present a “certificate” of its schedulability —
e.g., a (static) schedule which can be verified to always meet all
deadlines. We identify some widely-studied real-time systems for
which short (i.e., polynomial-sized) certificates of schedulability
exist that can be verified in polynomial time, and apply ideas and
results from computational complexity theory to identify other
systems for which such certificates are unlikely to exist.

Index Terms—Periodic Task Systems; Schedulability; Polynomial-
time Verification

I. INTRODUCTION

Cyclic-executive (CE) [1], [2] based approaches have proved
to be a successful means of demonstrating that a safety-critical
real-time system will meet all its timing constraints. In such
approaches, the system developer provides the certification
authority (CA) with a lookup table, called the CE, that explicitly
enumerates which task will execute at each instant; the CA
checks that repeated execution of this table assigns adequate
computing to each task to allow all its timing constraints to be
met (provided, of course, that no task executes for a duration
exceeding its worst-case execution time or WCET).
When used in this manner, we can think of the CE as a
certificate of the schedulability of the system. For periodic task
systems [3], [4] the size of the CE is proportional to the hyper-
period and may therefore in general be of size exponential
in the representation of the task system under consideration.
Furthermore, verifying the correctness of such a certificate
takes the CA time at least linear in the size of the certificate;
i.e., exponential in the representation of the task system.
In this work we adopt a more expansive notion of a certificate
than merely an explicit enumeration of a schedule lookup
table. As an illustrative problem we consider the preemptive
uniprocessor scheduling of synchronous periodic constrained-
deadline task systems (see Section II). We discuss alternative
certificates of schedulability for such systems, and provide
informal assurance arguments as to why these certificates
may be considered adequate for the purposes of verifying
schedulability. We apply standard results from computational
complexity theory in order to identify, in Section III, a particular
schedulability analysis problem for which a system developer
is able to provide certificates that can be verified in time
polynomial in the size of the representation of the task system.
By defining explainability in terms of the guaranteed existence
of such polynomial-time verifiable certificates, we also identify,
in Sections IV and V, a pair of schedulability analysis problems

that are unlikely to be explainable according to this notion. In
Section VI we propose some directions for research upon such
a notion of explainability: seeking explainable subproblems of
problems that are unlikely to be explainable in general.

II. SYSTEM MODEL

We consider a synchronous periodic constrained-deadline task
system Γ that is to be scheduled upon a single preemptive
processor. Each periodic task τi ∈ Γ is characterized by
three integer parameters: its worst-case execution time Ci,
its relative deadline Di, and its period Ti; we restrict attention
to constrained-deadline systems in which Di ≤ Ti. To recap
the synchronous periodic task model: each task τi releases a
job at each time instant k × Ti for all k ∈ N; the job released
at time-instant k × Ti has a WCET Ci and a deadline at
time-instant (k × Ti +Di).
Notation: we will use H(Γ) to denote the hyper-period (least
common multiple of all the periods) of task system Γ, and
U(Γ) to denote its utilization, U(Γ) =

∑
τi∈Γ Ci/Ti.

Explainability. A system developer that chooses to model
their system as a periodic task system for the purposes of
obtaining certification would presumably need to justify this
choice to the CA. They would, for instance, need to provide
some justification for the values they have assigned to the
WCET parameters characterizing their tasks1, and explain why
one may model the processor as being preemptive. We will
not address this issue of model-justification any further in
this note, other than pointing out that safety-critical system
design methodologies (e.g., the Rate-Monotonic Analysis
methodology [6]) exist that explain how this may be done.
In Section V, we will consider an extended version of this
problem in which each task τi is additionally characterized by
a best case execution time (BCET) Bi. This model, if used,
must also be justified, and a convincing argument provided as
to why it is safe to assume that each job of a task will execute
for a duration no smaller than the value that is assigned to the
BCET parameter value of the task.

III. FIXED-PRIORITY SCHEDULING

Fixed-priority (FP) scheduling is a priority-based scheduling
scheme in which each task in the system is assigned a
unique priority, and at each instant in time the highest-priority

1Such justification may, for instance, take the form of stating that the values
were obtained using tools [5] that have been certified for this purpose.

task needing execution is executed on the shared processor.
Response-time analysis (RTA) [7], [8] is the standard technique
for determining whether a constrained-deadline synchronous
periodic task system is schedulable or not under FP scheduling
with given priorities. RTA is based on the observation [7] that
if a constrained-deadline task system is schedulable under FP,
then the maximum possible duration between the release of a
job of τi and the instant this job completes execution (called
the worst-case response time of task τi) is equal to the smallest
positive value of Ri that satisfies the following recurrence:

Ri = Ci +
∑

τj∈hp(τi)

⌈
Ri

Tj

⌉
× Cj (1)

(Here hp(τi) denotes all jobs in the task system that have
scheduling priority greater than τi’s scheduling priority.)

Explainability. A system developer that chooses to use FP
scheduling must first have the CA accept the validity of RTA.2

Assuming the CA accepts this, the certificate for schedulability
for a given task system Γ is a value for Ri for each τi ∈
Γ that satisfies Expression 1 and is ⩽ Di’s. The certificate
comprises |Γ| numbers, and so is polynomial (in fact linear) in
the representation of the task system Γ. It is straightforward to
observe that each claimed Ri can be verified to be a solution
to Equation 1 in linear time.

IV. EDF SCHEDULING

Earliest-deadline-first (EDF) scheduling is another priority-
based scheduling algorithm. In an EDF-scheduled system, at
each instance the currently active (i.e., needing execution) job
with the earliest deadline is executed — ties may be broken
arbitrarily. Processor-demand analysis (PDA) [11] is the stan-
dard technique for determining whether a synchronous periodic
task system is schedulable or not under EDF scheduling. PDA
asserts that constrained-deadline synchronous periodic task
system Γ is EDF-schedulable if (and only if) the following
constraint is satisfied for all t ∈ [0, H):(∑

τi∈Γ

max

(⌊
t−Di

Ti

⌋
+ 1, 0

)
× Ci

)
⩽ t (2)

Explainability. Getting the CA to accept the validity of PDA
does not yield a means to generate a certificate for a polynomial-
time verification algorithm. Indeed, the existence of such a
certificate seems highly unlikely since it would then follow
(from the definition of the complexity class NP) that EDF
schedulability of constrained-deadline synchronous periodic
task systems is in NP. But this schedulability problem has
previously been shown [12]–[14] to be coNP-hard, hence its
membership in NP would immediately imply that coNP = NP,

2This has essentially been achieved: there appears to be wide-spread
acceptance by most certification authorities that Equation 1 is indeed correct.
Additionally in recent years, this RTA (and much more) has been formally
proven correct [9] with machine-verified proofs in the Prosa [10] framework.

which runs counter to the expectations of most researchers in
computational complexity theory.

V. BEST-CASE RESPONSE TIMES

We have seen that there are polynomial-time verifiable cer-
tificates for FP-schedulability but it is unlikely that such
certificates exist for EDF-schedulability. In showing [non]-
existence of polynomial-time verifiable certificates, the devil is
very much in the details of the exact question being asked —
we demonstrate this below by showing that a problem, which
is very closely related to the FP-schedulability problem, is
coNP-hard and therefore does not allow for polynomial-time
verifiable certificates if NP ̸= coNP.
The problem we consider is to establish a lower bound on the
best-case response-time (BCRT) of a task under FP-scheduling.
This is a practically relevant problem since bounding both the
BCRT (from below) and the WCRT (from above) allows us to
bound the jitter in task responses. For the BCRT problem to be
meaningful we need the task model to also include a best-case
execution-time Bi of each task. The hardness of the BCRT
problem that we will establish here does not stem from any
complicated relationship between the Bi and Ci parameters; in
the following we show that the BCRT problem is coNP-hard
even if Bi = Ci for all tasks.

The Best-Case Response-Time (BCRT) Problem

INSTANCE: An FP-scheduled synchronous periodic
task system Γ with each task τi ∈ Γ additionally
characterized by a best-case execution time (BCET)
Bi, and a positive integer a.

QUESTION: Does each job of the lowest-priority task
in Γ have a response time ⩾ a?

We will establish the coNP-hardness of the BCRT problem by
relating it to the worst-case response-time (WCRT) problem.
Determining FP-schedulability is equivalent to determining
whether the WCRT Ri (as in Eq. 1) of each task is no larger
than its relative deadline Di. We find it convenient in our
derivation below to use the following utilization-restricted
variant of the WCRT problem, which has itself been shown [15]
to be NP-complete.

The Worst-Case Response-Time (WCRT) Problem

INSTANCE: An FP-scheduled synchronous periodic task
system Γ with U(Γ) ⩽ ln 2, and a positive integer a.

QUESTION: Does each job of the lowest-priority task
in Γ have a response time ⩽ a?

We note that the key difference between the above two problem
formulations is that we are asked if the given number a is an
upper bound to the possible response times in the WCRT case,

and a lower bound in the BCRT case. We will use a simple
trick to reduce from the WCRT problem to the complement
of the BCRT problem, thereby showing coNP-hardness for the
BCRT problem.
We reduce from the WCRT problem to the BCRT problem
by copying the task set Γ of the former problem to a task
set Γ′ for the new problem, but changing the period of the
lowest-priority task τlow in Γ′ to equal the hyper-period,

Tlow = H(Γ),

and assigning best-case execution times

Bi = Ci

to all tasks τi ∈ Γ′.
The change to τlow’s period effectively means that it will only
release the first job in every hyper-period in Γ′ compared to Γ.
It is well-known that if the first job in the hyper-period has a
response-time ⩽ Tlow, then that job has the maximum response
time [16]. Since we have U(Γ) ⩽ ln 2, the response-time of
the first job must be ⩽ Tlow by Liu and Layland’s utilization
bound [3], and so τlow’s WCRT must be the same in Γ and Γ′.
But since τlow only releases a single job per hyper-period in
Γ′, and since all tasks have Bi = Ci, it must also be the case
that τlow’s WCRT and BCRT are the same in Γ′. In order to
answer the WCRT problem for Γ

“Does each job of the lowest-priority task in Γ have a
response time ⩽ a?”

we can simply answer the BCRT problem for Γ′

“Does each job of the lowest-priority task in Γ′ have a
response time ⩾ a+ 1?”

and negate the answer. It follows that the BCRT problem
is coNP-hard and therefore does not allow polynomial-time
verifiable certificates if NP ̸= coNP.
As an immediate corollary, we may conclude that the following
problem for bounding the response time within an interval is
both NP-hard and coNP-hard, and therefore is unlikely to have
either polynomial-time verifiable certificates or counterexam-
ples.

The Response-Time Jitter Problem

INSTANCE: An FP-scheduled synchronous periodic
task system Γ with each task τi ∈ Γ additionally
characterized by a best-case execution time (BCET)
Bi, and positive integers a, b.

QUESTION: Does each job of the lowest-priority task
in Γ have a response time in interval [a, b]?

Explainability. Despite being so closely related to the WCRT
problem, and hence the FP-schedulability problem, we have
seen that there are likely no polynomial-time verifiable certifi-
cates for the BCRT problem (if there are, then NP = coNP).

We consider the coNP-hardness of the BCRT problem an
interesting result in itself; this section additionally demonstrates
how computational complexity may change with only small
variations of the questions asked, and how this can determine
the existence of efficiently-verifiable certificates.

VI. SUMMARY & DISCUSSION

One effective means of “explaining” that a system is schedu-
lable has been by presenting verifiable certificates of its
schedulability, as is evidenced by the prevalence of cyclic-
executive based scheduling approaches in important safety-
critical application domains such as avionics. A more general
notion of certificate than the explicit schedule as provided by
cyclic executives is some more abstract proof of schedulability
that can be independently verified by, say, a certification
authority. A very formal (and very interesting) approach to
this are the machine-checkable certificates generated by the
foundational response-time analysis of Maida et al. [17].
The notion of explainability that we focus upon in this note
is this: is a certificate guaranteed to exist for all schedulable
task systems, that can be verified in time polynomial in the
representation of the task system whose schedulability is to
be verified? Under this interpretation, explainability implies
membership in the computational complexity class NP; and
as a contrapositive, if a schedulability analysis problem is
̸∈ NP, then the problem is not explainable in general – it is not
the case that all instances have polynomial-sized certificates.
Showing, as we have done in this note, that a problem is
coNP-hard offers very strong evidence that it is ̸∈ NP, since
we otherwise would have NP = coNP.
We have demonstrated this equivalence between computational
complexity and this notion of explainability via examples upon
some commonly-studied preemptive uniprocessor schedulability
analysis problems. Under FP scheduling, we noted that upper
bounds on worst-case response time are explainable, but showed
that lower bounds on best-case response times are likely not.
For EDF scheduling, we noted that determining schedulability
is unlikely to be explainable.
We can of course apply this thinking to other complexity
results in real-time scheduling theory. To exemplify with a
few complexity results for some multiprocessor schedulability
analysis problems:

• Partitioned FP scheduling of constrained-deadline syn-
chronous periodic task systems is in NP, this follows for
example from an ILP formulation by Zheng et al. [18]. (In
fact it is NP-complete even for unrelated heterogeneous pro-
cessors, see [19, Sec. VII] for an overview on the complexity
of partitioned schedulability problems.) Hence partitioned
FP scheduling of constrained-deadline synchronous periodic
task systems is explainable.

• In contrast, it is currently unknown if the global FP-
schedulability problem of constrained-deadline synchronous
periodic task systems has polynomial-sized certificates. This
problem is NP-hard (which follows directly from the hardness
of the single-processor case [15]), but to the best of our

knowledge no better lower bounds on its complexity are
known, and it is not known to be in NP.

• Multiprocessor schedulability for a single conditional DAG
(C-DAG) [20]–[22] under restricted processor assignment is
unlikely to be explainable, since this schedulability analysis
problem is known [23] to be PSPACE-complete (and since it
is generally believed that NP ̸= PSPACE).

Directions for future research. Although this note (and
indeed, this workshop) deals with explainability, the traditional
focus of real-time scheduling theory research has primarily
been on devising efficient algorithms for determining, rather
than explaining, schedulability. In this traditional context if a
schedulability analysis problem is shown to be computationally
hard, one approach has been to try to identify sub-problems
that are solvable in polynomial time (for example, FP and
EDF schedulability analysis of harmonic task systems may be
looked upon as such sub-problems of the schedulability analysis
problems considered in Sections III and IV, for which exact
polynomial-time schedulability tests are known [24], [25]).
This flavor of prior research suggests a promising future
research direction on the approach to explainability that we
have investigated in this note: If some schedulability analysis
problem that arises frequently in practice is ̸∈ NP and therefore
unlikely to have polynomial-sized certificates, there may be sub-
problems of it that are in NP and hence possess polynomially-
verifiable certificates of schedulability. Since P ⊆ NP, there is
an obvious possibility that there are more or larger practically
relevant sub-problems of this type than there are sub-problems
that are efficiently solvable. In other words, if explainability is
a main concern it may be meaningful to search for practically
relevant sub-problems not only for their efficient solvability,
but also for their explainability

REFERENCES

[1] T. P. Baker and A. Shaw. The cyclic executive model and Ada. In
Proceedings of the 9th Real-Time Systems Symposium (RTSS), pages
120–129, 1988.

[2] T. P. Baker and A. Shaw. The cyclic executive model and Ada. Real-Time
Systems, 1(1):7–25, 1989.

[3] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in
a hard real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[4] Joseph Y.-T Leung and M. Merrill. A note on the preemptive scheduling
of periodic, real-time tasks. Information Processing Letters, 11:115–118,
1980.

[5] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter
Puschner, Jan Staschulat, and Per Stenström. The worst-case execution-
time problem – overview of methods and survey of tools. ACM
Transactions on Embedded Computing Systems, 7(3):36:1–36:53, May
2008.

[6] Mark H. Klein, Thomas Ralya, Bill Pollak, Ray Obenza, and
Michael González Harbour. A Practitioner’s Handbook for Real-time
Analysis – Guide to Rate Monotonic Analysis for Real-Time Systems.
Kluwer Academic Publishers, Norwell, MA, USA, 1993.

[7] M. Joseph and P. Pandya. Finding response times in a real-time system.
The Computer Journal, 29(5):390–395, October 1986.

[8] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: Exact characterization and average case behavior. In
Proceedings of the 10th Real-Time Systems Symposium (RTSS), pages 166–
171, Santa Monica, California, USA, December 1989. IEEE Computer
Society Press.

[9] Sergey Bozhko and Björn B. Brandenburg. Abstract Response-Time
Analysis: A Formal Foundation for the Busy-Window Principle. In
Marcus Völp, editor, Proceedings of the 32nd Euromicro Conference on
Real-Time Systems (ECRTS), volume 165 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 22:1–22:24, Dagstuhl, Germany,
2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[10] Felipe Cerqueira, Felix Stutz, and Björn B. Brandenburg. PROSA: A
case for readable mechanized schedulability analysis. In Proceedings of
the 28th Euromicro Conference on Real-Time Systems (ECRTS), pages
273–284, 2016.

[11] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-time
sporadic tasks on one processor. In Proceedings of the 11th Real-Time
Systems Symposium (RTSS), pages 182–190, Orlando, Florida, 1990.
IEEE Computer Society Press.

[12] Friedrich Eisenbrand and Thomas Rothvoß. EDF-schedulability of
synchronous periodic task systems is coNP-hard. In Proceedings of
the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
January 2010.

[13] P. Ekberg and W. Yi. Uniprocessor feasibility of sporadic tasks with
constrained deadlines is strongly coNP-complete. In Proceedings of
the 27th Euromicro Conference on Real-Time Systems (ECRTS), pages
281–286, 2015.

[14] P. Ekberg and W. Yi. Uniprocessor feasibility of sporadic tasks remains
coNP-complete under bounded utilization. In Proceedings of the 36th
Real-Time Systems Symposium (RTSS), pages 87–95, 2015.

[15] Pontus Ekberg and Wang Yi. Fixed-priority schedulability of sporadic
tasks on uniprocessors is NP-hard. In Proceedings of the 38th Real-Time
Systems Symposium (RTSS), pages 139–146. IEEE Computer Society,
2017.

[16] J.P. Lehoczky. Fixed priority scheduling of periodic task sets with
arbitrary deadlines. In Proceedings of the 11th Real-Time Systems
Symposium (RTSS), pages 201–209, 1990.

[17] Marco Maida, Sergey Bozhko, and Björn B. Brandenburg. Foundational
Response-Time Analysis as Explainable Evidence of Timeliness. In
Martina Maggio, editor, Proceedings of the 34th Euromicro Conference
on Real-Time Systems (ECRTS), volume 231 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 19:1–19:25, Dagstuhl, Germany,
2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[18] Wei Zheng, Qi Zhu, Marco Di Natale, and Alberto Sangiovanni
Vincentelli. Definition of task allocation and priority assignment in
hard real-time distributed systems. In Proceedings of the 28th Real-Time
Systems Symposium (RTSS), RTSS ’07, page 161–170, USA, 2007. IEEE
Computer Society.

[19] Pontus Ekberg and Sanjoy Baruah. Partitioned scheduling of recurrent
real-time tasks. In Proceedings of the 42nd Real-Time Systems Symposium
(RTSS), pages 356–367, 2021.

[20] Jose Fonseca, Vincent Nelis, Gurulingesh Raravi, and Luis Miguel Pinho.
A Multi-DAG model for real-time parallel applications with conditional
execution. In Proceedings of the ACM/ SIGAPP Symposium on Applied
Computing (SAC), Salamanca, Spain, April 2015. ACM Press.

[21] Sanjoy Baruah, Vincenzo Bonifaci, and Alberto Marchetti-Spaccamela.
The global EDF scheduling of systems of conditional sporadic DAG
tasks. In Proceedings of the 26th Euromicro Conference on Real-Time
Systems (ECRTS), ECRTS ’15, pages 222–231, Lund (Sweden), 2015.
IEEE Computer Society Press.

[22] Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto
Marchetti-Spaccamela, and Giorgio Buttazzo. Response-time analysis of
conditional DAG tasks in multiprocessor systems. In Proceedings of the
26th Euromicro Conference on Real-Time Systems (ECRTS), ECRTS ’15,
pages 222–231, Lund (Sweden), 2015. IEEE Computer Society Press.

[23] Sanjoy Baruah and Alberto Marchetti-Spaccamela. Feasibility Analysis
of Conditional DAG Tasks. In Björn B. Brandenburg, editor, Proceedings
of the 33rd Euromicro Conference on Real-Time Systems (ECRTS),
volume 196 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 12:1–12:17, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.

[24] V. Bonifaci, A. Marchetti-Spaccamela, N. Megow, and A. Wiese.
Polynomial-time exact schedulability tests for harmonic real-time tasks.
In Proceedings of the 34th Real-Time Systems Symposium (RTSS), pages
236–245, Dec 2013.

[25] Thi Huyen Chau Nguyen, Werner Grass, and Klaus Jansen. Exact polyno-
mial time algorithm for the response time analysis of harmonic tasks. In
Cristina Bazgan and Henning Fernau, editors, Combinatorial Algorithms,
pages 451–465, Cham, 2022. Springer International Publishing.

Understanding Safety of Linear Real-Time Systems from Lyapunov
Theory and Quadratic Boundedness.

Raffaele Romagnoli

Abstract— In this note Lyapunov’s stability theory and
quadratic boundedness are presented to understand the safety
of real-time control systems with missing deadlines. By mod-
eling missing deadlines as bounded external disturbances,
quadratic boundedness can be applied. This formulation can
also model the presence of uncertainties in the computed control
action.

I. INTRODUCTION

Lyapunov’s stability theory for dynamical systems is based
on the existence of a non-negative and non-increasing func-
tion along the trajectories of the system. This function is
called Lyapunov’s function V [1]. The closest concept to
explain V is the energy E of a system [2] (e.g. mechanical,
electrical, etc.). Considering the system starting from an
initial condition which is associated with an initial level of
energy c, the system is stable if the energy is not increasing
while the system is evolving during the time E ≤ c. In
general, if E decreases, the system is going to stop at a
point where E = 0. In this case, the system is asymptotically
stable. A classical example is a pendulum with friction. The
amplitude of the oscillations around the downright position
reduces over time due to the effect of friction. The position
where the pendulum starts has an initial energy E = c
that will never be reached again since the energy decreases,
this means that the pendulum can reach only the trajectories
where E ≤ c. The set of all the trajectories where E ≤ c
is called positively invariant set. For example, safety can
be formulated as a set where any trajectory of the system
can be driven to the resting point (E = 0). A positively
invariant set is suitable to approximate the safety set since it
offers the property that any trajectory inside the set will never
go outside of it. Hence, safety can be ensured. Assuming
that there is an external disturbance that acts as a force
on the pendulum then, the energy of the entire system can
increase. Hence, the positively invariant property for the
set E ≤ c is no longer satisfied since the energy may
increase and the trajectories of the system may go outside
of that set. In this way, safety cannot be ensured anymore.
However, if the disturbance is bounded then its effects on
the system are limited. If the system starts from a level of
energy enough to reject the effects of the disturbance then it
defines a positively invariant set. This explains the concept
of quadratic boundedness [3], [4].

This paper aims to present Lyapunov’s theory and
quadratic boundedness and their connections with safety

R. Romagnoli is with the Dept. of Electrical and Computer Engineering,
Carnegie Mellon University (CMU), Pittsburgh, PA, USA 15235. Email:
{rromagno}@andrew.cmu.edu

in a more general way than the notion of energy used
before. Specifically, this paper shows how to represent the
missing deadlines in real-time control systems as an external
disturbance. If this disturbance is bounded then quadratic
boundedness can be used to find an approximation of the
safety set.

In general control theory only considers the physical
system for the controller design without taking into account
the implementation aspects. The controller is implemented
as an algorithm that exchanges and processes information in
the discrete-time domain. In general, the control algorithm is
much faster than the inertia of the system, hence the digital
implementation of the controller does not have a serious
effect on the properties of the designed controller.

In more complex systems such as cyber-physical systems
(CPSs) [5], the digital implementation of the controller can
affect its properties. In fact, in a CPS the controller can be
distributed over the network, and the packet loss may have
negative consequences on the networked control system.
Not only is missing updating the control input a problem
for networked control systems, but it is also an issue for
real-time control systems. In [6], weakly hard real-time
(WHRT) constraints are used to model both packet loss and
the missing deadline for linear control systems. This work
considers the stabilization of linear sampled-data systems
under WHRT constraints. The extension to nonlinear systems
is in [7]. Another work oriented on the stability analysis
for linear systems under extended weakly hard constraints is
presented in [8].

A state feedback controller is used for the general problem
of the stability of control systems under WHRT constraints,
and the system’s current state is perfectly known. In general,
this assumption may be difficult to satisfy in a real applica-
tion. For example, the measurement noise generates uncer-
tainties. In CPSs the state of the system can be elaborated
by different software modules that implement a state esti-
mator that considers remote sensors. These are all possible
sources of uncertainties that in the end will affect the control
input. This work also shows how quadratic boundedness
can consider in the problem of missing deadlines and the
uncertainties in the computed control inputs.

II. PRELIMINARIES

The behavior of a physical system can be captured by
ordinary differential equations (ODEs) of the form

ẋ = f(x) (1)

Fig. 1. Example of a vector field f(x) with x ∈ R2. The square set is
positively invariant where the state of the system can enter from outside but
it will never leave it.

where x ∈ Rn is the state vector where each component
represents a specific physical variable that evolves during
the time. The function f : D → Rn is locally Lipschitz on
D ⊂ Rn, and from a given initial condition x0 ∈ D, the
solution of (1) is indicated with x(t) where x : I → Rn and
I ⊆ R. If the system is linear then

ẋ = f(x) = Ax (2)

where A ∈ Rn×n, and the solution x(t) is defined for all t ≥
0. A more general formulation of (1) is ẋ = f(x, u) where
u ∈ Rp is the input vector. Considering a state feedback
control input of the form u = γ(x), the general system can
be represented again as in (1). In the case of a linear system

ẋ = Ax+Bu, (3)

a state feedback controller can assume the form of u =
−Kx, where K ∈ Rp×n. Defining Af ≜ (A − BK), the
closed loop system is ẋ = Afx which is expressed in the
same form of (2).

The stability analysis of (1) considers the behavior of the
system around an equilibrium point which is a point xeq ∈
D such that f(xeq) = 0. Without loss of generality it can
be considered the origin of the state space xeq = 01. The
function f(x) is a vector field, where each point x ∈ D
has associated a vector that represents the intensity and the
direction of the velocity of the solution of (1) at that specific
point. Assuming that x ∈ R2, the vector field associated to
the system (1) can be represented as in Fig. 1. Observing the
direction of the arrows that represent the vector field f(x),
one can say that any solution starting from any point in the
domain D is approaching the origin. Moreover, considering
the square set S, all the trajectories starting inside S will
stay in S. Also, all the trajectories starting outside S will
enter in S. Considering the boundary of S, the entire vector
field is pointing inside S. Hence, S is a positively invariant
set.

For the dynamical system (1), safety can be defined as
a region of the state space C ⊆ D where the state x ∈ C

1Any equilibrium point can be translated to the origin [2]. If the
equilibrium point changes during the time, the analysis remains the same.

satisfies specific requirements. To ensure safety C has to be
an invariant namely, no solutions starting in C leave C for any
t ∈ R. In Fig. 1, the square S which is positively invariant
can represent a good approximation of the safety set, if S ⊆
C.

III. LYAPUNOV STABILITY THEORY AND SAFETY

Lyapunov stability theory [2] provides a way to analyze
the stability of an equilibrium point in the general case where
x ∈ Rn. The idea is represented in Fig. 1. Given a positive

Fig. 2. A possible trajectory of the system is moving accordingly to the
vector field f(x) (red line). If the projection of f(x) along the gradient of
V (x) is negative then, V (x) decreasing along any trajectory x(t). V (x)
generalizes the system’s energy concept.

definite function V : D → R, where V (0) = 0 and V (x) > 0
for x ̸= 0, the idea is to project the vector field f(x) along
the gradient of V :

⟨∇V, f(x)⟩ = ∇V T f(x) =
∂V

∂x
f(x) = V̇ (x) (4)

where
∂V

∂x
=

[
∂V
∂x1

· · · ∂V
∂xn

]
= ∇V T .

If (4) is non-positive (V̇ (x) ≤ 0 for all x ∈ D) then x =
0 is stable. Instead, if V̇ (x) is strictly negative, x = 0 is
asymptotically stable. In both cases, given an initial point
x(0) = x0 ∈ D, the value of V (x) ≤ V (x0) = c. Defining

Ωc = {x ∈ D |V (x) ≤ c} (5)

any solution starting in Ωc remains in Ωc, since V (x) cannot
increase. The set (5) is positively invariant w.r.t the solution
of (1), and it is called Lyapunov level set.

Given a safety set C, a Lyapunov level set Ωc can be used
to guarantee safety if Ωc ⊆ C, and x0 ∈ Ωc.

For an asymptotically stable linear system (2), there
exists a symmetric positive-definite matrix P that solves
Lyapunov’s equation

ATP + PA = −Q (6)

where Q can be any given symmetric positive definite
matrix. The function

V (x) = xTPx (7)

is a Lyapunov function for (2) 2. The Lyapunov level set Ωc

2The Lyapunov function (7) is a quadratic form, and each Lyapunov level
set is an ellipsoid that is easy to represent and visualize.

is an ellipsoid centered at x = 0

Ec =
{
x ∈ D |xTPx ≤ c

}
. (8)

In the case of linear systems, the safety set can be approx-
imated with a positively invariant ellipsoidal set Ec ⊆ C,
where the safety can be ensured ∀x0 ∈ Ec.

Remark 1: Lyapunov’s analysis transforms a
multidimensional-state problem into a scalar one. For
example, the evaluation of V (t) during experiments or
simulations can show how far the system can be from the
unsafe region [9].

IV. QUADRATIC BOUNDEDNESS

Let us consider a slightly different version of (3)

ẋ = Ax+Dd, ∥d∥ ≤ δ (9)

where D ∈ Rn×r, and d ∈ Rr is a bounded disturbance that
may represent uncertainties, external disturbances, etc. The
nominal model (2) is assumed to be asymptotically stable,
hence there exists a symmetric definite-positive matrix P that
satisfies (6) for a given symmetric definite-positive matrix Q,
and (7) is the associated Lyapunov function.

Here is the following question, is still it possible to use
Ωc to approximate the safety set C? Assuming, for example,
that the system is at x = 0 then, the nominal system does
not move because ẋ = 0. Instead, the disturbance pushes
x(t) away from x = 0 because ẋ = Dd ̸= 0. This
means that Ωc computed for the nominal system cannot be
positively invariant anymore, and Ωc ⊆ C for all x0 ∈ Ωc

may not guarantee safety. This problem can be addressed by
considering quadratic boundedness.

Definition 1:[4] The system (9) is quadratically bounded if
there exists a scalar η > 0 and a symmetric positive-definite
matrix P such that

xTPx > η → xTP (Ax+Dd) < 0 ∀∥d∥ ≤ δ (10)
Assuming that P is computed from the nominal system, and
considering (6), (11) can be reformulated as

V (x) > η → V̇ (x) < 0 ∀∥d∥ ≤ δ (11)

where V̇ = ∇V T (Ax+Dd). This means that for any η′ > η,
the set

Eη′ =
{
x ∈ D |xTPx ≤ η′

}
. (12)

is robustly positively invariant for (9). For all x0 ∈ Eη′ and
outside of Eη , any solution x(t) is approaching Eη since V (x)
is strictly decreasing.

For a bounded disturbance d, and a given symmetric
positive matrix P computed for the nominal system (2) that
satisfies (6), it is possible to compute η such that (11) is
satisfied [10]. If there exists η′ > η such that Eη′ ⊆ C then,
for all x0 ∈ Eη′ , safety is ensured.

V. SAMPLED-DATA SYSTEMS

The Lyapunov theory and quadratic boundedness pre-
sented in the previous sections refer to the continuous time
case which in general represents the time domain where the
physical system evolves end this is fundamental for CPSs.

To analyze control systems with real-time constraints, the
sampled data version of the continuous-time system (1) is
considered

xk+1 = fd(xk) (13)

The Lyapunov stability theory is based on the same idea but
instead of the derivative of the Lyapunov function V (x), the
following difference [1] is evaluated for all k ≥ 0

V (xk)− V (xk−1) ≤ 0 or V (xk)− V (xk−1) < 0 (14)

A linear discrete-time system is described by

xk+1 = Adxk, (15)

where Ad is the discretized version of the matrix A in (2).
If (15) is asymptotically stable then there exists a symmetric
positive definite matrix P that satisfies

ATPA− P = −Q (16)

where Q is a given symmetric positive-definite matrix. The
function V (x) = xTPx is a Lyapunov function for (15).
Since the Lyapunov function for the discrete-time is the same
as the continuous-time case, a Lyapunov level set Ec is an
ellipsoid defined as in (8).

The principles of the quadratic boundedness do not change
concerning the continuous-time case, the difference is that
the condition changes because now the system is in discrete-
time:

xk+1 = Adxk +Ddk ∥d∥ ≤ δ (17)

Definition 2: [11] System (17) is quadratically bounded if
there exists a scalar η > 0 and a symmetric positive definite
matrix P such that

xT
k Pxk > η →
(Adxk +Dd)TP (Adxk +Ddk)− xT

k Pxk < 0, (18)

∀∥d∥ ≤ δ, and ∀k ≥ 0.
Similarly to the continuous-time case, P is computed solving
(16) for the nominal system, (18) can be reformulated as

V (x) > η → V (xk)− V (xk−1) < 0, (19)

∀∥d∥ ≤ δ, and ∀k ≥ 0.

A. Safety

Note that, ensuring safety for the sampled-data system
may not be sufficient to guarantee the safety of the real
physical system in the continuous-time domain [12]. In
this note, it is assumed that there is a safety set for the
sampled-data system Cd ⊂ C which ensures the safety of the
continuous-time system. At this point, all the considerations
on the safety for the continuous-time system can be used for
the discrete-time system by considering Cd as the safety set.

B. Linear Weakly-Hard Real-Time Control Systems

In this subsection, a model of a linear control system under
weakly hard real-time constraints is presented. This model
is inspired by [6]:

xk+1 = Adxk +Bdu
a
k, (20)

for all k ≥ 0 with k ∈ N. The matrices Ad and Bd are the
sampled data version of the matrices in (3). A static state
feedback controller that makes (20) asymptotically stable is

uc
k = −Kxk. (21)

The strategies to model the effects of missing deadlines to
compute (21) at time k is to provide ua

k = 0 or holding the
last provided control input ua

k = ua
k−1. For the latter case,

let δk be a variable which is 1 if uc
k is successfully computed

at time k and provided as input to the system, or 0 in case
of failure.

ua
k = δku

c
k + (1− δk)u

a
k−1 (22)

for all k ≥ 0 with k ∈ N, and for some arbitrary initial
condition ua

−1 ∈ Rp. The closed-loop system is now given
by

xk+1 = Adxk +Bd

(
δku

c
k + (1− δk)u

a
k−1

)
(23)

To get the same problem formulation for the quadratic
boundedness (18), the above equation can be rewritten as

xk+1 = (Ad −BdK)xk +Bd(1− δk)
(
ua
k−1 − uc

k

)
. (24)

where the nominal system xk+1 = (Ad − BdK)xk is
asymptotically stable, hence there exists a symmetric positive
definite matrix P that solves (16), and V (x) = xTPx is the
associated Lyapunov function. The vector

(1− δk)(u
a
k−1 − uc

k) = K(xk − xa
k−1)(1− δk)

where xa
k−1 represents the last state feedback used to provide

the previous control input. Hence,

xk+1 = (Ad −BdK)xk +Dddk (25)

where Dd = BdK, and

dk ≜ (xk − xa
k−1)(1− δk) (26)

From (26)
∥dk∥ ≤ ∥xk − xa

k−1∥, (27)

if ∥dk∥ ≤ δ where δ is a finite and positive number then,
the quadratic boundedness theory can be applied to (25)
for assessing the safety of the real-time control system with
missing deadlines. This note does not address the problem
of how to find δ, but it shows that the proposed formulation
can also consider uncertainties in the control input. In fact,
in a real system, the exact knowledge of the state xk is very
difficult since the presence of the measurement noise, hence
filters are deployed to obtain a better state estimation. This
means that the actual control input is uc

k = −K(xk + ek)
where ek represents the estimation error and xk is the exact
state of the system:

xk+1 = (Ad −BdK)xk +

BdK
[
(1− δk)(xk + ek − xa

k−1)− ek
]
, (28)

hence,
∥(1− δk)(xk + ek − xa

k−1)− ek∥
≤ ∥(xk − xa

k−1∥+ 2∥ek∥ ≤ δ + 2δe ≜ δ̄. (29)

The sampled-data system under weak hard real-time con-
straints and uncertainties on the current state xk can be
formulated as xk+1 = (Ad −BdK)xk +Ddd̄k where d̄k =
(1 − δk)(xk + ek − xa

k−1) − ek. If δ, δe > 0 exists, the
safety can be addressed by quadratic boundedness analysis.
The error ek can also model the uncertainties that can be
generated in CPS. The current state xk is generated by other
software modules that implement more sophisticated state
estimators that fuse information from different sensors that
can be distributed over the network. Those modules may be
also subject to delays or missing deadlines, which contribute
to increased uncertainty on xk. The quadratic boundedness
formulation can take into account those aspects, providing a
more complete and general tool to assess safety for complex
systems.

VI. CONCLUSIONS

This note presents the classical tools of Lyapunov theory
to assess safety for complex systems such as CPSs. In
particular quadratic boundedness can be used for the analysis
of safety for sampled-data systems under weak hard real-
time constraints. The theory presented here is quite general
and can be used for many different application domains. For
future works, one of the main challenges is to extract the
main features of a particular application to build a Lyapunov-
like function that is more application-oriented.

REFERENCES

[1] R. Kalman and J. Bertram, “Control system analysis and design via the
second method of lyapunov:(i) continuous-time systems (ii) discrete
time systems,” IRE Transactions on Automatic Control, vol. 4, no. 3,
pp. 112–112, 1959.

[2] H. K. Khalil, Nonlinear systems; 3rd ed. Upper Saddle River, NJ:
Prentice-Hall, 2002.

[3] M. L. Brockman and M. Corless, “Quadratic boundedness of nonlinear
dynamical systems,” in Proceedings of 1995 34th IEEE Conference on
Decision and Control, vol. 1, pp. 504–509, IEEE, 1995.

[4] M. L. Brockman and M. Corless, “Quadratic boundedness of nomi-
nally linear systems,” International Journal of Control, vol. 71, no. 6,
pp. 1105–1117, 1998.

[5] A. Platzer, Logical foundations of cyber-physical systems, vol. 662.
Springer, 2018.

[6] S. Linsenmayer, M. Hertneck, and F. Allgöwer, “Linear weakly hard
real-time control systems: Time-and event-triggered stabilization,”
IEEE Transactions on Automatic Control, vol. 66, no. 4, pp. 1932–
1939, 2020.

[7] M. Hertneck, S. Linsenmayer, and F. Allgöwer, “Stability analy-
sis for nonlinear weakly hard real-time control systems,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 2594–2599, 2020.

[8] N. Vreman, P. Pazzaglia, V. Magron, J. Wang, and M. Maggio,
“Stability of linear systems under extended weakly-hard constraints,”
IEEE Control Systems Letters, 2022.

[9] R. Romagnoli, B. H. Krogh, d. N. Dionisio, H. Anton D., and
B. Sinopoli, “Software rejuvenation for safe operation of cyber-
physical systems in the presence of run-time cyber attacks,” IEEE
Transaction on Control Systems Technology, 2022. under review.

[10] R. Romagnoli, B. H. Krogh, and B. Sinopoli, “Robust software
rejuvenation for CPS with state estimation and disturbances,” in 2020
American Control Conference (ACC), pp. 1241–1246, IEEE, 2020.

[11] A. Alessandri, M. Baglietto, and G. Battistelli, “On estimation error
bounds for receding-horizon filters using quadratic boundedness,”
IEEE Transactions on Automatic Control, vol. 49, no. 8, pp. 1350–
1355, 2004.

[12] R. Findeisen, T. Raff, and F. Allgöwer, “Sampled-data nonlinear
model predictive control for constrained continuous time systems,”
in Advanced strategies in control systems with input and output
constraints, pp. 207–235, Springer, 2007.

1

Formal Artifacts as Explanations for System
Correctness in Cyber-Physical Systems

Stefan Mitsch
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Email: smitsch@cs.cmu.edu

Abstract—Autonomous systems, such as self-driving cars and
robots, are increasingly often entrusted with operating in safety-
critical ways, which makes certification an important tool to
ensure that systems are operating as intended. This paper argues
that formal methods are a useful basis for certification not only
in terms of their rigor, but also as a way of explaining evidence
of system correctness at the right level of detail.

Index Terms—formal verification, theorem proving, hybrid
systems, refinement, runtime verification, explanations

I. INTRODUCTION

Semi-autonomous and fully autonomous systems—such
as driver assistance systems, self-driving cars, aircraft, and
robots—are increasingly often entrusted with operating in
safety-critical ways. This makes certification an important tool
to scrutinize systems before they are deployed and ensure that
they are operating as intended. Obtaining evidence of system
correctness, however, is not straightforward: assurance cases
in combination with testing the system itself is understood
well and produces well-understood statistical estimates of
the risks of safety violation, but in autonomous systems it
requires unrealistically large amounts of test runs to achieve
the required confidence [1]. Formal verification of symbolic
models, in contrast, provides guarantees for infinitely many
situations, but only some methods provably guarantee that the
analyzed models are sufficiently accurate [2]. Reliably predict-
ing the behavior of a system and understanding its assurance
arguments becomes even more challenging when machine
learning components are operating parts of the system [3].
Recently, using formal methods to explain the behavior of
learned agents has sparked research interest, e.g., [4], [5].

Even though formal verification is a suggested technique in
some certification standards (e.g., the formal methods supple-
ment to DO-178C in avionics), it is still an open question how
to best present and explain formal artifacts. In this paper, we
argue that (i) deductive verification and proofs provide various
aspects of direct evidence about system correctness, and that
(ii) formal techniques are a useful basis for explaining such
evidence to a diverse audience with their different situational
needs in understanding systems at the right level of detail [5].

II. MODELS AS EXPLANATIONS

Computing systems that reach out into the real world
with actuators to affect physical processes can be understood
mathematically as hybrid systems and hybrid games [6],
which describe computations plus their physical effects in

a uniform modeling language. Deductive verification tools
like KeYmaera X [7] implement differential dynamic (game)
logic [6] to rigorously analyze the behavior of hybrid systems
and games models for safety and liveness properties, for
invariants that are preserved throughout system execution, as
well as for winning strategies in game settings.

With their unambiguous semantics, formal models can
themselves be useful sources for explanation in the following
ways: (i) the structure of modular formal hybrid systems
models with clearly identified assumptions and guarantees may
help in understanding the dynamic interaction between the
components of a system; (ii) formal hybrid systems models
can be expressed at varying levels of abstraction, navigating
these levels may help in gaining an understanding of system
behavior at an abstract level before understanding the details of
the full system; and (iii) the predictive power of formal hybrid
systems models may help in understanding the link between
model and true system. We discuss details for each of these
three aspects in the subsections below.

A. Decomposition
Component-based verification approaches [8], [9] help man-

age proof complexity by allowing users to decompose a
system into separate components with local responsibilities.
In that process, we identify contracts in terms of assumptions
that components make about their environment and verified
guarantees about their outputs under these assumptions. In
hybrid systems models, the physical dynamics of components
is expressed with differential equations, and for contracts ad-
ditionally summarized using first-order real-arithmetic (FOLR)
abstractions. We construct FOLR abstractions from the hybrid
systems models when conducting a formal proof, rather than
purely modeling them as requirements. Still, when creating
architecture models, there is significant freedom in how re-
sponsibility is shared between components: the proofs linking
differential equations with their FOLR abstractions can serve
as explanations for archictural choices.

Additionally, the interaction between components in a
cyber-physical system takes on a variety of different forms,
such as direct communication, sensing, or physical manipu-
lation, all with their own assumptions and guarantees (e.g.,
about sensor uncertainty). When composing component proofs
to a full system proof, the composition arguments about the
compatibility between assumptions and guarantees may serve
as explanations about the dynamic interaction between the
components of a system.

2

For example, in [10] an ego-agent controller safely navigates
among mobile environment agents. The discrete abstraction
of the environment agent motion describes a region of po-
sitions that is reachable from the current position in some
bounded time. Using such an abstraction, we separate the
local responsibilities of the ego-agent controller and the mobile
environment agents with contracts. The components become
connected through sensors that obtain position measurements.

B. Model Refinement and Instantiation

Mathematical arguments about cyber-physical systems are
often more crisply formulated at a higher level of abstraction
and in formal models with fully symbolic parameters. This
makes the resulting proofs applicable to a wide range of actual
systems, but may obfuscate the assurance argument for each
particular one of them. Formal refinement arguments (e.g., in
Hybrid Event-B [11], differential refinement logic [12], [13])
or formal instantiation/substitution arguments [14] create a
hierarchy of models at various levels of abstraction, which can
be navigated to gain an increasingly detailed understanding
of the system behavior while preserving provable correctness
along the refinement/instantiation hierarchy.

Crucially, however, in cyber-physical systems the final re-
finement step (from model to true system) is not solvable
through refinement or code synthesis, because a vital part of
the system is formed by non-engineered real-world dynamics.
Next, we discuss how we can obtain explanations for this final
refinement step even in cyber-physical systems.

C. Model Validation

For a comprehensive assurance argument, we want evidence
about the correctness of the true system (not just about models
of it). Neither testing alone nor formal verification alone can
provide a comprehensive explanation of system correctness.
Testing can only cover a finite amount of the infinitely
many possible scenarios in a cyber-physical system. Formal
methods, in contrast, provide strong correctness guarantees
about all of the possible scenarios in a formal model of the
system, e.g., in the form of proofs. This poses an inherent
limitation for refinement and instantiation arguments: there
always exists a gap to the true system behavior, no matter how
detailed we express formal models. The remaining question,
therefore, is whether the analyzed formal model accurately
reflects the modeled system, a question tackled by model val-
idation. Only few methods, however, combine offline proofs
and model validation in a provably correct way: ModelPlex [2]
transforms by proof hybrid systems models into monitoring
conditions. The monitoring conditions inherit the predictive
power of models to describe expected behavior, which makes
the monitors capable of flagging discrepancies between models
and true system execution. The monitoring conditions serve as
a provably correct link between formal verification and model
validation/testing and can be useful as explanations in the
following ways. ModelPlex monitoring conditions can provide

• validation evidence about how accurately a model reflects
the modeled system (are there discrepancies between
collected data and the formal model?);

• validation evidence about model parameters (how ro-
bustly does the system fit the model, how robustly does
it satisfy the inherited safety properties?);

• coverage evidence about a test suite (which aspects of the
formal model are covered by test scenarios?);

• validation evidence about the safety-relevant similarity
between a simulation environment and a true environ-
ment; may help in understanding the challenges of sim-
to-real transfer in machine learning (how do the training
scenarios in simulation compare to the encountered situ-
ations in true system execution?);

• dynamic evidence about system degradation or environ-
ment changes (how does safety robustness compare over
a history of system executions?).

Model validation is particularly challenging in cyber-
physical systems, because judgments about model accuracy
must be made from imperfect sensors or based on partially
available information [15]. In the presence of sensor uncer-
tainty and partial observability, model validation, therefore,
checks for existence of model executions that explain the
values observed in the true system [15].

In order to align a symbolic monitor obtained from a
symbolic model with the dynamic realities of the system,
parametrization is required prior to model validation. Uniform
substitution [14] is a technique to prove parameterized models
from the symbolic model proofs without additional effort.

III. PROOFS AS EXPLANATIONS

Hybrid systems proofs combine reasoning principles from
a multitude of fields. In order to be useful as explanations,
the challenge is to present proofs at an appropriate level
of abstraction, without jeopardizing the soundness of their
conclusions. High-level reasoning principles can be useful to
gain an overall understanding of the safety argument, while
foundational axioms can provide justification for each of the
high-level reasoning steps if needed. In [16], different prover
designs are compared for their tradeoffs in terms of achieving
such levels of abstraction: traditional prover designs favor
raw reasoning speed but each new rule increases the trusted
code base, while a small-core design emphasizes a small set
of foundational axioms and a universal axiom application
algorithm, e.g., uniform substitution [14]. In either design,
proofs can be explained using invariants and winning strategies
as major proof insights, but only the small-core design with
executable derived rules (e.g., in a tactic framework) allows
us to explore a proof at varying degrees of abstraction without
increasing the trusted code base.

A. System Invariants and Winning Strategies
Hybrid systems and hybrid games proofs, just like other

proofs of sufficient complexity, are typically structured into
supporting lemmas that identify intermediate proof obliga-
tions. In hybrid systems, those intermediate proof obliga-
tions identify important safety-related characteristics of the
system; their role as proof insight in derived proof rules
concisely summarizes high-level reasoning concepts—justified
from foundational axioms—and might serve as explanations of
safety-related properties of the system behavior as follows.

3

a) Inductive invariants: are guaranteed to be maintained
by the combined discrete and continuous system behavior. The
derived rule “loop” [16] below expresses that property P is
true after all possible ways of executing the repeated program
α∗ (conclusion below the horizontal bar) when we show three
properties of a loop invariant J (premises above the horizontal
bar): (i) J must hold under the assumptions (left premise,
J or alternatives ∆ follow from the assumptions Γ), (ii) be
maintained by the program (middle premise, assuming J , all
runs of the loop body α maintain J , expressed by [α]J), and
(iii) imply safety (right premise, P is true assuming J).

(loop)
Γ ` J,∆ J ` [α]J J ` P

Γ ` [α∗]P,∆
Conducting proofs with parametric loop invariants [17]

allows us to explore different options for loop invariants
in the same proof. That way we can explore modifications
of provided loop invariants when scrutinizing a proof for
certification to gain a better understanding of the ways in
which a safety argument could be strengthened.

b) Intermediate conditions: identify program contracts,
e.g., what a controller must guarantee for the continuous
dynamics to stay within a safe region. The derived rule MRp
below identifies condition Q to explain how reasoning about a
sequential program α;β is separated into local program proofs
[α]Q from assumptions Γ and [β]P from assumptions Q:

(MRp)
Γ ` [α]Q,∆ Q ` [β]P

Γ ` [α;β]P,∆
c) Proof rules for continuous dynamics: differential

cuts [18] describe continuous dynamics with increasingly fine-
grained regions, which explain the safety-relevant boundaries
of continuous dynamics (e.g., dynamics never exceeds some
threshold). A useful technique to prove and explain safety
properties of continuous dynamics are energy conservation
arguments, which typically require constructing a “ghost”
differential equation [18] that balances energy with the original
differential equation. Once constructed, we then characterize
the continuous dynamics with differential invariants [14], Bar-
rier certificates [19], or Lyapunov functions that are preserved
throughout the continuous dynamics. Proof rules for such
reasoning concepts about continuous dynamics can be de-
rived [18] in dL. These derived proof rules not only summarize
the more fine-grained reasoning steps of the prover core,
but also can check the results of numeric invariant/Lyapunov
generation methods in order to symbolically explain and
justify their correctness.

d) Stability proofs: explain absence of subtle instability
behavior [20] known to occur in switched systems of combined
discrete switching behavior and continuous system behavior.
In [21] several proof rules for different switching mechanisms
are derived within dL. Stability arguments based on these rules
explain how a system remains stable under small perturbations
(stability) and eventually dissipates the energy of these pertur-
bations (attractivity).

e) Winning strategies: provide witnesses for the choices
(existential) of an ego-agent in order to counteract adversarial
(universal) environment behavior in hybrid games proofs.
For example, [22] identifies climb rate strategies for vertical
aircraft collision avoidance (e.g., when intruder aircraft is in

a certain region, climb with at least some minimum upwards
acceleration; in another region, descend). Together with dis-
crete and continuous invariants, winning strategies summarize
and explain the main proof arguments.

In terms of explanations, invariant regions and other condi-
tions are amenable for graphical presentation, while winning
strategies represent step-by-step instructions of how to react to
certain events and conditions. Their justification using proof
rules derived from core axioms opens up the possibility to
understand the proof in a hierarchical sense, as discussed next.

B. Proofs at Different Levels of Abstraction

Theorem provers range from fully interactive to fully au-
tomatic, with most systems implementing a combination of
interaction and automation to tackle complex systems. For
example, the hybrid systems prover KeYmaera X [7] pro-
vides automated proof heuristics built on top of a tactics
framework [23], which steers the soundness-critical prover
core to generate proof terms [24]. Proof terms provide the
most detailed view of a proof in the form of the soundness-
critical operations of the core, such as builtin rules and axioms,
while tactics provide an intermediate explanation in terms of
the main proof insights, and the automated proof heuristics
document existence of a proof. Even though proof terms justify
correctness from just a small set of core logical concepts and,
hence, reduce trusting the proof to trusting just these core
concepts (instead of trusting the much larger prover software),
they are difficult to decipher for their sheer size and lack of
presentation structure. Proof terms are therefore mainly useful
for proof checking. On the other end of the spectrum, fully
automated proofs (as produced, e.g., by SAT/SMT solvers)
or automated checks produced by reachability analysis tools,
require trust in the full codebase of the tool.

A small-core theorem prover design, such as followed by
KeYmaera X, provides opportunity to implement high-level
reasoning steps as derived rules in a way that does not extend
the soundness-critical core of the theorem prover [16]. Such a
design allows us to provide proof explanations by unwinding
proof details for all or some steps in a proof to produce a
hierarchy of proof details, similar to abstraction in models. In
this way, we can navigate a proof at varying levels of detail
as our understanding of the proof increases. Fig. 1 shows a
screenshot of the KeYmaera X UI with the single-step derived
rule “loop” for induction proofs, and its expanded justification
in terms of others tactics, core axioms, and proof rules.

IV. DISCUSSION AND OPEN CHALLENGES

Early successes in formal methods for certifying cyber-
physical systems (e.g., the Clearsy safety platform [25]) focus
on providing a pre-certified platform, so that subsequent
development using the platform can fast-track certification.
Others emphasize the development process for certification,
rather than the produced artifacts. In this paper, we argue for
a complementary approach that considers aspects of formal
models and proofs as explanations for certification. We take
a holistic view that emphasizes the importance of providing
explanations for certification authorities to scrutinize both the

4

Fig. 1. Screenshot of the KeYmaera X UI: the derived rule “loop” offers a one-step explanation in terms of an induction proof; the icon < to the right of this
step is activated and shows a detailed justification of “loop” in terms of core axioms and other proof rules. The internal steps of tactic “unfold” are hidden.

models (how accurately do models reflect reality?) and the
proofs (what are the major proof arguments?).

Even though the proof structure in terms of lemmas and
derived rules are a possible way of achieving proof explana-
tions at varying degree of detail, proof trustworthiness and
presentation is challenging since computer-checked proofs
may have millions of proof steps. Another aspect of proofs
that is not yet explored here is vacuity: proofs may succeed
for the wrong reasons (e.g., because models exclude important
behavior), and we need logic tools to demonstrate that our
models and proofs are not vacuously true [26].

ACKNOWLEDGMENTS

This material is based upon work supported by the US Air
Force and DARPA under Contract No. FA8750-18-C-0092.

REFERENCES

[1] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?”
RAND Corporation, Tech. Rep. RR-1478-RC, 2016.

[2] S. Mitsch and A. Platzer, “ModelPlex: Verified runtime validation
of verified cyber-physical system models,” Form. Methods Syst. Des.,
vol. 49, no. 1-2, pp. 33–74, 2016, selected papers from RV’14.

[3] H. Torfah, S. Junges, D. J. Fremont, and S. A. Seshia, “Formal analysis
of ai-based autonomy: From modeling to runtime assurance,” in RV,
2021, pp. 311–330.

[4] S. Jha, T. Sahai, V. Raman, A. Pinto, and M. Francis, “Explaining AI
decisions using efficient methods for learning sparse boolean formulae,”
J. Autom. Reason., vol. 63, no. 4, pp. 1055–1075, 2019.

[5] D. Bayani and S. Mitsch, “Fanoos: Multi-resolution, multi-strength,
interactive explanations for learned systems,” in VMCAI, 2022, pp. 43–
68.

[6] A. Platzer, “Differential game logic,” ACM Trans. Comput. Log., vol. 17,
no. 1, pp. 1:1–1:51, 2015.

[7] N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, and A. Platzer, “KeYmaera
X: An axiomatic tactical theorem prover for hybrid systems,” in CADE,
2015, pp. 527–538.

[8] A. Müller, S. Mitsch, W. Retschitzegger, W. Schwinger, and A. Platzer,
“Tactical contract composition for hybrid system component verifica-
tion,” STTT, vol. 20, no. 6, pp. 615–643, 2018.

[9] S. Lunel, S. Mitsch, B. Boyer, and J. Talpin, “Parallel composition
and modular verification of computer controlled systems in differential
dynamic logic,” in FM, 2019, pp. 354–370.

[10] A. Müller, S. Mitsch, W. Schwinger, and A. Platzer, “A component-
based hybrid systems verification and implementation tool in KeYmaera
X (tool demonstration),” in CyPhy, 2018, pp. 91–110, selected papers.

[11] R. Banach, M. J. Butler, S. Qin, N. Verma, and H. Zhu, “Core hybrid
Event-B I: single hybrid Event-B machines,” Sci. Comput. Program.,
vol. 105, pp. 92–123, 2015.

[12] S. M. Loos and A. Platzer, “Differential refinement logic,” in LICS,
2016, pp. 505–514.

[13] S. Mitsch, J.-D. Quesel, and A. Platzer, “Refactoring, refinement, and
reasoning: A logical characterization for hybrid systems,” in FM, 2014,
pp. 481–496.

[14] A. Platzer, “A complete uniform substitution calculus for differential
dynamic logic,” J. Autom. Reas., vol. 59, no. 2, pp. 219–265, 2017.

[15] S. Mitsch and A. Platzer, “Verified runtime validation for partially
observable hybrid systems,” CoRR, vol. abs/1811.06502, 2018.

[16] ——, “A retrospective on developing hybrid systems provers in the
KeYmaera family - A tale of three provers,” in Deductive Software
Verification: Future Perspectives, ser. LNCS, W. Ahrendt, B. Beckert,
R. Bubel, R. Hähnle, and M. Ulbrich, Eds. Springer, 2020, vol. 12345,
pp. 21–64.

[17] S. Mitsch, “Implicit and explicit proof management in KeYmaera X,”
in Proceedings of the 6th Workshop on Formal Integrated Development
Environment, F-IDE@NFM 2021, 24-25th May 2021, 2021, pp. 53–67.

[18] A. Platzer and Y. K. Tan, “Differential equation invariance axiomatiza-
tion,” J. ACM, vol. 67, no. 1, pp. 6:1–6:66, 2020.

[19] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems using
barrier certificates,” in HSCC, 2004, pp. 477–492.

[20] D. Liberzon, Switching in Systems and Control, ser. Systems & Control:
Foundations & Applications. Birkhäuser, 2003.

[21] Y. K. Tan, S. Mitsch, and A. Platzer, “Verifying switched system stability
with logic,” in HSCC. ACM, 2022, pp. 1–11.

[22] R. Cleaveland, S. Mitsch, and A. Platzer, “Formally verified next-
generation airborne collision avoidance games in ACAS X,” Transac-
tions on Embedded Computing Systems, 2022.

[23] N. Fulton, S. Mitsch, R. Bohrer, and A. Platzer, “Bellerophon: Tactical
theorem proving for hybrid systems,” in ITP, 2017, pp. 207–224.

[24] N. Fulton and A. Platzer, “A logic of proofs for differential dynamic
logic: Toward independently checkable proof certificates for dynamic
logics,” in CPP, 2016, pp. 110–121.

[25] T. Lecomte, D. Déharbe, P. Fournier, and M. Oliveira, “The CLEARSY
safety platform: 5 years of research, development and deployment,” Sci.
Comput. Program., vol. 199, p. 102524, 2020.

[26] Y. Selvaraj, J. Krook, W. Ahrendt, and M. Fabian, “On how to not
prove faulty controllers safe in differential dynamic logic,” CoRR, vol.
abs/2207.05854, 2022.

Towards Explainable Formal Verification
Ruben Martins

Carnegie Mellon University
Pittsburgh, USA

rubenm@andrew.cmu.edu

Abstract—Formal verification is essential to prove the correct-
ness of safety-critical systems. However, many of these safety-
critical systems require certification. When a program is proven
correct by formal verification tools, it is often the case that no
evidence is provided by the formal verification tool explaining
why the program is correct. The lack of explainability makes it
harder to use formal verification tools for certification.

In this position paper, we advocate that explainability should
be a first-class citizen and that formal verification tools should
consider explanations when finding bugs or proving the correct-
ness of programs. We show the current explanations of model
checking tools such as CBMC and propose research directions
for more explainable formal verification tools that can improve
software certification, real-time systems, among others, for safety-
critical systems.

Index Terms—verification, explainability, certification

I. INTRODUCTION

Safety-critical systems [1], such as railway control systems,
aviation systems, and electric power grid systems, have a
significant software component that must be correct to ensure
the proper behavior of the system. The use of formal methods
is a way to increase confidence in these systems since the
underlying software can be proven to be mathematically
correct to some user-defined specification.

The use of formal verification tools increases trust in safety-
critical systems. However, when proving a program is correct,
formal verification tools do not provide any interpretable
explanation of why the program is correct. Some safety-critical
systems, such as aviation, require certification by human
analysts to ensure that the development of aviation systems
complies with software and hardware standards such as DO-
178C [2] and DO-254 [3]. A human analyst may pose the
question: “Why should I trust the verification tool when it just
outputs that the system is correct without further evidence?”
This is a valid question since the formal verification tool could
itself have bugs that could put in doubt the verified results.

Recently, there have been reports of bugs in constraint
solvers such as SMT solvers [4]–[6], which are used by
many formal verification tools as their decision procedure. To
increase the trust in constraint solvers, it is common for these
tools to output a machine-checkable proof that can be checked
by an independent and verified checker [7], [8]. A similar
approach is also made for formal verification tools, where
a correctness witness [9] can be emitted and checked by a
third-party validator [10]. This verification approach does not
guarantee that the constraint solver or formal verification tool
has no bugs, but at least it guarantees that the verification result

for that given program is correct. The machine-checkable
proof increases the trust in constraint solvers and formal
verification tools but does not provide explainable evidence
that human analysts can use for certification.

In this position paper, we advocate that formal verification
tools should not focus only on correctness and scalability
but must also consider explaining why the program is buggy
or correct. Programmers and human analysts can use these
explanations to either fix the program or certify that the
program is correct. We believe that improving explainable
formal verification is a critical step toward using more formal
verification tools for certification and non-experts to under-
stand better why the program is buggy or correct.

This position paper about making formal verification tools
more explainable is organized as follows. First, we show
examples of the output returned by formal verification tools
such as CBMC and discuss why they are not explainable and
how they could be improved. Next, we suggest some ideas to
make formal verification tools more explainable for buggy and
correct programs. Finally, we show how explainable formal
verification is not limited to software and should be applied
to other applications such as real-time systems.

II. MOTIVATION

Many formal verification tools can prove the correctness
of software to a given specification or find a counterexample
that shows the program is buggy [11]–[13]. Bounded model
checking is a technique steered towards finding bugs, but it
can also prove program correctness if it can unroll all loops
completely. In this section, we will use CBMC [14], [15]
to show an example of the lack of explainability of formal
methods tools when verifying the correctness of software.
CBMC is a bounded model checker that can reduce questions
about program paths to logical constraints by unrolling loops
in the program. This logical formula can then be solved by
off-the-shelf constraint solvers such as SAT [16] or SMT
solvers [17]. CBMC can verify memory safety, checks for
exceptions, checks for various variants of undefined behavior,
and user-specified assertions.

Consider the buggy program in Listing 1 that finds the
minimum element of an array (min) and its corresponding
position (pos). The program is buggy since, on line 4, the
minimum value is initialized to be 0. Due to this incorrect
initialization, the program may return the wrong minimum
value if the array does not contain elements smaller than 0.

Listing 1. Buggy program that find the minimum element of an array
1 int a[10];
2 int i = 0;
3 int pos = 0;

4 int min = 0; // bug

5 while (i < 10) {
6 if (a[i] < min) {
7 min = a[i];
8 pos = i;
9 }
10 i = i + 1;
11 }
12
13 // specification
14 assert (a[pos] == min);
15
16 for (i = 0 ; i < 10 ; i++)
17 assert(a[i] >= min);

If we give this program to CBMC, how explainable is the
counterexample returned by this tool? CBMC can find a
program trace that falsifies the user assertion on line 14. A
programmer can use this trace to fix the program to comply
with the specification given by the user.

Listing 2. Excerpt of the output of CBMC for the buggy min program
1 ...
2 [main.assertion.1] line 20 assertion a[pos] ==

min: FAILURE
3 [main.assertion.2] line 23 assertion a[i] >=

min: SUCCESS
4
5 Trace for main.assertion.1:
6
7 State 17 file min_bug.c function main line 7

thread 0
8 --
9 a={ 1, 0, 0, 0, 1879048192, 1073741824,

1376256000, 0, 512, 0 } ({ 00000000
00000000 00000000 00000001, 00000000
00000000 00000000 00000000, 00000000
00000000 00000000 00000000, 00000000
00000000 00000000 00000000, 01110000
00000000 00000000 00000000, 01000000
00000000 00000000 00000000, 01010010
00001000 00000000 00000000, 00000000
00000000 00000000 00000000, 00000000
00000000 00000010 00000000, 00000000
00000000 00000000 00000000 })

10
11 State 18 file min_bug.c function main line 8

thread 0
12 --
13 i=0 (00000000 00000000 00000000 00000000)
14
15 State 19 file min_bug.c function main line 8

thread 0
16 --
17 i=0 (00000000 00000000 00000000 00000000)
18
19 ...
20
21 State 23 file min_bug.c function main line 11

thread 0
22 --
23 min=0 (00000000 00000000 00000000 00000000)
24
25 ...
26
27 State 58 file min_bug.c function main line 17

thread 0
28 --

29 i=9 (00000000 00000000 00000000 00001001)
30
31 State 62 file min_bug.c function main line 17

thread 0
32 --
33 i=10 (00000000 00000000 00000000 00001010)
34
35 Violated property:
36 file min_bug.c function main line 20 thread 0
37 assertion a[pos] == min
38 !((signed long int)!(a[(signed long int)pos]

== min) != 0l)

The program trace contains an initial assignment to the
array ‘a’ and assignments to all of the variables during the
program’s execution. Listing 2 shows an excerpt of the trace
returned by CBMC. A trace provides a reasonable explanation,
but even for this simple program, the program trace contains
79 lines with 62 states of variables. Even for this simple
program, it may take the programmer some time to understand
the counterexample.

To improve the explanation given by CBMC, researchers
have automatically created test cases from program traces [18].
Programs can use test cases within their IDE and debugging
tools to find the root cause of the program. In this case, a
test case could be constructed by the initialization of the ar-
ray ‘a={1, 0, 0, 0, 1879048192, 1073741824,
1376256000, 0, 512, 0}’ together with the expected
output of ‘min = 0’ and ‘pos = 1’. Note that running the
buggy program would output ‘min = 0’ and ‘pos = 0’
incorrectly, thus falsifying the assertion on line 15.

However, a more interpretable explanation could be given
using natural language. For instance, a programmer is more
likely to understand the root cause of the bug if a message like
“Incorrect initialization of the variable min since the array
may not contain values smaller than 0.” was returned. Other
alternatives could include fixing the user assertion by saying,
“The current program is correct only if there exists a value in
the array smaller than 0.”

If this program was fixed by replacing the initialization of
the min variable with ‘min = a[0]’ then CBMC would re-
turn that the program is correct with respect to its specification.
When a program is proven to be correct, CBMC 1 can output
a certificate of correctness called a correctness witnesses [9].
These witnesses are represented semantically as automata and
stored syntactically as GraphML [20]. A correctness witness
is valid if its predicates are invariants for the program, and
its correctness can be checked by independent validators [10],
[21]. This checking procedure can increase the trust in formal
methods tools since when they output that a program is correct,
this can now be checked by a third party. However, this format
is not meant to be interpretable, and for this simple program,
the GraphML file generated by CBMC already contains 67
edges and 68 nodes.

When the program is correct, it is not trivial to have an
interpretable justification. Even if a programmer is asked to

1All verification tools that participate in the annual software verification
competition [19] must output a correctness witness when the program is
correct.

explain why this algorithm is correct, the explanation may not
be simple, but it may follow the notion of loop invariants.
A more interpretable justification could be that if min is
initialized with a[0], then at the beginning of the loop, this
variable stores the minimum value of the array up to position
0. While the loop is executed, we know that min stores the
minimum value of the array up to position i. Therefore, at
the end of the loop execution, min will contain the minimum
element in the array. Using the program’s invariants as part
of the justification can be a helpful way to convince a human
analyst that the program is correct.

The kind of explanations presented in this section for both
buggy and correct programs could significantly improve the
explainability of the output of formal verification tools. It
would make them more likely to be used by programmers
and certification entities.

III. EXPLAINABLE FORMAL VERIFICATION

In this position paper, we advocate that the output of formal
methods tools should become more explainable. In Section II,
we have shown some examples of the output of verification
tools when the program is buggy (e.g., counterexample as a
trace of the program) and when the program is correct (e.g., a
correctness witness). However, as discussed in Section II, these
outputs are not necessarily interpretable. For formal methods
tools to be more used by programmers and to be adopted as
the standard in certification, the formal methods community
should not focus only on the scalability of formal methods
tools but also on explainability. We argue that explainability
can be even more critical than scalability and should be treated
as a first-class citizen. If programmers and analysts do not
understand the outputs of formal methods tools, they are less
likely to use them even if they improve their scalability.

Explainability is becoming the target of current research
on other areas, such as explainable AI [22]–[24] in which
humans can understand the decisions or predictions made by
AI engines such as neural networks. Since AI components
are used as black-boxes and are becoming part of safety-
critical systems [25], it is critical to assure they have a correct
behavior. Even though experts well understand the approaches
used by formal verification tools, they are often used as black-
boxes by programmers and analysts, and similar reasoning to
explainable AI could also be used for formal verification tools.

The need for better explainability leads us to our main
question in this position paper: How can formal verification
tools become more explainable? This is an open problem that
we believe should be the target of future research. However, we
summarize some initial ideas presented in this position paper
that can improve the explainability of the output of verification
tools on buggy and correct programs.

Buggy programs: These are easier to be understood
since formal verification tools frequently output a counterex-
ample that corresponds to a trace of a program. However,
interpreting this trace is still challenging and we believe that
additional forms of explainability are needed. Some potential
explanations that formal verification tools should support:

• Test cases: automatically generating test cases from the
counterexamples and letting programmers use their usual
debugging tools to analyze the issue.

• Natural language descriptions: transforming the coun-
terexample into a natural language description of the
problem that can help the programmer to find the bug.

• Fault localization: list of lines that are the root cause of
the bug and that should be modified by the programmer.

• Preconditions: description of a precondition that would
make the program correct. These preconditions could be
helpful information for the programmer to know that if
these are met then the program is correct.

Correct programs: Explaining that a program is correct
is a more challenging problem. Formal verification tools
can prove correctness by reasoning about program invariants.
Some of these tools can output a correctness witness, as
referred in Section II. However, these witnesses are not inter-
pretable by humans. Some potential explanations for correct
programs that formal verification tools could support are:

• Invariants: showing invariants satisfied by the program
can help programmers and analysts understand why the
program is correct.

• Natural language descriptions: transforming invariants
into natural language and having a description of why
the program is correct would also help convince others
about the correctness of the program.

• Range of values: when proving that a program cannot
reach a given state, it can be helpful to show an analyst
the range of values each variable can take. Additionally,
we could show that the path to reach the goal state is not
feasible by showing that the range of variables does not
satisfy the corresponding control-flow path.

• Lifting logic to code: Verification tools use constraint
solvers to prove that the program is correct. The con-
straint solvers must show that the corresponding logical
formula is unsatisfiable to prove that a program is correct.
When solving this logical formula, the constraint solver
learns lemmas that can potentially be lifted to the code
and used as an explanation. The logical proof could also
be lifted to code and used as an explanation. However,
lifting from logic to code is challenging since code
statements do not necessarily have a one-to-one matching
with logical constraints.

• Correct-by-construction programs: An alternative to ex-
plaining that a program is correct could be to automat-
ically construct a program from its specification [26].
Even though this was once seen as impractical except for
small programs, the recent advances in program synthesis
as shown that this approach can scale to larger pro-
grams [27]–[30]. However, some of the recent program
synthesis approaches do not have guarantees that the
program satisfies a formal specification [28], [30] and use
over-approximations instead (e.g., input-output examples
or natural language). Another challenge is that if the
program is constructed in one step, then the analyst

will also question if this program satisfies the desired
specification. However, if the program’s construction was
done piece-wise, then this construction could explain why
the specification is satisfied.

When using formal specifications to verify the correctness
of a program, another challenge is writing correct specifi-
cation that meets the user’s intention. If the specification is
incorrectly written, it is meaningless even if the system is
verified for that specification since we did not prove the desired
property. Writing specifications is particularly challenging
for complex logic languages such as linear temporal logic
(LTL) [31]. In the case of linear temporal logic, there has
been some work on automatically creating specifications from
positive and negative examples [32], [33]. However, since
examples are an over-approximation of the specification, it
could be the case that the specification that was constructed is
still incorrect. Having an interaction loop with the user where
a system asks questions until the user is convinced that the
synthesized specification is correct is crucial for certification
when using formal specifications.

IV. EXPLAINABLE REAL-TIME SYSTEMS

The future of explainable formal verification is not only
applicable to software, and it can have many applications in
critical systems that require certification, as is the case of
real-time systems. For instance, consider real-time schedul-
ing, where real-time systems have tasks with strict timing
constraints that must be met to guarantee the correctness and
safety of the system [34]–[36]. We envision a world where
real-time scheduling can have interpretable explanations that
can be helpful for analysts to fix potential issues or understand
why the scheduling is not feasible.

Worst-case execution time (WCET): WCET analysis
has many applications, like automotive motor control sys-
tems [37], [38]. However, current WCET analysis tools [39]–
[42] do not explain the bounds in a way that can be certified by
an independent party. Even when performing WCET analysis
with model-checking [43], it may not be straightforward to
map the counterexample back to a concrete path. Even if a
concrete path could be extracted, this may suffer from similar
issues as the one presented in Section II, i.e., the counterexam-
ple may contain many irrelevant steps. An ideal explanation
could be a concrete input that triggers the WCET since it can
be used as an explanation and be checked independently by
running these inputs in the real-time system.

Rate monotonic analysis: Another example is the real-
time scheduling for different scenarios. For instance, rate
monotonic analysis [44], [45] is a mathematical solution that
can prove that for all possible schedules, all deadlines are
met. However, these theoretical analyses cannot generally
return a counterexample when a schedule is impossible.2

Recent approaches using model checking [46] can produce

2For some scenarios, it may be possible to find an explanation of failure
using schedulability analysis. For instance, when considering single-core
Earliest Deadline First (EDF), solving the schedulability test can lead to an
explanation of failure.

counterexamples for scenarios where the schedulability is
unfeasible. Still, these counterexamples are hard to interpret,
and only expert analysts would be able to use them to
adjust the design and change the priorities of the tasks or
the scheduling algorithm. Instead of trying to understand a
long counterexample, these should be lifted to the real-time
system domain and only consist of relevant information. For
instance, the counterexample could contain two tasks with
corresponding priorities that make the schedule not feasible
or potentially suggestions to the analyst about changes to the
system that would make the schedule feasible.

V. CONCLUSIONS

Formal verification tools are more scalable and powerful
than before, but the lack of explainable results restricts their
usage for certifying critical systems. This position paper advo-
cates that explainability should be a first-class citizen. Formal
methods tools must be able to explain their results to convince
users about their correctness. We have proposed multiple
research directions to make verification tools more explainable
for buggy and correct programs. Explainable formal verifi-
cation has many applications in critical systems that require
certification, as in real-time systems. We hope that this position
paper sparks interest from the formal methods community and
the real-time systems community in developing explainable
tools that can help analysts build verified systems and certify
the results of formal methods tools.

VI. ACKNOWLEDGMENTS

The author wishes to acknowledge the helpful and stim-
ulating discussions with Björn Andersson and Dionisio de
Niz about explainable formal verification and real-time sys-
tems. We are also thankful to the anonymous reviewers for
their comments and suggestions that helped to improve this
manuscript significantly. This work was partially supported un-
der NSF Grant No. CCF-1762363, and CMU-Portugal project
ANI 045917 funded by FEDER and FCT. All statements are
those of the author, and do not necessarily reflect the views
of any funding agency.

REFERENCES

[1] J. Bowen and V. Stavridou, “Safety-critical systems, formal methods
and standards,” Software engineering journal, vol. 8, no. 4, pp. 189–
209, 1993.

[2] L. Rierson, Developing safety-critical software: a practical guide for
aviation software and DO-178C compliance. CRC Press, 2017.

[3] V. Hilderman and T. Baghi, Avionics certification: a complete guide to
DO-178 (software), DO-254 (hardware). Avionics Comm., 2007.

[4] M. N. Mansur, M. Christakis, V. Wüstholz, and F. Zhang, “Detecting
critical bugs in SMT solvers using blackbox mutational fuzzing,” in FSE.
ACM, 2020, pp. 701–712.

[5] D. Winterer, C. Zhang, and Z. Su, “On the unusual effectiveness of
type-aware operator mutations for testing SMT solvers,” Proceedings of
the ACM on Programming Languages, vol. 4, no. OOPSLA, pp. 1–25,
2020.

[6] J. Park, D. Winterer, C. Zhang, and Z. Su, “Generative type-aware muta-
tion for testing SMT solvers,” Proceedings of the ACM on Programming
Languages, vol. 5, no. OOPSLA, pp. 1–19, 2021.

[7] N. Wetzler, M. J. Heule, and W. A. Hunt, “DRAT-trim: Efficient
checking and trimming using expressive clausal proofs,” in Interna-
tional Conference on Theory and Applications of Satisfiability Testing.
Springer, 2014, pp. 422–429.

[8] L. Cruz-Filipe, M. J. Heule, W. A. Hunt, M. Kaufmann, and
P. Schneider-Kamp, “Efficient certified RAT verification,” in ICAD.
Springer, 2017, pp. 220–236.

[9] D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann, “Correctness
witnesses: exchanging verification results between verifiers,” in FSE,
T. Zimmermann, J. Cleland-Huang, and Z. Su, Eds. ACM, 2016, pp.
326–337.

[10] D. Beyer and M. Spiessl, “Metaval: Witness validation via verification,”
in CAV. Springer, 2020, pp. 165–177.

[11] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[12] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking.” Handbook of satisfiability, vol. 185, no. 99, pp. 457–
481, 2009.

[13] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in PLDI, 1977, pp. 238–252.

[14] D. Kroening and M. Tautschnig, “CBMC–C bounded model checker,”
in TACAS. Springer, 2014, pp. 389–391.

[15] P. Schrammel, D. Kroening, M. Brain, R. Martins, T. Teige, and
T. Bienmüller, “Incremental bounded model checking for embedded
software,” Formal Aspects Comput., vol. 29, no. 5, pp. 911–931, 2017.

[16] J. Marques-Silva, I. Lynce, and S. Malik, “Conflict-driven clause learn-
ing SAT solvers,” in Handbook of satisfiability. ios Press, 2021, pp.
133–182.

[17] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook
of model checking. Springer, 2018, pp. 305–343.

[18] A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith, “FS hell:
systematic test case generation for dynamic analysis and measurement,”
in CAV. Springer, 2008, pp. 209–213.

[19] D. Beyer, “Software Verification Competition,” https://sv-comp.sosy-
lab.org//, 2022, [Online; accessed 30-September-2022].

[20] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Mar-
shall, “GraphML Progress Report,” in GD, P. Mutzel, M. Jünger, and
S. Leipert, Eds., vol. 2265. Springer, 2001, pp. 501–512.

[21] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer,
“Witness validation and stepwise testification across software verifiers,”
in FSE. ACM, 2015, pp. 721–733.

[22] H. Hagras, “Toward human-understandable, explainable AI,” Computer,
vol. 51, no. 9, pp. 28–36, 2018.

[23] R. R. Hoffman, S. T. Mueller, G. Klein, and J. Litman, “Met-
rics for explainable AI: Challenges and prospects,” arXiv preprint
arXiv:1812.04608, 2018.

[24] A. Holzinger, “From machine learning to explainable AI,” in DISA.
IEEE, 2018, pp. 55–66.

[25] G. Falco, B. Shneiderman, J. Badger, R. Carrier, A. Dahbura, D. Danks,
M. Eling, A. Goodloe, J. Gupta, C. Hart et al., “Governing AI safety
through independent audits,” Nature Machine Intelligence, vol. 3, no. 7,
pp. 566–571, 2021.

[26] Z. Manna and R. J. Waldinger, “A Deductive Approach to Program
Synthesis,” ACM Trans. Program. Lang. Syst., vol. 2, no. 1, pp. 90–121,
1980.

[27] Y. Feng, R. Martins, Y. Wang, I. Dillig, and T. W. Reps, “Component-
based synthesis for complex apis,” in POPL, G. Castagna and A. D.
Gordon, Eds. ACM, 2017, pp. 599–612.

[28] Y. Feng, R. Martins, O. Bastani, and I. Dillig, “Program synthesis using
conflict-driven learning,” in PLDI, J. S. Foster and D. Grossman, Eds.
ACM, 2018, pp. 420–435.

[29] S. Gulwani, O. Polozov, R. Singh et al., “Program synthesis,” Foun-
dations and Trends® in Programming Languages, vol. 4, no. 1-2, pp.
1–119, 2017.

[30] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto,
J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray,

R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin,
B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser,
M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings,
M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss,
A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain,
W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra,
E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati,
K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish,
I. Sutskever, and W. Zaremba, “Evaluating large language models
trained on code,” CoRR, vol. abs/2107.03374, 2021. [Online]. Available:
https://arxiv.org/abs/2107.03374

[31] D. Neider and R. Roy, “Expanding the horizon of linear temporal logic
inference for explainability,” in REW. IEEE, 2022, pp. 103–107.

[32] D. Neider and I. Gavran, “Learning linear temporal properties,” in
FMCAD, N. S. Bjørner and A. Gurfinkel, Eds. IEEE, 2018, pp. 1–
10.

[33] J. Gaglione, D. Neider, R. Roy, U. Topcu, and Z. Xu, “Learning Linear
Temporal Properties from Noisy Data: A MaxSAT-Based Approach,” in
ATVA, ser. Lecture Notes in Computer Science, Z. Hou and V. Ganesh,
Eds., vol. 12971. Springer, 2021, pp. 74–90.

[34] S. K. Dhall and C. L. Liu, “On a real-time scheduling problem,”
Operations research, vol. 26, no. 1, pp. 127–140, 1978.

[35] L. Sha, T. Abdelzaher, A. Cervin, T. Baker, A. Burns, G. Buttazzo,
M. Caccamo, J. Lehoczky, A. K. Mok et al., “Real time scheduling
theory: A historical perspective,” Real-time systems, vol. 28, no. 2, pp.
101–155, 2004.

[36] R. I. Davis and A. Burns, “A survey of hard real-time scheduling
for multiprocessor systems,” ACM computing surveys (CSUR), vol. 43,
no. 4, pp. 1–44, 2011.

[37] S. Byhlin, A. Ermedahl, J. Gustafsson, and B. Lisper, “Applying static
WCET analysis to automotive communication software,” in ECRTS.
IEEE, 2005, pp. 249–258.

[38] A. Ermedahl, J. Gustafsson, and B. Lisper, “Experiences from industrial
WCET analysis case studies,” in WCET. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2007.

[39] S. Hahn, M. Jacobs, N. Hölscher, K.-H. Chen, J.-J. Chen, and J. Reineke,
“LLVMTA: An LLVM-Based WCET Analysis Tool,” in WCET. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[40] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, “OTAWA: An
Open Toolbox for Adaptive WCET Analysis,” in Software Technologies
for Embedded and Ubiquitous Systems, ser. Lecture Notes in Computer
Science, vol. 6399. Springer, 2010, pp. 35–46.

[41] L. Yun, A. Roychoudhury, and T. Mitra, “Timing Analysis of Body
Area Network Applications,” in WCET, ser. OASIcs, C. Rochange,
Ed., vol. 6. Internationales Begegnungs- und Forschungszentrum fuer
Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

[42] D. Hardy, B. Rouxel, and I. Puaut, “The Heptane Static Worst-Case
Execution Time Estimation Tool,” in WCET, ser. OASIcs, J. Reineke,
Ed., vol. 57. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017,
pp. 8:1–8:12.

[43] R. Metta, M. Becker, P. Bokil, S. Chakraborty, and R. Venkatesh, “TIC:
a scalable model checking based approach to WCET estimation,” in
LCTES, T. Kuo and D. B. Whalley, Eds. ACM, 2016, pp. 72–81.

[44] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment,” J. ACM, vol. 20, no. 1, pp.
46–61, 1973.

[45] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling
algorithm: Exact characterization and average case behavior,” in RTSS,
vol. 89, 1989, pp. 166–171.

[46] J. Liu, M. Zhou, X. Song, M. Gu, and J. Sun, “Formal modeling and
verification of a rate-monotonic scheduling implementation with real-
time maude,” IEEE Transactions on Industrial Electronics, vol. 64, no. 4,
pp. 3239–3249, 2016.

Towards Explainability in Modular Autonomous Vehicle Software

Hongrui Zheng∗, Zirui Zang∗, Shuo Yang∗, Rahul Mangharam

Abstract—Safety-critical Autonomous Systems require trust-
worthy and transparent decision-making process to be deployable
in the real world. The advancement of Machine Learning
introduces high performance but largely through black-box
algorithms. We focus the discussion of explainability specifically
with Autonomous Vehicles (AVs). As a safety-critical system, AVs
provide the unique opportunity to utilize cutting-edge Machine
Learning techniques while requiring transparency in decision
making. Interpretability in every action the AV takes becomes
crucial in post-hoc analysis where blame assignment might
be necessary. In this paper, we provide positioning on how
researchers could consider incorporating explainability and inter-
pretability into design and optimization of separate Autonomous
Vehicle modules including Perception, Planning, and Control.

I. INTRODUCTION

According to the Morning Consult and Politico poll [1],
only 16% of respondents are “very likely” to ride as a
passenger in an autonomous vehicle, while 28% of respondents
state that they “not likely at all”. Moreover, only 22% of
respondents believe self-driving cars are safer than the average
human driver, while 35% of them believing self-driving cars
are less safe than the average human driver. The public’s
distrust in Autonomous Vehicles (AV) shows that improving
explainability in AV software is a necessity.

There exist many surveys on explainable AI (XAI) and
robotics [2]–[5]. Specifically, [6]–[8] surveys explainability
in Autonomous Driving. Atakishiyev et al. [7] believes that
AVs need to provide regulatory compliant operational safety
and explainability in real-time decisions. It focuses on provid-
ing discussion through the cause-effect-solution perspective.
Zablocki et al. [6] provides an in-depth overview of XAI
methods in deep vision-based methods, but is limited to the
scope of perception only. Omeiza et al. [8] also provides
an overview of explanations in AVs in the full self-driving
pipeline. Gilpin et al. [9] proposes explainability as the trade-
off between interpretability and completeness. As described in
[9], to be interpretable is to describe the internals of a system
in such a way that is understandable to humans; to be complete
is to describe the operation of a system in an accurate way.

We position ourselves to provide insight in augmenting
explanability in Autonomous Vehicle’s sense-plan-act software
modules as a task of balancing interpretability and complete-
ness. In this paper, we look at the explainability in existing
works and in our recent contributions in localization, planning,
and control. In each case, we want to be able to quantify the
uncertainty at each step of the decision making and interpret
the provenance of the outcome of the algorithm.

∗Authors contributed equally. All authors are with University of Penn-
sylvania, Department of Electrical and Systems Engineering, 19104,
Philadelphia, PA, USA. Emails: {hongruiz, zzang, yangs1,
rahulm}@seas.upenn.edu

II. EXPLAINABILITY IN LOCALIZATION

Robot localization is a problem of finding a robot’s pose
using a map and sensor measurements, such as LiDAR scans.
The map is pre-built and the environment is assumed to not
change significantly after the map is captured. It is crucial
for any moving robot to interact with the physical world
correctly. However, the problem of finding the mappings
between measurements and poses can be ambiguous, because
sensor measurements from multiple distant poses can be
similar. Therefore, to tightly integrate the localization module
with other parts of the software stack and for the engineers
implementing and tuning the algorithm, the explainability of
localization algorithms using neural networks becomes impor-
tant. We need to estimate the uncertainty of the localization
results, and in the worst case, to know when and why the robot
fails to localize on a certain map.

Monte Carlo Localization (MCL) [10], the widely adopted
method, uses random hypothesis sampling and sensor mea-
surement updates to infer the pose. In MCL, the proposed
particles are explicit poses on the map and we can interpret the
distribution of the particles as the uncertainties. The random
generation of the particles can be tuned with parameters that
have physical meaning, providing an interface for humans to
adjust the behavior of the algorithm. Many developments in
localization seek to improve within the framework of MCL.
[11]–[13] Although particle filter has been a popular localiza-
tion framework for its robustness and reliable performance, it
introduces random jitter into the localization results.

Other common approaches are to use Bayesian filtering
[14] or to find more distinguishable global descriptors on the
map [15], [16]. In Bayesian filtering, the explainability lies in
the conditional probability attached with the motion model
and each measurement. The estimation of such probability
is challenging. For the global descriptor approach, oftentimes
manual selection of map features are needed, which increases
the explainability of the system, but also increases the human
workload and reduces robustness. Developments in localiza-
tion research usually propose better measurement models or
feature extractors within these frameworks. [17], [18].

Recent research in localization has also focused on the use
of learning-based methods outside of the above frameworks
[19]. Although learning-based methods may provide better
localization precision with lower latency, the interpretability
of the method decreases. While the traditional localization
methods can be manually tuned according to the specific user
scenarios, learning-based localization methods are usually not
tunable once the network is trained. Uncertainty estimations
of the neural networks also become a challenge for learning-
based methods. There are efforts to approximate the uncer-

tainty [20]–[22], but it hasn’t been widely applied.
Our contribution: In our recent paper, Local INN, we

proposed a new approach to frame the localization problem as
an ambiguous inverse problem and solve it with an invertible
neural network (INN) [23]. It stores the map data implicitly
inside the neural network. With the assumption that the
environment doesn’t not change significantly from the map,
by evaluating the reverse path of the neural network, we can
get robot poses from LiDAR scans. It also provides uncertainty
estimation from the neural network and is capable of learning
and providing localization for complex environments.

Localization is an inverse problem of finding a robot’s pose
using a map and sensor measurements. This reverse process
of inferring the pose from sensor measurements is ambiguous.
Invertible neural networks such as normalizing flows [24] have
been used to solve ambiguous inverse problems in various
fields [25]–[28]. The version of normalizing flows we used
is called RealNVP [29], which uses a mathematical structure
called coupling layers to ensure the invertibility while perform-
ing transformations with arbitrary neural network layers, such
as MLPs. This framework of solving inverse problems with
normalizing flows was introduced by Ardizonne et al. [25]
and was later extended by [26], [30] to include a conditional
input that is concatenated to the vectors inside the coupling
layers. They proposed to use normalizing flows to learn a
bijective mapping between two distributions and use a normal-
distributed latent variable to encode the lost information in
training due to the ambiguity of the problem. The network
can be evaluated in both forward and reverse paths. During
the evaluation, repeatedly sampling the latent variable can give
the full posterior distribution given the input.

In Local INN, we use pose-scan data pairs to train such a
bijective mapping. As shown in Fig. 1, The forward path is
from pose to scan and the reverse path is from scan to pose.
We use a conditional input calculated from the previous pose
of the robot to reduce the ambiguity of the problem. Because
INNs require the same input and output dimensions, we use a
Variational Autoencoder [31] to reduce the dimension of the
LiDAR scans and use Positional Encoding [32] to augment
that of the poses. The network is trained with supervised
loss functions on both sides. The data used for training
the Local INN can be simulated or real data recorded from
LiDARs. In our experiments, we tested on both real and
simulated data with 2D and 3D LiDARs. To collect training
data, we uniformly sample x, y position and heading θ on the
drivable surface of each map, and use a LiDAR simulator to
find the corresponding LiDAR ranges. This means the trained
network will be able to localize everywhere on the map. For
each different map, we need to train a separate network. Map
files are compressed inside the neural network and are no
longer needed during evaluation.

We claim that INN is naturally suitable for the localiza-
tion problem with improved explainability compared to other
learning-based methods. In particular, uncertainty estimation
and map representation are the two advantages that Local INN
provides in the context of explainability.

Fig. 1: Top: Evaluation of Local INN in forward direction gives
compressed map information, and in the reverse direction gives
accurate localization with fast runtime and uncertainty estimation.
Bottom: Network structure of Local INN. Solid arrows are from pose
to lidar scan. Dashed arrows are from lidar scan to pose. Conditional
input is calculated from the previous pose of the robot.

A. Explainability from Uncertainty Estimation

When we use Local INN to localize, the input to the reverse
path of the INN consists of the LiDAR scans concatenated with
a latent vector that is sampled from normal distribution. With
this sampling of latent vector, the network can output not just
a pose but a distribution of inferred poses. The covariance
of this distribution can be used as the confidence of the
neural network when fusing with other sensors. Uncertainty
estimation improves explainability by providing information
on the measurement quality of the prediction. Compared to
learning methods that do not provide uncertainty estimates,
it is much easier to determine whether the prediction of the
neural network is lower in accuracy due to higher uncertainty,
and improve the prediction results by augmentation. In our
experiments, we used an EKF to fuse the localization result
with the odometry information. The results show that this
fusion significantly improved localization accuracy where the

TABLE I: Local INN Experiments: Map Reconstruction and
RMS Localization Errors with 2D LiDAR (xy[m], θ[◦])

Race Track (Simulation) Outdoor (Real)

Original Map
Reconstruction
Test Trajectory

Online PF 0.168, 2.107 0.047, 1.371
Local INN+EKF 0.056,0.284 0.046,1.130

Fig. 2: Example of global localization finding the correct pose at the 2nd iterations (green arrow). Top: Narrowing down of the
candidate poses in the first 3 iterations. We can see candidate poses on the map (orange dots), correct pose (red dot), selected
pose (green dot). Bottom: Examples of LiDAR scan ranges at candidate poses at iteration 3 (orange boxes), and at the selected
pose (green box). In the range plots, the horizontal axis is the angle of LiDAR scans and vertical axis is the measured distance.
We can see a comparison of network expected ranges (blue curve) at various poses, and the actual LiDAR measurement
(orange curve). The correct pose is selected where the measurement best matches the expected shape. The network is trained
on simulated data and tested on real LiDAR data.

map geometry is ambiguous, which means this covariance is
very effective in revealing the confidence of the network.

As shown in Table I, The accuracy of Local INN is at par
with the current localization efforts. See [23] for a comparative
analysis of Local INN localization accuracy in 2D and 3D
maps.

B. Explainability from Map Representation

Local INN provides an implicit map representation and a
localization method within one neural network. The guaran-
teed invertibility of the neural network provides the use a
direct way to check the neural network’s ’understanding’ of
the map by reproducing part of the map with poses. That
is, we can compare the reconstructed map to the original
map to see how much detail is used by the neural network
in localization. Again, this feature improves explainability in
failure scenarios. When the localization fails, this comparison
can help us explain the failure and guide us in improving the
methods. For example, we can train with more data from a
particular location on the map that was difficult to localize in.

As an example of how the stored map information in the
forward path of the neural network can help us explain the
localization results, let us consider the algorithm for global
localization. Global localization is needed when a robot starts
with an unknown pose or when the robot encounters the

’kidnapping problem’. In this case, it is challenging to find the
correct position on the map due to the ambiguity of problem.
MCL algorithms usually do global localization by spreading
the covariance all around the map and using iterations of
control inputs and measurements to decrease the covariance,
which gives an explicit visualization to see the progress of the
global localization processes. For other learning-based method,
this process is usually hard to explain as we rely on the neural
network to output poses as a black box.

With Local INN, we can randomly initialize a set of random
poses on the map as conditional inputs and use new lidar scans
to narrow down the assumptions. In other words, we initially
have multiple random assumptions of the robot’s location on
the map and use them as the conditional inputs for the nerual
network. As shown in figure 2 iteration 1, when we input a
LiDAR scan to the network along with these assumptions,
it will output multiple possible pose distributions. In our
algorithm, for each possible pose distribution, we compare the
sensor measurement with what the neural network expects at
this location, and use the reciprocal of the error term to weight
the assumptions differently. The weights for the assumptions
is used to determine the amount of latent variable we use.
This process repeats with each new LiDAR scan we get from
the sensor. In our experiments, the convergence of candidate

Short Rollout

Objective Space

Abstraction through
Scoring Rollout

Aggressiveness

C
on

se
rv

at
iv

en
es

s

Objective Space

Planning in Low
Dimension

Aggressiveness

C
on

se
rv

at
iv

en
es

s

Mapped to Motion Plans
in Original Space

Fig. 3: Overview of Game-theoretic Objective Space Planning

poses is fast and accurate. As shown in iteration 2 and 3 in
figure 2, even if we still track multiple poses, in this example,
the correct pose is determined at the 2nd iteration in a highly
symmetrical map. The low part of figure 2 shows plots of the
expected lidar scan from the neural network and the current
LiDAR measurement. This reveals the black-box process of
the neural network so that we can see why multiple poses are
possible and how we should decide which one to pick.

To summarize, the explainability of localization methods
generally lies in the uncertainty estimation and the ability to
explain and tune the methods when localization fails. Tradi-
tional localization methods usually offer higher interpretabil-
ity than learning-based methods, whereas the learning-based
methods can provide better empirical performance. The new
method, Local INN, we recently proposed uses an invertible
network network architecture to solve the localization prob-
lem. It offers interpretability by giving uncertainty estimation
through the covariance of the inferred pose distributions,
and by ensuring the invertibility of the network so that we
can reveal the what information the neural network is using
during the localization. At the same time, it does sacrifice
completeness by using a Variational Autoencoder (VAE) to
model a latent space of the LiDAR scans.

III. EXPLAINABILITY IN PLANNING

Planning is the task of finding a viable motion plan for
the robot to reach some predetermined goal given the current
observation of the environment through various sensors. The
planning step is usually the next step after perception, or lo-
calization. Traditionally, sampling-based and model-predictive
methods are the most popular choices in Autonomous Vehicle
motion planning. Planning algorithms provide explanability
through human-designed objectives: e.g. maximizing the dis-
tance of a planned trajectory to obstacles and undrivable areas,
maximizing velocity on the trajectories, minimizing the lateral
acceleration the vehicle experiences on a planned trajectory.
We propose a unique position in adding interpretability and
completeness to planning algorithms: explainability through
abstraction. Next, we show our approach based on our recent
paper on Game-Theoretic objective space planning [33].

In this case study, our primary context is two-player rac-
ing games in close proximity. An overall depiction of the

pipeline is shown in Figure 3. We choose a game theoretic
approach that models racing as a zero-sum extensive game
with imperfect information and perfect recall. Extensive games
model sequential decision-making of players and naturally
form a game tree where each node is a decision point for
a player. However, the planning problem presented in au-
tonomous racing is continuous, and the state space of the
agents, in turn, the game tree in the extensive game, will
also be infinitely large if we model the game in the vehicle’s
planning space. Since the decision made by a game-theoretic
algorithm in the planning space cannot be explained in a way
that a human can understand, we use a lower dimensional
space for planning. We define the notion of Objective Space
O. For each short rollout in an adversarial environment, we can
compute multiple metrics regarding this agent’s performance,
such as safety and aggressiveness. These metrics also add
to the interpretability of our planning algorithm while not
losing the completeness. O models the average outcome of
each agent against competent opponents. Using O, our planner
maps complex agent behaviors to a lower dimension where
only the episodic outcome is recorded instead of the entire
decision-making process in the planning space. We define an
action in our game as movements in a dimension of O. This
action space is analogous to the planning space in a grid world
with actions that move the agent to a neighboring cell. This
means the planning problem is much simpler than the original
problem.

In our case study, we choose aggressiveness and restraint
as the two dimensions of O. Aggressiveness is scored on
an agent’s lead over the other at the end of the rollout,
and restraint is scored on an agent’s time to collision to the
environment and the other agent. Two movements are available
for each dimension: increasing or decreasing for a fixed
distance along the axis. For example, four discrete actions are
available at each turn when O ∈ R2. Even with the formulation
of agent action space, the possible objective values of an
opponent agent or possible position in O is still infinite. We
propose a predictive model for regret values within Counter-
factual Regret Minimization (CFR) [34] to make the problem
tractable. Finally with head-to-head racing experiments, we
demonstrate that using the proposed planning pipeline above
significantly improves the win rate that generalizes to unseen
opponents in an unseen environment.

A. Explainability in Agent Actions

In this section, we examine specific cases of agents moving
in the lower dimension and investigate whether we achieve the
task of instilling explainability in our algorithm. We choose a
2-D space that encodes aggressiveness and restraint. In Figure
4, we show four examples of races between two agents. The
Ego (orange) uses our proposed game-theoretic approach in
the Objective Space, and the Opponent (green) is static in the
objective space. In the first two cases, the opponent is in the
lower right quadrant, meaning that they’re more conservative
than aggressive. Hence our planner chooses to increase in
aggressiveness continuously to win the races. In the last two

0.0 2.5

2

3

4

5

A

0.0 2.5

B

0.0 2.5

C

0.0 2.5

D
Near-optimal Ego Obj. Value Opp. Obj. Value

Re
st

ra
in

t (
lo

we
r i

s m
or

e
co

ns
er

va
tiv

e)

Aggressiveness (lower is more aggressive)

Fig. 4: Trajectories of ego moves in O.

Fig. 5: Effect of making a move in O in motion planning
space.

cases, the opponent is in the upper left quadrant, meaning that
they’re more aggressive than conservative. Hence our planner
chooses to first become more conservative, and once a chance
presents itself, increase in aggressiveness and win the races.
In Figure 5, we inspect a specific move to show the effect
in the motion planning space. In the beginning of the rollout,
both agents are side by side. At a decision point, our planner
locates the opponent in the lower right quadrant as more
conservative than aggressive. Then the ego decides to increase
in aggressiveness to finally overtake the opponent. From
these examples, it is clear that moving the planning problem
in a lower dimension that encodes interpretable metrics for
humans doesn’t decrease the capability of the planner, or the
completeness in the algorithm.

IV. EXPLAINABILITY IN CONTROL

With robust localization, the autonomous vehicle can plan
its trajectory but requires a safe an interpretable controller to
execute the plan. In this section, we show our recent progress
on learning-based safety-critical control through control bar-
rier functions (CBFs) and provide our positioning on explain-
able safe control. Specifically, we show that our proposed
differentiable safety filter has more completeness than non-
differentiable safety filter without sacrificing interpretability.

𝑄

Fig. 6: Illustration of QP: If the NN output is not in the safe
control set Q, it will be projected in minimally invasive way
to Q; otherwise, the control keeps the same.

A. Safety-critical control

Learning-based control could provide high empirical per-
formance thus it has become popular for controlling com-
plex dynamical systems. However, learning-based controllers,
such as neural network (NN), generally lack formal safety
guarantees because of their black-box nature. This limits
their deployments with complex safety-critical systems. To
address safety risk, multiple methods have been proposed,
such as model predictive control (MPC) [35], Hamilton-Jacobi
reachability analysis [36], contraction theory [37], and control
barrier functions (CBF) [38].

Among the many safety-critical control techniques, CBF is
becoming a popular choice since it explicitly specifies a safe
control set by using a Lyapunov-like condition and guards the
system inside a safe invariant set. When a continuous-time
control-affine system is considered, such projection reduces
to a convex quadratic program (QP) which is referred to as
CBF-QP. Due to its simplicity, flexibility, and formal safety
guarantees, CBFs have been applied in safe learning control
with many successful applications [39]–[43].

Compared with MPC, which needs to handle a possibly
nonconvex optimization problem in the face of nonlinear
dynamical systems, CBF-QP is computationally efficient to
solve online. However, unlike MPC, the QP-based safety filter
only operates in a minimally invasive manner, i.e., it generates
the safe control input closest to the reference control input (in
the Euclidean norm), as shown in Fig. 6, unaware of the long-
term effects of its action. This indicates that the effects of the
safety filter on the performance of the closed-loop system are
hard to predict. Therefore, the application of the safety filter
may give rise to myopic controllers [44] that induce subpar
performance in the long term.

To address the issue of myopic CBF-based safety filters,
in our recent work [45], we propose to utilize CBF to con-
struct safe-by-construction NN controllers that allow end-to-
end learning. Incorporating safety layers in the NN controller
allows the learning agent to take the effects of safety filters
into account during training in order to maximize long-term
performance.

We design a differentiable safety layer using the gauge
map [46] (as shown in Fig. 7) which establishes a bijection
mapping between the polytopic set of a NN output (e.g.,
an ℓ∞ norm ball) and the CBF-based safe control set. The

-1 10
-1

0

1

0

0

𝐵∞

𝑄

Fig. 7: Illustration of the gauge map from the ℓ∞ ball B∞ to
a polytopic set Q. The original point in B∞ and mapped point
in Q are in the same level set and with the same direction.

NNSystem state

Neural network
output

CBF−QP
Safe action

𝐍𝐍-𝐐𝐏

Fig. 8: NN controller with CBF-QP safety filter.

NN

System state

CBF

Neural network output

Gauge map

An interior point

+
−

+
+

Safe action

Safe control set

Shifted safe control set

𝐍𝐍-𝐠𝐚𝐮𝐠𝐞

(a) Gauge map-based safe NN controller architecture.

NN

System state

CBF

Neural network output

Differentiable QP
Safe action

Safe control set
𝐍𝐍-𝐝𝐢𝐟𝐟-𝐐𝐏

(b) CBF-QP-based safe NN controller architecture.

Fig. 9: Safe-by-construction NN controllers that utilize CBFs
to construct differentiable safety layers (yellow blocks).

proposed architecture is denoted as NN-gauge (Fig. 9a). We
compare NN-gauge with an alternative differentiable safe-by-
construction NN controller called NN-diff-QP, which consists
of a NN followed by a differentiable CBF-QP layer (Fig. 9b).
Specifically, NN-diff-QP (Fig. 9b) concatenates a differen-
tiable projection layer which can be implemented in a NN
using toolboxes such as cvxpylayers [47], qpth [48]. NN-gauge
involves finding an interior point of the safe control set since
gauge map requires that Q set in Fig. 7 is convex and cover the
origin. It can be reduced to implicitly finding the Chebyshev
center [49] of the safe control set.

Remark 1: In the online execution, NN-gauge requires
closed-form evaluation or solving a linear program (LP) while
NN-diff-QP solves a quadratic program. Both methods are
significantly cheaper to run than MPC.

As an example, let’s consider the adaptive cruise control
(ACC) in which the ego car is expected to achieve the desired

(a) CBF values. (b) Velocity of the ego car.

Fig. 10: Results of adaptive cruise control. CBF values (left)
and velocity of the ego car (right) under different controllers
are evaluated in closed-loop for 20s. A CBF value below zero
indicates unsafety, and the optimal behavior of the ego car is
expected to have a steady state velocity of 16m/s, same as
the leading car.

cruising speed while maintaining a safe distance from the
leading car. As shown in Fig. 10b, applying the CBF-QP safety
filter directly to enforce safe control deteriorates the long-
term closed-loop performance of the NN controller. However,
both NN-gauge and NN-diff-QP achieve similar closed-loop
performance, and they are comparable to MPC.

B. Explainability of safety-critical control

1) Non-differentiable QP filter: Quadratic program (QP)
is the classic minimally invasive safety filter to modify the
nominal unsafe controller. Due to its simplicity and the nature
of minimal modification of the original controller, it has
always been equipped to CBF as the safety filter. As shown
in Fig. 6, it is very understandable to humans, since one only
needs to project the unsafe control input to the “nearest” point
in the safe control set, which is specified by CBF. Thus, QP
safety filter enjoys high interpretability.

However, on the other hand, the QP operation is not
necessarily the best choice from the perspective of optimizing
a long-term system objective. For example, in the long run,
sometimes it might be better to choose a “farther” point in the
safe control set than the “nearest” point on the boundary when
the nominal control is not safe. These modified actions are
unaware of the long-term effects and may give rise to myopic
controllers which deteriorate their performance. From the ACC
case study, we can also observe in Fig. 10b that the modified
control (i.e., NN-QP) is myopic with unpredictable long-term
effects. Thus, vanilla QP filter lacks the completeness in the
sense of controlling the system in the optimal way with the
safety guarantee.

2) Differentiable safety filters: Our proposed two differ-
entiable safety filters, i.e., differentiable QP and gauge map,
enjoy both a high level of interpretability and completeness.

• Differentiable QP: the QP structure is the same with
vanilla CBF-QP, so there is no interpretability loss in
differentiable QP. On the other hand, since the NN
controller considers the gradient of QP structure while
training to minimize the long-term loss, so the trained

NN adapts to QP much better than non-differentiable QP.
Thus, even if the QP is applied to ensure safety when
evaluating online, the modified controller could still have
good performance. Therefore, from the explainability
perspective, completeness is improved with no loss on
interpretability.

• Gauge map: unlike QP, gauge map seeks to map the
original control “proportianally” to the safe control set
with the same direction. This mapping is also under-
standable to humans. Furthermore, since gauge map is
sub-differentiable itself, so the end-to-end training holds
naturally, which allows it to perform as good as differen-
tiable QP after training. Thus, explanation could find the
high completeness in this method as well.

In the ACC example, it also has been shown that both NN-
gauge and NN-diff-QP have comparable performance with
MPC, which implies the high completeness from demonstra-
tion. Looking ahead, we are interested in exploring a more
general parameterized gauge map method, which even not
necessarily maps to the same level set. In that case, it will
perhaps lose some interpretability but have better completeness
as it is not limited to the same level set mapping. This way,
there is more flexibility while choosing the safe control input.

V. DISCUSSION AND CONCLUSION

In any autonomous vehicle which operates a sense-plan-
act processing loop, the essential components are localization,
planning and control. For humans to trust the system to
make decisions and actions on their behalf in safety-critical
situations, it is essential to have explainability across the stack.
We view explainability as a trade-off between interpretability
of the machine’s actions and the completeness in terms of
describing the operation of the system in an accurate way.

The explainability of localization methods generally lies
in the uncertainty estimation and the ability to explain and
tune the methods when localization fails. We introduce Lo-
cal INN, which utilizes an invertable neural network archi-
tecture that provides explainability for uncertainty estimation
and explainability from map representation. Uncertainty es-
timation, through the covariance of the inferred pose distri-
butions, improves explainability by providing information on
the measurement quality of the prediction. Furthermore, the
guaranteed invertibility of the neural network provides the use
a direct way to check the neural network’s understanding of
the map by analyzing the reconstructed map. This feedback
from the internals of the localization engine allows the human
to know where in the map the network has lower confidence
and that they should augment it with more data.

The expainability in planning is necessary to ensure the
autonomous vehicle maintains a safe trajectory at all times in
terms of maximizing the distance of a planned trajectory to
obstacles and undrivable areas, maximizing velocity on the
trajectories, minimizing the lateral acceleration the vehicle
experiences on a planned trajectory, and so on. To achieve this,
we introduced a new approach on Game-Theoretic Objective

Space Planning where we map these complex planning objec-
tives to a lower dimensional space of balancing aggressiveness
and restraint. In a racing context, we show how our planner
increases aggressiveness continuously to win the races. Sim-
ilarly, it chooses to be more conservative to maintain safety.
By moving the planning problem in a lower dimension that
encodes interpretable metrics for humans we demonstrate how
it doesn’t decrease the capability of the planner, or reduce the
completeness in the algorithm.

Finally, to ensure the plan is executed in a safe manner,
we describe our efforts in explainable safe neural network
controller design with Differentiable CBF-QP filters. The Con-
trol Barrier Function structure of the filter ensures the control
output is always safe in an interpretable manner as there is
a direct projection of the NN controller output into the safe
control set. The performance of the proposed safe controllers
is comparable to model-predictive controllers, which implies
the high completeness from demonstrations.

Through these three learning-based architectures for local-
ization, planning and safe control, we have demonstrated the
initial findings on explainability of decisions in the sense-plan-
act process of autonomous systems. Further developments in
explainability of autonomous systems will lead to more public
trust and safer systems.

REFERENCES

[1] [Online]. Available: https://morningconsult.com/wp-
content/uploads/2017/09/National-Tracking-Poll-170904.pdf

[2] F. K. Došilović, M. Brčić, and N. Hlupić, “Explainable artificial in-
telligence: A survey,” in 2018 41st International convention on infor-
mation and communication technology, electronics and microelectronics
(MIPRO). IEEE, 2018, pp. 0210–0215.

[3] S. R. Islam, W. Eberle, S. K. Ghafoor, and M. Ahmed, “Ex-
plainable artificial intelligence approaches: A survey,” arXiv preprint
arXiv:2101.09429, 2021.

[4] E. Tjoa and C. Guan, “A survey on explainable artificial intelligence
(xai): Toward medical xai,” IEEE transactions on neural networks and
learning systems, vol. 32, no. 11, pp. 4793–4813, 2020.

[5] T. Sakai and T. Nagai, “Explainable autonomous robots: a survey and
perspective,” Advanced Robotics, vol. 36, no. 5-6, pp. 219–238, 2022.

[6] É. Zablocki, H. Ben-Younes, P. Pérez, and M. Cord, “Explainability of
deep vision-based autonomous driving systems: Review and challenges,”
International Journal of Computer Vision, pp. 1–28, 2022.

[7] S. Atakishiyev, M. Salameh, H. Yao, and R. Goebel, “Explain-
able artificial intelligence for autonomous driving: A comprehensive
overview and field guide for future research directions,” arXiv preprint
arXiv:2112.11561, 2021.

[8] D. Omeiza, H. Webb, M. Jirotka, and L. Kunze, “Explanations in
autonomous driving: A survey,” IEEE Transactions on Intelligent Trans-
portation Systems, 2021.

[9] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal,
“Explaining explanations: An overview of interpretability of machine
learning,” in 2018 IEEE 5th International Conference on data science
and advanced analytics (DSAA). IEEE, 2018, pp. 80–89.

[10] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localization
for mobile robots,” in Proceedings 1999 IEEE international conference
on robotics and automation (Cat. No. 99CH36288C), vol. 2. IEEE,
1999, pp. 1322–1328.

[11] C. Zhang, M. H. Ang, and D. Rus, “Robust lidar localization for
autonomous driving in rain,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 3409–3415.

[12] X. Chen, I. Vizzo, T. Läbe, J. Behley, and C. Stachniss, “Range Image-
based LiDAR Localization for Autonomous Vehicles,” in Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2021.

[13] X. Chen, T. Läbe, L. Nardi, J. Behley, and C. Stachniss, “Learning
an overlap-based observation model for 3d lidar localization,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2020, pp. 4602–4608.

[14] V. Fox, J. Hightower, L. Liao, D. Schulz, and G. Borriello, “Bayesian
filtering for location estimation,” IEEE pervasive computing, vol. 2,
no. 3, pp. 24–33, 2003.

[15] R. Dube, A. Cramariuc, D. Dugas, H. Sommer, M. Dymczyk, J. Nieto,
R. Siegwart, and C. Cadena, “Segmap: Segment-based mapping and
localization using data-driven descriptors,” The International Journal of
Robotics Research, vol. 39, no. 2-3, pp. 339–355, 2020.

[16] P.-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk, “From coarse to
fine: Robust hierarchical localization at large scale,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 12 716–12 725.

[17] M. A. Uy and G. H. Lee, “Pointnetvlad: Deep point cloud based retrieval
for large-scale place recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 4470–4479.

[18] L. Sun, D. Adolfsson, M. Magnusson, H. Andreasson, I. Posner, and
T. Duckett, “Localising faster: Efficient and precise lidar-based robot
localisation in large-scale environments,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020, pp.
4386–4392.

[19] W. Lu, Y. Zhou, G. Wan, S. Hou, and S. Song, “L3-net: Towards learning
based lidar localization for autonomous driving,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 6389–6398.

[20] M. Cai, C. Shen, and I. Reid, “A hybrid probabilistic model for camera
relocalization,” 2019.

[21] A. Kendall and R. Cipolla, “Modelling uncertainty in deep learning
for camera relocalization,” in 2016 IEEE international conference on
Robotics and Automation (ICRA). IEEE, 2016, pp. 4762–4769.

[22] H. Deng, M. Bui, N. Navab, L. Guibas, S. Ilic, and T. Birdal, “Deep
bingham networks: Dealing with uncertainty and ambiguity in pose
estimation,” International Journal of Computer Vision, pp. 1–28, 2022.

[23] Z. Zang, H. Zheng, J. Betz, and R. Mangharam, “Local inn: Implicit
map representation and localization with invertible neural networks,”
arXiv preprint arXiv:2209.11925, 2022.

[24] G. Papamakarios, E. T. Nalisnick, D. J. Rezende, S. Mohamed, and
B. Lakshminarayanan, “Normalizing flows for probabilistic modeling
and inference.” J. Mach. Learn. Res., vol. 22, no. 57, pp. 1–64, 2021.

[25] L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini,
R. S. Klessen, L. Maier-Hein, C. Rother, and U. Köthe, “Analyz-
ing inverse problems with invertible neural networks,” arXiv preprint
arXiv:1808.04730, 2018.

[26] L. Ardizzone, C. Lüth, J. Kruse, C. Rother, and U. Köthe, “Guided image
generation with conditional invertible neural networks,” arXiv preprint
arXiv:1907.02392, 2019.

[27] T. J. Adler, L. Ardizzone, A. Vemuri, L. Ayala, J. Gröhl, T. Kirchner,
S. Wirkert, J. Kruse, C. Rother, U. Köthe et al., “Uncertainty-aware
performance assessment of optical imaging modalities with invertible
neural networks,” International journal of computer assisted radiology
and surgery, vol. 14, no. 6, pp. 997–1007, 2019.

[28] T. Wehrbein, M. Rudolph, B. Rosenhahn, and B. Wandt, “Probabilistic
monocular 3d human pose estimation with normalizing flows,” in
International Conference on Computer Vision (ICCV), Oct. 2021.

[29] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using
real nvp,” arXiv preprint arXiv:1605.08803, 2016.

[30] C. Winkler, D. Worrall, E. Hoogeboom, and M. Welling, “Learn-
ing likelihoods with conditional normalizing flows,” arXiv preprint
arXiv:1912.00042, 2019.

[31] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[33] H. Zheng, Z. Zhuang, J. Betz, and R. Mangharam, “Game-theoretic
objective space planning,” arXiv preprint arXiv:2209.07758, 2022.

[34] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione, “Regret
Minimization in Games with Incomplete Information,” in Advances in
Neural Information Processing Systems, vol. 20. Curran Associates,
Inc., 2007.

[35] E. F. Camacho and C. B. Alba, Model predictive control. Springer
science & business media, 2013.

[36] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-jacobi
reachability: A brief overview and recent advances,” in 2017 IEEE 56th
Annual Conference on Decision and Control (CDC). IEEE, 2017, pp.
2242–2253.

[37] G. Chou, N. Ozay, and D. Berenson, “Safe output feedback motion
planning from images via learned perception modules and contraction
theory,” arXiv preprint arXiv:2206.06553, 2022.

[38] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2016.

[39] A. Anand, K. Seel, V. Gjærum, A. Håkansson, H. Robinson, and
A. Saad, “Safe learning for control using control lyapunov functions
and control barrier functions: A review,” Procedia Computer Science,
vol. 192, pp. 3987–3997, 2021.

[40] C. Dawson, Z. Qin, S. Gao, and C. Fan, “Safe nonlinear control
using robust neural lyapunov-barrier functions,” in Conference on Robot
Learning. PMLR, 2022, pp. 1724–1735.

[41] A. Taylor, A. Singletary, Y. Yue, and A. Ames, “Learning for safety-
critical control with control barrier functions,” in Learning for Dynamics
and Control. PMLR, 2020, pp. 708–717.

[42] S. Dean, A. J. Taylor, R. K. Cosner, B. Recht, and A. D. Ames,
“Guaranteeing safety of learned perception modules via measurement-
robust control barrier functions,” arXiv preprint arXiv:2010.16001, 2020.

[43] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, no. 01, 2019, pp. 3387–3395.

[44] M. H. Cohen and C. Belta, “Approximate optimal control for safety-
critical systems with control barrier functions,” in 2020 59th IEEE
Conference on Decision and Control (CDC). IEEE, 2020, pp. 2062–
2067.

[45] S. Yang, S. Chen, V. M. Preciado, and R. Mangharam, “Differentiable
safe controller design through control barrier functions,” arXiv preprint
arXiv:2209.10034, 2022.

[46] D. Tabas and B. Zhang, “Computationally efficient safe reinforcement
learning for power systems,” in 2022 American Control Conference
(ACC). IEEE, 2022, pp. 3303–3310.

[47] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z.
Kolter, “Differentiable convex optimization layers,” Advances in neural
information processing systems, vol. 32, 2019.

[48] B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a layer
in neural networks,” in International Conference on Machine Learning.
PMLR, 2017, pp. 136–145.

[49] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

MARS: a toolset for the safe and secure
deployment of heterogeneous distributed systems

Giann Spilere Nandi1, David Pereira1, José Proença1, José Santos2,
Lourenço A. Rodrigues2, André Lourenço2 and Eduardo Tovar1

Abstract—This work discusses the ongoing development of
a toolset named MARS aimed to ease the process of safely
deploying runtime verification monitors into distributed micro-
ROS and ROS2 nodes. The work is motivated by a use case in
the health and automotive domains and covers safety/security
concerns around the manipulation of sensitive biometric data.

Index Terms—Safety, Security, Runtime Verification, ROS2,
micro-ROS

I. Introduction

Artificial Intelligence (AI) has been one of the main drivers
of innovation in recent years. Its contributions impacted, and
continue to impact, several research fields and application
domains, including automotive, robotics, and health [16].

Although efforts towards porting AI to extremely resource-
constrained devices were made in recent years [1], a large
portion of these devices cannot yet process complex AI
algorithms in a timely manner locally. A common approach
to overcome this limitation is to offload the more resource-
intensive tasks to more robust distributed nodes. However,
dependable distributed applications may still demand that all
network participants comply with safety, security, and real-
time requirements.

Developers implementing distributed systems that must
comply with such requirements will inevitably face challenges
such as how to configure nodes to communicate with other
heterogeneous nodes; how to make sure that messages are
not disclosed nor manipulated by unauthorized participants
(especially in the context of resource-constrained devices); and
how to guarantee that data collection and processing is correct
and executed in a timely manner.

This work discusses the development of the Monitoring
Architecture Specification Language (MARS), a domain-
specific language with an associated toolset, introduced on
[12], capable of: (i) specifying ROS2-compatible distributed

This work was partially supported by National Funds through FCT/MCTES
(Portuguese Foundation for Science and Technology), within the CISTER Re-
search Unit (UID/CEC/04234); also by FCT within project ECSEL/0016/2019
and from the ECSEL Joint Undertaking (JU) under grant agreement No
876852. The JU receives support from the European Union’s Horizon 2020
research and innovation programme and Austria, Czech Republic, Germany,
Ireland, Italy, Portugal, Spain, Sweden, Turkey. We would also like to thank
Antonio Rodriguez and Pablo Garrido from eProsima for their collaboration
in development of the secure custom transport layer of MARS.

1CISTER Research Centre in Real-Time and Embedded Computing Sys-
tems, Polytechnic Institute of Porto, Rua Alfredo Allen, 535, 4200-135, Porto,
Portugal. {giann,drp,pro,emt}@isep.ipp.pt

2CardioID Technologies Lda, Instituto Superior de Engenharia de Lisboa,
Rua Conselheiro Emídio Navarro 1, Room E.06 1959-007 Lisboa, Portugal
{jfs, lar, arl}@cardio-id.com

system architectures, (ii) specifying and generating runtime
monitors that evaluate a system’s correctness while also
guaranteeing that their associated overhead will not disrupt
the target system’s safety requirements, and (iii) generating
components that communicate through secure channels. By
achieving these goals, we facilitate the process of safely
deploying runtime verification monitors into real-time systems,
providing a way for teams of engineers with no background
in formal methods to deploy runtime monitors in their sys-
tems while also providing evidence that these monitors will
not disrupt the system’s safety with respect to its real-time
constraints.

We contextualize and motivate the use of MARS with a
use case in the health and automotive domains developed in
the context of the VALU3S European R&D project in collab-
oration with CardioID, a Portuguese company specialized in
the analysis and integration of human hearts’ biometric data
into innovative solutions. The use case builds up on top of
a generic and adaptable architecture with a newly developed
and publicly available TLS 1.3-based transport that encrypts
and authenticates the communication between micro-ROS [17]
and ROS2 [18] devices.

II. CardioWheel Use Case

We start by describing our motivating use case provided by
CardioID, called CardioWheel, used to guide and validate the
development efforts of the MARS language and toolset.

AG

C1: ESP32

R1: RPi 4 B

DDS SECURITY

D1

ROS2
micro-ROS

DDS

DDS

DDS-XRCE + TLS 1.3

AI

D2H

M1

M2

M4 M5M3

Fig. 1. Node C1 collects, pre-processes, and transmits heart beat signals to
R1 over a wireless channel. R1 is analyzes it and forwards results to a set of
trusted nodes in the cloud, represented by D1 and D2. The channel between
C1 and R1 is secured by our custom transport based on TLS 1.3 and the
DDS-XRCE standard.

In CardioWheel, the heart-beat signals of a vehicle’s driver
are collected, transmitted wirelessly, and analyzed by AI

algorithms. Figure 1 illustrates the system’s underlying dis-
tributed architecture: a sensor, powered by an Espressif ESP32
microcontroller (C1), is placed in the steering wheel of the
vehicle to collect and send aggregated data to a Raspberry PI
4 Model B (R1), which receives it and analyses it using a
trained AI model while interacting with remote nodes D1/D2.

While the communication between R1 and D1/D2 complies
with the underlying middleware [5] of the full fledged ROS2,
C1 uses a stripped-down version called micro-ROS, specially
developed to comply with the restrictions of (extremely)
resource-constrained devices that have as little memory as
32kB of RAM and 256kB of flash and can run on top of
real-time operating systems like FreeRTOS.1 The information
collected by C1 to allows R1 to provide:
• Biometric Authentication: by analyzing the user’s elec-

trocardiogram (ECG) signals, R1 can authenticate and
validate a user’s identity analogously to what is done with
fingerprints [10].

• Heart Monitoring: although unique to every person,
ECG signals share common traits that could indicate
various body conditions, including heart anomalies, levels
of fatigue, and emotional distress [10].

After authenticating the driver, the CardioWheel’s inferred
levels of fatigue could provide warning signals and potentially
adapt parameters during assisted driving. It is important to
mention that the quality of the analysis performed by R1
is heavily dependent on the quality of the signals fed to it,
requiring C1 to provide low signal-noise readings at high
frequency (around 1kHZ). Given the automotive context and
the safety hazards that an incorrect system behavior could
cause, CardioWheel deploys runtime monitors (M1 - M5 in
Fig. 1) to check for incorrect system behavior.

Due to the sensitive content of the transmitted data, security
and privacy measures are required to protect against cyberat-
tacks. While the communication of R1 with D1 and D2 can
be secured by employing the DDS Security protocol [6], no
similar option is available to the communication between C1
and R1, leaving the communication channel between C1 and
R1 susceptible to attacks coming from a malicious user H,
like (i) tampering with the data transmitted to R1, possibly
leading genuine heart problems to be misclassified as a healthy
heart behaviour; and (ii) eavesdropping on sensitive health
information, disclosing a user’s health condition. We address
this lack of security with a newly developed transport, which
is discussed in the next section.

III. MARS and Its Associated Toolset

Our work on MARS includes developing a specification
language and a back-end. The specification language com-
pactly and precisely captures both the distributed architecture
(including communication channels) and a set of runtime
monitors designed to verify safety properties that were too
complex to verify statically. The back-end configures the

1We point the reader to the current list of supported hardware by micro-
ROS for further details: https://micro.ros.org/docs/overview/hardware/

visual + textual
explanation

FRET

step 1

FRETish
requirement

Copilot
specification

standalone
C monitor code

pmLTL +
variables

Ogma Copilot

step 2

step 3

Fig. 2. Workflow adopted by the Ogma tool to synthesize runtime verification
monitors from requirements written in the near-natural language of FRETish.

communication channels with the required security levels,
generates correct-by-construction runtime monitors, and safely
instruments these monitors into a target system

The design of the specification language is ongoing work,
partially documented in previous work [12]. This paper fo-
cuses on the back-end, i.e., on how to: (i) generate runtime
monitors from formal specifications, (ii) check if the compu-
tational overhead caused by these monitors does not disrupt
the system’s real-time schedulability, and (iii) introduce se-
cure communication channels for resource-constrained devices
within a micro-ROS/ROS2 distributed environment. Below we
address each of these points and clarify the type of systems
we support.

Supported Systems Although in the CardioWheel use case
we focused on a single application compatible with MARS,
we envision our work to easily suit multiple applications as
long as they fit into a generic system model. More specifically,
we support distributed systems whose nodes comply with the
DDS-XRCE [7], the communication middleware for micro-
ROS, and DDS [5], the communication middleware for ROS2.
Supporting these standards allows excellent flexibility in de-
signing distributed heterogeneous applications while adopting
the widespread publish-subscribe message exchange pattern.

With micro-ROS, developers can have (extremely) resource-
constrained devices actively interacting with other ROS2 and
DDS-compatible nodes in the cloud by publishing and sub-
scribing to topics of interest. On top of that, developers
can enforce deterministic and timely behavior on micro-ROS
nodes by employing scheduling algorithms to manage the
execution of each node’s task sets. Finally, MARS focuses
on supporting the deployment of software monitors that, at
runtime, verify if the system/application complies with a set
of formal specifications provided by the user.

Correct-by-Construction Monitor Generation Manually
specifying a monitor using formal semantics is error-prone and
requires a formal background, usually not present in typical
engineering teams. We facilitate the process of specifying and
implementing runtime monitors by integrating into MARS
tools like Ogma [13] and rmtld3synth [4] that synthesize
C/C++ code from specifications written in near-natural lan-
guages.

To shed some light on the process behind it, we illustrate
in Figure 2 the step-by-step workflow of Ogma to transform a

https://micro.ros.org/docs/overview/hardware/

DDS-XRCE + TLS 1.3

ESP32

C1

Intel i7-4770

R1
ii

iiiiv

i

Measurements Setup

Archer C20

Fig. 3. Setup used to measure the round-trip delay of a message sent by
C1. The figure illustrates the hardware used and points to the four additional
steps performed by the system when compared to the default transport used
by micro-ROS.

specification into a monitor. The workflow starts by receiving
as input a requirement written in FRETish [3] describing what
needs to be verified in the system and the variables that support
such verification. FRET [3] then takes the requirement and
variables and provides visual and textual explanations of how
the requirement translates to Past-time Metric Linear Temporal
Logic (pmLTL) [9]. Ogma then takes the pmLTL formula
and associated variables and generates a Copilot [15] monitor
specification. Finally, Copilot takes the specification as input
and generates the standalone C monitor that MARS will use
for its formal analyses and subsequent instrumentation and
compilation.

Safe Instrumentation of Runtime Monitors Coupling
runtime monitors into a system inevitably incur some compu-
tational overhead. In the case of real-time systems, adding a
monitor means another task for the real-time operating system
to schedule. Depending on its computational impact, adding a
monitor could disrupt the system’s schedulability and result in
unsafe behavior. MARS addresses this concern by employing
schedulability analysis algorithms that check the feasibility of
scheduling the original task set in addition to the instrumented
set of monitors.

Our initial efforts focus on the classical schedulability
analysis of simple and static task sets. However, we are also
investigating scenarios with systems supporting unbounded
mode changes where tasks can be added/removed/have their
scheduling parameters modified [2], [8]. For instance, we are
currently experimenting with how to verify if a system is
schedulable after an unbounded number of mode changes
considering the residual accumulative impact that each mode
transition can have on the overall schedulability analysis.

Secure Communication Channels MARS addresses the lack
of security in the communication between micro-ROS and
ROS2 nodes by including in its toolset a newly developed
and open-source2 transport based on TLS 1.3 developed in
collaboration with eProsima.3 The transport allows micro-ROS
and ROS2 nodes to authenticate and encrypt their message
exchanges with little to no modifications to the system’s
original behavior. The transport combines the open-source

2https://bitbucket.org/mars-language/
3Developer and maintainer of micro-ROS.

Fig. 4. Round-trip delays measured from 4500 messages sent over 10 identical
experiments using the standard micro-ROS transport and 4500 messages sent
over 10 identical experiments using our custom TLS 1.3-based transport. The
presented histogram shows the minimum and the average round trip delay for
each message among all the 10 runs of the experiment for each transport.

wolfSSL4 library and the micro-ROS API for custom trans-
ports developed by eProsima.

Initial benchmarks, illustrated in Figure 4, show an ap-
proximate 2-millisecond difference (minimum and average)
between the round-trip delay measured of a message sent
using the default UDP-based transport of micro-ROS and
our transport, which offers the reliability of TCP and the
encryption and authentication of TLS 1.3. The hardware setup
for the experiments consists of an ESP32, a TPLink router
Archer 20, and an Ubuntu Desktop 20.04 equipped with an
Intel 4770 processor.

The round-trip delay is the time difference between the
timestamp of when C1 receives a message mi and the times-
tamp when C1 sends the same mi message. In total, we ran
ten experiments using the UDP transport and ten experiments
using our custom transport. In each experiment, we measured
the round-trip delay of 450 messages. Figure 4 shows the
minimum and the average of each mi message sent in the
network among the ten experiments of each transport layer
such that 1 ≥ i ≤ 450.

The approximate 2-milliseconds of difference between the
two transport layers reflects the overhead caused by the
additional reliability guarantees from TCP and the four extra
steps, illustrated in Figure 3, that the system needs to perform
after the handshake between C1 and R1: i) encryption of mi

by C1; ii) decryption of mi by R1; iii) encryption of mi by R1;
iv) decryption of mi by C1.

IV. RelatedWork and Conclusion

Several works in the literature address the automatic gener-
ation of runtime verification monitors from formal specifica-
tions. For instance, the work by Perez et al. [14] uses Ogma to
generate monitors for ROS2 nodes, and the work of Meredith
et al. [11] generates monitors for Java and hardware descrip-
tion languages. However, these approaches do not address the
impact of generated software monitors in the context of real-
time systems and are incompatible with commercial off-the-
shelf microcontrollers and microprocessors, which is precisely
the novelty of our work.

4https://www.wolfssl.com/docs/tls13/

https://bitbucket.org/mars-language/
https://www.wolfssl.com/docs/tls13/

By having the harsh resource constraints of these devices
in mind, this work presents the current status of the MARS
toolset, which is meant to ease the safe instrumentation
and deployment of runtime verification monitors in micro-
ROS/ROS2/DDS-based distributed systems. More specifically,
we discussed the back-end improvements that enable the
generation of formally-specified monitors, the employment
of formal verification algorithms on the integration of these
monitors into real-time systems, and the newly developed
secure transport for micro-ROS. The results were motivated
and validated by an industrial use case representing the generic
system model supported by MARS: a set of micro-ROS nodes
with real-time and safety requirements that communicate via
publish-subscribe message exchanges that comply with the
underlying communication middleware ROS2 and other DDS-
based nodes.

References

[1] Francesco Alongi, Nicolo Ghielmetti, Danilo Pau, Federico Terraneo,
and William Fornaciari. Tiny neural networks for environmental pre-
dictions: An integrated approach with miosix. In SMARTCOMP 2020.
IEEE.

[2] Hyeongboo Baek, Kang G. Shin, and Jinkyu Lee. Response-time
analysis for multi-mode tasks in real-time multiprocessor systems. IEEE
Access, 8:86111–86129, 2020.

[3] Esther Conrad, Laura Titolo, Dimitra Giannakopoulou, Thomas Press-
burger, and Aaron Dutle. A compositional proof framework for fretish
requirements. In Proceedings of the 11th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2022, page 68–81,
New York, NY, USA, 2022. Association for Computing Machinery.

[4] André de Matos Pedro, Jorge Sousa Pinto, David Pereira, and
Luís Miguel Pinho. Runtime verification of autopilot systems using
a fragment of MTL-

∫
. International Journal on Software Tools for

Technology Transfer, 20(4):379–395, August 2017.
[5] OBJECT MANAGEMENT GROUP. Data distribution service (dds)

specification version 1.4. http://www.omg.org/spec/DDS/1.4, 2015.
[6] OBJECT MANAGEMENT GROUP. Dds security specification version

1.1. https://www.omg.org/spec/DDS-SECURITY/1.1/ , 2018.
[7] OBJECT MANAGEMENT GROUP. Dds for extremely resource con-

strained environments 1.0. https://www.omg.org/spec/DDS-XRCE/1.0,
2020.

[8] Wen-Hung Huang and Jian-Jia Chen. Techniques for schedulability
analysis in mode change systems under fixed-priority scheduling. In
2015 IEEE 21st International Conference on Embedded and Real-Time
Computing Systems and Applications. IEEE, August 2015.

[9] Martin Leucker and César Sánchez. Regular linear temporal logic.
In Theoretical Aspects of Computing – ICTAC 2007, pages 291–305.
Springer Berlin Heidelberg, 2007.

[10] André Lourenço, Ana Priscila Alves, Carlos Carreiras, Rui Policarpo
Duarte, and Ana Fred. CardioWheel: ECG biometrics on the steering
wheel. In Machine Learning and Knowledge Discovery in Databases,
pages 267–270. Springer International Publishing, 2015.

[11] Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen,
and Grigore Roşu. An overview of the MOP runtime verification
framework. International Journal on Software Tools for Technology
Transfer, 14(3):249–289, April 2011.

[12] Giann Spilere Nandi, David Pereira, José Proença, and Eduardo Tovar.
Work-in-progress: a DSL for the safe deployment of runtime monitors
in cyber-physical systems. In RTSS 2020, USA 2020. IEEE, 2020.

[13] Ivan Perez, Anastasia Mavridou, Tom Pressburger, Alwyn Goodloe, and
Dimitra Giannakopoulou. Automated translation of natural language
requirements to runtime monitors. In Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 387–395. Springer International
Publishing, 2022.

[14] Ivan Perez, Anastasia Mavridou, Tom Pressburger, Alexander Will, and
Patrick J. Martin. Monitoring ros2: from requirements to autonomous
robots. 2022.

[15] Lee Pike, Sebastian Niller, and Nis Wegmann. Runtime verification
for ultra-critical systems. In International Conference on Runtime
Verification, pages 310–324. Springer, 2011.

[16] Pramila P. Shinde and Seema Shah. A review of machine learning and
deep learning applications. In ICCUBEA. IEEE, August 2018.

[17] Jan Staschulat, Ralph Lange, and Dakshina Narahari Dasari. Budget-
based real-time executor for micro-ros, 2021.

[18] George Stavrinos. ROS2 for ROS1 users. In Studies in Computational
Intelligence, pages 31–42. Springer International Publishing, August
2020.

http://www.omg.org/spec/DDS/1.4
https://www.omg.org/spec/DDS-SECURITY/1.1/
https://www.omg.org/spec/DDS-XRCE/1.0

Towards a Systematic Analysis of Timing Aspect
of Safety-Security Interactions

Elena Troubitsyna
Dept. of Computer Science

KTH – Royal Institute of Technology
Stockholm, Sweden

elenatro@kth.se

Abstract—Modern safety-critical control systems are
increasingly relying on networking to provide not only
advanced intelligent services but also safety-critical
functions. Since they often utilize standard network
protocols, the systems inherently become susceptible to
cyberattacks that can potentially jeopardize safety. In this
paper, we discuss how to systematically analyze safety-
security interactions using Data Flow Diagrams and HAZOP
and define the corresponding patterns of safety cases. Our
approach allows us not only to identify the impact of
cyberattacks on safety but also analyze whether security
control mechanism introduce acceptable from safety point of
view time overhead.
Index terms – safety; cyberattacks; safety case; security
control; real-time requirements

I. INTRODUCTION

Modern safety-critical systems become increasingly
networked and interconnected. Connectivity offers a
number of significant business and technological benefits,
such as remote diagnostics and predictive maintenance,
improved resource utilisation as well as process
optimisations. However, since the systems utilise the
standard networked protocols, they also become
susceptible to cyber threats. Cyberattacks might lead to
loss of control and situation awareness and jeopardise
system safety per se. Therefore, there is a clear need for
the techniques facilitating a systematic analysis of safety
and security interactions.

Currently safety cases are usually used to argue about
system safety. A safety case is “a structured argument,
supported by a body of evidence that provides a
convincing and valid case that a system is safe for a given
application in a given operating environment” [1]. Usually
a main strategy for constructing a safety case is to
demonstrate that all hazards associated with the system
functions are mitigated.

While safety case is inherently functionality-oriented,
security analysis is typically data-centric, i.e., it aims at
determining the impact of security attacks on the system
data flow. Hence, by using security analysis alone, it
becomes cumbersome to uncover the interactions between

safety and security, e.g., assess whether the introduced
security control mechanisms support or contradict
functional and timing safety requirements.

In this work, we aim at supporting a systematic
integrated analysis of safety-security interactions. We rely
on DFDs -- Data Flow Diagrams [2] and HAZOP --
Hazard and Operability Study [3] to analyze the impact of
not only of cyberattacks and accidental failures on safety
but also the impact of introducing security control
mechanism on safety-related timing requirements. We use
such an integrated analysis to define patterns for
fragments of safety cases that can be used to argue that
safety-security interactions do not jeopardize safety.

II. SAFETY-SECURITY INTERACTIONS IN

NETWORKED CONTROL SYSTEMS

The top-level safety goal of many safety-critical systems
is to keep some physical parameter p within the
predefined boundaries while providing the intended
system functionality.

Let p correspond to the physical value of such a
parameter. Then the safety invariant can be formulated as

p_low_threshold ≤ p≤ p_high_threshold

To achieve this goal, the system builds a model of the

controlled environment and computes the corresponding
actions. Hence, safety can be achieved if the systems’
model of the controlled environment is sufficiently close
to reality, the control algorithm is correct and the
actuation is performed according to the controller’s
commands.

A safety case is often described in the Goal Structuring
Notation [1] – a graphical notation explicitly representing
how goals (the claims about system safety) are
decomposed into subgoals until the claims can be
supported by the direct evidences. The fragment of top-
level safety case in Goal-Structuring Notation [1]
formalizing these requirements is shown in Fig.1. Here

Figure 1. Fragment of top-level safety case

rectangles depict goals, while parallelograms contain
decomposition strategies.

By creating a formal specification of the controlling
algorithm and verifying its correctness, we can
demonstrate achieving the goal G3. To justify G2, we
need to explicitly define a procedure for computing p
estimates in the presence of non-malicious and malicious
faults. To address G4, we should investigate how faults
might cause deviations in implementing of the controller
actions. This requires an analysis of system architecture.

A networked control system usually consists of several
components, where each component is a real-time control
system that follows the generic architectural pattern
shown in Fig.2.

The system behavior is cyclic. The intended
functionality is achieved by changing the state of the
actuator that influences the value of controlled parameter
based on the readings obtained by sensor. Since we
consider a networked control system, sensing and
actuation can be remote, i.e., the sensor transmits its
readings to the controller via the channel s_ c_ chan
and the actuator receives the commands from the
controller via the c_ a_ chan.

Figure 2. Generic architecture of control system

At each cycle, the system goes through the sequence of
steps represented by a data flow diagram (DFD) shown in
Fig.3. DFDs give a graphical representation of the flow of
information for a given system [3]. At each cycle, the
system alternates between the control actions and physical
process reaction and hence, it is convenient to represent
the physical process as the source and sink of the
dataflow. Rectangles depict the system components and
the communication channels that consume and produce
data attributes shown by the incoming/outgoing arrows.

.

Fig. 3. A data flow diagram

We tailor the well-known safety analysis technique
HAZOP – HAZard and OPerability Analysis [3] and
integrate it with the data flow analysis to identify the
impact of not only cyberattacks and failures on data flow,
but also the impact of the introduced security control
mechanism of safety-related timing requirements.

The analysis is performed using a set of guidewords
and attributes. The original set of guidewords includes no,
more, less, as well as, part of, reverse, other than, early,
late, before and after. The guidewords are applied to the
system attributes, which allows a team of experts to
identify the deviations that might affect safety.

The majority of the guidewords are self-explanatory.
The guidewords REVERSE/INSTEAD represent the
deviations over the discrete data types. If they are applied
to booleans then REVERSE would represent replacements
of TRUE by FALSE and vise versa; if they are applied to
sets then INSTEAD would represent replacing one
constant of the set with another (e.g., ON by OFF).

DFD shows the relationships between the system
components and the produced and consumed data flow.
We propose an interpretation of standard HAZOP
guidewords as presented in Fig. 4.

NO Data is missing
MORE/LESS Value of data increased/decreased
REVERSE/INSTEAD Substitution of intended data value to

logical opposite
EARLY/LATE Data available before/after intended

Figure 4. Interpretation of guide words

We start by selecting the data attributes and identifying
components responsible for producing or modifying the
selected attribute. Then we apply relevant HAZOP
guidewords and identify possible deviations as well as
identify the causes. Finally, we analyze the impact on
safety by performing cause-consequence analysis and
construct the corresponding fragment of safety case. An
example of application of the proposed approach is shown
in Fig. 5.

Process

p_real cmd_imp

Sensor

p_sen

Actuator

cmd_trans

Sensor-Controller channel Controller-Actuator channel
s-c-chan c-a-chan

p_in cmd

Controller

Attribute Guide-
word

Consequence Causes

Sensor
reading
p_sen

MORE/
LESS

The value p_sen is greater
or smaller than the
physical value p_real

Sensor stuck at
(high/low)
Loss of sensor precision
Tampering attack

LATE Delay in sensing process
state

Network congestion
Authentication causes
delay

Figure 5. An example of analysis applied to sensor reading

Figure 6. An example of analysis applied to controller
commands

For the deviation “The value p_sen is greater (or smaller)
than the real value of p ”, we can define the requirements
addressing the causes of this deviations as follows:
“Controlling software should check reasonableness of
received input data and use indirect data or calculated
predicted value if the received data is outside of reasonable
range.” For the deviation “Late sensing”, we can define the
requirements related to the monitoring of the network
conditions. Moreover, we should perform WCET analysis of
the authentication procedure and evaluate whether the sum of
the worst possible delay in sensing and WCET of
authentication procedure fulfil the real-time requirements of
the overall control system.
 For the deviations identified for the controller-actuator
channel, several different types of requirements could be
proposed. In case the actuator receives no command from a
controller, either it should execute a safe shutdown or, if
additional non-programmable measures are implemented to
enforce safety, maintain its previous state. Timing analysis is
required to identify the time interval during which such state
is safe to maintain. For the deviation caused by the tampering
or spoofing, secure gateway should be implemented.
However, timing analysis should be performed to establish
that the time delay does not invalidate safety requirements.
 The proposed methodology allows us to derive safety and
security requirements for controlling software and overall
system architecture. However, often such requirements are

mutually interdependent. For instance, while introducing a
secure gateway for the controller-actuator channel, we also
introduce a delay in transmitting the control commands. Such
a delay should be taken into account while calculating the
state of the actuator.

III. RELATED WORK

The problem of safety-security interactions is gaining an
attention of research community. Gran et.al [4] proposed
to adapt HAZOP to security analysis. In our work, we not
only integrate safety and security analysis but also provide
a support for identifying whether security control
mechanisms contradict timing safety requirements by
introducing safety-jeopardising delays. Young and
Leveson [5] extend STAMP to address safety concerns.
However, they approach does not support a construction
of safety cases that are widely used in current
development practice.

IV. CONCLUSIONS

In this work, we addressed the problem of an integrated
systematic analysis of safety-security interactions. We
have proposed an adaptation of HAZOP guide words to
analyse the impact of cyberattacks, faults and security
control mechanisms, such as authentication or secure
gateways on functional and timing safety requirements.
The analysis provides an input for the construction of
system safety case in a security-aware way.

References
[1] T. Kelly, R.Weaver. The goal structuring notation–a safety argument

notation. In Proceedings of the dependable systems and networks 2004 –
workshop on assurance cases.2004.

[2] P.D. Bruza and Th. P. van der Weide. The Semantics of Data Flow
Diagrams. Technical Report 89-16, University of Nijmegen, The
Netherlands, 1989.

[3] Ministry of Defence. Interim Defence Standard 00-58/1: Hazop Studies
on Systems Containing Programmable Electronics. In Directorate of
Standardization, 1994.

[4] Gran B.A. Winther R., Johnsen OA. Security Assessments of Safety
Critical Systems Using HAZOPs. In Computer Safety, Reliability and
Security. SAFECOMP 2001, volume 2187 of LNCS, pages 24–39.
Springer, 2001.

[5] W. Young and N. G. Leveson. An Integrated Approach to Safety
and Security Based on Systems Theory. Commun. ACM, 57(2):31–
35, 2014.

[6] A. Iliasov, A. Romanovsky, L. Laibinis, E. Troubitsyna, T. Latvala.
Augmenting Event-B modelling with real-time verification. In Proc. of
FormSERA: 2012 First International Workshop on Formal Methods in
Software Engineering: Rigorous and Agile Approaches, pp. 51-57,
IEEE.

[7] L. Laibinis, B. Byholm, I. Pereverzeva, E. Troubitsyna, K. E. Tan, I.
Porres. Integrating Event-B Modelling and Discrete-Event Simulation
to Analyse Resilience of Data Stores in the Cloud. In Proc. of IFM
2014, LNCS, 8739, pp. 103-119, Springer, 2014.

[8] A.Iliasov, E.Troubitsyna, L. Laibinis, A. Romanovsky, K.
Varpaaniemi, D. Ilic, T. Latvala: Supporting reuse in event B
development: modularisation approach. In: M.Frappier, U. Gläasser,
S.Khurshid, R.Laleau, S.Reeves. (eds.) ABZ 2010. LNCS, vol. 5977,
pp. 174–188. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11811-1 14

[9] A,Iliasov, E.Troubitsyna, L. Laibinis, A. Romanovsky, K.
Varpaaniemi, P. Väisänen, D. Ilic, T. Latvala: Developing mode-rich

Attribute

Guidewor
d

Consequence Causes

cmd_trans NO No command
received by the
actuator

DOS attack on
controller-actuator
channel
Omission channel
failure

INSTEAD Actuator receives
opposite command

Spoofing controller
identity
Tampering with
channel data

LATE Delay in transmission Network congestion
Authentication causes
delay

satellite software by refinement in Event-B. Sci. Comput. Program.
78(7), 884–905 (2013)

[10] LLaibinis, E.Troubitsyna: A contract-based approach to ensuring
component interoperability in Event-B. In: Petre, L., Sekerinski, E.
(eds.) From Action Systems to Distributed Systems - The Refinement
Approach, pp. 81–96. Chapman and Hall/CRC (2016)

[11] I.Rauf, E. Troubitsyna: Generating cloud monitors from models to
secure clouds. In: DSN 2018. IEEE Computer Society (2018)

[12] E. Troubitsyna, L.Laibinis, I.Pereverzeva, T. Kuismin, D.Ilic,
T.Latvala: Towards security-explicit formal modelling of safety-
critical systems. In: A.Skavhaug, J.Guiochet, F.Bitsch (eds.)
SAFECOMP 2016. LNCS, vol. 9922, pp. 213–225. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45477-1 17

[13] E.Troubitsyna, I.Vistbakka: Deriving and formalising safety and
security requirements for control systems. In: Gallina, B., Skavhaug,
A., Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol. 11093, pp. 107–
122. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99130-6 8

[14] I.Vistbakka, E.Troubitsyna: Towards a formal approach to analysing
security of safety-critical systems. In: EDCC 2018, pp. 182–189.
Computer Society (2018)

[15] I.Vistbakka, E.Troubitsyna, E.: Pattern-based formal approach to
analyse security and safety of control systems. In: Papadopoulos, Y.,
Aslansefat, K., Katsaros, P.,Bozzano, M. (eds.) IMBSA 2019. LNCS,
vol. 11842, pp. 363–378. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-32872-6 24

Real-Time Byzantine Resilient Power Grid
Infrastructure: Evaluation and Trade-offs

Sahiti Bommareddy, Maher Khan, David J Sebastian Cardenas, Carl Miller,
Christopher Bonebrake, Yair Amir, and Amy Babay

Department of Computer Science, Johns Hopkins University — {sahiti, yairamir}@cs.jhu.edu
School of Computing and Information, University of Pittsburgh — {maherkhan, babay}@pitt.edu

Pacific Northwest National Labs (PNNL) — {d.sebastiancardenas, carl.miller, christopher.bonebrake}@pnnl.gov

Abstract—Increasing threats to power grid infrastructure are
driving the need to build Byzantine-resilient systems that can
continue to operate correctly despite failures and attacks. How-
ever, the real-time requirements of power grid infrastructure call
for a more rigorous evaluation of Byzantine resilient systems than
the traditional evaluations performed in the context of standard
IT applications. We discuss these requirements, and the potential
of commercial-off-the-shelf and open source solutions to support
real-time resilient systems.

I. INTRODUCTION

The rising number of cyberattacks against critical infrastruc-
ture reinforces the need to build Byzantine resilient power grid
infrastructure [1], [2]. While Byzantine resilient techniques
have been developed in the context of IT applications [3],
applying them in the power grid domain brings the need to
consider strict real-time requirements. Supervisory Control and
Data Acquisition (SCADA) operations in power grid control
centers typically require latency of 100-200ms [4], [5], and the
requirements become much more stringent as we move from
control centers to substations that carry out critical protection
functions, due to the physical properties of the system.

During a fault condition, currents flowing into the faulted
zone experience a rapid surge (many orders of magnitude
greater than during normal conditions). This sudden increase
in current is capable of damaging grid equipment in just a few
electrical cycles (in the US, a cycle is 16.667ms). Therefore,
according to industry and standardization bodies (IEEE, IEC),
fault identification must occur within a quarter power cycle,
i.e. 4.167ms [4].

Figure 1 shows a fault condition, where the current swelling
behavior can be observed. In a well-designed system, a quick
relay response enables the circuit breaker to have more time
to safely dissipate the energy present within the system. Due
to the amount of energy being released, circuit breakers can
take 1-3 cycles to fully interrupt the fault/arcing current,
drastically reducing the time to fault identification. If this
fault is not identified quickly, damage to physical equipment,
and cascading escalations to otherwise healthy systems may
be unavoidable. Damaged grid equipment like the 345kV
transformer can cost millions of dollars and have lengthy
replacement process in the orders of years. Therefore, meeting
the 4.167ms requirement is critical.

Most existing Byzantine resilient techniques are not de-
signed for or evaluated under these strict real-time require-
ments. Hence, the first goal of our work is to investigate
the type of evaluation needed to provide confidence that
Byzantine-resilient systems can meet the real-time require-
ments of power grid infrastructure in practice.

The second goal of our work is to use the rigorous evalua-
tion strategy we propose to explore new deployment trade-offs.
In particular, we investigate the potential of commercial-off-
the-shelf (COTS) and open-source solutions to support real-
time Byzantine-resilient infrastructure. Compared to special-
ized real-time systems, COTS and open-source systems are
less expensive, easier to deploy and manage, and easier to
audit [6], making them an attractive option.

II. LANDSCAPE OF BFT SMR EVALUATION

Byzantine Fault Tolerant State Machine Replication (BFT
SMR) is a classical approach to tolerate intrusions in net-
worked systems. Initial works on BFT SMR focused on
proving that the techniques are correct and practical for IT
applications like file systems and storage [3], [7]. As the
research matured, performance became a key focus [8]–[11],
but most works focused on normal-case throughput and scaling
evaluations. Some of these works expanded evaluation to
include malicious behavior [8], [11]–[14], and even designed
protocols to maintain performance under attack [12], [15],
[16], but their empirical evaluations are still based on IT
domain requirements. Even in more recent BFT SMR pro-
tocols designed for permissioned blockchains, the focus of
evaluations remains on throughput scalability and blockchain
requirements [17]–[19]. Frameworks have been proposed to
evaluate and compare the performance of BFT algorithms, but
they generally focus on quantifying performance analytically,
based on the number of cryptography operations or messages
exchanged, rather than on empirical evaluation [20], [21].

III. EVALUATING BYZANTINE-RESILIENT POWER GRID
INFRASTRUCTURE

To gain confidence that a system can meet real-time require-
ments in practice, it is necessary to (1) consider the worst-
case number of constraint violations, not only average latency,
(2) evaluate the most demanding operating conditions that the
system is expected to work under, including all failure/attack

Fig. 1. Fault detection timing requirements in substation

TABLE I
PERFORMANCE IN DIFFERENT OPERATING CONDITIONS WITH FOUR RELAY NODES (f = 1, k = 1)

Normal Kernel (microseconds) Real-Time Kernel (microseconds)
Operating Condition Minimum Average Maximum Minimum Average Maximum
Fault-Free (Normal) 1723 2187 3323 1637 1950 3596
Fail-Stop Fault or Proactive Recovery 1871 2260 3326 1608 1976 3726
Fail-Stop Fault and Proactive Recovery 1912 2328 7617 (8∗) 1750 2015 3996
Byzantine Fault 1737 2227 3785 1665 1984 4002
Byzantine Fault and Proactive Recovery 1867 2313 7699 (6∗) 1767 2019 4101

∗ The count of actions that crossed 4.167 milliseconds (out of 1 million total actions)

cases, (3) evaluate each operating condition over a sufficiently
long period of time, and (4) use a realistic testbed.

Our Spire intrusion-tolerant SCADA system took a step
towards evaluating real-time requirements at the control-center
level [22]. It used an extensive 30-hour evaluation on a real
wide-area network for the normal-case, and shorter under-
attack evaluations in a cluster environment with emulated
wide-area latencies, analyzing how many updates failed to
meet the target latency of 100-200ms [22].

However, at the substation level, even an evaluation like
the one in [22] is not sufficient, as shown by our work on
Spire for the Substation, a real-time Byzantine-resilient system
for substation protection [23]. In Spire for the Substation, we
developed two Byzantine-resilient protocols: Arbiter Protocol
and Peer Protocol. Both use four relay nodes to simultaneously
tolerate one Byzantine relay and one proactive recovery but
have different deployment tradeoffs [23]. In that work, we rig-
orously evaluated both protocols, running each failure/attack
case for 24 hours, processing 1 million actions. That evaluation
showed that while the Peer Protocol has a smaller attack
surface and can seamlessly integrate into the substation, its
tradeoff is a slight risk of not meeting the latency requirement

under the most demanding attack scenarios.
Figure 6 illustrates the importance of this extensive evalu-

ation. Running the Peer Protocol for 1 million actions with
a simultaneous Byzantine fault and proactive recovery, we
see that 6 actions cross the 4.167ms threshold. While an
evaluation with 100,000 under-attack actions (taking hours)
would be significantly more extensive than those of many BFT
systems (see Section II), it would not necessarily show these
constraint violations. For example, in Figure 6, in the slices
from [320000, 520000], [620000, 720000], [720000, 820000],
[820000, 920000], we see intervals of 100,000 actions or more
with none crossing 4.167ms. The 1-million-action evaluation
is needed for an accurate view of the protocol’s performance.

Given the Peer Protocol’s tradeoff of better deployment
properties vs the risk of not meeting real-time requirements,
one possibility is to explore specialized real-time hardware
and/or software. However, maintaining a COTS hardware and
open-source software environment simplifies system manage-
ment and maintenance [24], [25]. Therefore, we explore a
different trade-off, evaluating whether the Linux real-time
kernel option can achieve the needed performance.

Real-time Kernel Evaluation. We deployed Spire for the

Fig. 2. Normal Kernel: Fail-Stop Fault Fig. 3. Real-Time Kernel: Fail-Stop Fault

Fig. 4. Normal Kernel: Fail-Stop Fault with Proactive Recovery Fig. 5. Real-Time Kernel: Fail-Stop Fault with Proactive Recovery

Fig. 6. Normal Kernel: Byzantine Fault with Proactive Recovery Fig. 7. Real-Time Kernel: Byzantine Fault with Proactive Recovery

Substation (Peer Protocol) in our testbed with four Intel
Xenon E3 servers with 16GB RAM running CentOS 8 and
connected by a 1Gbps network1. The deployed system consists
of four relay nodes and therefore can simultaneously tolerate

1This is a different testbed than the one in [23]. Although the results
show minor quantitative differences between the two testbeds, their qualitative
profiles are the same.

up to one faulty relay node (fail-stop or Byzantine) and up
to one additional relay node undergoing proactive recovery.
Using the same 24-hour, 1-million-action evaluation strategy
described above, we compared the system using the normal
Linux kernel, and with the real-time kernel patch and tuning
on the same machines. Table I reports the minimum, average
and maximum latency in microseconds for all five operating

conditions supported by the threat model for both the normal
and real-time kernels.

While Table I summarizes the results, Figures 4, 5, 6
and 7 focus on the most demanding scenarios: Fail-Stop
fault with simultaneous proactive recovery and Byzantine
fault with simultaneous proactive recovery. In the former,
one of the relay nodes is unavailable due to a fail-stop fault
while, simultaneously, an additional relay node is undergoing
proactive recovery. In the latter, the Byzantine relay node
performs two simultaneous attacks for each action. First, the
Byzantine relay node sends a corrupt message that will not
be useful. Second, the Byzantine relay node performs a short
intermittent denial of service attack on the other relay nodes
to consume their network and computational resources further.
In both of these operating conditions, the proactive recovery
node is not rejuvenated for the entire test duration, so there
are only two correct relay nodes available throughout the test.
We refer to this condition with only two correct relay nodes
available as non-optionality condition.

Under non-optionality, meeting the latency requirement is
particularly tough. With only two nodes available, a ran-
dom delay on either node (e.g., from network delays, kernel
scheduling, or even effects of a Byzantine node’s actions)
would be reflected in the end-to-end latency. Compare this
situation to Fail-Stop fault condition in which three nodes are
available. In such a case, delays would have to occur on two
of the three nodes independently and at the same time in order
to be reflected in the final latency. For both the normal and
real-time kernel, comparison of their Fail-Stop fault condition
performance (Figures 2 & 3) to that of Fail-Stop fault with
simultaneous proactive recovery condition (Figures 4 & 5)
exemplify this effect i.e., Figure 2 vs Figure 4 and Figure 3
vs Figure 5.

The normal linux kernel is optimized for throughput and
fair scheduling of tasks, while the real-time kernel is opti-
mized to maintain low latency, consistent response time and
determinism. These characteristics are particularly important
in the conditions with non-optionality where any random delay
impacts the system performance. Due to its features, in real-
time kernel benchmarks, when we use high priority and FIFO
scheduling policy, all actions meet the 4.167ms requirement,
and average latency is reduced by about 300 microseconds
across all operating conditions (Table I). These observations
can also be immediately noted by comparing benchmark
plots of normal kernel to those of real-time kernel in the
three operating conditions shown: Fail-Stop fault (Figure 2 vs
Figure 3), Fail-Stop fault with simultaneous proactive recovery
(Figure 4 vs Figure 5), and Byzantine fault with simultaneous
proactive recovery (Figure 6 vs Figure 7) .

The determinism and latency stability of real-time kernel
offers a new deployment option for real-time Byzantine re-
silient critical infrastructure, enabling us to get the benefits of
the Peer Protocol while meeting real-time requirements.

COTS and Open Source Discussion. The real-time kernel
option enables us to remain in the more flexible open-source
realm while still meeting real-time requirements, which is of

increasing interest in the power industry. The protective relay
is a relatively expensive device (tens of thousands of dollars).
Each substation has multiple relays employed for protection
schemes. There are hundreds to thousands of substations
across a country (e.g., U.S has over 55,000 substations).
Hence, to reduce cost, there is a high incentive to limit the
additional relays needed in a Byzantine resilient scheme.

In a deployment, each relay node discussed above consists
of a protective relay device directly connected to the Spire
for the substation harness. Protective relays are typically
specialized hardware relays with proprietary software imple-
menting the protection functions. As we need four relays in
the four relay nodes to tolerate an intrusion, the system will
be costly. To reduce the cost, we experimented by substituting
a hardware protective relay in one of the relay nodes with
a software relay. The software relay is implemented on an
Intel NUC (CentOS) with real-time kernel to perform the
same protection function as hardware protective relays. In fact,
the system successfully underwent red team experiments with
three hardware relays (from GE, Siemens and Hitachi Energy)
and a single software relay (on a different test bed at Pacific
Northwest National Laboratory). However, the implications of
using a real-time kernel on other processes running on the
nodes, overall throughput and the deployment environment
needs further investigation.

IV. CONCLUSION

We have presented the need for rigorous evaluation of
Byzantine-resilient systems with respect to the real-time re-
quirements of critical infrastructure. We also investigated the
potential of COTS and open source systems to support real-
time Byzantine resilient power grid infrastructure.

ACKNOWLEDGEMENT

This work was supported in part by the Department of
Energy (DOE) Offices of Cybersecurity, Energy Security, and
Emergency Response (CESER); Electricity (OE); and Nuclear
Energy (NE) under the Grid Modernization Laboratory Con-
sortium (GMLC) Topic 5.1.4 – Cyber-Physical Security. Its
contents are solely the responsibility of the authors and do
not represent the official view of DOE.

This work was also supported in part by the DoD Strategic
Environmental Research and Development Program (SERDP)
grant RC20-1138.

Yair Amir is a co-founder and member of and holds
equity in Spread Concepts LLC. The results discussed in this
paper could affect the value of Spread Concepts LLC. This
arrangement has been reviewed and approved by the Johns
Hopkins University in accordance with its conflict of interest
policies.

REFERENCES

[1] “Cost of a data breach 2022.” [Online]. Available:
https://www.ibm.com/reports/data-breach

[2] T. Group, “2022 thales data threat report.” [Online]. Available:
https://cpl.thalesgroup.com/critical-infrastructure-data-threat-report

[3] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OsDI, vol. 99, no. 1999, 1999, pp. 173–186.

[4] IEEE, “Ieee standard communication delivery time performance require-
ments for electric power substation automation,” IEEE Std 1646-2004,
pp. 1–24, 2005.

[5] J. Deshpande, A. Locke, and M. Madden, “Smart choices for the smart
grid,” Alcatel-Lucent Technolgy White Paper, 2011.

[6] R. Hat, “The state of enterprise open source,” 2021.
[7] L. Lamport, “Paxos made simple,” ACM SIGACT News (Distributed

Computing Column) 32, 4 (Whole Number 121, December 2001), pp.
51–58, 2001.

[8] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J.
Wylie, “Fault-scalable byzantine fault-tolerant services,” ACM SIGOPS
Operating Systems Review, vol. 39, no. 5, pp. 59–74, 2005.

[9] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira, “Hq
replication: A hybrid quorum protocol for byzantine fault tolerance,”
in Proceedings of the 7th symposium on Operating systems design and
implementation, 2006, pp. 177–190.

[10] P.-L. Aublin, R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić,
“The next 700 bft protocols,” ACM Transactions on Computer Systems
(TOCS), vol. 32, no. 4, pp. 1–45, 2015.

[11] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
speculative byzantine fault tolerance,” in Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems principles, 2007, pp.
45–58.

[12] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Prime: Byzantine replication
under attack,” IEEE transactions on dependable and secure computing,
vol. 8, no. 4, pp. 564–577, 2010.

[13] P.-L. Aublin, S. B. Mokhtar, and V. Quéma, “Rbft: Redundant byzan-
tine fault tolerance,” in 2013 IEEE 33rd International Conference on
Distributed Computing Systems. IEEE, 2013, pp. 297–306.

[14] A. Bessani, J. Sousa, and E. E. Alchieri, “State machine replication for
the masses with bft-smart,” in 2014 44th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks. IEEE, 2014,
pp. 355–362.

[15] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and M. Marchetti,
“Making byzantine fault tolerant systems tolerate byzantine faults.” in
NSDI, vol. 9, 2009, pp. 153–168.

[16] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “Spin one’s
wheels? byzantine fault tolerance with a spinning primary,” in 2009 28th
IEEE International Symposium on Reliable Distributed Systems. IEEE,
2009, pp. 135–144.

[17] A. Bessani, J. Sousa, and M. Vukolić, “A byzantine fault-tolerant
ordering service for the hyperledger fabric blockchain platform,” in
Proceedings of the 1st workshop on scalable and resilient infrastructures
for distributed ledgers, 2017, pp. 1–2.

[18] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of bft protocols,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 31–42.

[19] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hot-
stuff: Bft consensus with linearity and responsiveness,” in Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing,
2019, pp. 347–356.

[20] J. R. Clavin, Y. Huang, X. Wang, P. M. Prakash, S. Duan, J. Wang,
and S. Peisert, “A framework for evaluating bft,” in 2021 IEEE 27th
International Conference on Parallel and Distributed Systems (ICPADS).
IEEE, 2021, pp. 193–200.

[21] D. Gupta, L. Perronne, and S. Bouchenak, “Bft-bench: Towards a prac-
tical evaluation of robustness and effectiveness of bft protocols,” in IFIP
International Conference on Distributed Applications and Interoperable
Systems. Springer, 2016, pp. 115–128.

[22] A. Babay, T. Tantillo, T. Aron, M. Platania, and Y. Amir, “Network-
attack-resilient intrusion-tolerant scada for the power grid,” in 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 2018, pp. 255–266.

[23] S. Bommareddy, D. Qian, C. Bonebrake, P. Skare, and Y. Amir,
“Real-time byzantine resilience for power grid substations,” in 41st
International Symposium on Reliable Distributed Systems, 2022, pp.
213–224.

[24] B. Fitzgerald, “The transformation of open source software,” MIS
quarterly, pp. 587–598, 2006.

[25] “S.4913 - 117th congress (2021-2022): Securing open
source software act of 2022,” accessed: 2022-9-30.
[Online]. Available: https://www.govinfo.gov/content/pkg/BILLS-
117s4913is/pdf/BILLS-117s4913is.pdf

	cover
	tpc_members
	welcome
	ERSA22_paper_6710
	Introduction
	System Model
	Fixed-Priority Scheduling
	EDF Scheduling
	Best-case Response Times
	Summary & Discussion
	References

	ERSA22_paper_5935
	ERSA22_paper_6678
	I Introduction
	II Models as Explanations
	II-A Decomposition
	II-B Model Refinement and Instantiation
	II-C Model Validation

	III Proofs as Explanations
	III-A System Invariants and Winning Strategies
	III-B Proofs at Different Levels of Abstraction

	IV Discussion and Open Challenges
	References

	ERSA22_paper_8705
	Explainability_of_Safety_and_Performance_in_Autonomous_Systems
	ERSA22_paper_1274
	Introduction
	CardioWheel Use Case
	MARS and Its Associated Toolset
	Related Work and Conclusion
	References

	ERSA22_paper_2670
	ERSA22_paper_7201

