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Abstract

We re-examine the ability of teams to credibly self-impose group punishments and

prevent free-riding when individual inputs are unobservable. Holmström (1982) shows

that group punishments are not credible in static games. We formulate self-imposed

group punishments as performance under-reporting by the team, and we ask whether

the team can credibly under-report in a repeated game. We develop simple strategies

that sustain under-reporting, and show that the threat of under-reporting improves wel-

fare only if team members’ preferences between shirking and team output consumption

are non-separable. Our results suggest that self-assessments can replace increased man-

agerial monitoring and mitigate free-riding in remote work environments.
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1 Introduction

Teams exist in many economic settings, ranging from teams of individuals working together

in clubs or firms, to teams of companies in the form of cartels and lobby groups, to teams of

nations in the form of political alliances and economic unions. In each of these settings, teams

aim to improve outcomes by coordinating efforts across members and are often successful

in doing so. Organizing as a team, however, may also introduce moral hazard problems,

especially when team outcomes are shared and individual effort is not perfectly observed

(Alchian and Demsetz, 1972; Holmström, 1982).

In static environments of team production, Holmström (1982) shows that an effective way

to alleviate moral hazard problems is to rely on an outsider who, following individual devia-

tions, punishes the entire team by taking away some share of the team’s output. Holmström

argues that the intervention of this outsider is also necessary to implement such punish-

ments in a repeated environment, as the team might not want to enforce group punishments

once team production outcomes are realized: “There is a problem [...] in enforcing such group

penalties if they are are self-imposed by the worker team. [...] Ex post it is not in the interest of any

of the team members to waste some of the outcome. But if it is expected that penalties will not be

enforced, we are back in the situation with budget-balancing, and the free-rider problem reappears."

In this paper, we ask if and under what conditions outsiders are truly needed to enforce

group punishments in a repeated context. Specifically, we ask whether the ability of individ-

ual team members to punish other team members in the future enables the team to enforce

group punishments which occur after aggregate outcomes are realized but before the realiza-

tion of individual payoffs in the current period. We call such within-the-period punishments

static group punishments.

We fix ideas with a concrete and relevant example. We consider a team where individ-

uals “work-from-home” (WFH), so that individual efforts are unobservable by the team’s

manager and by other team members.1 In this setting, management may ask the team to

1See Jensen, Lyons, Chebelyon, Le Bras, and Gomes (2020) for a discussion of the additional frictions present
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submit a self-reported assessment of the team’s joint effort, and condition individual wages

on observable team outcomes as well as on this report.2 Our paper asks if and under what

conditions the team will credibly commit to produce a low self-reported assessment to pun-

ish free-riding deviations by its members. Our main result shows that the team can enforce

static group punishments (i.e., under-report) and the threat of under-reporting is welfare

enhancing only if team output and private effort are not separable in producers’ utility.

We start our analysis in a repeated team production model with imperfect input observ-

ability closely resembling Holmström (1982). In each period, different team members, or

agents, exert an unobservable amount of effort for the production of team output. Following

our WFH example, the team may have more information about the true team output than

the manager, and can send a self-reported assessment of the team’s own output after observ-

ing its true realization. When management offers a wage that is (weakly) increasing in the

team’s self-reported assessment, we interpret a self-assessment below the true output as a

static group punishment. In practice, a low self-reported assessment effectively corresponds

to the team asking for a lower wage than originally agreed-upon with the manager.

Just as individual team members cannot commit to a given effort profile, the team cannot

commit to a long-term reporting strategy. Instead, the team’s reporting strategy maximizes

the team’s static income (given the wage scheme put in place by the manager), plus the

sum of future discounted stage-game payoffs of all agents. Absent commitment, a threat of

under-reporting that would reduce static income if implemented must be sustained through

dynamic incentives. The central question of our paper is when such sustainable threats

strictly improve the outcomes attainable by the team.

In our environment, since self-reporting occurs sequentially after individuals choose their

private actions, our game fits the definition of a repeated extensive form game. Mailath,

Nocke, and White (2017) show that conventional recursive methods to characterize the set of

in monitoring workers who work from home.
2Similarly, in academic settings, faculty frequently request self-reported assessments when students work

in teams, typically on project work that happens outside the classroom.
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equilibrium payoffs (Abreu, 1986) generally do not apply in repeated extensive form games,

suggesting the need for computationally tractable methods (e.g., Abreu, Pearce, and Stac-

chetti, 1990) to solve our equilibrium payoffs’ set. However, we show that our natural re-

peated extension of Holmström (1982) does admit a simple recursive characterization of the

equilibrium set. In our model, individual team members’ contributions to total output are

not observable, and hence group punishments may not be tailored to the identity of the de-

viator. This, and the fact that individuals can impose sufficiently large losses on each other,

makes subsequent histories for both the deviator and the other agents independent of the

past history of deviations, and allows us to characterize the equilibrium set using simple

penal codes.3

When team members are sufficiently patient, the threat of wasting continuation values in

the future is enough to sustain high levels of effort (as in Abreu, 1986); that is, group punish-

ments are not needed to sustain high levels of effort. Consider instead the case when team

members are impatient. Intuitively, a threat of a group punishment improves incentives by

reducing the static payoff associated with a deviation by any individual team member. How-

ever, because the group punishment must be sustainable, the continuation value of the team

following a group punishment is higher than the worst continuation value sustainable by

the team. This increased continuation value worsens incentives by raising the continuation

value the deviating team member receives following such a deviation.

We show that that if team members’ enjoyment of their wage (a function of team output)

is separable from the effort they contribute, then the countervailing effects of group pun-

ishments on individual team members’ incentives exactly offset. As a result, the threat of

under-reporting in our dynamic setting is not a necessary feature of the best equilibrium as

conjectured by Holmström. If, however, team members’ enjoyment of their wage is not sep-

arable from the effort they contribute (as, for example, when leisure and utility from one’s

wage are complements), then on net, static group punishments strictly reduce team mem-

3In a similar spirit, Horner, Klein, and Rady (2018) uses simple penal codes to characterize strongly-
symmetric equilibria in bandit games.
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bers’ incentives to deviate. Therefore, static group punishments are necessarily a feature of

the best equilibrium.

We then argue that, for a range of discount factors, self-reporting is more effective when

producers’ inputs are highly substitutable. When producers’ inputs are more substitutable,

individual team members have stronger incentives to deviate and the scope for under-

reporting to improve team welfare rises. These results uncover cases where task assignment

is an important determinant of a team’s ability to prevent free-riding. We find that self-

reporting is more effective to prevent moral hazard in teams with homogeneous tasks as

opposed to teams with differentiated tasks.4

Our findings uncover a novel economic benefit of self-reporting. While the existing liter-

ature focuses on self-reporting and self-policing by individual agents vis-à-vis public detection

and enforcement (Malik, 1993; Kaplow and Shavell, 1994; Innes, 1999, 2000; Short and Tof-

fel, 2008), our paper shows that self-reported assessments create opportunities for teams to

resolve free-riding incentives beyond any incentives provided by their manager. To the best

of our knowledge, we are the first to study self-reporting by teams and to argue that team

self-reporting can mitigate free-riding.5

Our findings also shed light on a growing debate about how managers may best resolve

the free-riding problem that arises when teams of workers work remotely.6 Since WFH

features a strong interaction between private leisure and wage consumption due to easier

access to leisurely activities (see, e.g., Bloom, Liang, Roberts, and Ying, 2015), our results

suggest that allowing the team to self-report may be an effective solution to prevent free-

4One can also interpret input substitutability as a measure of work specialization. In this sense, our re-
sults are consistent with Dutcher (2012), who shows that free-riding incentives are stronger when WFH teams
perform monotonous tasks.

5In this sense, our paper speaks to two strands of literature on self-managed teamwork and remote work.
See, e.g., Cohen and Ledford Jr (1994), Stewart and Barrick (2000), Sundstrom, McIntyre, Halfhill, and Richards
(2000), Sparrowe, Liden, Wayne, and Kraimer (2001), and Chan (2016) on self-managed teamwork and Dockery
and Bawa (2014), Dutcher and Saral (2014) Bloom, Liang, Roberts, and Ying (2015) Raffaele and Connell (2016),
Groen, van Triest, Coers, and Wtenweerde (2018), Jensen, Lyons, Chebelyon, Le Bras, and Gomes (2020) on
remote work.

6Bloom, Liang, Roberts, and Ying (2015) and Groen, van Triest, Coers, and Wtenweerde (2018) suggest that
managerial fear of moral hazard (“shirking from home”) is the main reason why many firms refrained from
adopting WFH before the pandemic.
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riding in WFH contexts.

Our paper speaks to a large literature on moral hazard in team production settings.

In two seminal papers, Alchian and Demsetz (1972) and Holmström (1982) formalize the

concept of moral hazard in teams and emphasize the role of an external monitor or budget

breaker to prevent shirking by team members. Subsequent studies show that team members’

shirking can be prevented by the team, provided that team members’ actions and payoffs sat-

isfy specific assumptions and team members can bear arbitrarily large losses (see Rasmusen,

1987 and Legros and Matthews, 1993 for leading examples).7 In our paper, we use a general

linear formulation for team members’ payoffs to ask if and under what conditions group

punishments that are not credible in static settings are sustainable and welfare-improving

when team members interact infinitely many times. Our main contribution is to show that

non-separability between individual actions and aggregate outcomes is a necessary condi-

tion for static group punishments to improve welfare in a repeated setting.8

More generally, our analysis is concerned with repeated team production. In these set-

tings, the agents have an opportunity to retaliate against the team in future periods if shirk-

ing is detected (Fudenberg and Maskin, 1986; Ostrom, Walker, and Gardner, 1992). Peer

evaluations and relative performance rankings can become strategic problems in their own

right, as exemplified by Che and Yoo (2001), Fuchs (2007), and Cheng (2016). Our repeated

team production game bears resemblance to a renegotiation game where agents are allowed

to renegotiate over aggregate outcomes in any given period (i.e. the team can decide whether

to shirk from the prescribed self-punishment), but are not permitted to update their continu-

7Other studies solve the team moral hazard problem using dynamic strategies (see Radner, 1986 and Radner,
Myerson, and Maskin, 1986), or by injecting a degree of competition among team members via tournaments,
rankings, or other relative performance measures (see Hart and Holmström, 1986 for a survey). More recently,
Huddart and Liang (2005), Liang, Rajan, and Ray (2008), and Fu, Subramanian, and Venkateswaran (2016)
study the relationship between effort provision, monitoring incentives, and equilibrium team characteristics
such as size and output in static settings.

8An alternative to group punishments is to allow the agents to make side payments to each other (Goldlücke
and Kranz, 2012, 2013). Harrington and Skrzypacz (2007, 2011) describe how the lysine and citric acid cartels
successfully used these types of contracts, employing monitors to audit the money-transfer process. This class
of models offers a recursive characterization of the equilibrium set using simple penal codes, but is limited to
teams of two agents or to settings in which individual actions are observable.
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ation strategies as in Farrell and Maskin (1989). Our game also bears resemblance to Hurwicz

(2008), Rahman (2012), Acemoglu and Wolitzky (2015) , and Aldashev and Zanarone (2017),

which study how to provide incentives to the monitor of the team (i.e., how to “guard the

guardian”). In our setup the “guardian” is the reporter-team itself, and we provide new con-

ditions under which it is incentive-compatible (and welfare-improving) for individual team

members to retaliate against the team when group punishments are not enforced.

2 Team Production and Self-Assessments

We begin by describing a model of repeated team production subject to managerial monitor-

ing. We formalize the difference between workplace and remote teams as a difference in the

quality of the manager’s information about team members’ individual actions. To fix ideas,

we consider a WFH environment where contributions are unobservable by managers and by

other team members, and we equip the team with the ability of sending a message about

its own output to the manager by means of a benevolent reporter. We derive conditions on

team members’ payoffs such that the reporter under-reports team performance following a

free-riding deviation by any agent. We argue that the assumptions under which the pres-

ence of a reporter is useful to improve team welfare are more likely to be relevant for remote

teams.

2.1 Stage Game

A team consists of n agents indexed by i = 1, . . . ,n, and one reporter. Each agent chooses

a nonnegative action ai ∈ [0, 1], representing a level of effort, with associated cost c(ai).

Moreover, we write

a−i = (a1, . . . ,ai−1,ai+1, . . . ,an) ,a = (ai,a−i) ,

6



where the vector a constitutes an effort profile. An effort profile determines the aggregate

outcome of team production according to an outcome function Y : Rn
+ → R+.

After observing the agents’ outcome, Y, the reporter costlessly provides a report of the

outcome, m ∈ R+ to the manager. The reporter chooses m to maximize the post-outcome

utility of the team, treating individual contributions to Y as sunk.We interpret the reporter as

a construct for the collective incentives of the team to break its own budget after production

costs are paid and team output is realized, but before team members can consume the out-

put. An alternative interpretation sees the reporter as separate player, a “budget breaker”

who moves after observing aggregate team outcomes (similar to Holmström, 1982). The key

difference between the budget breaker in Holmström (1982) and the reporter in our model

is that Holmström’s budget breaker has her own incentives to seize the team’s output after

observing an aggregate deviation. In our model, the benevolent reporter has no static incen-

tives to break the team’s budget by under-reporting, and the team must provide dynamic

incentives for her to do so.

The manager observes the report m and a signal Ŷ of the team’s output and offers a wage

x(m, Ŷ) = κ+ θmin{m, Ŷ} to the agents, with κ ∈ R and θ ∈ R+.9 To simplify the exposition,

we assume that Y = Ŷ, but our results extend to an environment where the reporter has an

informational advantage over the manager and the manager cannot perfectly observe team

output—i.e., Ŷ 6= Y.10

Consistent with Holmström (1982) and Holmström and Milgrom (1991), we posit an

output-based incentive pay scheme where the manager rewards the team when she observes

a high signal of output. As argued by Jensen, Lyons, Chebelyon, Le Bras, and Gomes (2020),

output-based compensation is particularly suitable in remote work environments due to

managers’ heightened inability to observe workers’ inputs. Novel to our setting is the in-

troduction of the team’s report, m, into the pay structure which allows us to examine the

9Note that this linear wage implements optimal team incentives under certain team utility functions when
there is no noise as in Holmström (1982).

10Details on this exercise are available upon request.
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usefulness of potential self-reporting. Self evaluations and peer evaluations that directly or

indirectly affect the team’s overall payoffs are prevalent in classroom settings (Gueldenzoph

and May, 2002; Ohland, Loughry, Woehr, Bullard, Felder, Finelli, Layton, Pomeranz, and

Schmucker, 2012) and even in some corporations such as Netflix.11

Given the restriction that the manager always ignores over-reporting, it is without loss

of generality to restrict the message space m 6 Y. We find it convenient to define the

report in terms of the extent of under-reporting by the reporter, i.e., in terms of a “group

punishment” τ ≡ Y −m > 0 that negatively affects the entire team. Under-reporting in our

model can therefore be interpreted as the team asking for lower wages than those initially

agreed-upon with the manager. Under these restrictions, we express the wage as a function

of the aggregate outcome and and the group punishment, x(Y, τ). Agents have identical

preferences, which depend both on the wage x and on their individual effort. Utility, net of

effort costs, is given by π : (0,∞)× [0, 1]→ R.

Assumption 1. We make the following functional form assumptions on c(·), Y(·), and π(·, ·):

1. c(·) is continuous and twice continuously differentiable, with c ′(ai) > 0, c ′′(ai) > 0. More-

over, c(0) = 0, and c(1) is finite.

2. Y(·) is continuous and twice continuously differentiable. For all i, i′, and for all a ∈ Rn
+,

Yai(a) = Yai′ (a) > 0 and Yaiai′ (a) 6 0, where the subscripts denote partial derivatives. Y(·)

is bounded above by Ȳ.

3. π(·, ·) is continuous and twice continuously differentiable in both arguments. Moreover, πx > 0,

πxx 6 0, πai 6= 0, πaiai 6 0, and πxai 6 0.

Assumption 1.2 provides assumptions on agents’ contributions to total output, Y(·), and

brings our model in line with the static team production model of Holmström (1982). The

assumptions πx > 0 and πxx 6 0 imply that agents’ utility is increasing and concave in their

11See https://hbr.org/2014/01/how-netflix-reinvented-hr.
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wage. The assumption πaiai 6 0 is sufficient but not necessary to prove Lemma A.1 in the

Appendix. The assumption πxai 6 0 is necessary to obtain an interior solution to the model,

and it implies that each agent’s marginal utility from consumption is weakly decreasing in

her private production effort.12

As we show below, the condition πxai 6 0 plays a key role in determining the effectiveness

of self-reporting in our repeated team production model (see Section 2.2.3). When πxai < 0,

one additional unit of wage consumption is less valuable the higher the private production

effort. For example, when π = log(x)(1 − ai), an additional unit of wage consumption

is more valuable to the agent who is contributing less effort than to the agents who are

contributing more effort, and under-reporting has a relatively larger impact on the deviating

agent’s utility. A natural interpretation of the function π = log(x)(1 − ai) is that agent i

spends ai units of time contributing effort to the team at cost c(ai), and 1 − ai units of time

enjoying consumption of her wage x. When πxai = 0, utility from wage consumption and dis-

utility from private effort are additively separable as, for example, when π = log(x)+(1−ai).

We view the reporter as a construct to represent team-wide reporting incentives, so she

does not have private utility. In the stage game, the reporter observes only aggregate output,

and treats team members’ effort costs c(·) as sunk.13 Stage game payoffs to the agents and

to the reporter are, respectively,

u(ai,a−i, τ) = π (x(Y(a), τ),ai) − c(ai), (1)

w(a, τ) =
n∑
i=1

π (x(Y(a), τ),ai) . (2)

Assumptions 1.2 and 1.3 jointly ensure that for any κ > 0, stage game payoffs are bounded.

To see this, note that wages, x(Y, τ), lie in the compact set [κ, κ+ θȲ] where we impose the

upper bound of output, Ȳ. Since the payoff function π(x,ai) is continuous on [κ, κ+ θȲ]×
12If πxai > 0, agents derive higher marginal utility from effort when team output is high, which gives them

incentives to work more.
13In the repeated game, the reporter still treats current period effort costs as sunk, but internalizes team

members’ future effort costs. See the discussion around Equation (6).
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[0, 1] and increasing in x, given κ > 0,

−∞ < min
ai
π(κ,ai) − c(ai) 6 max

ai
π(κ+ θȲ,ai) − c(ai) <∞. (3)

In other words, the minimum and maximum of the stage game payoffs exist so that for a

given κ > 0, stage game payoffs are bounded.

2.1.1 Stage Game Equilibrium

A symmetric perfect-public equilibrium of the stage game consists of effort choices ai by agents

and a punishment choice τ(Y) by the reporter such that for every Y, τ(Y) maximizes (2), and

such that given τ and a−i, ai maximizes (1).

Since in a static setting it is clearly optimal for the reporter not to under-report (i.e. to set

τ(Y) = 0), the optimal effort of the static equilibrium, which we denote by aNi , is given by

aNi = argmaxai

[
π(x(Y(ai,aN−i), 0),ai) − c(ai)

]
. (4)

Facing the reporter’s optimal decision not to under-report, the socially-optimal level of

effort a∗ that maximizes the sum of individual agents’ utilities is given by

a∗ = argmaxa

n∑
i=1

u(ai,a−i, 0). (5)

In the Appendix, we establish two intermediate results for this static game. First, we

show that the Nash equilibrium level of effort of the static game is lower than the socially-

optimal level of effort, that is 0 < aNi < a
∗
i . Second, we show that when all other agents are

contributing less effort than the static Nash level (that is, when a−i < aNi ), individual agents’

optimal response is to increase their effort in the interior of [aNi ,a∗i ]. These two intermediate

results allow us to characterize optimal punishments in the infinitely-repeated game.

Note that if the reporter were able to commit to under-reporting when the aggregate
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outcome is smaller than Y(a∗), then each agent contributing a∗i would be an equilibrium.

For example, for a given effort profile a, if the reporter’s strategy was to implement some

τ (Y (a)) > 0 such that x = 0 if Y(a) < Y(a∗), and conversely, to implement τ = 0 if Y(a) =

Y(a∗), then each agent’s best response to a∗−i would be to choose ai = a∗i .
14 In this sense, the

threat of under-reporting would be useful if the reporter (i.e., the team) could commit to such

strategy. In the next section, we investigate whether under-reporting may be sustainable and

welfare-improving when the agents and the reporter interact repeatedly.

2.2 Infinitely-Repeated Game

In this section, we illustrate how agents may incentivize the reporter to under-report output

to the manager when called upon, even if the reporter is benevolent and lacks commitment

to under-reporting. We show that along the best equilibrium path, under-reporting never

occurs. However, under certain conditions, the threat of under-reporting allows agents to

attain strictly higher welfare than they would in an economy where the team’s actions are

restricted to exclude the possibility of self-reporting.

2.2.1 Histories, Perfect Equilibria, and One-Shot Deviations

We start by describing the infinitely-repeated game, define perfect-public equilibria in our

game, and simplify our equilibrium characterization by appealing to the one-shot deviation

principle. Proposition A.3 in the Appendix shows that the entire set of perfect-public equi-

libria in our game can be attained by preventing single-period (one-shot) deviations in the

infinitely-repeated game.

Let hwt ∈ Hw, where Hw = R2
+ denote the public outcomes (Yt, τt) observed at the end

of period t. Then, let Hw denote the set of public histories, with Hw=
⋃∞
t=0 (H

w)t. Similarly,

define the set of histories for agent i as Hi=
⋃∞
t=0 (R+ ×Hw)t. A pure strategy for agent i is

14In this example, we assume that for each a, there always exists some τ (Y (a)) > 0 such that
x(Y(a), τ (Y (a))) = 0. In words, we assume that there exists a message low enough that agents can receive
no payment from the manager.
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a mapping from the set of all possible agent i histories to the set of pure actions,

σi : H
i → R+.

A pure strategy for the reporter is a mapping from the set of public histories and an obser-

vation of the aggregate outcome into the set of pure actions for the reporter,

σw : Hw ×R+ → R+.

Since the reporter is a construct for team-wide preferences after output is realized, we make

the natural assumption that agents and the reporter have a common discount factor δ ∈ (0, 1),

and we restrict attention to public strategies that are functions only of the public history.

Given a strategy profile σ = ({σi}
n
i=1 ,σw) , if hwt ∈ Hwt denotes a generic period-t history,

we let Uti
(
hwt,σ

)
denote the discounted continuation payoff that agent i obtains from period

t onwards. The reporter’s discounted continuation payoffs satisfy

Uwt
(
hwt,σ

)
=
∑
i

Uit
(
hwt,σ

)
+ (1 − δ)

∑
i

c
(
σi
(
hwt

))
, (6)

where the second term represents the present value of the team’s future effort costs, treating

period-t effort decisions as sunk.

In Appendix A.2 we define continuation games and strategies, perfect-public equilibria,

and one-shot deviations. We prove that perfect-public equilibria can be constructed recur-

sively by ensuring that, for any history, neither the reporter nor the agents have a profitable

one-shot deviation.

Finally, we denote by B(κ) the min-max payoff of this game, which depends on the

exogenous parameter κ. Note that the worst perfect-public equilibrium, v satisfies v > B(κ).
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Assumption 2. We assume that for all δ ∈ (0, 1), there exists a κ(δ) such that

(1 − δ)π(κ(δ), 0) + δV(1) < B(κ(δ)). (7)

In (7), V(1) is the continuation payoff when all other agents contribute a−i = 1, the

reporter does not impose group punishments, and agent i chooses their optimal level of effort

forever. The value V(1) is clearly an upper bound on the best perfect-public equilibrium

value, and choosing κ to satisfy (7) ensures that for any continuation of the game, if all

other agents provide no effort in the current period, then it can never be optimal for a

single agent to also exert zero effort in the current period. Assumption 2 imposes that for

any δ with 0 < δ < 1, there exists κ(δ) > 0. Hence, for each δ and for a given κ(δ) > 0

satisfying (7), stage game payoffs are bounded as discussed in the conclusion to Section 2.1.

Assumption 2 is analogous to Assumption A4 in Abreu (1986), and it allows us to attain the

worst equilibrium using a one-period punishment phase (see Appendix A.3). Note that one

set of assumptions on primitives that ensures that such κ always exists is that π(x, 1) = 0—

which guarantees for all κ that B(κ) is bounded below—and that limx→0 π(x, ·) = −∞.

Characterizing equilibria by preventing one-shot deviations as described in this section,

while standard practice in normal-form repeated games, is not obvious in our context. Since

agents and the reporter move in sequence within each time period, our game fits the defini-

tion of a repeated extensive form game. Mailath, Nocke, and White (2017) shows that static

(current-period) punishments affect the subsequent histories of all players (both the deviator

and the punishing agents). As such, repeated extensive-form games cannot in general be

characterized using simple penal codes calling for a one-period punishment of the deviator

and subsequent reversal to the best equilibrium.

The appendix shows that the two elements that allow us to solve our model by prevent-

ing one-shot deviations are the imperfect observability of individual agents’ actions, and the

ability of individual agents to impose arbitrarily large punishments on the reporter when
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the reporter fails to under-report. Together, these elements make continuation payoffs inde-

pendent of the identity of the deviator, and allow us to construct the equilibria of our model

recursively.

2.2.2 Problem Setup

We focus on characterizing strongly symmetric perfect-public equilibria—hereafter, perfect

equilibria or equilibria—whereby different agents play the same strategies even after asym-

metric histories, and the reporter’s strategy is independent of the identity of the deviator.15

In this section, we describe a procedure to characterize the set of equilibrium payoffs

using modified “carrot-and-stick” strategies similar to those found in Abreu (1986). While

individual deviations by agents may be subject to under-reporting by the reporter, the agents

need to impose discipline on the reporter in the event that the reporter attempts not to under-

report. Nonetheless, our results show that the extremal equilibrium payoffs (both the best

and the worst equilibrium payoff) need not feature under-reporting (on path).

Since we focus on strongly symmetric equilibria, we simplify our notation by dropping i

subscripts and by using a in place of (a,a, . . . ,a) for the agents’ strategies, u (a, 0) in place

of ui (a,a, . . . ,a, τ = 0) for the agents’ payoffs, and so on.

Under the one-shot deviation principle, given the worst perfect equilibrium payoff v, the

best perfect equilibrium payoff v̄ can be constructed as the solution to the following program:

v̄ = max
a,τ(·),v(·,a,τ(·))

u (a, 0) , (8)

subject to, for all a′,

u (a, 0) > (1 − δ)u
(
a′,a, τ

(
Y
(
a′,a

)))
+ δv

(
a ′,a, τ

(
Y
(
a ′,a

)))
, (9)

v
(
a′,a, τ

(
Y
(
a ′,a

)))
∈ [v, v̄] , (10)

15The restriction to such equilibria is without loss of generality if, for a given discount rate, the worst such
equilibrium coincides with the min-max value.
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and

(1 − δ)w
(
a ′,a, τ

(
Y
(
a ′,a

)))
+nδv

(
a′,a, τ

(
Y
(
a ′,a

)))
> (1 − δ)w

(
a ′,a, 0

)
+nδv. (11)

Inequality (9) represents the incentive-compatibility constraint for each agent, which re-

quires the symmetric payoff u (a, 0) to be greater than or equal to the payoff associated

with a deviation effort a ′ with static payoff u(a′,a, τ(Y(a′,a))) and continuation payoff

v(a ′,a, τ(Y(a ′,a)). Equation (10) represents the feasibility constraint for the continuation

payoff v(a ′,a, τ(Y(a ′,a)), which must lie between the worst equilibrium payoff v and the

best equilibrium payoff v̄. Equation (11) is the incentive-compatibility constraint for the re-

porter, requiring that the reporter has sufficient incentives to under-report once one of the

n agents deviates to a′.16 The left-hand side of (11) is the reporter’s payoff when under-

reporting as prescribed, while the right-hand side is the payoff from a deviation to τ = 0,

followed by the worst perfect equilibrium payoff v. Finally, note that the best equilibrium

in (8) features no group punishments on path, a result that we confirm formally in Lemma

A.4.17

It is useful to reduce the dimensionality of the problem by eliminating the reporter’s

incentive-compatibility constraint. Without loss of generality, we may assume (11) binds in

any solution to the above program.18 The continuation payoff following a deviation by an

agent must then satisfy

v
(
a′,a, τ

(
Y
(
a ′,a

)))
= v+

1 − δ

δ

1
n

[
w
(
a ′,a, 0

)
−w

(
a ′,a, τ

(
Y
(
a ′,a

)))]
. (12)

16Note that the game is symmetric among producers, such that, for a prescribed action a, the reporter can
infer a deviation to a′ by one of the producers from the realized output Y′. The program (8)-(11) is defined
only for one-shot deviations by the producers and hence while the identity of the deviator is unknown, the
reporter may evaluate payoffs exactly.

17Intuitively, if the best equilibrium featured on-path group punishments, we could construct another equi-
librium delivering the same continuation values but featuring no static group punishments (and therefore
higher period utility for both the agents and the reporter) for some history. This contradicts the assumption
that the original equilibrium was the best.

18If (11) were slack for some (a ′,a), since w(a ′,a, 0) > w(a ′,a, τ(Y(a ′,a))), necessarily v(a ′,a, τ(Y(a ′,a))) >
v. As a result, one could just reduce v(a ′,a, τ(Y(a ′,a))) until (11) binds, relaxing (9) and therefore not changing
the solution to the program.
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Hence, for any deviation a′, we may write (9) as

u (a, 0) > (1 − δ)

[
u
(
a′,a, τ

(
Y
(
a ′,a

)))
+

1
n

[
w
(
a ′,a, 0

)
−w

(
a ′,a, τ

(
Y
(
a ′,a

)))]]
+ δv.

(13)

Let g (a′,a, τ (Y (a ′,a))) denote the static payoff for an individual agent exerting effort a′

when all the other agents contribute a—the term in the outer square brackets on the right-

hand side of (13). We call this quantity the total static deviation payoff. Using this definition,

we re-write the problem (8)-(11) as

v̄ = max
a,τ(·)

u (a, 0) , (14)

subject to, for all a′,

u (a, 0) > (1 − δ)g
(
a′,a, τ

(
Y(a′,a)

))
+ δv, (15)

v̄ >
1 − δ

δ

1
n

[
w
(
a′,a, 0

)
−w

(
a′,a, τ

(
Y(a′,a)

))]
+ v, (16)

and

g
(
a′,a, τ

(
Y(a′,a)

))
= u

(
a′,a, τ

(
Y(a′,a)

))
+

1
n

[
w
(
a′,a, 0

)
−w

(
a′,a, τ

(
Y(a′,a)

))]
. (17)

Note that the total static deviation payoff (17) features two components. The first component,

u (a′,a, τ (Y(a′,a))), represents the agent’s static utility from a deviation to a′ (under the

expectation that the reporter will implement the prescribed punishment τ). The second

component, [w (a′,a, 0) −w (a′,a, τ (Y(a′,a)))] /n, represents the deviating agent’s share of

the net benefit that the reporter generates by deviating and not submitting the prescribed

report.

The program (14)-(17) allows us to draw a comparison between our economy and an

16



economy without a reporter (i.e., an economy where reporting is not part of the team’s action

set). We refer to such economy as an economy where self-reporting “is not allowed,” and we

let v̄A and vA denote its best and worst perfect equilibrium values. In the economy where

self-reporting is not allowed, the reporter’s incentive-compatibility constraint disappears,

and (14)-(17) become

v̄A = max
a
u (a, 0) , (18)

subject to, for all a′,

u (a, 0) > (1 − δ)u
(
a′,a, 0

)
+ δvA. (19)

Under Assumptions 1 and 2, the program (18)-(19) can be solved using a simple “carrot-and-

stick” strategy as in Abreu (1986), whereby i) team members exert the best perfect equilib-

rium level of effort (the “carrot,” denoted by āA) on path; ii) deviations from the “carrot”

are followed by an arbitrarily low level of effort (the “stick,” denoted by ãA) for one period

and by reversion to the “carrot” thereafter; iii) deviations from the “stick” are also followed

by the “stick” and subsequent reversion to the “carrot.” Importantly, the threat of future

retaliation by other agents can prevent deviations in the current period, and allows the team

to sustain the most collusive level of effort provided that agents are sufficiently patient.

Lemma 1. There exists a δA∗ ∈ (0, 1) such that for all δ > δA∗, u
(
āA
)
= u (a∗).

Proof. See Abreu (1986).

In the next section, we ask if and under what conditions static under-reporting by the

reporter (as opposed to future retaliation by other team members) allows the team to achieve

higher welfare when agents are not sufficiently patient (i.e., when δ < δA∗).
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2.2.3 Self-Assessments and Static Deviation Incentives

To proceed in our analysis of static self-assessments, we start by studying under what condi-

tions under-reporting deters static deviations. To do so, we revert to the program (14)-(17),

and we define the maximum deviation payoff that an agent can achieve by deviating to a′

from profile a by ĝ (a, τ (·)). This payoff satisfies

ĝ (a, τ (·)) = max
a′
g
(
a′,a, τ(Y(a′,a))

)
. (20)

In the next proposition, we derive two important intermediate results. First, we show that

when πxai < 0, group punishments increase static deviation incentives if the prescribed level

of effort is smaller than the static Nash equilibrium level of effort. Second, we show that

under-reporting reduces static deviation incentives only in the presence of complementarities

between individual effort and wages (i.e., only if πxai < 0). When agents’ utility is separable

between individual effort and wages (i.e., when πxai = 0), under-reporting does not reduce

static deviation payoffs and therefore does not alter agents’ incentives to deviate from their

prescribed actions.19

Proposition 2. Suppose that πxai < 0 and a 6 aN. Then, for all continuous functions τ(·) with

τ(Y) > 0, ĝ (a, τ (·)) > ĝ (a, τ = 0). Suppose next that πxai < 0 and a > aN. There exists ε > 0

such that for all continuous functions τ(·) with τ(Y(a,a)) = 0 and for a ′ 6= a, 0 < τ(Y(a ′,a)) 6 ε,

ĝ(a, τ(·)) < ĝ(a, τ = 0). Finally, suppose that πxai = 0. In this case, under-reporting has no impact

on static deviation incentives.

Proof. Consider first an agent’s static deviation payoff when she chooses effort level a ′, the

other n− 1 producers choose effort a, and the group punishment is a tax τ(Y(a ′,a)). Apply-

19As mentioned below Assumption 1, we need πxai 6 0 to guarantee an interior solution to the model.
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ing (17), these incentives may be written as

g(a′,a, τ) = π(x(Y(a′,a), τ),a′) − c(a′)

+
1
n

[
(n− 1)π(x(Y(a′,a), 0),a) + π(x(Y(a′,a), 0),a′)

]
, (21)

where for convenience we omit the dependence of τ on Y. Contrasting these deviation

incentives to those that arise when τ = 0 yields

g(a′,a, τ) − g(a′,a, 0)

=
n− 1
n

{
[π(x(Y, 0),a) − π(x(Y, τ),a)] −

[
π(x(Y, 0),a ′) − π(x(Y, τ),a ′)

]}
. (22)

Since π is submodular, or πxai 6 0, the increment to the agent’s utility of increasing x from

x(Y, τ) to x(Y, 0) is larger when her own effort is smaller. In other words, (22) is positive

when a ′ > a and is negative when a ′ 6 a.

Suppose that πxai < 0 and a 6 aN. Let a ′ represent the most profitable deviation from

a when τ(Y) = 0 for all Y. Note that the most profitable deviation satisfies a ′ > a when

a 6 aN (see Lemma A.2 in the Appendix). It then immediately follows from (22) that

g(a ′,a, τ(Y(a ′,a))) > g(a ′,a, 0). We conclude that ĝ(a, τ(·)) > ĝ(a, τ = 0).

Suppose next that πxai < 0 and a > aN. Let a ′ represent the most profitable deviation

from a when τ̂(Y) = 0 for all Y and a ′′ the most profitable deviation under the group

punishment satisfying 0 < τ(Y(a ′,a)) when a ′ 6= a. When a > aN and πxai < 0, the best

deviation without group punishments satisfies a ′ < a (see Lemma A.2). Since the best

response function is upper hemicontinuous, there exists ε > 0 such that if maxY τ(Y) 6 ε,

then a ′′ < a; that is, a ′′ is sufficiently close to a ′ so that a ′′ < a. Applying (22) implies

g(a ′′,a, τ(Y(a ′′,a))) < g(a ′′,a, 0). Since g(a ′′,a, 0) 6 ĝ(a, τ = 0), we conclude that for such

punishment functions, τ(·), ĝ(a, τ(·)) < ĝ(a, τ = 0).

The proof of the final result (if πxai = 0, then under-reporting has no impact on static

deviation incentives) immediately follows from (22). When πxai = 0, the term in curly
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brackets is zero and static deviation payoffs are independent of τ.

The intuition behind Proposition 2 is that an increase in the group punishment comes

with a cost and a benefit to the deviator. The cost comes in the form of lower static utility

due to a reduction in the wage x paid by the manager. The benefit comes in the form of a

higher continuation value necessary to incentivize the team to implement the punishment.

From (12), the benefit is proportional to the per-capita share of the group losses associated

with increasing the group punishment (i.e., to the term in square brackets in (17)).

When πxai < 0 and a 6 aN, the deviator’s benefit from team under-reporting (i.e., the

benefit when the team implements some positive τ, resulting in higher continuation values)

is higher than the deviator’s static cost. Under these conditions, the deviator contributes more

effort than the other n− 1 agents and so enjoys lower marginal utility of the common wage.

The cost the deviator bears from a reduced wage is smaller than the increased continuation

value to compensate the reduced wages borne by the whole team. As a result, sustainable

under-reporting strengthens the deviator’s incentives to deviate. On the other hand, when

a > aN, the deviator receives the same wage but she contributes less effort than the other

agents, enjoying higher marginal utility. The cost from receiving a lower wage following

a group punishment is larger than her continuation-value benefit, and under-reporting de-

creases her deviation incentives.

Proposition 2 also shows that a necessary condition for self-reporting to reduce deviation

incentives is the non-separability of aggregate outcomes and private actions in individual

agents’ utility (i.e., the condition that πxai < 0). When preferences are separable, each team

member receives the same marginal utility from team output consumption. Reducing the

reported output has no effect on agents’ deviation incentives, because the deviator’s cost

when the team under-reports is exactly equal to the continuation-value benefit required to

make under-reporting credible. As a corollary, in absence of complementarities the equilib-

rium set of our problem (14)-(17) coincides with that of the problem (18)-(19) where group

punishments are not allowed.
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Corollary 3. If πxai = 0, then v̄ = v̄A for all δ ∈ (0, 1).

Proof. When πxai = 0, from Proposition 2 we have that for any τ, ĝ (a′,a, τ) = ĝ (a′,a, 0) =

u(a′,a, 0). This reduces the agent’s incentive-compatibility constraint (15) to (19). Moreover,

since the best equilibrium never features on-path group punishments, and since group pun-

ishments have no impact on agent’s deviation incentives, we can always pick τ that satisfies

constraint (16), say by setting τ = 0 for all histories.

2.2.4 Equilibrium Characterization and Welfare Gains

Using the results of Proposition 2, we propose a modified “carrot-and-stick” strategy to

characterize simple equilibrium strategies that obtain the worst perfect equilibrium payoff v.

With a small abuse of notation, we denote this strategy by σ ((ã, ā) , (0, 0)). This strategy calls

for the agents to play some “stick” level of effort ã and subsequently revert to the “carrot”

level ā—the level of effort prescribed in the best perfect equilibrium. If either the “carrot”

or the “stick” is played by all agents as prescribed by the strategy, the reporter chooses

τ = 0. If the reporter detects an aggregate deviation Y(a ′, ā) 6= Y(ā) from the “carrot” ā,

the reporter implements a group punishment τ(Y(a ′, ā)) > 0, and the agents consequently

revert to some strategy with value v(a ′, ā, τ(Y(a ′, ā)). If the reporter observes an aggregate

deviation Y(a ′, ã) 6= Y(ã) from the stick ã, the reporter chooses τ(Y(a ′, ã)) = 0, and the

agents consequently revert to the carrot-and-stick strategy σ ((ã, ā) , (0, 0)) with value v. Any

deviation by the reporter causes the carrot-and-stick strategy to be repeated.

In the Appendix, we prove that σ ((ã, ā) , (0, 0)) is an optimal punishment, that any value

v ∈ [v, v̄] can be attained by a perfect equilibrium strategy σ, and that the “carrot” level

of effort ā and the “stick” level of effort ã can be jointly determined as solutions to the

following system of equations in two unknowns (see the computational appendix for details
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on how we solve for ā and ã recursively):

ĝ (ã, 0) = (1 − δ)u (ã, 0) + δu (ā, 0) = v, (23)

ĝ (ā, τ (·)) = u (ā, 0) + δ (u (ā, 0) − u (ã, 0)) if ā < a∗, (24)

and

ĝ (ā, τ (·)) 6 u (ā, 0) + δ (u (ā, 0) − u (ã, 0)) if ā = a∗. (25)

Then, the value v of the worst equilibrium is equal to the value of the stick for one period,

followed by the carrot forever after (and no group punishments on path), as in (23).

In the following proposition, we formally establish our main result. We show that, under

the maintained assumption that πxai < 0, the threat of under-reporting strictly improves

team welfare when agents are not sufficiently patient and the threat of future retaliation is

not enough to sustain a∗ (i.e., when δ < δA∗).

Proposition 4. Suppose that πxai < 0 and δ < δA∗ (so that that u
(
aN
)
< v̄A < u (a∗)). The

best equilibrium in the model with self-reporting features group punishments for some history and,

therefore, v̄A < v̄.

Proof. Suppose 0 < δ < δA∗ so that u
(
aN
)
< v̄A < u (a∗). Let σ̄A be the equilibrium strategy

that yields the best perfect equilibrium payoff v̄A in the game without self-reporting. Further

denote by āA the carrot output associated with strategy σ̄A. Note that σ̄At is a function only

of the history of aggregate output, Yt since in that model there are no self-reports or group

punishments.

Next, let σA be the strategy in the game with self-reporting that coincides with σ̄A. That

is, let σAt (h
wt) = σ̄At (Y

t) for all public histories hwt and let the strategy of the reporter be

to impose zero group punishments for all public histories. It is straightforward to show

that this strategy is an equilibrium in the game with self-reporting. The reporter expects
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her actions to have no impact on subsequent play by the agents and therefore any group

punishment is only harmful from her perspective. In any (off-equilibrium-path) history

where the reporter has imposed a group punishment, her action is sunk and therefore only

the dynamic incentives provided by other agents matter; these incentives by assumption are

sufficient to sustain the given level of effort.

We will construct an equilibrium strategy that delivers strictly higher utility than σA.

Specifically, let a1 = āA + ε for some ε > 0. The strategy we propose to support a1 has the

following features. As long as Y = Y(a1), there are no static group punishments and agents

continue to play a1. We define τ(Y, ε) as a continuous function with τ(Y(a1), ε) = 0 and

τ(Y(a ′,a1), ε) small but strictly positive for Y(a ′,a1) 6= Y(a1).

If in some history, the aggregate outcome is Ŷ 6= Y(a1), then the reporter imposes a small

group punishment, τ(Ŷ; ε). We include ε in the punishment function, τ(·) to indicate how our

construction of this function depends on the size of the proposed deviation, a1. Following Ŷ

and τ(Ŷ; ε), agents play a continuation strategy that features no group punishments (on or

off the continuation path) and delivers value v1 as defined in equation (26) below. Following

Ŷ and a deviation from τ(Ŷ; ε), agents play the worst perfect equilibrium that features no

group punishments, vA.

To show this is an equilibrium, we first show that for any ε and Ŷ, we may choose τ(Ŷ; ε)

so that the implied continuation value, v1 may be obtained using an equilibrium strategy that

does not require group punishments; that is, the implied values of v1 lie in the set [vA, v̄A] so

such an equilibrium continuation strategy exists. Next, we prove that when πxai < 0, for ε

sufficiently small, agents strictly prefer to play a1 than to deviate to any a ′.

Suppose Ŷ = Y(a ′,a1). Given τ(·), we define v1 as

v1
(
a ′,a1, τ

(
Ŷ; ε
))
≡ vA +

1 − δ

δ

1
n

[
w
(
a′,a1, 0

)
−w

(
a′,a1, τ

(
Ŷ; ε
))]

. (26)

Since v1(a ′,a1, 0) = vA, and w(a ′,a1, 0) > w(a ′,a1, τ(Ŷ; ε)) for any τ(Ŷ; ε) > 0, we may
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always choose τ(Ŷ; ε) > 0 but small enough so that v1(a ′,a1, τ(Ŷ; ε)) ∈ [vA, v̄A] for all a ′ 6= a1.

Hence, the group punishment τ(Ŷ; ε) may be sustained with continuation strategies that do

not require group punishments in any future period.

Next, since δ is such that āA < a∗, results from Abreu (1986) imply that the incentive

compatibility constraint (19) binds:

u(āA, 0) = (1 − δ)ĝ(āA, 0) + δvA. (27)

Since āA > aN and πxai < 0, it follows from Proposition 2 that

u(āA + ε, 0) > u(āA, 0) > (1 − δ)ĝ(āA, τ(·, ε)) + δvA. (28)

Moreover, by continuity of ĝ, for ε sufficiently small, we must have

u(āA, 0) > (1 − δ)ĝ(āA + ε, τ(·, ε)) + δvA (29)

so that indeed for such ε, u(a1, 0) > (1 − δ)ĝ(a1, τ(·, ε)) + δvA and agents’ incentive con-

straints are satisfied as desired.

The key assumption in Proposition 4 is that individual actions and team outcomes are

non-separable. Absent this non-separability, static deviation payoffs are not affected by the

threat of under-reporting, and reporting has no scope for improving welfare.

While the remote nature of our model arises from differences in output observability

between the manager and the team, we also argue that the non-separability assumption

may be more likely to be verified in WFH contexts. Team members working from home

are more exposed to leisurely activities which interact with the utility that they derive from

their wage (Bloom, Liang, Roberts, and Ying, 2015). This section shows that this interaction

is necessary for under-reporting to mitigate shirking incentives in these environments, be-
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cause under-reporting disproportionately affects the shirking agent who is enjoying higher

marginal utility from wage consumption by working less.

3 Self-Assessments and Team Welfare

We parameterize our repeated team production model to study under what conditions self-

reporting is most effective in improving team welfare. We show that, if agents’ utility satisfies

the non-separability conditions of Proposition 2, self-reporting is most effective in improving

welfare for intermediate levels of the discount factor and when team members’ inputs are

more substitutable in the production of the aggregate outcome. We discuss the implications

of these findings for WFH team production.

3.1 Stage Game

We assume that team output is the sum of individual team members’ inputs (i.e., Y(a) =∑
i ai). Hence, the team’s net outcome function is

x (a, τ) = κ+ θmax

{
n∑
i=1

ai − τ; 0

}
, (30)

with ai ∈ (0, 1) and τ > 0. Individual agents’ utility is therefore

u (a−i,ai, τ) = log (x (a, τ)) (1 − ai) − cai. (31)

As described above, (31) can be interpreted as a case in which agent i is endowed with

one unit of time, spends a fraction ai of this unit working at a marginal cost c, and spends

the remaining 1−ai fraction of her time enjoying her wage x. From (31), it is clear that agent

i derives higher utility from her wage the less she contributes to production. In the presence

of such interactions between total output and individual effort, self-reporting can increase
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team welfare by imposing relatively harsher punishments on team members that contributed

less effort to production.

Since the reporter chooses τ after observing total output and production costs are sunk,

the reporter’s stage-game (static) payoff is

w (a, τ) =
n∑
i=1

log (x (a, τ)) (1 − ai) . (32)

3.2 Infinitely-Repeated Game and Agents’ Discount Factors

As in the previous sections, we focus on characterizing strongly symmetric equilibria. Fol-

lowing the same steps as in Section 2.2, the program (14)-(17) maps to

v̄ = max
a,τ(·)

u (a, 0) , (33)

subject to, for all a′,

u (a, 0) > (1 − δ)g
(
a′,a, τ

(
a′ + (n− 1)a

))
+ δv, (34)

v̄ >
1 − δ

δ

1
n

[
w
(
a′ + (n− 1)a, 0

)
−w

(
a′ + (n− 1)a, τ

(
a′ + (n− 1)a

))]
+ v, (35)

where v and v̄, respectively, denote the worst and the best perfect equilibrium payoffs of the

repeated game, and where the total static deviation payoff is

g
(
a′,a, τ

(
a′ + (n− 1)a

))
= u

(
a′,a, τ

(
a′ + (n− 1)a

))
+

1
n

[
w
(
a′,a, 0

)
−w

(
a′,a, τ(a′ + (n− 1)a)

)]
. (36)

Given our assumptions, the results in Proposition 2 apply. As long as the prescribed

effort is smaller than the static Nash equilibrium level of effort, the maximum deviation

payoff ĝ(a, τ (·)) is minimized when τ = 0.

Using Proposition 2, the results of the previous section extend to this environment. We
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Figure 1: Numerical illustration of the equilibrium value sets (Panel (a)) and impact of self-
reporting on best equilibrium effort and best equilibrium payoff (Panel (b)).

find that the worst perfect equilibrium payoff can be attained by strategies that do not feature

under-reporting on path, and the best and the worst equilibria can be jointly characterized

as solutions to (33)-(36). Moreover, under-reporting strictly improves welfare relative to a

model where self-reporting is not allowed.

In Figure 1, we provide a numerical illustration of how self-reporting can increase the

welfare of the team when their discount factor changes.20 In Figure 1a, we fix the number

of agents n to 20, and we plot the value of the best and worst perfect equilibria for each

level of the discount factor δ. In Figure 1a, for any δ, the lower branches, below the static

Nash equilibrium value (roughly 0.2) represent worst equilibrium values, while the upper

branches represent best equilibrium values.

The solid lines in Figure 1a represent the best and worst equilibrium values when self-

reporting is allowed, while the dashed lines show these values when self-reporting is not

allowed. Since the solid lines lie outside the dashed lines, for all levels of the discount factor,

the model where self-reporting is allowed yields weakly larger best equilibrium payoffs than

20Details on the algorithm that we use to produce the figures are given in the appendix.
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the model where self-reporting is not allowed. The repeated interaction between agents and

the reporter leads to relatively large welfare gains for intermediate values of the discount

factor, to relatively small gains when the discount factor is low, and to no welfare gains

when the discount factor is high.

For low values of δ, the reporter has weak incentives to under-report. The continuation

value that the producers have to promise to the reporter for under-reporting is high and,

as a result, only very small under-reporting with small welfare gains can be sustained. On

the other hand, for high values of δ the repeated interaction of producers is sufficient to

guarantee the static most collusive level of effort even in the absence of the reporter.

For intermediate levels of δ, the reporter’s ability to under-report increases welfare. To

illustrate the gains associated with these sustainable group punishments, in Figure 1b we

show the effect of the reporter’s punishments on the level of effort in the best equilibrium.

The solid line shows the percentage increase in effort in the best equilibrium that is obtained

in our model relative to a model where under-reporting is not allowed, while the dashed

line represents the associated percentage increase in welfare. Our model features a most

collusive effort level as much as 70% higher than that of the model where self-reporting is

not allowed, corresponding to a 30% higher level of welfare.

The results of Figure 1 suggest that under-reporting might not be effective in increasing

team welfare if team members’ production horizon (pinned down, for example, by the length

of their employment contract) is too long or too short. If team members’ horizon is too long,

producers that heavily discount their future payoffs can be disciplined by the threat of future

punishments (i.e., low effort) by other team members, even if these threats do not involve

under-reporting in the current period. If the production horizon is short, then the threat of

future punishments is not large enough to induce large welfare gains from under-reporting.
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4 Substitutability, Externalities, and Self-Assessments

In this section, we provide additional results on how different degrees of interaction between

team producers can change the effectiveness of self-reporting. We keep the same parameter-

ization as in the previous section, but we rely on a new output function to allow for different

degrees of substitutability between agents’ efforts. We assume that the total output of the

team is

Y (a) =

(
n∑
i=1

a
ρ
i

) 1
ρ

, (37)

where ρ ∈ (0, 1) is a parameter that governs the substitutability of individual agents’ efforts

in the production of total output. As in Dixit and Stiglitz (1977), a high level of ρ implies a

higher degree of substitutability between producers’ inputs. When ρ = 1, agents efforts’ are

perfect substitutes, team output is the sum of all agents’ efforts, and a small change in one

agent’s effort has a small relative impact on team output. When ρ is small, agents’ efforts are

imperfect substitutes, team output is larger than the sum of all agents’ efforts, and a small

change in one agent’s effort has a large relative impact on team output.

We extend the analysis of the previous sections to analyze the relationship between the

usefulness of self-reporting and the substitutability parameter ρ. Specifically, we ask how the

effectiveness of self-reporting in improving welfare (relative to a model where self-reporting

is not allowed) changes as the substitutability of producers’ effort changes. We show that,

near the threshold of δ needed to sustain ā = a∗ in the model without self-reporting, the ef-

fectiveness of self-reporting in improving welfare increases as the substitutability parameter

ρ increases.21

Proposition 5. Fix ρ ∈ (0, 1) There exist a δ ∈ (0, 1) and a ρ̄ > 0 such that for all ρ′ ∈ (ρ, ρ̄), the

welfare gains from allowing self-reporting are increasing in ρ′.
21Numerical simulations suggest that this result may hold for other levels of δ.
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Proof. See Appendix A.4.

We give here a sketch of our argument, and leave the formal proof to the appendix.

For a fixed level of the substitutability parameter ρ, our model achieves the first-best level

of effort a∗ at a lower level of the discount factor than the model where self-reporting is

not allowed. Let δA(ρ) be the threshold level of the discount factor at which the model

where self-reporting is not allowed first achieves a∗ as the most collusive level of effort,

and let δ(ρ) be the level of the discount factor at which our model first achieves a∗ as

the most collusive level of effort. By Proposition 4, the threat of under-reporting always

weakly enlarges the equilibrium set, and strictly enlarges the equilibrium set when agents

are sufficiently impatient so that δ(ρ) < δA(ρ).

For a small interval of substitutability parameters [ρ, ρ̄], we can easily construct an interval

of discount rates [δ0, δ1] that is a strict subset of [δ(ρ), 1] such that for all such δ and all

ρ̂ ∈ [ρ, ρ̄] the model with self-reporting achieves the first-best level of effort. On this same

interval of δ, however, the model without self-reporting does not achieve the first-best level

of effort. Moreover, it is straightforward to show that as ρ increases, the best equilibrium

level of effort and welfare in the model without self-reporting decrease. Consequently, for

all ρ ∈ [ρ, ρ̄], since effort and welfare in the best equilibrium with self-reporting are constant

and effort and welfare in the best equilibrium without self-reporting are declining, the gains

from self-reporting must be increasing in ρ on this interval.

In Figure 2 we provide a numerical illustration of our result. The figure shows the value of

the best equilibrium under a relatively low value of the substitutability parameter (ρ = 0.60)

and under a high value of the substitutability parameter (ρ = 0.81). As in Figure 1a, the solid

lines in Figure 2 represent the best equilibrium payoffs in the economies where self-reporting

is allowed, and the dashed lines represent the equilibrium payoffs in the economies where

self-reporting is not allowed. The difference between the solid lines and the dashed lines

represent the welfare gains from allowing self-reporting.

The figure provides a clear illustration of our result that self-reporting yields larger in-
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Figure 2: Best equilibrium values for ρ = 0.60 and ρ = 0.81 when self-reporting is not allowed
(dashed lines) and when it is allowed (solid lines).
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creases in best equilibrium values when producers’ effort is more substitutable relative to

when producers’ effort is less substitutable. For example, for a discount factor of roughly

0.16, the model with self-reporting achieves the best equilibrium payoff both when ρ = 0.60

and when ρ = 0.81. However, at this discount rate the model without self-reporting achieves

a value that is (relatively) much lower than the best equilibrium value when the substitutabil-

ity of producers’ output is high.

Collectively, this section shows that when producers’ efforts are more substitutable, al-

lowing the team to self-report can improve team welfare. Intuitively, when inputs are more

substitutable, the incentives to shirk rise (both with and without group punishments). Propo-

sition 5 shows that when the incentives to shirk are larger, the set of discount factors for

which first best is unobtainable without group punishments is also larger. In this case, there

is more scope for group punishments that occur before discounting is realized to improve

outcomes.

The findings of this section have implications for the provision of incentives in worker-

teams with unobservable inputs and decentralized structures. One interpretation sees the

substitutability parameter ρ as a measure of job specialization: high ρ entails a lower marginal

effect from the same worker input on total team output. Following this interpretation, our

results suggest that when team members perform relatively more substitutable “dull” tasks,

shirking incentives are higher (as documented by Dutcher, 2012), and self-reporting has a

higher potential to deter such incentives. A second interpretation sees the parameter ρ as

a measure of job similarity. Following this interpretation, our results suggest teams where

team members have similar tasks are more prone to free-riding. An example of such struc-

tures is a (remote) team of developers jointly collaborating on the same section of a code.

Conversely, when team members perform heterogeneous tasks, then shirking incentives are

lower and self-reporting is less effective in deterring deviations. One example of such struc-

ture is a team of individual developers separately working on different sections of the code.
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5 Conclusion

In this paper, we ask whether allowing a team to report its output to the manager can

mitigate free-riding when team members’ actions are unobservable. We uncover new con-

ditions under which our repeated extensive form game can be characterized using simple

strategies, and we show that a necessary condition for reporting to improve team welfare

is the non-separability between individual actions and team output in producers’ payoffs.

Provided that this non-separability condition is satisfied, group punishments are most effec-

tive in reducing free riding for intermediate levels of producers’ discount factors, and when

producers’ inputs are highly substitutable.

Our theoretical results have implications for incentive provision in WFH team produc-

tion settings where only team output is observable. First, we argue that the interaction

between team members’ private leisure and team output provides credible incentives for

the team to under-report because it imposes larger penalties on shirking agents. Second,

task assignment affects shirking incentives and teams’ ability to discipline these incentives

through self-reporting. When team members perform homogeneous tasks, their shirking

incentives are higher, and the welfare improvements from allowing the team to under-report

their output to the manager are larger.
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A Definitions, Lemmas, and Propositions

A.1 Static Game Results

Lemma A.1. 0 < aNi < a
∗
i .

Proof. An individual agent’s first-order conditions yield (recalling that in the static game

τ = 0, and suppressing the dependency of x on its arguments in the interest of notation)

πx(x,ai)xYYai(ai,a−i) + πai(x,ai) = c ′(ai). (A.1)

The profile aN necessarily satisfies (A.1) for all agents i = 1, . . . ,n. That is,

πx(x,aNi )xYYai(a
N) + πai(x,aNi ) = c ′(aNi ). (A.2)

The first-order condition for the socially-optimal level of effort, on the other hand, implies

that for all i

πx(x,a∗i )xYYai(a
∗) + πai(x,a∗i ) +

∑
i′ 6=i

πx(x,a∗i′)xYYai(a
∗) = c ′(a∗i ). (A.3)

Conditions (A.1) and (A.3) differ by an additional term in (A.3), which represents the positive

externality of one agent’s additional effort on the remaining (n− 1) agents. Since πx > 0,

xY > 0, and Yai > 0, this additional term is positive. This implies that

πx(x,aNi )xYYai(a
N) + πai(x,aNi ) − c

′(aNi ) >

πx(x,a∗i )xYYai(a
∗) + πai(x,a∗i ) − c

′(a∗i ). (A.4)

The result follows from our assumptions on the functions π, x, and c. Given Assumption 2,

we rule out the boundary solution aNi = 0, so 0 < aNi < a
∗
i .

Lemma A.2. If a−i < aNi , then the most profitable deviation a ′i is such that a ′i > aNi > a−i,
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and a ′i > aNi > a−i if πaix < 0. If a−i > aNi , then the most profitable deviation a ′i is such that

a ′i 6 a
N
i < a−i, and a ′i < a

N
i < a−i if πaix < 0.

Proof. Define by Ω (ai,a−i) the marginal benefit of agent i’s deviation, net of her leisure cost,

when the other n− 1 agents are contributing effort a−i. That is,

Ω (ai,a−i) ≡ πx (x (ai,a−i) ,ai) θYai (ai,a−i) + πai (x (ai,a−i) ,ai) . (A.5)

Since πxx 6 0, Yaia′i 6 0, πaiai 6 0, and πaix 6 0 from Assumption 1, it follows that Ωai 6 0

and Ωa−i 6 0 (both strict when πaix < 0). Next, consider the condition that is satisfied when

ai = a
N
i for i = 1, . . . ,n:

Ω
(
aNi

)
= c ′(aNi ), (A.6)

and suppose that the effort by all the other agents but i decreases from aN−i to a′−i < aN−i.

Then,

Ω
(
aNi ,a′−i

)
> c ′(aNi ). (A.7)

The optimal response a ′i by agent i must satisfy the first-order condition

Ω
(
a′i,a

′
−i

)
= c ′(a′i), (A.8)

which means that the right-hand side of (A.7) must increase, its left-hand side must decrease,

or both. Therefore, a ′i > aNi . Following the same reasoning, we get that if πaix < 0, then

(A.7) holds as a strict inequality and therefore a ′i > a
N
i . Following the same reasoning, we

also get that if a−i > aNi , then the most profitable deviation a ′i is such that a ′i 6 aNi < a−i

(and a ′i < a
N
i < a−i if πaix < 0).
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A.2 Histories, Perfect Equilibria, and One-Shot Deviations

Definition A.1. For any history hwt ∈ Hw, the continuation game is the infinitely-repeated game

that begins in period t, following history hwt. For any strategy profile σ = ({σi}
n
i=1 ,σw), agent i’s

continuation strategy induced by hwt is given by σi
(
hwthws

)
for all hws ∈ Hw, where hwthws is the

concatenation of history hwt followed by history hws. Similarly, the reporter’s continuation strategy

induced by hwt is given by σw
((
hwthws

)
, Y
(
σ1
(
hwthws

)
,σ2

(
hwthws

)
, . . . ,σn

(
hwthws

)))
for

all hws ∈ Hw.

Definition A.2. A perfect-public equilibrium is σ = ({σi}
n
i=1 ,σw) such that, for all histories hwt ∈

Hw,

Uti
(
hwt,σ

)
> Uti

(
hwt, (σ̃i,σ−i,σw)

)
, (A.9)

for all i, σ̃i, and

Utw
(
hwt,σ

)
> Utw

(
hwt, ({σi}

n
i=1 , σ̃w)

)
, (A.10)

for all σ̃w.

Definition A.3. A one-shot deviation for agent i from strategy σi is a strategy σ̃i 6= σi such that

there exists a unique history h̃wt ∈ Hw such that for all hws 6= h̃wt,

σi (h
ws) = σ̃i (h

ws) . (A.11)

Similarly, a one-shot deviation for the reporter from strategy σw is a strategy σ̃w 6= σw such that for
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all hwt ∈ Hw there exists a level of the total outcome Ỹt such that for all Yt 6= Ỹt,

σw
(
hwt, Yt

)
= σ̃w

(
hwt, Yt

)
. (A.12)

Definition A.4. A one-shot deviation σ̃i from the agent’s strategy σi is profitable if at history h̃wt

for which σ̃i
(
h̃wt

)
6= σi

(
h̃wt

)
,

Uti
(
h̃wt, (σ̃i,σ−i,σw)

)
> Uti

(
h̃wt,σ

)
. (A.13)

A one-shot deviation σ̃w from the reporter’s strategy σw is profitable if for all hwt ∈ Hw, at the

outcome level for which σ̃w
(
h̃wt, Yt

)
6= σw

(
h̃wt, Yt

)
,

Utw
(
h̃wt, ({σi}

n
i=1 , σ̃w)

)
> Utw

(
h̃wt,σ

)
. (A.14)

Proposition A.3. A strategy profile σ = ({σi}
n
i=1 ,σw) is a perfect-public equilibrium if and only if

there are no profitable one-shot deviations either for the agents or for the reporter.

Proof. If a profile is a perfect-public equilibrium, clearly there are no profitable one-shot

deviations. Now suppose that the profile σ is not a perfect-public equilibrium. We want

to show that there must be a profitable one-shot deviation. Since σ is not a perfect-public

equilibrium, there exists a history h̃wt, an agent i and a strategy σ̃i (the proof for the reporter

follows the same steps) such that

Uti
(
h̃wt,σ

)
< Uti

(
h̃wt, (σ̃i,σ−i,σw)

)
. (A.15)

Let ε = Uit
(
h̃wt, (σ̃i,σ−i,σw)

)
−Uit

(
h̃wt,σ

)
. Letm = mini,a,τ ui (a, τ) andM = maxi,a,τ ui (a, τ).

Recall that for a given δ ∈ (0, 1) and a given κ(δ) > 0 satisfying Assumption 2, Assumption 1

ensures that M and m exist. Thus, there exists T sufficiently large so that δT (M−m) < ε/2.
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Finally, for any agent i and history hws ∈ Hw, let

usi
((
h̃wthws

)
,σ
)

= ui

({
σi
(
h̃wthws

)}n
i=1 ,σw

((
h̃wthws

)
, Y
(
h̃wthws

)))
, (A.16)

where Y
(
h̃wthws

)
is short-hand notation for Y

(
σ1
(
h̃wthws

)
,σ2

(
h̃wthws

)
, . . . ,σn

(
h̃wthws

))
,

and denote by h̃ws the period-s history induced by (σ̃i,σ−i,σw). Then,

(1 − δ)

[
T−1∑
s=t

δsusi
((
h̃wthws

)
,σ
)
+

∞∑
s=T

δsusi
((
h̃wthws

)
,σ
)]

= (1 − δ)

[
T−1∑
s=0

δsusi
((
h̃wth̃ws

)
, (σ̃i,σ−i,σw)

)
+

∞∑
s=T

δsusi
((
h̃wth̃ws

)
, (σ̃i,σ−i,σw)

)]
− ε,

(A.17)

so that

(1 − δ)

T−1∑
s=t

δsusi
((
h̃wthws

)
,σ
)
< (1 − δ)

T−1∑
s=0

δsusi
((
h̃wth̃ws

)
, (σ̃i,σ−i,σw)

)
−
ε

2
. (A.18)

Then the strategy σ̂i such that

σ̂i (h
ws) =


σ̃i (h

ws) if s < T ,

σi (h
ws) if s > T ,

(A.19)

is a profitable deviation from σi
(
h̃wt

)
. Now let ĥw(T−1) denote the period T − 1 history

induced by (σ̂i,σ−i,σw). There are two possibilities. First, suppose

UT−1
i

((
h̃wtĥw(T−1)

)
,σ
)
< UT−1

i

((
h̃wtĥw(T−1)

)
, (σ̂i,σ−i,σw)

)
. (A.20)

Then, since σ̂i agrees with σi in period T and after T , we have a profitable one-shot deviation
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after history h̃wtĥw(T−1). Alternatively, suppose

UT−1
i

((
h̃wtĥw(T−1)

)
,σ
)

> UT−1
i

((
h̃wtĥw(T−1)

)
, (σ̂i,σ−i,σw)

)
, (A.21)

and construct the strategy

σ̄i (h
ws) =


σ̂i (h

ws) if s < T − 1,

σi (h
ws) if s > T − 1.

(A.22)

Since

UT−2
i

((
h̃wtĥw(T−2)

)
, (σ̂i,σ−i,σw)

)
= (1 − δ)uT−2

i

((
h̃wtĥw(T−2)

)
, (σ̂i,σ−i,σw)

)
+ δUT−1

i

((
h̃wtĥw(T−1)

)
, (σ̂i,σ−i,σw)

)
(A.23)

6 (1 − δ)uT−2
i

((
h̃wtĥw(T−2)

)
, (σ̂i,σ−i,σw)

)
+ δUT−1

i

((
h̃wtĥw(T−1)

)
,σ
)

(A.24)

= UT−2
i

((
h̃wtĥw(T−2)

)
, (σ̄i,σ−i,σw)

)
, (A.25)

then

Uti
(
h̃wt, (σ̂i,σ−i,σw)

)
6 Uti

(
h̃wt, (σ̄i,σ−i,σw)

)
, (A.26)

and σ̄i is a profitable deviation at h̃wt that only differs from σi in the first T − 1 periods.

Proceeding in this way, we find a profitable one-shot deviation.

A.3 Equilibrium Set Characterization

Lemma A.4. The best equilibrium in the program (8)-(11) features no group punishments on-path.

Proof. The best equilibrium in the program (8)-(11) is defined by agents’ strategies a, group

punishments τ(Y(a)), and continuation utilities v(a, τ(Y(a)). Suppose that the best equilib-
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rium features punishments on path (i.e., τ(Y(ā)) > 0). Construct a new strategy that keeps

agents’ strategies a fixed, features zero group punishments only at Y(ā) (i.e., τ̂(Y(ā)) = 0 and

τ̂ = τ for all a 6= ā), and keeps continuation utilities fixed (i.e., v̂(a, τ̂(Y)) = v(a, τ(Y)) for all

a). This strategy increases the on-path utility of the agents and the reporter, while leaving

continuation utilities unchanged by construction. In other words, the new strategy increases

the left-hand side of (9) while leaving (10)-(11) unchanged. As a result, the new strategy is

incentive-compatible but delivers strictly higher welfare to agents, which contradicts the that

the original strategy was the best.

Proposition A.5. There exists a level of effort ã such that the carrot-and-stick strategy σ ((ã, ā) , (0, 0))

attains the value v—that is, σ ((ã, ā) , (0, 0)) is an optimal punishment.

Proof. Let v be the infimum of equilibrium payoffs and ā the value that attains the maximum

v̄ in the program (14)-(17). Again let B(κ) be the min-max payoff of this game, where v >

B(κ). The assumption that

(1 − δ)π(κ, 0) + δV(1) < B(κ), (A.27)

ensures that we may obtain ã such that

v = (1 − δ)u (ã, 0) + δu (ā, 0) . (A.28)

To see this, note that V(1) > v̄ = u(ā, 0) and consider u(ã, 0) as ã→ 0. We have

lim
ã→0

u(ã, 0) = lim
ã→0

π(x(ã, 0), ã) − c(ã) = π(κ, 0) − c(0) = π(κ, 0). (A.29)

Hence,

lim
ã→0

(1 − δ)u(ã, 0) + δu(ā, 0) = (1 − δ)π(κ, 0) + δu(ā, 0) 6 (1 − δ)π(κ, 0) + δV(1) < v. (A.30)
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As a result, we can find ã so that

(1 − δ)u(ã, 0) + δu(ā, 0) = v. (A.31)

We next argue that the carrot-and-stick strategy σ ((ã, ā) , (0, 0)) is an equilibrium. By con-

struction, the punishment has value v. Since deviations from ā are unprofitable when pun-

ished by v, they are by construction unprofitable when punished by σ ((ã, ā) , (0, 0)).

To show that no agent wishes to deviate when prescribed to contribute effort ã, we must

show that for all a′,

v = (1 − δ)u (ã, 0) + δu (ā, 0) > (1 − δ)g
(
a′, ã, 0

)
+ δv, (A.32)

and in particular

v = (1 − δ)u (ã, 0) + δu (ā, 0) > (1 − δ) ĝ (ã, 0) + δv. (A.33)

We proceed by contradiction. Suppose (A.33) does not hold. Then there must exist another

(strongly symmetric) equilibrium σy with first-period output ay 6 aN such that

(1 − δ) ĝ (ã, 0) + δv > (1 − δ)u (ay, 0) + δU (σy|ay) > v, (A.34)

where U (σy|ay) is the continuation payoff to a single agent from σy after contributing ay in

the first period.A.1

A.1Since repeated play of the static Nash equilibrium output aN with no punishments must be an equilibrium,
it is straightforward to show that the prescribed effort under the “stick” must satisfy ã 6 aN. If ay > aN,
however, (A.34) implies that

ĝ(ã, 0) > ĝ(aN, 0).

Since the best deviation payoff in the absence of punishments is increasing in a, this would imply aN < ã, a
contradiction.
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Replacing the definition of v in (A.34) implies

(1 − δ)u (ay, 0) + δU (σy|ay) > (1 − δ)u (ã, 0) + δu (ā, 0) . (A.35)

Since U (σy|ay) 6 u (ā, 0), it must be that u (ay, 0) > u (ã, 0) and therefore ay > ã. However,

we show that if σy is a perfect equilibrium, ã > ay, yielding the necessary contradiction.

Since σy is an equilibrium,

(1 − δ)u (ay, 0) + δU (σy|ay) > (1 − δ) ĝ (ay, τ (Y(ay))) + δv, (A.36)

so that from (A.34)

(1 − δ) ĝ (ã, 0) + δv > (1 − δ) ĝ (ay, τ (Y(ay))) + δv. (A.37)

Since ay 6 aN, Proposition 2 implies that

ĝ (ay, τ (Y(ay))) > ĝ (ay, 0) , (A.38)

so that

ĝ (ã, 0) > ĝ (ay, 0) . (A.39)

Since ĝ (a, 0) is increasing in a, (A.39) implies ã > ay providing the needed contradiction.

Proposition A.6. If the strategy σ is an equilibrium, then u (σ) ∈ [v, v̄]. If v ∈ [v, v̄], then there

exists an equilibrium strategy σ such that u (σ) = v.

Proof. We only need to prove that for each v ∈ [v, v̄], there exists an equilibrium strategy

that attains the value v. To construct such strategy, we start from the set of equilibrium

strategies of the game where the reporter is not allowed to impose group punishments,
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[
vA, v̄A

]
. We know from Abreu (1986) that any equilibrium value vA such that vA ∈

[
vA, v̄A

]
can be achieved with an equilibrium strategy σA. Under σA, the reporter never imposes

group punishments and the agents exert effort aA such that u
(
aA
)
= vA on path, and

deviations by both team and agents are punished by reversion to the worst (carrot-and-stick)

equilibrium with value vA. Therefore, we focus on characterizing the equilibrium strategies

for the cases in which
[
vA, v̄A

]
⊂ [v, v̄].

Consider a new strategy σ1. Define by āA the carrot output in the model where group

punishments are not allowed. Under σ1, for some ε1 > 0, the agents choose a1 = āA + ε1 as

long as the aggregate outcome Y1 is such that Y1 = Y
(
a1), and the reporter never imposes

punishments. Suppose that an agent deviates to some a ′, such that the observed aggregate

outcome is Y1 = Y
(
a ′,a1). In this case, the reporter imposes an arbitrarily small punishment

τ1 (Y1) > 0 and agents follow a continuation strategy σA
(
v1 (a ′,a1, τ1 (Y1))), featuring no

group punishments after the current period, to deliver a value v1 (a ′,a1, τ1 (Y1)) ∈ [vA, v̄A
]
.

Specifically, we let the value of this strategy be

v1
(
a ′,a1, τ1

(
Y1
))

≡ vA +
1 − δ

δ

1
n

[
w
(
a′,a1, 0

)
−w

(
a′,a1, τ1

(
Y1
))]

, (A.40)

where the term in square brackets is positive. For any δ > 0, we can pick any τ1 positive

and small enough such that v1 (a ′,a1, τ1 (Y1)) < v̄A, thus ensuring that v1 (a ′,a1, τ1 (Y1)) ∈[
vA, v̄A

]
. From Abreu (1986), there exists a continuation strategy that never calls for equilib-

rium self-reporting and achieves v1 (a ′,a1, τ1 (Y1)) as an equilibrium value.

If an agent deviates and the reporter implements the prescribed punishment, then the

agents follow the strategy σA
(
v1 (a ′,a1, τ1 (Y1))), and the reporter never imposes group

punishments either on or off-path. As a result, the continuation value promised to the agents

when one of the agents deviates and the reporter imposes τ1 (Y1) can be achieved with an

equilibrium strategy σA. Conversely, deviations by the agents followed by deviations by the

reporter are punished by the worst equilibrium strategy σA
(
vA
)
. Clearly, this strategy is an
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equilibrium. Moreover, it achieves a value u
(
a1) ≡ v̄1 > v̄A.

Next, note that reversion to the equilibrium v̄1 > v̄A allows to construct a new carrot-and-

stick strategy in which the agents contribute an effort level ã1 < ãA for one period and then

revert to v̄1, with deviations from the prescription causing the prescription to be repeated.

Moreover, note that this new carrot-and-stick strategy has value v1 < vA. Hence, for any

value v1 ∈
[
v1, v̄1], we can find an equilibrium strategy σ1 such that u

(
σ1) = v1.

Now take some k > 2 and set
[
vk, v̄k

]
such that

[
v1, v̄1] ⊂ [vk, v̄k

]
⊂ [v, v̄], and assume

that for any vk ∈
[
vk, v̄k

]
we can construct an equilibrium strategy σk such that u

(
σk
)
= vk.

Denote by āk the effort level with value v̄k, and construct a new strategy σk+1. Under σk+1,

for some εk+1 > 0 the agents contribute ak+1 = āk + εk+1 as long as the observed aggregate

outcome Yk+1 is such that Yk+1 = Y
(
ak+1), and the reporter never imposes punishments.

Suppose that an agent deviates to some a ′, such that the observed aggregate outcome is

Yk+1 = Y
(
a ′,ak+1). In this case, the reporter imposes a punishment τk+1 (Yk+1) > 0 such

that the punishment is feasible. That is, such that vk+1 (a ′,ak+1, τk+1 (Yk+1)) ∈ [vk, v̄k
]
,

where

vk+1
(
a ′,ak+1, τk+1

(
Yk+1

))
≡ vk + 1 − δ

δ

1
n

[
w
(
a′,ak+1, 0

)
−w

(
a′,ak+1, τk+1

(
Yk+1

))]
.

(A.41)

Note that since v̄k > v̄1, the range of punishments that can be sustained is larger than[
0, supY1 τ1 (Y1)]. If an agent deviates and the reporter implements the prescribed punish-

ment, then the agents follow the strategy σk
(
vk+1 (a ′,ak+1, τk+1 (Yk+1))). Therefore, the

continuation value promised to agents when one of them deviates and the reporter im-

poses τk+1 (Yk+1) can be achieved with an equilibrium strategy. Conversely, deviations

by the agents followed by deviations by the reporter are punished by the worst equilib-

rium strategy σk
(
vk
)
. Clearly, this strategy is an equilibrium. Moreover, it achieves a value

u
(
ak+1) ≡ v̄k+1 > v̄k. Next, note that reversion to the equilibrium v̄k+1 > v̄k allows us to

construct a new carrot-and-stick strategy in which the agents exert an effort level ãk+1 > ãk
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for one period and then revert to v̄k+1, with deviations from the prescription causing the

prescription to be repeated. Moreover, note that this new carrot-and-stick strategy has value

vk+1 < vk. Hence, for any value vk+1 ∈
[
vk+1, v̄k+1], we can find an equilibrium strategy σk+1

such that u
(
σk+1) = vk+1. The proof is completed by induction.

Proposition A.7. The optimal carrot-and-stick punishment satisfies

ĝ (ã, 0) = (1 − δ)u (ã, 0) + δu (ā, 0) = v, (A.42)

ĝ (ā, τ (·)) = u (ā, 0) + δ (u (ā, 0) − u (ã, 0)) if ā < a∗, (A.43)

and

ĝ (ā, τ (·)) 6 u (ā, 0) + δ (u (ā, 0) − u (ã, 0)) if ā = a∗. (A.44)

Proof. Suppose σ ((ã, ā) , (0, 0)) is an optimal carrot-and-stick punishment. Recalling from

Proposition A.5 that ã 6 aN, the requirements that the agents do not deviate from the stick

and carrot outputs ã and ā are, respectively:

(1 − δ)u (ã, 0) + δu (ā, 0) > (1 − δ) ĝ (ã, 0) + δ (1 − δ)u (ã, 0) + δ2u (ā, 0) , (A.45)

u (ā, 0) > (1 − δ) ĝ (ā, τ (·)) + δ (1 − δ)u (ã, 0) + δ2u (ā, 0) . (A.46)

Rearranging these inequalities, we get

ĝ (ã, 0) 6 (1 − δ)u (ã, 0) + δu (ā, 0) = v, (A.47)

ĝ (ā, τ (·)) 6 u (ā, 0) + δ (u (ā, 0) − u (ã, 0)) . (A.48)

If (A.47) holds strictly, we can decrease ã and hence reduce u (ã, 0) while preserving (A.48).

But this yields a lower punishment value than the infimum v, a contradiction. Hence (A.47)

holds with equality. Now suppose that if ā < a∗, (A.48) holds as a strict inequality. Then
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we can simultaneously decrease ã by a small amount (therefore not violating (A.48)) and

increase ā to preserve (A.47). But then since ĝ (ã, 0) is increasing in ã and (A.47), we also

found a lower punishment value than the infimum, again a contradiction.

A.4 Proof of Proposition 5

Fix ρ ∈ (0, 1). We know that there exists a unique δA∗ (ρ) in the model where under-reporting

is not allowed such that āA (ρ) = a∗ for all δ > δA∗ (ρ). This δA∗ (ρ) simultaneously solves

ĝ (a∗, 0) =
(

1 + δA∗ (ρ)
)
u (a∗) − δA∗ (ρ)u

(
ãA (ρ)

)
, (A.49)

ĝ
(
ãA (ρ) , 0

)
=

(
1 − δA∗ (ρ)

)
u
(
ãA (ρ)

)
+ δA∗ (ρ)u (a∗) , (A.50)

and represents the threshold level of the discount factor for which the model where under-

reporting is not allowed achieves the first-best level of effort a∗. Similarly, for the same ρ we

know that there exists a unique δ∗ (ρ) in the model where under-reporting is allowed such

that ā (ρ) = a∗, which simultaneously solves

ĝ (a∗, τ (·)) = (1 + δ∗ (ρ))u (a∗) − δ∗ (ρ)u (ã (ρ)) , (A.51)

ĝ (ã (ρ) , 0) = (1 − δ∗ (ρ))u (ã (ρ)) + δ∗ (ρ)u (a∗) . (A.52)

Next, note that for āA < a∗ if ā is sustained by a positive punishment threat (for some

a′ 6= ā, τ (a′ + (n− 1) ā) > 0), then āA < ā 6 a∗. Then, for all δ < δA∗(ρ),
[
vA; v̄A

]
⊂ [v; v̄],

and δ∗ (ρ) < δA∗ (ρ) (i.e., the model where group punishments are allowed achieves the first-

best level of effort a∗ at a lower value of the discount factor than the model where group

punishments are not allowed). Next, let δ0 be such that δ∗ (ρ) < δ0 < δA∗ (ρ). Note that

at δ0, ā (ρ) = a∗ and āA (ρ) < a∗. Now let ρ̄′ > ρ, and let δ∗ (ρ̄′) in the model where group
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punishments are allowed be such that ā (ρ̄′) = a∗, which solves

ĝ (a∗, τ (·)) =
(
1 + δ∗

(
ρ̄′
))
u (a∗) − δ∗ (ρ)u

(
ã
(
ρ′
))

(A.53)

ĝ
(
ã
(
ρ̄′
)

, 0
)

=
(
1 − δ∗

(
ρ̄′
))
u
(
ã
(
ρ̄′
))

+ δ∗ (ρ)u (a∗) . (A.54)

By continuity we can always choose ρ̄′ small enough such that δ∗ (ρ̄′) < δ0. Therefore, in the

model where group punishments are allowed ā (ρ̄′) = ā (ρ) = a∗ for all δ ∈ (δ0, 1). We also

know that there exists a δ1 > δA(ρ) such that for all δ ∈ (δA∗(ρ), δ1), then āA (ρ̄′) < āA (ρ) =

a∗.A.2 Hence, at δA

∆U
(
ρ′
)
≡
u (ā (ρ̄′)) − u

(
āA (ρ̄′)

)
u (āA (ρ̄′))

>
u (ā (ρ)) − u

(
āA (ρ)

)
u (āA (ρ))

≡ ∆U(ρ). (A.55)

In words, as ρ increases to ρ̄′, the model with group punishments achieves higher welfare

than the model without group punishments. Following the same argument, we have that for

all ρ′ ∈ (ρ, ρ̄′), d∆U (ρ′) /dρ′ > 0.

A.2The symmetric equilibrium payoff function is decreasing in ρ, such that if ρ increases for a fixed δ > δA∗(ρ),
then the best equilibrium level of effort is lower than a∗.
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B Computational Algorithm

In this appendix, we describe the computational algorithm for our numerical results in Sec-

tion 3. Define â ≡ arg maxa′ g (a′, ā, τ (a′ + (n− 1) ā)). For each level of the discount factor

δ, we want to find ã, ā, â, and τ that solve the following system of equations:

ĝ (ã, 0) = (1 − δ)u (ã, 0) + δµ (ā, 0) , (B.1)

ĝ (â, τ (·)) 6 u (ā, 0) + δ (u (ā, 0) − u (ã, 0)) , (B.2)

u (ā, 0) >
1 − δ

δ

1
n
[w (â+ (n− 1) ā, 0) −w (â+ (n− 1) ā, τ (â+ (n− 1) ā))]

+ĝ (ã, 0) . (B.3)

From Proposition A.7, Equation (B.2) holds with equality only when ā < a∗ and is slack

when ā = a∗. The algorithm works as follows:

1. For each level of the discount factor δ, we know that τ ∈ [0, (n− 1)a∗ + a′(a∗)], where

a′(a∗) is the most profitable deviation from a∗. Start with τ̂ = (n− 1)a∗ + a′(a∗).

(a) Check if a∗ can be supported:

i. Set ā = a∗. Solve (B.1) for ã.

ii. Obtain â = arg maxa′∈[aN,a∗] g (a
′, ā, τ̂). We do this by searching for â over a

fine grid for a′. Evaluate ĝ (ā, τ̂).

iii. Check if the resulting values for ã and ā satisfy (B.2) (with inequality) and

(B.3). If so, the algorithm is finished.

(b) If either (B.2) or (B.3) is not satisfied (a∗ cannot be supported), jointly solve for ā

and ã. We do this by using a nested bisection algorithm to solve (B.1) and (B.2)

with equality (also solving for â as before).

i. The nested bisection algorithm proceeds as follows. The outer bisection algo-

rithm searches for ã ∈ [ã`, ãh]. The inner bisection algorithm solves for the

corresponding ā.
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ii. At each iteration of the double bisection algorithm, check whether (B.1)-(B.3)

are all satisfied.

2. If (B.1) and (B.3) are satisfied, the algorithm is finished. If not, decrease τ̂ by a small

amount and return to step 1.
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