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Making Markets via Smart Contracts

• How to design a “centralized” exchange on a distributed ledger?

◦ Key friction: verifiable communications are (typically) costly

◦ Suggests limit order books may be impractical

• Existing solution: ad hoc pricing functions called automated market makers

• Our research: establish a framework to evaluate how AMMs support liquidity
provision and exchange

Routledge, Shen & Zetlin-Jones AMM Exchange 1



Making Markets via Smart Contracts

• An Automated Market Maker is a Smart Contract

◦ Smart contract⇐ deterministic, verifiable script on a blockchain

• AMM Smart Contract has two key functions:

1. Liquidity Provision Rules

- LPs deposit or withdraw a portfolio of tokens:

- Deposit (Mint): (+ea,+eb) or Withdraw (Burn): (−ea,−eb)

2. Liquidity Taking Rules:

- LTs swap tokens at some pre-specified schedule

- e.g. Swap a for b: (+qa,−qb)
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Making Markets via Smart Contracts

• Liquidity Taking Rules:

◦ Swap a for b: (+qa,−qb)

◦ Rule implemented as function embedded in smart contract

◦ Price schedule defined by “Constant Product Rule”:

(ea + qa)(eb − qb) = eaeb

◦ Slope of schedule defines implicit relative price of token b for a

Routledge, Shen & Zetlin-Jones AMM Exchange 4



Making Markets via Smart Contracts

• Questions

◦ How should LPs choose deposits on AMMs?

◦ How does design of the price schedule impact gains to trade between LPs and LTs?

• This paper:

◦ Develop simple, tractable economic framework to answer these questions

◦ Findings:

- Adverse selection distorts intermediation quantities rather than prices

- Typically suboptimal for LPs to deposit tokens in equal values as conventionally suggested

- Efficiency of price function: trade-off between volume and adverse selection
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Related Literature

• AMM Price “discovery”

◦ Do AMM prices reflect “true” prices?
◦ Angeris and Chitra (2020), Angeris et al (2021), Aoyagi (2022)

• AMM Liquidity

◦ What are the costs of creating AMM liquidity?
◦ Capponi and Jia (2021), Milionis et al (2022), Hasbrouck, Rivera, and Saleh (2022), Lehar

and Parlour (2023), Fabi and Prat (2023)

• AMM Design

◦ What is the optimal price function?
◦ Park (2022), Bergault et al (2023), Goyal et al (2023), Milionis, Moallemi, and Roughgarden

(2023)
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Active Liquidity Management



Liquidity Providers

• Industry/Literature defines liquidity providers as passive

1. Interact with contract infrequently

2. Only use Deposit/Withdraw functions

• What does the data say?

token b

token a

mint/burnswap

swap

1
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Liquidity Providers are Infrequent but “Active”

• LPs have few interactions with contract relative to non-LPs

• LPs do use both functionalities

+ LP actions impact exchange prices
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Liquidity Providers are Infrequent but “Active”

• By address: some LPs use Swap Functions, some do not

• Among active LPs, swaps make up large portion of activity
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Liquidity Providers are Heterogeneous

• Some LP addresses are passive and some are active

• Our paper addresses behavior of active LPs
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Environment

• 2-by-2 economy (2 agents, 2 assets) in finite time

• Two risk-neutral agents:

◦ Alice (LP) owns endowments (Ea, Eb) of a pair of tokens a and b

◦ Bob (LT) may trade using the AMM (large number of “Bob”s)

• Timing in each period

1. LP deposits tokens with exchange

2. Public information about assets realized

3. LT trades at exchange
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Assets and Information

• Tokens i ∈ {a, b} yield terminal value exp(di,T) where

di,T =
T

∑
t=0

yi,t + εi

◦ Interpret exp(di,T) as future “price” or service flow from the token

◦ Residual independent uncertainty realized at T: E[exp(εi)] = 1

◦ Public information yi,t arrives each period:

- yi,t = 0 with prob π̂, yi,t = −∆l or +∆h with prob (1− π̂)/2

- Beginning of period beliefs

µi,t = E[exp(di,T)|y0, . . . , yt−1] = Et[exp(di,T)]
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Information, Assets, and Preferences

• LP makes deposits with expected valuation µi,t = Et[exp(di,T)]

• LT trades with expected valuation µ̂i,t = Et+1[exp(di,T)] exp(ηi)
(ηi is a preference shock)

+ Expositional assumption

- If yi,t ∈ {−∆l, ∆h} (for some i) then ηa = ηb = 0

◦ Information event (yi,t ∈ {−∆l, ∆h} some i)⇒ pure informed trading event

◦ No information (ya,t = yb,t = 0)⇒ pure taste/noise trading event

◦ LP trades-off losses from informed trading with gains from noise trading
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LT’s Problem

• Bob/LT faces a price schedule and maximizes expected dividends:

max
qa,qb
−µ̂a,tqa + µ̂b,tqb

subject to
(ea,t + qa)(eb,t − qb) = ea,teb,t

• Optimality implies
µ̂b,t

µ̂a,t
=

ea,t + qa

eb,t − qb
≡ xa,t

xb,t

• Impose this behavior and examine Alice/LP’s optimal choice of deposits

+ Alice/LP’s ex-post allocation satisfies:

xa,txb,t = ea,teb,t, µ̂a,txa,t = µ̂b,txb,t
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LP’s Dynamic Problem

• Assume probability of pure noise trade event is π and pure informed trade is 1− π

VT(Ea, Eb,~µT) = µa,TEa + µb,TEb

Vt(Ea, Eb,~µt) = max
ea,eb

πEVt+1(E′a, E′b,~µt+1) + (1− π)EVt+1(E′a, E′b,~µt+1)

with E′a = Ea − ea + xa Accounting
E′b = Eb − eb + xb

µt+1 = µt if yt = 0 Beliefs
µt+1 = µ̂t if yt 6= 0

eaeb = xaxb Constant Product
µ̂a,txa = µ̂b,txb Bob′s optimality

• Rest of talk focus on one-shot game (drop t subscripts)
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LP’s Problem

• LP’s one-shot problem

max
ea,eb

π ∑
i

µiE[xi − ei] + (1− π)∑
i

E[µ̂i(xi − ei)]

subject to

xaxb = eaeb, µ̂axa = µ̂bxb, 0 ≤ ej ≤ Ej

◦ LPs deposit choice influences shape and position of pricing curve
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AMM Economics in a Graph

• CPMM implicitly defines relative price of tokens for LTs
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AMM Economics in a Graph

• Bob (LT) trades if relative valuation is different from CPMM implicit relative price
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AMM Economics in a Graph

• Bob (LT) trades if relative valuation is different from CPMM implicit relative price

Routledge, Shen & Zetlin-Jones AMM Exchange 18



AMM Economics in a Graph

• Alice (LP) gains if relative valuation close to initial CPMM implicit relative price
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AMM Economics in a Graph

• Alice (LP) loses if (ex post) relative valuation is similar to that of Bob (LT)
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LP’s Problem

• Re-write LP’s problem

max
ea,eb

[πγU + (1− π)γI]
√

µaea
√

µbeb − (
√

µaea −
√

µbeb)
2

where
◦ γU, γI functions of distributions of belief dispersion H(µi/µ̂i)

◦ γU > 0 and γI < 0

◦ Gains to LP only when π is large enough

◦ When gains to LP, deviation from equal-value deposit yields first order gains and second
order losses

◦ Revision to conventional wisdom:

+ “LPs should deposit in equal values only if no gains to trade in market”
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LP’s Problem: A Simple Rule

• With only uninformed trading, easy for LP to guarantee no losses

• Tangency and constant product implies µaea = µbeb

• Small deviations yield second order losses around the deposit point but first order
gains for larger trades

Routledge, Shen & Zetlin-Jones AMM Exchange 22



LP’s Problem: A Simple Rule

• With only uninformed trading, easy for LP to guarantee no losses

• Tangency and constant product implies µaea = µbeb

• Small deviations yield second order losses around the deposit point but first order
gains for larger trades

Routledge, Shen & Zetlin-Jones AMM Exchange 22



LP’s Problem: A Simple Rule

• With only uninformed trading, easy for LP to guarantee no losses

• Tangency and constant product implies µaea = µbeb

• Small deviations yield second order losses around the deposit point but first order
gains for larger trades

Routledge, Shen & Zetlin-Jones AMM Exchange 22



LP’s Problem: A Simple Rule

• With only uninformed trading, easy for LP to guarantee no losses

• Tangency and constant product implies µaea = µbeb

• Small deviations yield second order losses around the deposit point but first order
gains for larger trades

Routledge, Shen & Zetlin-Jones AMM Exchange 22



Optimal Liquidity Provision

Proposition (Optimal Liquidity)
The optimal liquidity deposit with π proportion of uninformed trading and 1− π
proportion of informed trading satisfies

e∗a = Ea, e∗b = min

{(
π

2

(
EU[ω] + EU

[
1
ω

])
+ (1− π)EI[ψ]

)2 µa

µb
Ea, Eb

}
, if µaEa ≤ µbEb

and

e∗a = min

{(
π

2

(
EU[ω] + EU

[
1
ω

])
+ (1− π)EI[ψ]

)2 µb
µa

Eb, Ea

}
, e∗b = Eb, if µaEa > µbEb

• Linear preferences⇒ expect (and find) corner solutions
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Optimal Liquidity: Comparative Statics

1. Change in Endowments: Value ratio µaea/µbeb rises with Ea

2. Change in Informed Trading: Value ratio µaea/µbeb closer to 1 with more informed trade

+ Adverse Selection distorts intermediation quantities
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Efficiency



Implications for AMM Design

• How should the price schedule be designed?

• Framework offers a new tradeoff:

◦ Convexity hinders trading volume and reduces realized gains to trade

◦ Convexity offers protection from informed trading
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Local Convexity of the Price Function

• Consider a class of of price functions that differ by local convexity:

(ea + (1− τ)qa)(eb − (1− τ)qb) = eaeb

• Re-write in ex post portfolios for LP

((1− τ)xa + τea)((1− τ)xb − τeb) = eaeb

Lemma
If LT’s beliefs are bounded, there exists δ > 0 such that for all τ ≤ δ, the LP’s optimal
deposit does not vary with τ.
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Local Convexity of the Price Function

• Increasing τ lowers convexity locally (more linear) around LP’s deposit choice
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Local Convexity of the Price Function

Proposition (Efficient Price Design)
If the LT’s beliefs µ̂i are bounded, then for any convex, smoothly decreasing price function
G(·), there exists δ > 0 such that for τ < δ the price function implicitly defined by

(1− τ) y + τeb = G((1− τ) x + τea)

increases both the LP’s and the LT’s expected returns proportionally by τ
1−τ .

• Convex prices limit trade

• If liquidity provision profitable with convex prices, increasing trade is profitable

+ A small reduction in (local) convexity raises market efficiency
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Global Convexity of the Price Function

• Claim: If “extreme” beliefs possible, reducing local convexity is not always optimal

• Intuition:

◦ Reducing local convexity promotes more (extensive) trading volume (volume effect)

◦ Reducing local convexity implies lower prices for extreme trades (price effect)

◦ At globally linear prices, price effect dominates, reduces profits

- Easy to show using piece-wise linear approximation to the price function

◦ Adverse selection strengthens this results

+ Globally linear prices are not efficient
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Global Convexity of the Price Function

• Consider how reducing local convexity (around (ea, eb)) impacts profits at the boundary
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Global Convexity of the Price Function

• Let −ph be the slope of the price function for xa < ea

• Linear pricing⇒ LTs trade to the boundary if µ̂a/µa > ph

• Marginal effect on profits from reducing |ph|:

◦ Reduces prices for all uninformed LTs who trade: −[1− F(ph)]

◦ Increases volume with uninformed LTs: +(ph − 1)f (ph)

◦ Reduces prices for all informed LTs who trade: −[1− F(ph)]

• Net effect strictly negative as ph → 1

−[(1− F(ph))− π((ph − 1)f (ph)]

+ Globally linear prices are not efficient
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Wrap Up



To do

• Exploring consequences of CPMM for allocation and gains to trade

• Extending analysis to dynamic framework

• Connecting model gains to trade to empirics from existing AMMs

• Use framework to conduct Robust Mechanism Design for AMMs
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