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1 Introduction

A central component of most blockchain technologies is a token that can be used as a

method of payment. For some blockchains like Bitcoin, the token is a crypto-currency and

its use as a means of payment is its primary purpose. For other blockchains, the token

serves as a “utility token” to perform transactions on the blockchain. An Ether token,

for example, is a means of payment for computer processing on the Ethereum Virtual

Machine, the runtime environment for smart contracts in Ethereum blockchain technology.

In either case, the conversion between crypto-currencies and between crypto-currencies and

government issued currencies is important. To date, existing crypto-currencies are simply

too volatile to be an effective medium of exchange or a store of value. Figure 1 plots the

standard deviation of daily USD price changes of Bitcoin from January 2015 to January

2021. Relative to the Euro-Dollar exchange rate, the price of gold, or even the US stock

market, the volatility is an order of magnitude larger.

More generally, currency prices are volatile. Exchange rates fluctuate far more than country

differences in economic activity or aggregate price levels (Rogoff (2001)). There is a long

history of currency issuers—historically, governments—following policies to stabilize the

price of their currency. Typically these policies involve using a “peg” to a more stable

currency like the U.S. dollar or a commodity price like gold. To maintain the peg, the

issuer maintains a stock of reserves (dollars, gold) to redeem their currency at a fixed rate.

Currently, countries such as Qatar, Cuba, and Panama have pegged their exchange rate to

the U.S. dollar. Previously, Mexico and Argentina had pegged to the dollar but abandoned

that policy. For crypto-currencies, Tether has pegged their exchange rate to the U.S. dollar.

Currency stability, even with a policy of a peg is difficult. When a currency is not 100%

backed, it is vulnerable to a speculative attack. If enough traders sell (short) the currency,

these traders can force a full depletion of the issuer’s dollar reserves leading to a devaluation

of the currency. This means that if each trader believes that enough other traders will sell

(short) the currency, then it is also optimal for each trader to short the currency in the

expectation of a devaluation. As a result, a change in traders’ beliefs alone about the

likelihood that others traders will speculate against the currency is sufficient to induce a

run on the currency. Obstfeld (1996) develops this mechanism to show how currency pegs

may be subject to arbitrary speculative attacks.

The canonical “peg” policy uses a fixed amount of reserve currency (dollars), R, and redeems

domestic currency (or cryptocurrency in our running example), into reserves at a fixed



exchange rate e. Should reserves be exhausted, the currency floats at a depreciated market

rate ef < e. The policy “works” as long as demand for the reserve currency is not large

(relative to R). The policy, however, permits equilibria with speculative attacks. A single

trader, who does not have a fundamental need for the reserve currency, might choose to

trade at e with the anticipation of unwinding the trade at the floating rate, ef . The

speculative profit, net of a transaction cost τ , is e/ef − τ . If this trader believes that all

traders will demand the reserve currency, then the trader rationally anticipates that the

domestic currency will depreciate and so also demands the reserve currency. This canonical

“peg” policy is “unconditional” in the sense that the exchange rate e does not depend on

demand (except of course, after reserves are exhausted).

In contrast, in this paper, we develop a new theory of optimal exchange rate pegs that are

less than 100% backed by a reserve currency and are also immune to speculative attacks.

Our first contribution is to show that the classical problem of speculative attacks arises

from the ad hoc restriction that exchange rate policy be unconditional. We develop a

simple, conventional model of speculative attacks with no aggregate uncertainty about the

relative value of the currencies. In our model, some traders realize an immediate need for

the reserve currency and some traders do not—the latter are those who may profit from

speculation—and that these shocks are independently drawn across traders. Under certain

conditions relating the stock of reserve currency, the floating rate, fundamental demand for

the cryptocurrency, and the transaction costs of speculating, a canonical peg policy admits

multiple equilibria—an equilibrium without an attack as well as one with an attack. In

the attack equilibrium, all agents, even those without an immediate need for the reserve

currency, attempt to convert their domestic currency into the reserve currency at the pegged

exchange rate.

Under these same conditions, we show that a commitment to devalue the cryptocurrency

if too many traders demand conversion (into reserve currency) eliminates the speculative

attack equilibrium and therefore stabilizes the exchange rate. (Note, in this setting, “sta-

bility” is relative to the stability of the reserve currency.) Our argument builds on the

observation that speculative attacks on an exchange rate resemble runs on a deposit-issuing

bank. Just as a commitment to suspend convertibility in the most basic version of the model

of Diamond and Dybvig (1983) eliminates runs, so too our devaluation policy eliminates

speculative attacks.

Our second contribution is to generalize this result to settings with aggregate uncertainty

about the relative value of the currencies. Using arguments analogous to those in Green

and Lin (2003), we prove that the use of a dynamic exchange rate peg that adjusts in
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response to traders’ conversion demand also eliminates speculative attack equilibria. We

prove this result in a model where traders face idiosyncratic and independent shocks to

their preferences over the domestic and the reserve currency, where there is aggregate risk

to traders’ preferences, and where the exchange rate policy must respect a sequential service

constraint—a constraint requiring traders who demand conversion be paid in order of their

demands and the exchange rate policy offered to each trader is measurable with respect to

only the current history of traders’ demands.

Formally, we show that if an exchange rate policy prevents speculation when all traders

believe no other trader will speculate, then the only (perfect Bayesian) equilibrium involves

no speculation. The logic of the argument follows a basic backward induction argument

and relies on our assumption that traders preference shocks are independent.1 Suppose a

trader has an arbitrary place in line; that is, this trader has the ith opportunity to demand

conversion into the reserve currency. For trader i to forecast her payoffs from speculating

or not she must forecast the conversion demand of traders who follow her. Suppose she

believes (inductively) that among traders who follow her, only those traders who realize

a sudden need for the reserve currency will demand conversion. When traders’ currency

demand shocks are independent, the demands of traders in line before her do not influence

her forecast of the conversion demand of traders after her. Moreover, any sequence of

conversion demand of the traders before her in line is associated with some history of

demands when no traders speculate. Since the exchange rate policy prevents speculation

by trader i when no traders speculate, it must also prevent her from speculating in the

history where some traders previous to her have speculated. In other words, trader i has a

dominant strategy to not speculate, ensuring that the exchange rate policy admits a unique

equilibrium among the traders without speculation.

We go on to characterize the optimal exchange rates that emerge from our model when

the domestic currency is (on average) relatively valuable. Specifically, we show that when

relatively few traders expect to realize an immediate need for the reserve currency and when

those traders who do not realize this immediate need ultimately value owning mostly the do-

mestic currency, then the ex post efficient exchange rate policy—the policy an issuer would

implement if traders’ realized needs for domestic and reserve currency were observable—

is incentive compatible. Under these conditions, we show that the optimal exchange rate

is stable: traders expect the exchange rate to not adjust very much. Nonetheless, in the

unlikely event that many traders realize immediate needs for the reserve currency, the ex-

1Our logic is analogous to that used by Andolfatto, Nosal, and Wallace (2007) to prove a similar result
on unique implementation in a banking context.
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change rate does depreciate—the policy dynamically adjusts to realized traders needs for

reserve currency.

Our theory is agnostic about the currencies involved. It applies equally well to a government

issued fiat currency or a blockchain cryptocurrency. The particular importance of blockchain

technology is two-fold. First, the new technology has spawned a large number of coins.

CoinMarketCap tracks the market capitalization (price times outstanding currency) of over

4000 different cryptocurrencies with a total market cap of approximately $900 billion. The

ten largest each have a market capitalization over five billion dollars.2 Currency stability is

directly relevant for these blockchain-driven businesses. For many of the coins like Bitcoin

Cash, Ethereum’s Ether, Litecoin, price volatility is as large as Bitcoin (Figure 1); the

exchange rate with US dollars is extremely volatile. Several crypto-currencies have been

designed with price stability as the objective. Tether, one of the largest coins (by market

capitalization) with an exchange rate “peg” offers one-for-one conversion between its tokens

and U.S. dollars. To defend its peg, Tether claims to hold $1 US in reserve for every

Tether outstanding, but the exact mechanism Tether uses to maintain price stability is not

transparent and has lead to claims of market manipulation3. It is often hard to verify issuers’

reserve holdings. Tether, for example, severed its relationship with its auditor in January

2018 and then used $850 million (US dollar) of reserves to cover losses in a related company.4

Other crypto-currencies that aim for price stability include Nubits, Dia, Basecoin. All of

these protocols feature collateral or reserves at 100% (or more). Others, at least on the

surface, appear to have no workable mechanism for stability other than the name.

Second, and perhaps more importantly, blockchain technology has the potential to cred-

ibly implement complicated peg policies. Specifying and communicating a policy that

depends on real-time currency demand may not be easy. Moreover, conditional poli-

cies may appear less credible since they are more complicated to monitor and appear to

feature more discretion (see Kydland and Prescott (1977) or, in a banking context En-

nis and Keister (2009a)). “Smart Contracts,” such as those on the Ethereum Network

are rich state-contingent contracts that are credible since they are immutable and en-

forced by an irreversible distributed-ledger blockchain technology. To see how this can

work, we code our dynamic exchange rate policy in Solidity, a computer language used for

smart-contracts on Ethereum, and deploy the contract on a local instance of a blockchain

(https://github.com/azetlinjones/cryptopeg). This exercise highlights policy choices

2These statistics reflect information as of January 12, 2021. https://coinmarketcap.com/.
3Griffin and Shams (2018). https://www.bloomberg.com/graphics/2018-tether-kraken-trades/
4See New York State Attorney General Letitia James press release of April 25, 2019. https://on.ny.

gov/356dsbf.

4

https://github.com/azetlinjones/cryptopeg
https://coinmarketcap.com/
https://www.bloomberg.com/graphics/2018-tether-kraken-trades/
https://on.ny.gov/356dsbf
https://on.ny.gov/356dsbf


like the information structure and demonstrates clearly how the blockchain setting facili-

tates commitment.

What follows is a model without aggregate risk to outline the basic structure of the spec-

ulative trading game. We show how enriching the policy space is useful for eliminating

undesirable speculative attacks. Section 3 demonstrates that unique equilibrium are at-

tainable when the model features both aggregate risk and policies must respect sequen-

tial service constraints. Section 4 illustrates features of optimal exchange rate policies in

economies when ex post efficient policies are also incentive compatible. Finally in Section 5,

we implement the exchange rate policy on the Ethereum Network.

2 A Model of Currency Crises without Aggregate Risk

In this section, we describe a theoretical model of currency crises in the spirit of Obstfeld

(1996) and Morris and Shin (1998). We demonstrate that the existence of an equilibrium

resembling a speculative attack is an artifact of an ad hoc restriction on the policy space.

When the currency issuer is permitted to use state-contingent policies to defend an exchange

rate peg, then the speculative attack equilibrium does not exist.

To fix ideas, we describe our environment as one where an issuer of a cryptocurrency

stabilizes the value of the cryptocurrency relative to a reserve currency (“dollars”). As we

describe in Section 5, a related interpretation is that of an issuer of a new token on the

Ethereum network (an ERC-20 token) stabilizing the value of their tokens with respect to

units of ETH, the native unit of account on the Ethereum network.

2.1 Model Environment

The model economy lasts for two periods and features a continuum of measure one of traders.

Each trader owns one unit of a cryptocurrency. While we describe their fiat endowments

at cryptocurrencies, for the purpose of our theory one may equivalently think of these as

units of paper currency. The economy features two assets: cryptocurrency and dollars.

We normalize the price of the cryptocurrency to be 1 while the price of dollars in period

t = 0, 1 is et units of cryptocurrency. Think of $36,599 per BTC or $1,191 per ETH. So an

appreciation of the cryptocurrency price corresponds to a higher value of et.
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At the beginning of period 0, each person realizes a privately observed, uninsurable type.

With probability µD > 0, traders are of type D, whom we refer to as dollar (consumption)

traders and with probability µC = 1 − µD traders are of type C, whom we refer to as

crypto traders. Traders types are identically and independently distributed across agents.

A trader’s type determines her preferences over asset positions and time.5

A dollar trader desires only dollars in period 0. A crypto trader desires (mostly) cryptocur-

rency in period 1. Specifically, we assume that for any holdings of cryptocurrency x in

period 1, a crypto trader retains a portion λx > 0 of her cryptocurrency and must convert

a portion (1 − λ)x to acquire (1 − λ)xe1 dollars. We interpret the source of risk here as

independent of the true value of the crypto currency—it simply reflects independent shocks

to traders’ needs. In this sense, these shocks are akin to the liquidity shocks modeled in

many theories of banking. Instead, we interpret the parameters, µC , µD and λ as reflective

of the underlying fundamental value of the cryptocurrency.

Facing a path of exchange rates e0 and e1, traders may convert cryptocurrency into dollars in

period 0 (at price e0), store the dollars until period 1, and convert back into cryptocurrency

(at price 1/e1) in period 1 as a form of speculation. We discuss in Section 2.2 when these

prices are issuer-determined or market-determined prices. This speculation bears a fixed

cost τ > 0 denominated in units of cryptocurrency.6

Formally, let dit ∈ {0, 1} denote the units of cryptocurrency trader i requests to convert

into dollars in period t, let dt = (dit)i∈[0,1].
7 Since dollar traders only care about period

0 consumption, each such trader will always submit di0 = 1. Crypto traders may wish to

speculate by submitting a conversion request of di0 = 1 depending on their perceptions of

the path of exchange rates. Note that given (e0, e1), a crypto trader who submits conversion

demand di0 in period 0 will enter period 1 with

xi1 = 1− di0 +
e0

e1
di0 − τ1[di0=1] (1)

units of cryptocurrency (with 1 as an indicator function). The amount xi1 reflects the un-

converted cryptocurrency, 1− di0, the period 1 value of cryptocurrency converted in period

5As our definition of preferences in (2) makes clear, in this model traders enjoy utility directly from
owning assets at a given point in time. This modeling choice aligns our theory closest to the literature on
speculative attacks as in Obstfeld (1996).

6Given that a speculator’s preferences imply she will ultimately require some dollars, one could equiva-
lently think of a speculator as converting only a portion of her period 1 dollars back into cryptocurrency.
Given our normalization of the transaction costs of speculating, however, she is indifferent between selling
all of her dollars to cryptocurrency and then re-acquiring some dollars.

7The restriction of traders’ strategies to {0, 1} plays a critical role in simplifying the model with aggregate
uncertainty studied later in the appear. We make the restriction here to be consistent, though it is more
innocuous.
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0 (denominated in cryptocurrency), e0
e1
di0, less any transaction cost. Our assumption on

preferences implies that such a trader will submit a conversion demand di1 = (1 − λ)xi1 in

period 1.

Given a path of exchange rates e = (e0, e1) and dollar demands d = (d0, d1), each trader

i ∈ [0, 1] has utility function of the form

U(di0; e, d) =

{
u(e0d

i
0) if i is of type D

u
(
[(1− λ)e1 + λ]xi1

)
if i is of type C

(2)

where xi1 is given by (1).

We assume traders’ preferences satisfy the following properties:

Assumption 1: (i) u is strictly increasing, continuously twice differentiable and strictly con-

cave and (ii) u satisfies the Inada conditions limc→0 u
′(c) =∞ and limc→∞ u

′(c) = 0.

2.2 Optimal Policy

We envision a currency issuer that chooses an optimal exchange rate policy given an initial

endowment of R0 dollar reserves. One interpretation is that the issuer is a traditional

currency board that represents a sovereign government; an alternative interpretation, which

we explore in Section 5 is that the issuer is the creator of a new cryptocurrency token on the

Ethereum blockchain. As with conventional currency boards or many current blockchain-

based stable-coin proposals, we assume the issuer offers to convert cryptocurrency into

dollars or dollars into cryptocurrency at specified rates in period 0 and period 1. In addition,

we assume the presence of a private market for trading cryptocurrency into dollars at

a market rate ef . Note that if this market rate were to be above the issuer-set rate,

arbitrageurs would want to buy cryptocurrency from the issuer (at a low dollar price) and

sell them in the private market (at a high market price) earning a risk-free arbitrage. This

logic suggests that ef should always lie below the issuer-offered rate. We assume that as

long as the issuer has strictly positive reserves R, then the market rate ef is the issuer rate,

e1. However, when the issuer has 0 reserves, then traders may buy or sell cryptocurrency

for dollars at the floating (and low) rate ef .

Let dt = (dit)i∈[0,1] denote the set of traders’ conversion demands in period t. Then the

issuer’s policy choice is an exchange rate policy (e0(d0), e1(d0, d1), φ0(d0), φ1(d0, d1)) that

specifies exchange rates, et, and fractional conversion rates, φt ∈ [0, 1], in each period as

a function of the relevant history. Note that we restrict the issuer to offer a constant

conversion rate to all traders in each period. The exchange rate policies must be feasible.
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Definition 1: An exchange rate policy is feasible, if and only if for all dt,

e0(d0)φ0(d0)

∫
di0di+ e1(d0, d1)φ1(d0, d1)

∫
di1di ≤ R0. (3)

Optimal Policy with Limited Contingency Policies. Motivated by Obstfeld (1996),

we now place a restriction on the class of policies the issuer may consider and demonstrate

that under this restriction, the optimal exchange rate policy admits a speculative attack

equilibrium. Consider first an issuer that defends an exchange rate peg—a fixed e0 in our

model—until it runs out of reserves in which case it converts demand uniformly in period

0 and allows the exchange rate to float at ef in period 1. We refer to such a policy as a

limited contingency policy.

Definition 2: An exchange rate policy is a limited contingency policy if it satisfies

e0(d0) = ē0 ∀d0 (4)

φ0(d0) = 1 ∀d0 such that ē0

∫
di0di ≤ R0 (5)

φ0(d0) = R0/[ē0

∫
di0di] ∀d0 such that ē0

∫
di0di > R0. (6)

We note two important observations about limited contingency policies. First, if the issuer

is not able to defend the peg against a given level of dollar demand, then it necessarily

exhausts its supply of dollar reserves and allows the exchange rate to float in period 1

(or, for all such d0, it follows that φ1(d0, d1) = 0). Second, when the issuer is not able to

defend the peg, it treats all depositors who demand conversion equally. These two features

of limited contingency policies play a key role in allowing for the possibility of speculative

equilibria.

Consider next the problem of the issuer choosing among limited contingency exchange rate

policies to maximize the expected utility of the traders subject to feasibility constraints

and a no-speculation constraint which ensures crypto traders prefer to submit a bid di0 = 0

rather than di0 = 1. In such a case, it is immediate that the issuer will choose φ0(d0) =

φ1(d0, d1) = 1 when
∫
di0di = µD and

∫
di1di = (1− λ)µC and will set ē0 and ē1 to solve

maxµDu (ē0) + µCu ((1− λ)ē1 + λ) (7)

subject to the feasibility constraint (3) and the no-speculation constraint,

u ((1− λ)ē1 + λ) ≥ u
(

[(1− λ)ē1 + λ]

[
ē0

ē1
− τ
])

. (8)
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The no-speculation constraint here may be written compactly as

1 ≥ ē0

ē1
− τ (9)

implying that optimal policies discourage speculation as long as the currency does not

depreciate too much (ē1 cannot be too much smaller than ē0).

Since the feasibility constraint (3) necessarily binds, if the no-speculation constraint is slack,

an optimum exchange rate policy is characterized by the optimality condition,

u′(ē0) = u′
(
R0 − µDē0

µC
+ λ

)
(10)

which implies ē0 = R0 + µCλ. To verify this value of ē0 is optimal, one need only verify the

feasibility and no-speculation constraint, which yields the following proposition.

Proposition 1: If R0 − µDλ ≥ 0 and

(1− λ)
R0 + µCλ

R0 − µDλ
≤ 1 + τ (11)

then the optimal limited contingency policy satisfies ē0 = R0+µCλ and ē1 = (R0 − µDλ)/(1− λ)

where ē1 is defined for d1 such that
∫
di1di = (1− λ)µC .

Notice that for µD < R0, condition (11) of Proposition 1 is satisfied as λ → 1. When this

is the case, if traders believe that crypto traders will not speculate, then traders rationally

anticipate at worst a mild depreciation of the cryptocurrency. As a result, a single crypto

trader will find speculation to be an unprofitable strategy. Since each crypto trader’s best

response to the belief that other crypto traders will not speculate is to also not speculate,

no speculation is an equilibrium of the optimal limited contingency policy.

Moreover, note that when µD < R0, the issuer’s policy satisfies µDē0 < R0 < ē0. This

inequality implies that while the issuer chooses a policy that will not exhaust its reserves

if no crypto traders demand currency in period 0, this limited contingency policy will

necessarily exhaust all of the issuer’s reserves if all crypto traders demand conversion. In

this sense, the exchange rate policy is less than 100% backed by reserves. Recall that when

the issuer’s reserves are exhausted, traders may buy or sell cryptocurrency at the market

price ef .

Consider then a crypto trader’s incentives to speculate when she believes all other crypto

traders will also speculate (choose di0 = 1). Under these beliefs, the crypto trader rationally
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anticipates φ0(d0) = R0/ē0 and φ1(d0, d1) = 0. As a result, her payoffs from not speculating

are given by u((1− λ)ef + λ) and from speculating (with di0 = 1) are given by

u

(
[(1− λ)ef + λ]

[
1− R0

ē0
+
ē0

ef
R0

ē0
− τ
])

. (12)

It follows that whenever (R0/e
f ) − (R0/ē0) ≥ t, the crypto trader will find it optimal to

speculate. We have proved the following lemma.

Lemma 2: If

R0

ef
− R0

R0 + µCλ
≥ τ (13)

(or ef is sufficiently small), then the optimal limited contingency policy admits an equilib-

rium where all crypto traders speculate.

We have shown that limited contingency policies suffice to deliver efficient insurance ar-

rangements against traders uncertain needs for dollars. However, as in Obstfeld (1996),

such policies allow for too much volatility in exchange rates in the sense that they also

admit other equilibria. Note that if the floating exchange rate ef is sufficiently small, then

small changes in ef would induce no change in the optimal exchange rate policy—its so-

lution under Proposition 1 is independent of the floating rate for such values. However,

under any equilibrium selection that admits the speculative equilibrium as an outcome (e.g.

under a sunspot selection criteria), the model would feature variation in the floating rate

price of cryptocurrency.

We now examine optimal policies without the ad hoc restriction on policy contingencies

and demonstrate that such polices can eliminate the possibility of speculative equilibrium.

Optimal Policy with Contingent Policies. Consider next the unrestricted problem

of choosing any feasible exchange rate policy to maximize ex ante expected utility of the

traders. Clearly, in an equilibrium in which only dollar traders submit demand for dollars

in period 0, the outcomes ē0 and ē1 from Proposition 1 are the same. The only difference

with arbitrarily contingent policies is that the issuer may now change the period 0 exchange

rate it offers when total demand in period 0 differs from µD.

For example, consider the following policy:

e0(d0) =

{
R0 + µCλ if

∫
di0di = µD

ef if
∫
di0di 6= µD

, e1(d0, d1) =

{
1

1−λ (R0 − µDλ) if
∫
di1di = µC

ef if
∫
di1di 6= µC

,

(14)
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and

φ0(d0) = min

{
R0

e0(d0)
∫
di0di

, 1

}
, φ1(d0, d1) = min

{
R0 − e0(d0)φ0(d0)

∫
di0di

e1(d0, d1)
∫
di1di

, 1

}
. (15)

Under this policy, if no crypto traders plan to speculate, Proposition 1 implies that each

crypto trader prefers not to speculate. Alternatively, if any strictly positive fraction of

crypto traders are believed to speculate, then each crypto trader expects to obtain utility

u((1− λ)ef + λ) should she not speculate and expects to obtain utility u([(1−λ)ef+λ][1−τ ])

should she choose to speculate. Hence, the policy trivially rules out alternative equilibria.

More generally, there is a large class of policies which implement the efficient outcome in

this economy while admitting a unique (no speculation) equilibrium. We state this result

in the following lemma.

Lemma 3: There exist exchange rate policies (with arbitrary contingencies) that implement

the efficient outcome uniquely.

Our analysis closely parallels related analysis from Diamond and Dybvig (1983). The Dia-

mond and Dybvig intermediary uses limited resources to provide insurance to agents against

idiosyncratic liquidity shocks (demand for early consumption). Our currency issuer uses lim-

ited dollar reserves to insure agents against idiosyncratic currency demand shocks. In the

banking context, because long term assets grow, it is cheaper to provide real consumption

to agents who do not realize a liquidity shock (patient types) and so optimal consumption

is larger for for those agents than those who do realize liquidity shocks (impatient types).

In the desired (truth-telling) equilibrium, this force ensures patient types do not wish to

mimic impatient types.

The key insurance motive in our model is somewhat different. In the limiting case, when

λ = 1, crypto traders do not desire or value dollars at all. In this case, the issuer would

want to distribute all of its dollars to the dollar traders in period 0. The only insurance

motive, and hence the only motive to fix an exchange rate for the issuer is to equate the

dollar consumption of dollar traders in period 0. In this sense, our model provides a motive

for exchange rate stability (relative to dollars). A concern of such a policy is that by fully

depleting its dollar reserves with dollar traders, the issuer may provide incentives to crypto

traders to speculate. When λ is strictly less than but close to 1, the issuer is able to offer

most of its dollars to dollar types in period 0 while also credibly maintaining a high exchange

rate in period 1 when only dollar types trade in period 0. The problem is that at such fixed

exchange rates, the issuer cannot defend its peg when more than the expected number of
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dollar traders demand conversion just as a Diamond and Dybvig intermediary is bankrupt

when too many depositors redeem their deposits before long-term assets mature.

We view Lemma 3 then as an exchange rate policy analogue to the usefulness of suspension

contracts in the literature on bank runs beginning with Diamond and Dybvig (1983). In that

literature, the anticipation that the bank will suspend convertibility (of deposits to cash)

provides patient depositors with the knowledge that their deposits are safe; the anticipation

of suspension, therefore, removes the incentives to run. In our model, the anticipation that

the issuer will abandon its peg before exhausting its dollar reserves removes the incentives

of crypto traders to speculate.

Notice that parametric assumptions contained in Proposition 1 and Lemma 2 are needed

only to make the problem interesting. That is, these conditions ensure that the limited

contingency policy—the canonical peg policy—admits both a no speculation and a specu-

lation equilibrium. Only under these conditions is it interesting to ask if a richer policy can

eliminate speculative attacks. Lemma 3 shows that under these conditions, richer exchange

rate policies do eliminate the speculative attack equilibrium. As we have shown, sufficient

(though not necessary) conditions that imply the conditions contained in Proposition 11

and Lemma 2 are that λ→ 1, µD relatively small, and ef sufficiently small. Given traders’

preferences, this assumption implies that a crypto trader derives most of her utility from

actually owning the cryptocurrency. In other words, crypto types expect to derive most

their value of the asset from the asset directly (either as a medium of exchange or as a

means to acquire a given service from a platform). Under these conditions, the optimal

exchange rate (per unit of cryptocurrency) appreciates because crypto traders will demand

a negligible amount of reserves. Second, the measure of dollar traders cannot be too large.

That is, there must be a thick enough market for agents who value the cryptocurrency. We

will maintain these assumptions below when we consider an environment with aggregate

uncertainty about the fundamental relative value of cryptocurrency.

Much like suspension contracts are not efficient when there is aggregate liquidity risk in

Diamond and Dybvig (1983), one concern with our analysis is that contingent exchange

rate policies may not function well when there is aggregate risk over the need for dollars, or

the reserve currency. We explore contingent exchange rate policies when there is aggregate

risk in Sections 3 and 4 next.
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3 Exchange Rate Policy with Aggregate Risk

In this section, we show that optimal exchange rate policies are immune to fluctuations

driven purely by traders’ speculative motives even when the issuer faces aggregate uncer-

tainty over fundamental demand for dollars. We show this to be the case even when the

issuer’s policies are required respect a form of sequential service. While imposing sequential

service adds constraints to the issuer of our model, Calomiris and Kahn (1991) emphasize

how such constraints may play a socially useful role in related environment by incentiviz-

ing traders to screen the issuer. Hence, we view an understanding of the ability to offer

stable exchange rates under sequential service as important for understanding proposals to

stabilize cryptocurrency prices.

3.1 Model Environment with Aggregate Risk

The model environment is essentially the same as that in Section 2 except for two modifi-

cations. First, we modify the number of traders so that there are I ≥ 3 traders (instead of

a continuum of measure 1). As before, at the beginning of period 0, traders’ types are i.i.d

and with µC > 0 and µD > 0 representing the probability that a given trader is a crypto

or dollar type respectively.

This first modification implies that the model now features aggregate risk to the number of

crypto (and dollar) traders. One natural interpretation of this risk in our context is that it

reflects aggregate uncertainty in the fundamental demand for cryptocurrencies. Critically,

this source of aggregate risk implies that after observing a large volume of dollar demand

(perhaps larger than expected), an issuer cannot determine whether this demand reflects

speculative demand in anticipation of a depreciation or a fundamental shock to demand for

cryptocurrency. Our aim in the rest of this section is to analyze the implications of this

uncertainty for the robustness of the issuer’s optimally chosen exchange rate policies.

Our second modification changes the timing and information of actions in the game: we

assume that each trader i ∈ I chooses a strategy of dollar demand di0 ∈ {0, 1} sequentially

with the knowledge of the history of actions chosen by previous traders j < i. As before, a

choice of di0 = 0 reflects a choice by the trader to not demand dollars—to not speculate—

and a choice of di0 = 1 reflects a choice to demand dollars, or speculate. Equivalently, we

treat a reported demand di0 = 1 as a report that the trader is a dollar trader and a reported

demand di0 = 0 as a report that the trader is a crypto trader.

13



Given this timing and information modification, it is natural to examine how optimal ex-

change rate policies perform when the issuer has to convert cryptocurrency into dollars for

traders sequentially. Below, we explicitly define policies that respect a sequential service

constraint. We view this modification as critical to examining the robustness of our results

given that the most straightforward policy to eliminate speculative attacks in the model

without aggregate risk exploited full knowledge of total dollar demand.

3.2 Optimal Policy

Since the issuer serves traders sequentially given a remaining stock of dollar reserves and

we allow for history-contingent exchange rate policies, we may define an exchange rate pol-

icy simply as plans for period 0 and period 1 exchange rates. To define history-dependent

exchange rate policies, we first define the history of dollar demands, Di
0 = (d1

0, . . . , d
i
0) for all

i ∈ {1, . . . , I}. An exchange rate policy is a set of functions {e1
0(DI

0), e2
0(DI

0), . . . , eI0(DI
0), e1(DI

0)}.

Definition 3: An exchange rate policy satisfies sequential service if and only if for all i,

ei0(DI
0) is measurable with respect to Di

0.

In other words, exchange rate policies satisfy sequential service as long as for each trader

i, the exchange rate they receive depends only on the trader’s reported dollar demand and

the reported demands of traders who have previously submitted demands to the issuer. To

emphasize this measurability restriction, we write ei0(Di
0).

Given an initial stock of dollar reserves and an exchange rate policy, the dollar reserves

remaining after the ith trader submits their demand in period 0, di0, satisfies

Ri0(Di
0) = Ri−1

0 (Di−1
0 )− di0ei0(Di

0). (16)

The issuer chooses an exchange rate policy to maximize the expected discounted value of

the traders,

E

I∑
i=1

[
di0u(ei0(Di

0)) + (1− di0)u
(
(1− λ)e1(DI

0) + λ
)]

(17)

subject to the reserve transition equations, (16), the feasibility constraints

∀i ∈ {1, . . . , I} and Di−1
0 , ei0(Di

0) ≤ Ri−1
0 (Di−1

0 ) (18)

∀DI
0, (1− λ)e1(DI

0)

I∑
i=1

(1− di0) ≤ R0 −
I∑
i=1

di0e
i
0(Di

0) (19)
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and the no-speculation incentive constraints for crypto traders,

∀Di
0, E

[
u
(
(1− λ)e1(DI

0) + λ
)∣∣Di

0

]
≥ E

[
u

([
(1− λ)e1(D̂I

0) + λ
] [ei0(D̂i

0)

e1(D̂I
0)
− τ

])∣∣∣∣∣Di
0

]
(20)

where the expectations in (20) are with respect toDI
0 or D̂I

0 and where D̂i
0 = (d1

0, . . . , d
i−1
0 , 1)

and D̂i
0 = (d1

0, . . . , d
i−1
0 , 1, di+1

0 , . . . , dI0).

3.3 A Uniqueness Result

We now prove that any incentive-feasible exchange rate policy—a policy satisfying the

feasibility constraints ((16) and (18)-(19)) and the incentive constraints (20)—admits a

unique perfect Bayesian equilibrium.

Formally, a strategy for agent i is si : Di−1
0 × {0, 1} → {0, 1} where the first argument

is the vector of reports of those traders who arrive before trader i and the second is the

true type of trader i. For a crypto trader, si = 0 is a choice to not speculate and si = 1

is a choice to speculate. Let sI = (s1, s2, . . . , sI). Let DI
0,i+1 = (di+1

0 , di+2
0 , . . . , dI0) denote

the vector of types of those in line after trader i and sIi+1 the strategies of these traders.

Let γ(Di
0,i+1|si−1, di0) denote trader i’s belief. These beliefs represent the probability of the

outcome DI
0,i+1 conditional on earlier reports and trader i’s true type. In principle, these

beliefs may differ from the probability of DI
0,i+1 given traders’ true types, which we denote

γ̃(Di
0,i+1|si−1, di0).

For any strategy, a crypto trader i’s final asset position is

a(si−1, si, s
I
i+1) =(1− si)

[
(1− λ)e1(si−1, si, s

I
i+1) + λ

]
+ si

[
(1− λ)e1(si−1, si, s

I
i+1) + λ

] [e0(si−1, si, s
I
i+1)

e1(si−1, si, sIi+1)
− τ

]
(21)

Since dollar traders have a dominant strategy, si = 1, we define an equilibrium considering

only the incentives of crypto traders.

Definition 4: A strategy sI and a belief γ is a perfect Bayesian equilibrium if∑
DI

0,i+1

γ(DI
0,i+1|si−1, ti)u

(
a(si−1, si, s

I
i+1)

)
≥
∑
DI

0,i+1

γ(DI
0,i+1|si−1, ti)u

(
a(si−1, s̃i, s

I
i+1)

)
(22)

for all i,DI
0 and s̃i ∈ {0, 1} and γ is consistent with Bayes’ rule whenever possible.
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We then have the following proposition.

Theorem 4: Suppose an exchange rate policy satisfies the feasibility constraints (18)-(19)

and the incentive constraints (20). Then, the strategy si(D
i−1
0 , di0) = di0 and belief γ̃(Di

0,i+1|si−1, di0)

is the unique perfect Bayesian equilibrium.

The proof mirrors exactly that of Andolfatto, Nosal, and Wallace (2007) and depends

critically on the assumption that traders’ types are independent. The logic follows a basic

backward induction argument. First, observe that the last trader has degenerate beliefs

about the full set of reports that will determine exchange rates in period 1. Hence, it

is immediately follows from (20) that not speculating is a dominant strategy for trader I

when she is a crypto-type. Now, suppose trader i believes all subsequent traders will redeem

cryptocurrency for dollars if and only if they are dollar types. Because traders’ types are

independent, trader i’s belief about DI
0,i+1 is independent of the reporting strategies of

traders 1, 2, . . . , i−1. Moreover, any reporting strategy of traders 1, 2, . . . , i−1 is equivalent

to some realization of their true types, Di−1
0 . And, for each such realization, incentive

compatibility of the exchange rate policy, (20), implies that not speculating is optimal for

trader i in this state. Hence, not speculating is also a dominant strategy for trader i.

Notice, when trader’s types are correlated, this result may no longer hold. The reason is

that the reporting strategies of traders 1, 2, . . . , i− 1 influence the beliefs of trader i about

the types of future traders, DI
0,i+1. When this source of complementarity between traders’

actions is strong enough, incentive-feasible policies no longer rule out the possibility of

multiple equilibria. This result is analogous to similar results that arise in models of bank

runs when depositors have correlated types. For example, Ennis and Keister (2009b) shows

that when depositors’ preference shocks are correlated, direct mechanisms that implement

the efficient allocation may continue to yield a run equilibrium when there are more than

3 depositors. In such cases, implementing efficient arrangements without admitting the

possibility of multiple equilibria may require the use of indirect mechanisms (see Cavalcanti

and Monteiro (2016) specificaly, and Andolfatto, Nosal, and Sultanum (2017), and Payne

and Weiss (2020) more generally for recent results on the usefulness of indirect mechanisms

in prevent bank runs).

4 Optimal Exchange Rates

In this section, we examine features of the optimal exchange rates that emerge from our

model and demonstrate conditions under which this optimal policy resembles an exchange
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rate peg even though it responds dynamically to traders’ demands for dollars. In general,

a full characterization of the solution to the program (17)–(20) is challenging. Instead, we

examine cases where the ex post efficient outcome—optimal policy assuming traders’ types

are observable—satisfies the incentive constraints. In such cases, characterizing optimal

policies is straightforward. We begin with a tractable example that admits a closed-form

solution for optimal policy and interpretable sufficient conditions to ensure the policy is

incentive compatible. We then generalize these findings by way of numerical examples.

4.1 The Ex Post Efficient Optimal Exchange Rate Policy

For our theoretical and numerical results below, we begin by examining the solution to the

optimal exchange rate policy program assuming the incentive constraints are all slack at

the solution. This approach is equivalent to characterizing properties of the ex post efficient

policy. Below, we obtain conditions that allow us to verify that the incentive constraints

are indeed slack at this optimum.

Under this conjecture, we may solve for the optimal exchange rate policy by way of a

straightforward backward induction. In period 1, for any DI
0 and outstanding dollar reserves

R, the optimal period one exchange rate e1(DI
0) solves

W (Θ(DI
0);R) = max Θ(DI

0)u ((1− λ)e+ λ) , (23)

where Θ(Di
0) =

∑
i(1−di0) represents the number of crypto traders, subject to the feasibility

constraint, Θ(DI
0)(1 − λ)e ≤ R. Since there is no reason to retain reserves beyond period

1, it is immediate that for all DI
0, e(DI

0) = R/[Θ(DI
0)(1− λ)] and

W (Θ(DI
0);R) = Θ(DI

0)u

(
R

Θ(DI
0)

+ λ

)
. (24)

We proceed in similar fashion to define the issuer’s value function in period 0 for each

possible trader’s position, i. This value function depends on the outstanding reserves of the

issuer, R, and the total number of previously reported crypto-types, Θ(Di−1
0 ). We omit the

dependence of Θ on Di−1
0 to simplify notation. The issuer’s value function in period 0 for

trader i then satisfies

V i
0 (Θ;R) = max

e≤R
µD
[
u(e) + V i+1

0 (Θ;R− e)
]

+ µCV
i+1

0 (Θ + 1;R) (25)

with the convention V I+1
0 (Θ;R) = W (Θ;R).

The program described by (23)-(25) is straightforward to solve given functional forms for

preferences and a given I either analytically or computationally.
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4.2 The Three Trader Economy

Consider a specific case of our economy where I = 3.8 Analysis, detailed in Appendix A.1

reveals the following optimal policy.

Proposition 5: Suppose I = 3 and u(c) = − exp(−αc). Then,

e1
0(R) =

R

3
− 2

3α
logD

e2
0(Θ;R) =

R

2 + Θ
− 1 + Θ

α(2 + Θ)
log

[
µD exp

(
−αλ Θ

1 + Θ

)
+ µC exp (−αλ)

]
e3

0(Θ;R) =
R

1 + Θ
+

Θ

1 + Θ
λ

e1(Θ;R) = 1[Θ≥1]
R

Θ(1− λ)
+ 1[Θ=0]e

f

where D is a function of the fundamental parameters µC , µD, λ and α that satisfies D ≤ 1.

It is straightforward to show that as µC → 1, the period 0 exchange rates satisfy ei0 →
(R+2λ)/3. For a relatively high fraction of crypto traders, then, the issuer’s optimal policy

“pegs” the exchange rate for traders in period 0. Note also that e3
0(0;R) = R so that in the

case where traders 1 and 2 both report they are dollar types, the issuer plans to exhaust

its remaining reserves for the final trader in case she also reports she is a dollar trader. In

other words, in some states, the issuer is prepared to allow the exchange rate to float.

We now derive conditions such that this policy satisfies traders’ incentive constraints, (20).

First note that not speculating, or choosing d3
0 = 0 for trader 3 is a dominant strategy if

and only if for all Θ and R,

(1−λ)e1(Θ+1;R)+λ ≥
[
(1− λ)e1(Θ;R− e3

0(Θ;R)) + λ
]︸ ︷︷ ︸

Consump. per Cryptocurrency

[
e3

0(Θ;R)

e1(Θ;R− e3
0(Θ;R))

− τ
]

︸ ︷︷ ︸
Spec. Profit

. (26)

Since trader 3 is last, there is no residual uncertainty about the total number of dollar and

crypto traders. As a result, this trader simply compares the payoff she receives from not

speculating to that she receives from speculating. The left-hand side of (26) represents the

consumption (of dollars and cryptocurrency) of the last trader if she does not speculate

where she understands that the period 1 exchange rate will be given by e1(Θ + 1;R).

8Note that our analysis here parallels that of Green and Lin (2000) who also considered a three trader
case of the model in Diamond and Dybvig (1983) as this version of the model most transparently reveals
the nature of the sequential service constraints.
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The right-hand side represents her period 1 consumption payoff per unit of cryptocurrency

multiplied by her speculative profit. Notice that this trader recognizes that by speculating,

she influences the period 1 exchange rate. In particular, if Θ = 0 so that the first two

traders have reported that they are dollar traders, trader 3 recognizes that by speculating,

the issuer will exhaust its reserves in period 0 and allow the exchange rate to float at rate

ef in period 1. Also note that when she speculates, she is a net seller of dollars to the issuer

hence the issuer can afford to pay her as long as the issuer policy is active—i.e. when the

issuer has remaining reserves.

Using the optimal policies from Proposition 5, one may show that (26) holds when Θ ≥ 1

if and only if
R

1 + Θ
+ 1 ≥ −τ

[
R

1 + Θ
+ 1− 1

1 + Θ

]
(27)

and holds when Θ = 0 if and only if

R+ λ ≥
[
(1− λ)ef + λ

] [R
ef
− τ
]
. (28)

Notice that as λ → 1, (27) requires (R + Θ)(1 + τ) + 1 ≥ 0 which always holds while (28)

requires

1 + τ ≥ R
[

1

ef
− 1

]
. (29)

The inequality (29) places a lower bound on the floating rate that we will impose at R = R0

to guarantee the third trader always prefers to report truthfully. Notice that the lower

bound in (29) necessarily lies below the upper bound on ef implied by the assumption in

Lemma 2.

Consider next the incentives of trader 2 to speculate or not when she is a crypto trader.

These incentives depend critically on the reported type of trader 1 along with the remaining

reserves available to the issuer. When trader 1 reports she is a crypto trader (type C), the

expected utility trader 2 obtains from not speculating (U
NoSpec.
2,crypto) is

U
NoSpec.
2,crypto = µDu

[
(1− λ)e1(2;R0 − e3

0(2;R0)) + λ
]

+ µCu [(1− λ)e1(3;R0) + λ] (30)
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while the expected utility she obtains from speculating (U
Spec.
2,crypto) is

U
Spec.
2,crypto =µDu

([
(1− λ)e1(1;R0 − e2

0(1;R0)− e3
0(1;R0 − e2

0(1;R0))) + λ
]
×[

e2
0(1;R0)

e1(1;R0 − e2
0(1;R0)− e2

0(1;R0 − e2
0(1;R0)))

− τ
])

+ µCu

([
(1− λ)e1(2;R0 − e2

0(1;R0)) + λ
] [ e2

0(1;R0)

e1(2;R0 − e2
0(1;R0))

− τ
])

. (31)

In both (30) and (31), the probabilities µD and µC represent the objective probability that

trader 3 is a dollar or crypto trader. Given not speculating is a dominant strategy for

trader 3 (when she is a crypto type), any perfect Bayesian equilibrium requires trader 2

to evaluate the payoffs associated with her strategies using these objective probabilities.

Note that trader 2 faces risk in the period 1 exchange rate she will receive arising from the

possible (truthful) reports of trader 3. The same is true when trader 2 speculates although

in this case the trader also bears risk in her speculative profits.

Similarly, when trader 1 is a dollar trader, the expected utility trader 2 obtains from not

speculating (U
NoSpec.
2,dollar) is

U
NoSpec.
2,dollar = µDu

[
(1− λ)e1(1;R1 − e3

0(1;R1)) + λ
]

+ µCu [(1− λ)e1(2;R1) + λ] (32)

while the expected utility she obtains from speculating (U
Spec.
2,dollar) is

U
Spec.
2,dollar =µDu

([
(1− λ)ef + λ

] [e2
0(0;R1)

ef
− τ
])

+ µCu

([
(1− λ)e1(1;R1 − e2

0(0;R1)) + λ
] [ e2

0(0;R1)

e1(1;R1 − e2
0(0;R1))

− τ
])

.

(33)

In Appendix A.1, we prove that as λ → 1 and µC → 1, both U
NoSpec.
2,crypto ≥ U

Spec.
2,crypto and

U
NoSpec.
2,dollar ≥ U

Spec.
2,dollar. Hence, not speculating is a dominant strategy for trader 2 when she is

a crypto type. Since traders 2 and 3 have dominant strategies, we may determine the first

trader’s incentives. Towards this end, the expected utility associated with not speculating

for Trader 1 when she is a crypto type, U
NoSpec.
1 is given by

U
NoSpec.
1 =µ2

Cu ((1− λ)e1(3;R0) + λ)

+ µDµCu
(
(1− λ)e1

(
2;R0 − e2

0(1;R0)
)

+ λ
)

+ µCµDu
(
(1− λ)e1

(
2;R0 − e3

0(2;R0)
)

+ λ
)

+ µ2
Du
(
(1− λ)e1

(
1;R0 − e2

0(1;R0)− e3
0(1;R0 − e2

0(1;R0))
)

+ λ
)
. (34)
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while the expected utility associated with speculation, U
Spec.
1 is given by

U
Spec.
1 =µ2

Cu

([
(1− λ)e1(2;R0 − e1

0(R0)) + λ
] [ e1

0(R0)

e1(2;R0 − e1
0(R0))

− τ
])

+ µDµCu

([
(1− λ)e1(1;R0 − e1

0(R0)− e2
0(0;R0 − e1

0(R0))) + λ
]
×[

e1
0(R0)

e1(1;R0 − e1
0(R0)− e2

0(0;R0 − e1
0(R0)))

− τ
])

+ µCµDu

([
(1− λ)e1(1;R0 − e1

0(R0)− e3
0(1;R0 − e1

0(R0))) + λ
]
×[

e1
0(R0)

e1(1;R0 − e1
0(R0)− e1

0(1;R0 − e1
0(R0)))

− τ
])

+ µ2
Du

([
(1− λ)ef + λ

] [e1
0(R0)

ef
− τ
])

(35)

As above, in Appendix A.1, we show that U
NoSpec.
1 ≥ USpec.

1 as λ→ 1 and µC → 1. We then

have the following result.

Proposition 6: For λ and µC in a neighborhood of λ = µC = 1 and 1 + τ ≥ R0[ 1
ef
− 1], the

optimal policy described in Proposition 5 is incentive compatible.

Using Theorem 4, Proposition 6 implies that crypto traders not speculating is the unique

perfect Bayesian equilibrium of the game among traders. The two limits in the proposition

play independent, but complementary roles in the proof of Proposition 6. Notice from

Proposition 5 that as λ→ 1, e1(Θ;R)→∞ as long as R > 0. Whenever Θ > 0, the issuer’s

optimal policy retains reserves into period 1 so that in any such state crypto traders expect

the exchange rate to actually appreciate from their opportunity to trade in period 0 until

period 1. This expected appreciation reduces their incentives to speculate since they expect

to end up with a negative holding of cryptocurrency after bearing the transaction costs of

speculating.

This logic fails, however, in the state where all traders report they are dollar traders—an

event which occurs with strictly positive probability in the finite trader economy. As a

result, a crypto trader in an early position, such as the first trader, may expect to earn

speculative profits from a depreciation in the event that traders 2 and 3 happen to be dollar

traders. As µC → 1, the likelihood of this profitable event tends to 0, though, and the

speculative losses the trader earns in other states of the economy dominate leading the

trader to prefer not to speculate. These assumptions jointly ensure that all traders expect

the cryptocurrency to not depreciate too much.
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As we show below by way of numerical examples, however, these limiting results are not

particularly special. That is, we show that the optimal exchange rate policy is dominant

strategy incentive compatible even if on average, the optimal policy features no appreciation

between periods 0 and period 1.

Under the conditions of Proposition 6, we are able to verify that traders’ incentive con-

straints are satisfied for the efficient exchange rate policy. Generalizing this result—that

the ex post optimal exchange rate policy satisfies this large set of incentive constraints—to

more types is difficult theoretically and numerically due to the fact that it requires verifying

2I − 1 incentive constraints (where I is the number of traders).

Moreover, imposing these constraints may be costly (ex ante) to the extent these constraints

bind and limit the set of incentive-feasible allocations. Relaxing this set of constraints, as

in Green and Lin (2003)—so traders have some, imperfect information about their order in

the sequence—may allow for a more general proof of uniqueness with i.i.d. types and many

traders. However, in the banking context, as shown by Peck and Shell (2003) and Ennis and

Keister (2009b), relaxing these further—so traders have no information about their order

in the sequence—may imply that uniqueness is unattainable for some parameter values.9

These results suggest the possibility of an interesting tradeoff between the nature of traders’

information, the existence of speculative attack equilibria, and the value of (constrained)

efficient exchange rate policy. As we describe in Section 5, the nature of information that

traders may access in blockchain-based protocols is a choice of the protocol designer and

understanding these trade-offs is likely to be an important avenue for future research.

4.3 Numerical Illustrations

Figure 2 illustrates an example with I = 3 trader. Here we solve the dynamic program of

the currency issuer specified in equations (24) and (25) numerically. We solve the straight-

forward dynamic program and then check that the no-speculation incentive constraints are

slack. The figure shows the full state-contingent dynamic policy for the exchange rate

policy. For trader i = 1, the currency issuer offers an exchange rate of e1
0 = 0.707. The

two branches are for trader of crypto type (C) and dollar type (D). Assuming the no

9In Appendix A.2 we consider a related environment with finitely many traders who must demand
conversion simultaneously and without imposing sequential service constraints. There we derive conditions
such that the ex post efficient allocation rule is incentive compatible and, moreover, admits a unique (Bayes
Nash) equilibrium. When the conditions for those results are violated, we conjecture that it may be possible
to construct multiple equilibria. Again, in such cases indirect mechanisms may play an important role in
eliminating unwanted equilibria (Andolfatto, Nosal, and Sultanum (2017)).
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speculation incentive condition holds, only the type D trades at this rate and the policy

adapts for i = 2—lower if the i = 1 trader was a dollar (D) type. The final column on

the right is the period one exchange rate e1. In the (unlikely) case where all three of the

traders are dollar (D) type, the optimal exchange rate is not defined—there are no C types

at period t = 1. Here, the realized exchange rate is the floating rate, ef . As seen in Table

1, we calibrated this example so that it has little expected appreciation or depreciation in

the exchange rate. To achieve that we set λ = 0.25. This implies a large demand for dollars

in period one which implies that the ex post efficient exchange rate does appreciate too

much. The example also has initial reserves R0 = 1.7 that are moderate; absent a dynamic

exchange rate policy, a run equilibrium is admissible. That is if all three traders demand

conversion at an unconditional level of 0.7, the currency issuer will exhaust its reserves.

With three traders, there are seven no speculation incentive conditions to check. Here,

and at all the other nodes with a C trader, the expected utility from speculating is less

than the expected utility from not. So all the incentive constraints are slack. For example,

look at the top node of Figure 2 (yellow dot) where for i = 2, the C-type considers her

options facing an exchange rate of e2
0 = 0.717. If she does not speculate she ends up with

period 1 utility from λ + (1 − λ)e1. In this example, we have λ = 0.25 so the values of

e1 = 0.756 and e1 = 0.647 (blue dots) are important. Alternatively, she might speculate by

selling her one unit of cryptocurrency and hoping for depreciation when she converts back

to cryptocurrency at e1. Notice that if she chooses to speculate, the policy reacts. So, she

contemplates converting dollars back to cryptocurrency at either e1 = 0.655 a 1% gain net

of a transaction cost τ = 0.08 (e1/e0 − τ = 0.717/0.655− 0.08 = 1.01) or e1 = 0.494 a 37%

gain (0.717/0.494 − 0.08 = 1.37). These gains are offset by the lower values of e1 for the

1− λ portion of utility that comes from owning dollars. Since, in this example, traders are

more likely to be crypto types, µC = .85 and the trader is risk averse (CARA preferences

with α = 2 risk aversion) this trade is not attractive.10

Numerically, there is nothing special about I = 3 case. Figure 3 is an example with

I = 10 traders, initial reserves R0 = 7.5, and with other parameters remaining the same.

The figure shows all paths for the optimal dynamic exchange rate policy, ei0 for traders

i = 1, ...10 and then the value for e1. The thick line is the unconditional mean for ei0
and e1. With µC = 0.85, the most likely paths are near the mean. The red shaded area

highlights the 90–10 percent inter-quantile range. As in the prior example, we check that all

the no-speculation incentive constraints hold. The computational burden is higher here as

10Recall, the no speculation constraint is: E[u ((1− λ)e1 + λ)] ≥ E[u ((e0/e1 − t) ((1− λ)e1 + λ))] For λ
values close to one, the trade profit term (e0/e1 − t) drives the inequality. Here, we set λ = 0.25. It is
feasible to generate examples with λ closer to one.
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there are now 2I −1 = 1023 constraints to check and, in this example, they are all satisfied.

Notice in this example, there is a modest (about 1%) expected depreciation in the currency

value from period one to two.

Figure 4 illustrates how the sequential trading yields a unique equilibrium that rules out a

speculative attack equilibrium. The black straight line is the unconditional mean value for

for e0 (as in Figure 3). The other lines report the mean value of ei0 and e1 conditional on

the behavior of selected traders. The solid gold (top) line is the mean exchange rate policy

conditional on traders i = 2, 3 both reporting type C. The solid blue (bottom) line is the

mean conditional on traders i = 2, 3 both reporting type D. Notice that the impact to a

report of D is larger as this is less likely (µC = 0.85). Importantly, notice the conditional

mean following traders i = 2, 3 is flat (does not continue to depreciate much). Trader

i = 4, for example, does not have any additional motivation to speculatively trade given

the i = 2, 3 reports. The dashed lines are the same conditional mean, except here we alter

the actions of traders i = 7, 8. The policy is more sensitive to the trades from D types as

their are fewer remaining opportunities for the traders to be dollar type.

5 Implementing on a Blockchain

The model environment we have presented is not specific to the currencies involved. How-

ever, the conditional exchange rate policy is well suited to a blockchain settings. In partic-

ular, some blockchains facilitate “smart contracts.” Smart contracts are not legal contracts

that require court enforcement. Instead, the smart contracts are scripts and associated data

(or states) that are stored and executed on a distributed platform. They are contracts in

that they are commitments enforced by a distributed-ledger blockchain technology. In this

section we show how our dynamic exchange rate peg can be implemented using Solidity

code on the Ethereum Network. The code and instructions for this example are available

at https://github.com/azetlinjones/cryptopeg.

The Ethereum Network is the largest (measured by market capitalization) blockchain set-

ting with a smart contracting environment. The coding environment for Ethereum that

creates the smart contracts is called Solidity. Importantly, the language is designed for

the distributed setting so that executed code yields the same result for everyone on the

distributed network who might update the blockchain. It is also Turing Complete, meaning

it offers a rich set of possible contracts. The language includes, as a standardized object,
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ERC20 tokens.11 ERC20 tokens have standard properties of an asset in that they can be

owned and transferred. In this example, we mint a new ERC20 coin, the “CryptoPegCoin”

or CPC. We then implement our our dynamic exchange rate policy to peg the CPC coin

price to the Ether (ETH), the primary cryptocurrency on Ethereum’s network. Relative

to our running example, CPC is the cryptocurrency and Ether is the dollar. We return to

consider how to incorporate non-blockchain currency like U.S. dollars below.

5.1 Coded Example

We build the demonstration with three tools. First we use Truffle Suite’s Ganache12 to

create a local instance of an Ethereum Blockchain. This local test-network lets us develop

and test our code without using any real Ether. Ganache also provides some user accounts

(public and private key pairs) whose personas we adopt to be our policy maker and traders.

Second, we use the Remix13 tool to edit and compile the Solidity code. The Remix tool

also lets us deploy or post the contract to our test Ethereum network as well as run the

functions we code into the contract. Lastly, we have webpage (some HTML and Javascript)

that acts as a user interface our traders use to trade. Our goal here is to explore how

a dynamic peg policy can work in a blockchain setting, so the HTML interface is very

primitive. Screen-shots for each of these tools is in Figure 5.

In this example we have four accounts to consider. Alice is the policy maker who will

create and deploy the smart contract that implements the dynamic peg. This example has

three traders, I = 3. We call the traders Bob, Charlie, and Donna.14. To initiate things,

Alice compiles the Solidity code and deploys it to the blockchain. This means that the

human-readable text code is converted into byte-code and that byte-code is what is added

to the blockchain.15 Alice can make her Solidity code public on, say, her policy maker

webpage. Importantly, anyone can compile that code and verify that it is the same as the

compiled code stored on the blockchain.16 The Solidity code is a “script” in that it does

11The term “ERC20” stands for Ethereum Request For Comments with the 20 to distinguish it from other
standards discussions.

12https://www.trufflesuite.com/
13https://remix.ethereum.org/
14The names Alice and Bob are a tradition introduced in the seminal paper in cryptography that presented

the RSA algorithm that is now central to blockchain technology. See Rivest, Shamir, and Adleman (1978)
15This step often called “mining” and is the decentralized record-keeping enigmatic to blockchain. Each

transactions on Ethereum has a transaction cost called “gas”. The gas cost is roughly proportional to the
complexity of the transaction. In this small example, these costs are small. Exploring gas cost in a large
economy setting is an interesting extension.

16Making the human-readable code public is a choice. In our setting, the policy maker is committed to
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not run automatically. In her code are several functions (the key ones we discuss below)

that are called by her or others. These calls to the functions and the result also happen as

transactions on the blockchain.

Initially, Alice “owns” this contract and some of the functions can only be run by the

contract owner. In our economic setting, the cryptocurrency is already outstanding and we

do not model the “Initial Coin Offering” or ICO. For this example, we have Alice mint 30

coins, transfer ownership of the coins to the contract, and then offer them for sale at 0.9

ETH/CPC. Next, we have our traders buy the coins. The reasons that our traders might

buy these CPC are outside our model.17 With this, we are at date t = 0 of our model.

Each trader owns 10 of CPC. The contract has reserves R=27 ETH. Alice sets the initial

peg price to 1.0 ETH/CPC – note the CPC price is not fully backed. To implement the

dynamic exchange rate peg she places the traders in an order. Here, we happen to use

the order Bob, Charlie, and Donna.18 Finally, Alice transfers ownership of the contract to

the contract itself. This means that, credibly, Alice as the policy maker has no remaining

control or input to the smart contract.

Next our traders have one sequential opportunity to trade. We implement the sequential

order with the heavy-handed rolling of “freezing” and “un-freezing” of the account that can

trade. Bob is first and he can poll the contract to see the e0 price is set at 1.0 ETH/CPC.

He chooses to trade 0 or 10 coins. Once this transaction is recorded, Charlie has the

opportunity to trade. If for example, Bob did trade his CPC for ETH, the contract will

offer a lower price to Charlie. And so on to Donna.

5.2 Discussion

As we discussed earlier, the specific nature of information provided to the traders for their

decision trade decision is important to determining when an efficient allocation is imple-

the policy and the traders know it. In Ethereum smart contracts, it is common to publish the Solidity code.
The rational is akin to legal advice not to sign contracts you have not or cannot read.

17ERC20 tokens are typically the “coins” that are created and sold when a new blockchain-related business
on the Ethereum Network does an “Initial Coin Offering” (ICO). Often these tokens of the ICO are like
tickets that give access to the soon-to-be-created service or application. Filecoin, as an example, is used to
rent file storage space. It is a separate and interesting question as to why these businesses are choosing to use
a separate token for access as opposed to just pricing in terms of, say, Ethereum’s Ether. Presumably, some
motive for the “pre-sale” of tokens is capital structure (Davydiuk, Gupta, and Rosen (2019) and Garratt
and Van Oordt (2019)). Other motives are coordination and commitment in the industrial organization of
the business (Lee and Parlour (2019), Li and Mann (2018), and Goldstein, Gupta, and Sverchkov (2019)).

18We do this manually simply because it was easier to code. Assigning traders to a spot in line with some
randomness could be done. In general, generating pseudo-random numbers in the distributed environment of
Ethereum requires care but is feasible. Gambling, for example, using smart contract is a common application.
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mentable with an unique equilibrium (Ennis and Keister (2009b)). In our Solidity, code

we mirrored the environment of our model closely. In particular, we placed the traders

into an order that was public. We coded a function in our Solidity that lets anyone poll

the contract to see the public key of trader i. That is straightforward; it is not necessary.

Different code could have accepted all the trade requests and then pseudo-randomly order

the traders and executed trades.19 More sophisticated information structures where traders

information about the queue is noisy, as in Green and Lin (2003), are also feasible.

Our dynamic exchange rate policy assumes that the currency issuer is committed to im-

plement the proposed policy. Results from Ennis and Keister (2009a), who study a related

framework in a banking context suggest that a currency issuer would not abide by this

policy when she lacks commitment. Blockchain then may play the role of a commitment

technology to mitigate the potential consequences of lack of commitment. The Ethereum

blockchain environment facilitates commitment by giving contracts a public key address.

This means that contract can own ETH and other ERC20 coins. Notice we sent the ETH

from the purchase of our coins to the contract. The contract owns these resources in that

it (and it alone) can send the ETH to our traders. Second, Ethereum allows contracts to

“own themselves.” So when Alice transferred ownership of the dynamic peg policy contract

to the contract she effectively gives up the ability to run any of the “owner-specific” func-

tions. In our specific case, transferring ownership means no longer having the ability to

mint additional CPC coin, change the order of traders, or transfer any ETH beyond what

is specified in the dynamic peg policy. Like the other aspects of the Solidity code, this is a

choice of the policy maker when implementing in the blockchain environment.

In this example, we supported the price of our CPC using ETH. These are both tokens native

to the Ethereum Network. Ownership and control is entirely contained on the Ethereum

blockchain and tradable through our smart contract. To extend our example to use off-chain

assets, US dollars for example, we need a legal framework to link the dollars to a token on

the blockchain. For example, we could use our R US Dollars and issue R ERC20 tokens

that are a legal claim to the off-chain dollars; fully backed one-for-one. This is analogous

to the Tether stable coin policy. We could then use the R tokens to support our CPC coin

as in the example with less than one-to-one reserves. More generally, the challenges in the

interface between a blockchain and external physical or financial assets is an area of active

fintech development.20

19For example, Solidity code to run an auction is a common topic of Solidity tutorials.
20For example, “What is a corporate blockchain?” https://www.ibm.com/blogs/blockchain/2019/01/

what-is-a-corporate-blockchain.
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6 Conclusion

We have shown that the classical problem of speculative attacks against an under-collateralized

currency peg arises from an ad hoc restriction that exchange rate policy be unconditional.

We have shown that the optimal conditional policy that considers traders in sequence adjusts

the conversion rate based on demand-to-date. The optimal conditional policy eliminates

the speculative attack since traders late in the sequence have a dominant strategy not to

speculate.

A significant concern with the optimal conditional policy we derive is the required degree

of trust that it requires. Specifically, one must believe that policymakers will abide by

the specified, complicated policy (ex post). Implementing this policy using blockchain-

based smart contracts removes the scope for moral hazard by the policymaker and therefore

persuades individuals that the specified conditional policy will actually be implemented. In

this context, the key value of blockchain is in its ability to generate trust that policies will

be implemented as specified by policymakers.
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A Proofs

A.1 Analysis of the Three Trader Economy

This appendix contains proofs of results regarding the environment with I = 3 traders.

A.1.1 Proof of Proposition 5

In this section, we solve the finite trader model when there are 3 traders with utility function
u(c) = − exp(−αc). We solve the model using backward induction in closed form. The value of the
currency board of entering period 1 with reserves R and θ crypto-traders to be paid is

W (θ,R) = θu

(
R

θ
+ λ

)
.

where we have used the fact in period 1, the government always uses up all of its resources,
ore1(θ;R) = R

θ(1−λ) .

Period 0 exchange rates for the 3rd Trader. Suppose 2 traders have already arrived, θ of them
have reported they are crypto-traders, and the government has R reserves outstanding. If the
trader reports she is a crypto-trader, then the currency board pays nothing out and obtains utility
W (θ + 1, R). If the trader reports she is foreign, then the currency board chooses e30(θ;R) to solve

max
e≤R

u(e) +W (θ,R− e).

Assuming the resource constraint (e ≤ R) is slack, this maximization requires e30(θ;R) to satisfy

u′(e) = u′
(
R− e
θ

+ λ

)
,

or

e30(θ;R) =
R

1 + θ
+

θ

1 + θ
λ.

Note, e30(θ;R) ≤ R as long as λ ≤ R. We may define a value function for the government as

V3(θ,R) = µF [u(e30(θ;R)) +W (θ,R− e30(θ;R))] + µCW (θ + 1, R).

Using the optimal policy, e30(θ;R), we find

V3(θ,R) = µF (1 + θ)u

(
R+ θλ

1 + θ

)
+ µC(1 + θ)u

(
R+ (1 + θ)λ

1 + θ

)
.

Period 0 exchange rates for the 2nd trader. We find e20(θ;R) as the solution to

max
e≤R

u(e) + V3(θ,R− e).
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Using the solution to V3(θ,R), we may find e20(θ;R) as the exchange rate that satisfies

u′(e) = µFu
′
(
R− e+ θλ

1 + θ

)
+ µCu

′
(
R− e+ (1 + θ)λ

1 + θ

)
.

Given CARA utility, this implies

exp(−αe) = µF exp

(
−α

[
R+ λθ

1 + θ
− e

1 + θ

])
+ µC exp

(
−α

[
R+ (1 + θ)λ

1 + θ
− e

1 + θ

])
.

Solving for e, we conclude

e20(θ;R) =
R

2 + θ
− 1 + θ

α(2 + θ)
log

[
µF exp

(
−αλ θ

1 + θ

)
+ µC exp (−αλ)

]
.

As above, we may define a value function for the government facing the 2nd trader in period 0:

V2(θ,R) = µF [u(e20(θ;R)) + V3(θ,R− e20(θ;R))] + µCV3(θ + 1, R).

Period 0 exchange rates for the 1st trader. We find e10 as the solution to

max
e≤R

u(e) + V2(0, R− e).

Note that

e20(0;R) =
R

2
− 1

2α
log [µF + µC exp(−αλ)] .

If we let C denote the constant,
C = µF + µC exp(−αλ)

then e20(0;R) = R/2− 1
2α logC and R− e20(0;R) = R

2 + 1
2α logC. Then

V2(0, R) = µF

[
u

(
R

2
− 1

2α
logC

)
+ V3

(
0,
R

2
+

1

2α
logC

)]
+ µCV3(1, R).

Using the closed form for V3(θ,R), V2 satisfies

V2(0, R) =µF

[
u

(
R

2
− 1

2α
logC

)
+ µFu

(
R

2
+

1

2α
logC

)
+ µCu

(
R

2
+

1

2α
logC + λ

)]
+ µC

[
2µFu

(
R+ λ

2

)
+ 2µCu

(
R

2
+ λ

)]
.

The optimal exchange rate policy satisfies

u′(e10) =
d

dR
V̂2(0, R− e10),
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or

u′(e10) =µF

[
1

2
u′
(
R− e10

2
− 1

2α
logC

)
+

1

2
µFu

′
(
R− e10

2
+

1

2α
logC

)
+

1

2
µCu

′
(
R− e10

2
+

1

2α
logC + λ

)]
+ µC

[
µFu

′
(
R− e10 + λ

2

)
+ µCu

′
(
R− e10

2
+ λ

)]
.

Using the functional form of u(·), the optimal policy satisfies

exp(−αe10) = exp

(
−α

[
R− e10

2

]){
µF

[
1

2
C

1
2 +

1

2
µFC

−1
2 +

1

2
µCC

−1
2 exp (−αλ)

]
+ µC

[
µF exp

(
−αλ

2

)
+ µC exp (−αλ)

]
.

Let D denote the constant,

D = µF

[
1

2
C

1
2 +

1

2
µFC

−1
2 +

1

2
µCC

−1
2 exp (−αλ)

]
+ µC

[
µF exp

(
−αλ

2

)
+ µC exp (−αλ)

]
.

Since C = µF + µC exp(−αλ), it follows that

D = µFB
1
2 + µC

[
µF exp

(
−αλ

2

)
+ µC exp(−αλ)

]
.

Then,

−αe10 = −αR
2

+
αe10
2

+ logD

or

e10 =
R

3
− 2

3α
logD.

We have shown

e10(R) =
R

3
− 2

3α
logD

e20(θ;R) =
R

2 + θ
− 1 + θ

α(2 + θ)
log

[
µF exp

(
−αλ θ

1 + θ

)
+ µC exp (−αλ)

]
e30(θ;R) =

R

1 + θ
+

θ

1 + θ
λ

e1(θ;R) =
R

θ(1− λ)
.

We also have the transition function for reserves. Let R0
i (θ) denote the reserves left to the government

when the ith trader arrives in period 0 and θ previous traders have declared they are crypto-traders.
Then,

R0
1 = R0

R0
2(θ) = R0 − (1− θ)e10

and, remaining reserves at the third person depend on the specific history since it is possible that
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e10(R0) 6= e20(1;R0). We have

R0
3(θ) =


R0 if θ = 2
R0 − e10(R0) if θ1 = 0 and θ2 = 1
R0 − e20(1;R0) if θ1 = 1 and θ2 = 0
R0 − e10(R0)− e20(0;R0 − e10(R0)) if θ = 0

Notice, as µC → 1 (so that all agents are crypto with high probability), we find

e10(R)→ R+ 2λ

3
, e20(1;R)→ R+ 2λ

3
, e30(2;R) =

R+ 2λ

3

and in this sense the exchange rate is “pegged.”

A.1.2 Proof of Theorem 6

Incentives for the 3rd Trader. The incentive constraint when θ ≥ 1 requires

(1− λ)e1(θ + 1;R) + λ ≥
[
(1− λ)e1(θ;R− e30(θ;R)) + λ

] [ e30(θ;R)

e1(θ;R− e30(θ;R))
− τ
]

where

e1(θ;R) =
R

θ(1− λ)
and e30(θ;R) =

R+ θλ

1 + θ
.

Hence,

R− e30(θ;R) = R− R+ θλ

1 + θ
=
θ(R− λ)

1 + θ

and

e1(θ;R− e30(θ;R)) =
R− λ

(1 + θ)(1− λ)
.

These results imply the incentive constraint may be re-written as

R

1 + θ
+ λ ≥

[
R− λ
1 + θ

+ λ

] [
(R+ θλ)(1− λ)

R− λ
− τ
]
.

We show that as λ → 1 this incentive constraint necessarily holds. Taking limits of both sides
(assuming R 6= 1, we have

R

1 + θ
+ 1 ≥ −τ

[
R

1 + θ
+ 1− 1

1 + θ

]
.

Multiplying by 1 + θ and simplifing, we have

(R+ θ)(1 + τ) + 1 ≥ 0

which holds for any R ≥ 0, θ ≥ 1 and t ≥ 0. When θ = 0, we require

(1− λ)e1(1;R) + λ ≥
[
(1− λ)e30(0;R) + λ

e30(0;R)

ef

]
− τ

[
(1− λ)ef + λ

]
.
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Since e1(1;R) = R/(1− λ) and e30(0;R) = R, this constraint requires

Rλ+ λ+ τ [(1− λ)ef + λ] ≥ λ R
ef

As λ→ 1, this condition requires

1 + τ ≥ R
[

1

ef
− 1

]
.

Since this should hold for all R and R is necessarily (weakly) decreasing in the sequence of traders,
is suffices to impose

1 + τ ≥ R0

[
1

ef
− 1

]
.

We then have for all R and θ that for λ sufficiently close to 1, the last trader has a dominant strategy
to report truthfully.

Incentives for the 2nd Trader. Suppose first that trader 1 is a crypto-trader so that θ = 1. The
incentive constraint is

µFu
[
(1− λ)e1(2;R0 − e30(2;R0)) + λ

]
+ µCu [(1− λ)e1(3;R0) + λ]

≥ µFu
([

(1− λ)e1(1;R0 − e20(1;R0)− e30(1;R0 − e20(1;R0))) + λ
] [ e20(1;R0)

e1(1;R0 − e20(1;R0)− e30(1;R0 − e20(1;R0)))
− τ
])

+ µCu

([
(1− λ)e1(2;R0 − e20(1;R0)) + λ

] [ e20(1;R0)

e1(2;R0 − e20(1;R0))
− τ
])

.

To simplify this constraint, note first that one may show

e1(2;R0 − e30(2;R0)) =
1

3(1− λ)
[R0 − λ] ,

e1(3;R0) =
1

3(1− λ)
R0.

Hence, the left-hand side of the incentive constraint is simply

µFu

(
1

3
R0 +

2

3
λ

)
+ µCu

(
1

3
R0 + λ

)
.

Second, note that

e20(1;R0) =
1

3
R0 −

2

3

1

α
logB

where B is a constant that satisifes

B = µF exp

(
−1

2
αλ

)
+ µC exp(−αλ).
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Then, one may show

e30(1;R0 − e20(1;R0)) =
1

3
R0 +

1

3

1

α
logB +

1

2
λ,

e1(1;R0 − e20(1;R0)− e30(1;R0 − e20(1;R0))) =
1

(1− λ)

[
1

3
R0 +

1

3

1

α
logB − 1

2
λ

]
,

e1(2;R0 − e20(1;R0)) =
1

(1− λ)

[
1

3
R0 +

1

3

1

α
logB

]
.

Using these results, we may re-write the right-hand side of the incentive constraint as

µFu

(
1

3
R0 +

2

3
λ

)
+ µCu

(
1

3
R0 + λ

)
≥ µFu

([
1

3
R0 +

1

3

1

α
logB +

1

2
λ

] [
(1− λ)

[
1
3R0 − 2

3
1
α logB

]
1
3R0 + 1

3
1
α logB − 1

2λ
− τ

])

+ µCu

([
1

3
R0 +

1

3

1

α
logB + λ

] [
(1− λ)

[
1
3R0 − 2

3
1
α logB

]
1
3R0 + 1

3
1
α logB

− τ

])

Using the concavity of u(·), it suffices (to prove the incentive constraint holds) to show

1

3
R0 +

2

3
λ ≥ µF

[
1

3
R0 +

1

3

1

α
logB +

1

2
λ

][
(1− λ)

[
1
3R0 − 2

3
1
α logB

]
1
3R0 + 1

3
1
α logB − 1

2λ
− τ

]

+ µC

[
1

3
R0 +

1

3

1

α
logB + λ

] [
(1− λ)

[
1
3R0 − 2

3
1
α logB

]
1
3R0 + 1

3
1
α logB

− τ

]

Using tedious, but straightforward algebra, one may show that as λ→ 1, the right hand side tends
to

−τ
[

1

3
R0 +

1

3

1

α
logB(1)

]
− τ 1 + µC

2
.

Hence, the necessary inequality condition (as λ→ 1) requires

1

3
R0 +

2

3
≥ −τ

[
1

3
R0 +

1

3

1

α
logB(1)

]
− τ 1 + µC

2

or
1

3
(1 + τ)R0 + t

1 + µC
2

≥ −τ
3

1

α
logB.

SinceB → µF exp(−α/2)+µC exp(−α) as λ→ 1, limλ→1B ≥ exp(−α). It follows that−τ logB/3α ≤
τ/3. Since τ/2 ≥ τ/3, for all R0,

1

3
(1 + τ)R0 + τ

1

2
+
τµC

2
≥ τ 1

3
≥ −τ

3

1

α
logB

so that the required incentive constraint holds for all R0, α.
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Suppose next that Trader 1 is foreign so that θ = 0. The incentive constraint is

µFu
[
(1− λ)e1(1;R1 − e30(1;R1)) + λ

]
+ µCu [(1− λ)e1(2;R1) + λ]

≥ µFu
([

(1− λ)ef + λ
] [e20(0;R1)

ef
− τ
])

+ µCu

([
(1− λ)e1(1;R1 − e20(0;R1)) + λ

] [ e20(0;R1)

e1(1;R1 − e20(0;R1))
− τ
])

As above, we use the optimal exchange rate policies to express the incentive constraint in terms of
reserves and fundamentals. Note that

e1(1;R1 − e30(1;R1))
1

2(1− λ)
[R1 − λ] ,

e1(2;R1) =
1

2(1− λ)
R1,

so that the left-hand side of the incentive constraint is

µFu

(
1

2
R1 +

1

2
λ

)
+ µCu

(
1

2
R1 + λ

)
.

Similarly, letting the constant C satisfy C = µF + µC exp(−αλ),

e2(0;R1)
R1

2
− 1

2α
logC,

e1(1;R1 − e20(0;R1)) =
1

1− λ

[
R1

2
+

1

2α
logC

]
.

Then the right-hand side of the incentive constraint is

µFu

([
(1− λ)ef + λ

] [ R1

2 −
1
2α logC

ef
− τ

])
+ µCu

([
R1

2
+

1

2α
logC + λ

][
(1− λ)

[
R1

2 −
1
2α logC

]
R1

2 + 1
2α logC

− τ

])

We proceed as in the previous case and prove

1

2
R1 +

1

2
λ

≥ µF

([
(1− λ)ef + λ

] [ R1

2 −
1
2α logC

ef
− τ

])
+ µC

([
R1

2
+

1

2α
logC + λ

][
(1− λ)

[
R1

2 −
1
2α logC

]
R1

2 + 1
2α logC

− τ

])

As λ→ 1, straightforward algebra reveals that this inequality holds if

1

2
R1 +

1

2
≥ µF

[
R1

2 −
1
2α logC

ef
− τ

]
+ µC

[
−τ
(

1

2
R1 +

1

2

1

α
logC

)
− τ
]
.

Noting that − logC ≤ α (as λ→ 1), we have

RHS ≤ µF

[
R1

2 + 1
2

ef
− τ

]
+ µC

[
−τ
(

1

2
R1 −

1

2

)
− τ
]
.
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The incentive constraint holds, therefore, as long as

R1

2

[
1− µF

ef
+ µCτ

]
+

1

2
− 1

2

µF
ef

+ τ

[
1− 1

2
µC

]
≥ 0.

Note that if
1− µF

ef
+ µCτ ≥ 0,

then
1

2
− 1

2

µF
ef

+ τ

[
1− 1

2
µC

]
≥ 0.

Hence, suppose the first inequality holds (which is a restriction on µC given t, ef that holds whenever
µC → 1). Then, at R1 = 0, the inequality holds and raising R1 relaxes the incentive constraint.
Hence, for all R1 ∈ [0, R0] the inequality must also hold.

Incentives for the 1st Trader. Given truthful reporting is dominant for traders 2 and 3, the ex-
pected utility associated with truthful reporting for Trader 1 is given by

U tt = µ2
Cu ((1− λ)e1(3;R0) + λ) + µFµCu

(
(1− λ)e1

(
2;R0 − e20(1;R0)

)
+ λ
)

+ µCµFu
(
(1− λ)e1

(
2;R0 − e30(2;R0)

)
+ λ
)

+ µ2
Fu
(
(1− λ)e1

(
1;R0 − e20(1;R0)− e30(1;R0 − e20(1;R0))

)
+ λ
)
.

The expected utility associated with speculation is given by

Uspec = µ2
Cu

([
(1− λ)e1(2;R0 − e10(R0)) + λ

] [ e10(R0)

e1(2;R0 − e10(R0))
− τ
])

+ µFµCu

([
(1− λ)e1(1;R0 − e10(R0)− e20(0;R0 − e10(R0))) + λ

] [ e10(R0)

e1(1;R0 − e10(R0)− e20(0;R0 − e10(R0)))
− τ
])

+ µCµFu

([
(1− λ)e1(1;R0 − e10(R0)− e30(1;R0 − e10(R0))) + λ

] [ e10(R0)

e1(1;R0 − e10(R0)− e10(1;R0 − e10(R0)))
− τ
])

+ µ2
Fu

([
(1− λ)ef + λ

] [e10(R0)

ef
− τ
])

Tedious algebra reveals that

U tt = µ2
Cu

(
R0

3
+ λ

)
+ µFµCu

(
R0

3
+

1

3

1

α
logB + λ

)
+ µCµFu

(
R0

3
+

2

3
λ

)
+ µ2

Fu

(
R

3
+

1

3

1

α
logB +

1

2
λ

)
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and

Uspec = µ2
Cu

([
R0

3
+ λ+

1

3

1

α
logD

] [
e10(R0)

e1(2;R0 − e10(R0))
− τ
])

+ µFµCu

([
R0

3
+ λ+

1

3

1

α
logD +

1

2

1

α
logC

] [
e10(R0)

e1(1;R0 − e10(R0)− e20(0;R0 − e10(R0)))
− τ
])

+ µCµFu

([
R0

3
+

1

2
λ+

1

3

1

α
logD

] [
e10(R0)

e1(1;R0 − e10(R0)− e10(1;R0 − e10(R0)))
− τ
])

+ µ2
Fu

([
(1− λ)ef + λ

] [e10(R0)

ef
− τ
])

where

B = µF exp

(
−αλ

2

)
+ µC exp(−αλ)

C = µF + µC exp(−αλ)

D = µFC
1
2 + µCB

We know that U tt ≥ u
(
R
3 + 1

3
1
α logB + 1

2λ
)

and that Uspec is bounded above by the utility of the
convex combination of speculative consumption. Hence, it suffices to prove that

R

3
+

1

3
logB +

1

2
λ

≥ µ2
C

[
R0

3
+ λ+

1

3

1

α
logD

] [
e10(R0)

e1(2;R0 − e10(R0))
− τ
]

+ µFµC

[
R0

3
+ λ+

1

3

1

α
logD +

1

2

1

α
logC

] [
e10(R0)

e1(1;R0 − e10(R0)− e20(0;R0 − e10(R0)))
− τ
]

+ µCµF

[
R0

3
+

1

2
λ+

1

3

1

α
logD

] [
e10(R0)

e1(1;R0 − e10(R0)− e10(1;R0 − e10(R0)))
− τ
]

+ µ2
F

[
(1− λ)ef + λ

] [e10(R0)

ef
− τ
]
.

As λ→ 1, this inequality tends towards

R0

3
+

1

3

1

α
logB +

1

2

≥ −τµ2
C

[
R0

3
+ 1 +

1

3

1

α
logD

]
− τµFµC

[
R0

3
+ 1 +

1

3

1

α
logD +

1

2

1

α
logC

]
− τµCµF

[
R0

3
+

1

2
+

1

3

1

α
logD

]
+ µ2

F

[
R0

3 −
2
3
1
α logD

ef
− τ

]
.

or

R0

3

[
1− µ2

F

ef
+ τ

(
1− µ2

F

)]
+

1

3

1

α
logB +

1

2
+
µ2
F

ef
2

3

1

α
logD

+ τ

[
µ2
C

(
1 +

1

3

1

α
logD

)
+ µCµF

(
3

2
+

2

3

1

α
logD +

1

2

1

α
logC

)
+ µ2

F

]
≥ 0
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Using the fact that C
1
2 ≥ D ≥ B ≥ exp(−α), the above inequality holds as long as

R0

3

[
1− µ2

F

ef
+ τ

(
1− µ2

F

)]
+

1

6
− 2

3

µ2
F

ef
+ τ

[
2

3
µ2
C +

1

3
µCµF + µ2

F

]
≥ 0.

Notice, this inequality is necessarily satisfied as µC → 1.

A.2 A Model with Many Traders without Sequential Service

Here, we characterize optimal mechanisms in large finite economies without sequential service. We
derive conditions such that the optimal mechanism admits a unique dominant strategy (Bayes-Nash)
equilibrium in the game among traders.

Suppose there are I <∞ traders. The possible states of nature—traders’ types—may be represented
as Ω ∈ {0, 1}I . Given ω ∈ Ω, we let ωi denote trader i’s type (with 0 indicating the trader is a dollar
trader and 1 indicating the trader is a crypto trader). We characterize the ex-post efficient allocation
and then prove this allocation satisfies traders’ incentive constraints for λ sufficiently close to 1 (as
assumed through the paper). Let θ(ω) denote the number of crypto-traders in state ω. The ex-post
efficient allocation solves

max(I − θ(ω))u(e0(ω)) + θ(ω)u((1− λ)e1(ω) + λ) (36)

subject to
(I − θ(ω))e0(ω) + θ(ω)(1− λ)e1(ω) ≤ R0. (37)

The optimality conditions are (37) and

u′(e0(ω)) = u′((1− λ)e1(ω) + λ). (38)

Consequently, since u(·) is strictly concave, we may solve for e0(ω), e1(ω) explicitly as

e0(ω) =
1

I
(R0 + θ(ω)λ)

e1(ω) =
1

I(1− λ)
(R0 − (I − θ(ω))λ)

We now show the following result.

Proposition 7: Suppose that for all ω, e0(ω)/e1(ω)− τ ≤ 1. Then the optimal exchange rate policy
admits a unique (Bayes-Nash) equilibrium in the game among traders choosing whether to report
their types truthfully (and receiving the specified exchange rates in the appropriate stage) or mis-
reporting and speculating.

Note that when R0 ≥ I and λ→ 1, the condition of the proposition is necessarily satisfied. Moreover,
except when θ(ω) = 0, this policy is under-collateralized in the sense that it cannot afford to deliver
Ie0(ω) to all agents.

We prove the proposition by showing that for any reporting and speculation strategy of the other
agents (for any state), trader i prefers to report truthfully and not speculate. If trader i is a dollar
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trader, then she does not value period 2 consumption and hence it is trivially optimal for her to
report truthfully independent of the strategies of other traders. We thus focus on the incentives of
trader i when she is a crypto type (ωi = 1). Formally, let σi(ωi) denote trader i’s reporting strategy
when she is of type i and let η =

∑
j 6=i σj(ωj). We prove that for all η,

(1− λ)e1(η + 1) + λ ≥ [(1− λ)e1(η) + λ]

[
e0(η)

e1(η)
− τ
]
. (39)

Towards proving (39), first note that by assumption,

(1− λ)e1(η) + λ ≥ [(1− λ)e1(η) + λ]

[
e0(η)

e1(η)
− τ
]

(40)

since e0/e1 − τ ≤ 1. Next, we show that e1(η + 1) ≥ e1(η) so that

(1− λ)e1(η + 1) + λ ≥ (1− λ)e1(η) + λ (41)

which combined with (40) implies (39).

To see that e1(η+ 1) ≥ e1(η), we prove the more general claim that the optimal mechanism satisfies
e1(η) is increasing in η. Consider the program

max
γ

(I − η)u

(
γ

I − η

)
+ ηu

(
R0 − γ
η

+ λ

)
(42)

and let Γ(η) denote the solution. Of course, the solution to this program coincides with the the
solution to the optimal mechanism by setting η = θ(ω) and e0(ω) = Γ(η)/(I − η) and e1(ω) =
(R0 − Γ(η))/η(1− λ).

We will show
d

dη

R0 − Γ(η)

η
≥ 0 (43)

which requires

Γ′(η) +
R0 − Γ(η)

η
≤ 0. (44)

To prove (44), note that from (42), Γ(η) satisfies

u′
(

Γ(η)

I − η

)
− u′

(
R0 − Γ(η)

η
+ λ

)
= 0. (45)

Totally differentiating this optimality condition with respect to η implies that both Γ′(η)+Γ(η)/(I−
η) and Γ′(η)+(R0−Γ(η))/η equal 0 or they are of opposite sign. As a result, to show (44), it suffices
to show

R0 − Γ(η)

η
≤ Γ(η)/(I − η) (46)

which is guaranteed using (45), strict concavity of u(·) and λ > 0.
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Table 1: Dynamic Exchange Rate Policy – I = 3 Traders
trader Eet sd(et) Median

t = 0 1 0.707 0.000 0.707
2 0.699 0.042 0.717
3 0.692 0.068 0.729

T=1 4 0.707 0.070 0.756

Moments of the optimal dynamic exchange rate policy in the case of I = 3. The parameters of the example

include, λ = 0.25, CARA utility with risk aversion α = 2, and probability of type C is µ = 0.85, transaction

cost τ = 0.08, initial reserves are R0 = 1.7, and a floating rate ef = 0.45.
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Figure 1: Daily Volatility
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The 30-day (rolling) standard deviation of daily USD price changes

of Bitcoin (BTC-UD), Euro (EUR-US), S&P500 stock market index

(S&P500), and Gold (Gold-US). All data is from FRED, Federal Re-

serve Bank of St. Louis. 2015-01-15 to 2021-01-13
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Figure 2: Dynamic Exchange Rate Policy – I = 3 Traders
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e1=0.494

e1=0.662

e1=0.507

e1=0.526

e1=NA

The optimal dynamic exchange rate policy in the case of I = 3 traders. The C denotes crypto-type. The D

denotes dollar type. The colored dots illustrate speculative trade. Should a type-C trader at the pink dot

choose to trade at e20 = 0.717, she repurchases cryptocurrency at the uncertain e1 values highlighted by the

blue dot. On the bottom path where all traders are D, the policy e1 is not defined and the exchange rate

is at the floating rate (Here, the parameter ef = 0.39) The parameters of the example include, λ = 0.25,

CARA utility with risk aversion α = 2, and probability of type C is µ = 0.85, initial reserves R0 = 1.7, and

transaction cost τ = 0.08.
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Figure 3: Dynamic Exchange Rate Policy – I = 10 Traders
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The optimal dynamic exchange rate policy in the case of I = 10 traders. Plotted is the period echange

rate ei0 for each the traders’ positions i = 1, .., 10 and then the period one exchange rate e1. Each line is a

realization of a path for C and D for each of the i traders. The dark black line is the mean. The red shaded

region indicates outcomes in the 10 – 90 percentile range. The parameters of the example include, λ = 0.25,

CARA utility with risk aversion α = 2, and probability of type C is µ = 0.85, transaction cost τ = 0.08,

initial reserves are R0 = 7.5, and a floating rate ef = 0.45.
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Figure 4: Dynamic Exchange Rate Policy – I = 10 Traders - Conditional Means
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The optimal dynamic exchange rate policy in the case of I = 10. The x-axis shows the traders’ positions

i = 1, .., 10 and then the t = 1 policy rate. Each line is a realization of a path for C and D for each of the

i traders. The dark black line is the mean. The unconditional mean value of e0 is the black (straight) line.

The gold, solid line is the mean value for e0 conditional on trader i = 2 and i = 3 being of type C. The

blue, solid line is the mean value for e0 conditional on trader i = 2 and i = 3 being of type D. The gold,

dashed line is the mean value for e0 conditional on trader i = 7 and i = 8 being of type C. The blue, dashed

line is the mean value for e0 conditional on trader i = 7 and i = 8 being of type D. The parameters of the

example include, λ = 0.25, CARA utility with risk aversion α = 2, and probability of type C is µ = 0.85,

transaction cost τ = 0.08, initial reserves are R0 = 7.5, and a floating rate ef = 0.45.
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Figure 5: Implementing on a Blockchain - Tools
(a)

(b)

(c)

Screen-shots of the tools used to implement the dynamic exchange policy on the Ethereum Network. (a)

Truffle Suite’s Ganache https://www.trufflesuite.com/. (b)Remix https://remix.ethereum.org/ tool

to edit and compile the Solidity code. (c) HTML “wallet” trader interface.
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