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Abstract

We study the classic principal-agent model when the signal observed

by the principal is chosen by the agent. We fully characterize the opti-

mal information structure from an agent’s perspective in a general moral

hazard setting. Unlike standard information design, the full distribution

of beliefs is relevant to the principal. We show that the problem can be

mapped into a geometrical game between the principal and the agent in

the space of likelihood ratios. We use this representation result to show

that coarse contracts are su�cient: The agent can achieve her best with

binary signals. Additionally, we characterize conditions under which the

agent is able to extract all the surplus and implement the e�cient allocation

under full information. Finally, we show that when e�ort and performance

are one-dimensional, under a general class of models, threshold signals are

optimal.

1 Introduction

The use of pay-for-performance contracting is a cornerstone of modern employ-

ment contracts. Executive compensation is often indexed in part to company per-
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formance metrics including growth in the company’s stock price. Employment

contracts for top athletes frequently involve performance bonuses for speci�c

outcomes such as goals scored for soccer players or the number of touch-downs

for players in the NFL. When employment contracts feature such performance

pay incentives, employers and employees must agree to a set of performance

indicators during contract negotiations.
1

Given this observation, what are the

incentives of employees and employers to negotiate on performance indicators?

If the employees have a role in choosing the performance metrics, what metrics

would they choose? Finally, how does the choice of indicators interact with the

ultimate productive e�ciency of the �rm?

In this paper, we answer these questions by considering the problem of indi-

cator design in the textbook moral hazard problem with limited liability. More

speci�cally, we consider the standard principal-agent problem of Holmström

(1979) in which an agent has quasi-linear preferences and must be paid a non-

negative wage. The performance technology is one that maps costly e�ort, e, by

the agent into a distribution of some performance measure x. Before the prin-

cipal o�ers a compensation contract, the agent chooses an indicator, a possibly

random signal s of x where the principal can only o�er a contract that is con-

tingent on the indicator, s. Once the indicator is chosen, the principal and the

agent play the textbook moral hazard game.
2

In this environment, one might conjecture that more information would lead

to more e�cient outcomes. While this is true under certain circumstances – see

the informativeness principle of Holmström (1979), and its extension by Chaigneau

et al. (2019) – information can often be detrimental to the agent. To see the intu-

1
Bebchuk and Fried (2004) discuss the various issues with the negotiations process between

the CEOs and boards and possible issues arising from choosing particular performance indicators,

i.e., vesting stocks. In soccer, news outlets often describe the process in which players and soccer

clubs agree on what performance measure to use. See for example this article in Daily Mail which

describes several soccer players in the Premier League negotiating over the relevant performance

indicator as a base for pay.

2
Throughout the paper, we assume that the agent commits to the indicator s while she cannot

commit to the e�ort level e. A justi�cation for this assumption is that employment contracts are

often enforced by courts and thus hard to break.
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ition for this observation, suppose that the performance technology is degenerate

at x = e and thus the agent can use her e�ort as the indicator. Then, revealing

all information by choosing s = x = e would give the principal the ability to

fully capture all the surplus generated by the e�ort. On the other hand, choosing

a fully uninformative indicator leads to no surplus for the agent as the principal

is unable to incentivize the agent to contribute e�ort when signals are fully un-

informative. This points to a trade-o� in the problem of indicator design by the

agent.

In this model, we show three main results: �rst, we provide a geometric inter-

pretation of the indicator design game in the space of likelihoods; the probability

of a particular performance/signal realization for an arbitrary e�ort relative to

the e�ort that the agent would like to implement. Under this interpretation, the

agent’s indicator design problem is equivalent to a geometric game where the

agent chooses a convex set (of likelihood ratios) and the principal chooses a point

within that set. Our geometric interpretation provides a tractable formulation to

understand how the agent’s choice of indicator in�uences the resulting compen-

sation scheme o�ered by the principal. Second, we provide conditions under

which the agent is able to choose the indicator in such a way to implement the

�rst-best e�cient e�ort and capture all the surplus created by her e�ort. Finally,

we consider a speci�c case where performance measure x has a continuous distri-

bution in real numbers and show that under certain conditions optimal indicator

structure takes the form of monotone or hump-shaped thresholds signals.

The reason that the agent is sometimes able to capture all of the surplus and

implement the e�cient outcome can be easily understood when performance

technology is fully informative, i.e., x = e. In this case, suppose the agent

chooses an indicator with two realizations: high and low. By choosing the prob-

ability of high and low indicators appropriately for every x = e, the agent is able

to force the principal’s hand. Note that if the principal wants to implement a

given e�ort level ê, he must compensate the agent following a realization of the

high signal. The amount of compensation the principal must deliver is increas-

3



ing as the cost of the desired e�ort level ê rises relative to the cost of any other

e�ort and is increasing in the likelihood of observing a high signal from some

other e�ort relative to that of observing a high signal from e�ort ê. By choosing

the signal probabilities appropriately, the agent is then able to make the o�-path

likelihood of the high signal su�ciently large so that the principal must give up

all the surplus in order to implement the desired e�ort level ê.

In general, our geometric interpretation allows us to show that the agent can

implement any desired e�ort level with a “coarse” information structure that

has at most two signal realizations. Additionally, this interpretation allows us

to provide conditions under which even when the performance technology is

stochastic, it is possible for the agent to capture all the surplus and implement

the �rst-best outcome. Our su�cient condition amounts to checking whether

a particular point in the likelihood space belongs to convex hull of the likeli-

hood functions implied by the performance technology. This type of su�cient

condition is easy to evaluate using existing convex hull algorithms.

Beyond our technical contributions, our results shed light on the debate on

the e�ciency of incentive contracts in executive compensation. Bebchuk and

Fried (2004) have argued that the standard agency model of shareholder maxi-

mization is at odds with the data since negotiations often happen between the

CEO and the board whose incentives are not necessarily aligned with that of the

shareholders – in fact they claim that CEOs and compensation committees often

trade favors at a cost to shareholders. In our model, and consistent with Bebchuk

and Fried (2004)’s interpretation, we endow the agent with full bargaining power

over the choice of performance pay indicators. While the agent captures all of

the gains from trade under this assumption, her choices also maximize total sur-

plus. In contrast, standard models of moral hazard with exogenous performance

technology often feature ine�ciencies in the sense that providing incentives to

the agent often entails reductions in total surplus. In this sense, we �nd that

optimal design of performance pay indicators may help to reduce ine�ciencies

within the �rm. Further investigation of the data on negotiations and choice of
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indicators would be a good test of our theory.

1.1 Related Literature

Our paper is related to several strands of the literature on contracting and infor-

mation design.

With respect to the moral hazard literature, our key innovation is to consider

the problem of choosing indicators whereupon contracts are based on showing

that this can remove all ine�ciencies. In the classical model, Innes (1990) and

Poblete and Spulber (2012) consider moral hazard with limited liability and a risk-

neutral agent, and show that simple debt contracts are optimal. Carroll (2015) as

well as Walton and Carroll (2022) consider the moral hazard problem with limited

liability, where the principal has non-Bayesian uncertainty about the production

technology and wishes to maximize her worst-case payo�.
3

While often information design incentives are ignored in moral hazard, Holm-

ström (1979) and later Chaigneau et al. (2019) are exceptions. They investigate

the comparative statics of changing the performance technology on the payo�s;

by the informativeness principle, the more informative the output is about the

e�ort, the lower wage the principal needs to pay.

Perhaps, the closest paper to ours is that of Garrett et al. (2020). They con-

sider a model in which the agent can design the performance technology and

cost function – they refer to this as technology design – and show that the agent-

optimal design involves only binary distributions. In contrast, in our model, the

performance technology is �xed and the agent chooses an indicator of this per-

formance, i.e., an information structure to garble the principal’s observations.

Moreover, our paper has a technical contribution by reformulating the problem

in terms of likelihood ratios.

Georgiadis and Szentes (2020) study moral hazard with limited liability and

a risk-averse agent where the principal continuously observes signals about the

3
It is needless to say that a rather large body of work has considered models with risk-averse

agents and risk-neutral principals.
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agent’s e�ort at a constant marginal cost. They show that the principal-optimal

information-acquisition strategy is a two-threshold policy. Barron et al. (2020)

consider an agent who can costlessly add mean-preserving noise to the output.

This is also the case in our model; however, in our setting, the noisy output is

just used for contracting purposes and does not change the principal’s payo�

compared to the original output. Moreover, in our model, �rst the agent chooses

the information structure, then the principal o�ers the contract, and �nally the

agent chooses her e�ort, whereas in Barron et al. (2020), �rst the principal o�ers

a contract and then the agent chooses the e�ort and the information structure.

Another related strand of the moral hazard literature focuses on career con-

cerns introduced by Holmström (1979) and changes in information structure ob-

served by both the principal and the agent. In this context Holmström (1999)

shows that noisy performance signals are bene�cial for incentives. Similarly De-

watripont et al. (1999) show that more informative signals in the sense of Black-

well do not necessarily increase incentives. In contrast in our model, indicator

design or information design can be used as a tool to reshu�e surplus between

the agent and the principal while achieving e�ciency.

In the context of team production and moral hazard, Halac et al. (2021) show

that the principal can bene�t from private contract o�ers by leveraging rank

uncertainty: Each agent is informed only of her own bonus and a ranking dis-

tribution; each agent’s bonus makes work dominant if higher-rank agents work.

Interestingly, in our setting, it is the agent that can use uncertainty about per-

formance for the principal to improve e�ciency.

We also contribute to the growing literature on incentives in Bayesian Per-

suasion. Several papers, including Boleslavsky and Kim (2018), Rosar (2017),

Perez-Richet and Skreta (2022), Ball (2019), Saeedi and Shourideh (2020), and

Zapechelnyuk (2020) have considered the e�ect of incentives in the Bayesian

persuasion problem where a third party designs an information structure, and a

“sender” determines the distribution of the underlying state by exerting a costly

e�ort. From a technical perspective, our problem is di�erent from this class of
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models. This is partly due to the fact that for the ex-post incentive to exert e�ort

by the agent (after the choice of indicator and contract), the distribution of the

signals – or alternatively in the language of Kamenica and Gentzkow (2011), the

distribution of posteriors – o� the equilibrium path is also relevant. By casting

the problem in the space of likelihood functions – as opposed to beliefs as in

Kamenica and Gentzkow (2011) – we can characterize its solution using the ge-

ometric game. This technique can be used in other information design problems

in which on- and o�-path beliefs are involved.

The rest of the paper is organized as follows: Section 2 describes the key

insight about full surplus extraction and �rst-best implementation in a simple

example. Section 3 describes the basic model. Section 4 describes the geometric

interpretation of the indicator choice game between the principal and the agent.

Section 6 describes optimality of threshold signals. Section 7 concludes.

2 A Simple Example

In this section, we use a basic environment to illustrate the main mechanisms

at work in our model. Consider the basic textbook model of moral hazard. A

principal (he) is hiring an agent (she) to perform a task whose output x ∈ {0, 1}
is collected by the principal. The agent chooses how much e�ort to put in to

perform the task. She can either choose the low e�ort eL or a costly high e�ort

eH whose cost is given by c > 0.

Choosing the high e�ort leads to output x = 1 with certainty while choosing

the low e�ort leads to output x = 1 with probability p < 1 and x = 0 with

probability 1 − p. We assume that the total surplus under high e�ort 1 − c is

higher than that under low e�ort p and thus it is e�cient to implement the high

e�ort.

In this standard principal-agent model with moral hazard, principal observes

the output but not the e�ort of the agent. He can compensate the agent for each

output realization but cannot make these payments negative, i.e., he is subject
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to limited liability. If the principal sets wage w when output is high, then the

agent’s incentive compatibility constraint is

w − c ≥ p · w.

Hence, as long as w ≥ c
1−p , the principal can implement the high e�ort. If the

principal is to choose w = c
1−p , then his payo� is 1− c

1−p > 0 while the agent’s

payo� is
c

1−p−c = p
1−pc > 0. Moreover, for the principal to prefer implementing

the high e�ort to low, we must have that 1− c
1−p ≥ p or c ≤ (1− p)2

.

Now suppose that the agent can control principal’s information about the

output. Speci�cally, suppose that before the contracting stage, the agent can

design a device that can potentially hide the output of the project. More speci�-

cally, suppose that the agent can choose an information structure or a Blackwell

experiment that probabilistically maps output x ∈ {0, 1} to a signal S = {L,H}
which is observed by the principal. The principal observes the signal s = H with

probability πH when x = 1 is realized and observes s = H with probability πL

if x = 0 is realized, where πL < πH .

Since the principal can only observe the signal designed by the agent, he will

compensate her only when s = H . If this compensation is w, then the agent’s

incentive compatibility constraint is

πH · w − c ≥ (πHp+ (1− p) πL) · w.

Hence, the principal is able to implement high e�ort when

w ≥ c

(πH − πL) (1− p)

When minimizing the wage, the expected cost of compensating the agent for

the principal is πHw = c(
1− πL

πH

)
(1−p)

. Therefore, as long as p ≤ 1− c(
1− πL

πH

)
(1−p)

,

the principal �nds it pro�table to implement the high e�ort. This inequality can
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be rewritten as

c

(1− p)2 ≤ 1− πL
πH

.

This, in turn, implies that when
c

(1−p)2 ≤ 1, the agent can �nd a signal structure

(πL, πH) such that the above holds with equality. Under such an information

structure, the payo� of the principal is p, what he can achieve without any costly

e�ort, and the agent captures the rest of the surplus, 1 − p − c. In other words,

giving the agent the ability to choose an information structure enables her to

guarantee the highest value of the surplus under an e�cient level of e�ort. In-

tuitively, the change of the information structure allows the agent to induce an

arbitrary high value of the wage by increasing the likelihood πL/πH , and capture

the entire surplus.

The above example illustrates that agent’s freedom to choose the information

structure, based on which she will be paid, can be extremely powerful. A few

natural questions arise: When can the agent capture the e�cient level of surplus?

What information structure should be used by the agent to achieve her desired

outcome? In what follows, we provide a characterization of the optimal signal

structure by the agent as well as her ability to extract surplus from the principal.

3 Model

Our general model builds upon the textbook moral hazard problem. Consider a

principal employing an agent to perform a task whose output is represented by

x ∈ X , whereX is �nite. The agent chooses e�ort e ∈ E = {e1, · · · , em} to per-

form the task, where E is �nite. The agent’s e�ort choice induces a probability

distribution f(x|e) over the outcome space X , where

∑
x f(x|e) = 1, ∀e ∈ E.

We refer to f (·|·) as the performance technology. E�ort is costly to the agent; the

cost of putting e�ort e is given by c(e) for some real-valued function c : E → R+.

Throughout the analysis, we assume that e1 ∈ E represents the e�ort with

the lowest cost; for simplicity, let c(e1) = 0. The principal’s payo� from real-

ization of output x is given by g(x) for some real-valued function g : X → R.
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The principal cannot observe the agent’s e�ort and thus cannot o�er a contract

contingent on the agent’s e�ort; he can only o�er contracts contingent on ob-

servable outcomes.

The point of departure from the textbook moral hazard model is that the

agent may in�uence the principal’s information about the output by choosing an

information structure (S, π). Here, S is a signal space and π(·|x) : X → ∆(S)

is a stochastic mapping from the output space X to the signal space, where∑
s π(s|x) = 1, ∀x ∈ X . The principal only observes the signal s ∈ S generated

from this information structure and can thus only o�er a contract contingent on

this signal realization. Therefore, the principal’s choice of contract can be repre-

sented by a real-valued function w : S → R+ where w(s) is the wage paid to the

agent when signal s is realized. One interpretation of this contractual restriction

is that the task output is not observable to the principal but the agent may veri�-

ably disclose information about the output. An alternative interpretation is that

the output is observable but the agent has the option to choose the performance

measure based on which she will be paid.

Note that as in the simple example, we have assumed that agent enjoys lim-

ited liability, i.e., the contract o�ered to her by the principal guarantees a non-

negative wage regardless of the e�ort she puts in. The principal’s payo� uP is

equal to the payo� from output less the wages paid to the agent. The agent’s

payo� uA is equal to the wage she receives from the principal minus the cost of

her e�ort. Both the principal and the agent are assumed to maximize expected

utility. Notice that principal can always implement the zero-cost e�ort, i.e. e1,

by o�ering w(s) = 0, ∀s ∈ S. Therefore, his outside option is to implement e1

and obtain uP =
∑

x g(x)f(x|e1).

The timing of the game is as follows:

• Agent chooses an information structure (S, π). To ease the exposition, we

assume the signal space S is �nite and simply represent the information

structure by π.
4

4
Later, we show this restriction to �nite signal spaces is without loss of generality.
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• Observing the information structure (S, π) chosen by the agent, principal

o�ers the agent a contract w : S → R+ contingent on the realized signal.

• Observing the contract w o�ered by the principal (and the information

structure (S, π) she has chosen), the agent chooses how much e�ort e to

exert.

• Given the e�ort e chosen by the agent, output x is realized according to

f(x|e) and then signal s ∈ S is realized according to π(s|x).

• Payo�s are realized where agent’s payo� is uA = w(s) − c(e), and the

principal’s payo� is uP = g(x)− w(s).

To summarize, the game is played sequentially in three stages. In the �rst stage,

the agent chooses the information structure π to (partially) inform principal

about the realized output. In the second stage, the principal o�ers the agent

a contract w contingent on the signal realization. In the last stage, the agent

chooses her e�ort e.

The equilibrium concept is the standard subgame perfect equilibrium (SPE).

The agent’s strategy (π, σe(π,w)) consists of a choice of information structure

π and a choice of e�ort σe(π,w) as a function of π and the contract w o�ered

by the principal. The principal’s strategy σw(π) is the contract he o�ers to the

agent as a function of the information structure π chosen by the agent.

De�nition 1. An SPE of the game σ∗ = (π∗, σ∗e(π,w), σ∗w(π)) consists of a strat-

egy for the agent (π∗, σ∗e(π,w)) and a strategy for the principal σ∗w(π) such that:

• σ∗e(π,w) maximizes the agent’s expected utility for every information struc-

ture π and every principal’s choice of contract w.

• σ∗w(π) maximizes the principal’s expected utility for every agent’s choice of

information structure π given agent’s equilibrium e�ort strategy σ∗e(π,w).

• π∗ maximizes the agent’s expected utility given principal’s equilibrium

strategy σ∗w(π) and her own equilibrium e�ort strategy σ∗e(π,w).
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We let p(·|e) : E → ∆(S) represent the resulting stochastic mapping from

the e�ort spaceE to the signal space S induced by a given information structure

(S, π) and the underlying probability distribution of outcomes give e�ort. Note,

for any level of e�ort e and any signal realization s, p(s|e) =
∑

x f(x|e)π(s|x)

and

∑
s p(s|e) = 1, ∀e ∈ E. Conditional on a given information structure (S, π),

both the principal and the agent use the stochastic mapping p to evaluate their

expected payo�s.

We now formulate the problems the principal and the agent solve begin-

ning with the agent’s choice of e�ort. The agent’s expected utility is UA =∑
s p(s|e)w(s) − c(e). Therefore, the agent’s problem in the last stage of the

game (where π and w have previously been chosen in preceding stages) is

max
e

∑
s

p(s|e)w(s)− c(e). (IC-A)

The principal’s expected utility isUP =
∑

x g(x)f(x|e)−
∑

s p(s|e)w(s) if he

chooses to implement e�ort e. It is convenient to de�neE[g(x)|e] =
∑

x g(x)f(x|e).

For a given desired e�ort level e, the principal chooses a wage schedule that

solves

min
w

∑
s

p(s|e)w(s) s.t.∑
s

p(s|e)w(s)− c(e) ≥
∑
s

p(s|ê)w(s)− c(ê), ∀ê ∈ E,

w(s) ≥ 0, ∀s ∈ S.

(1)

The constraints represent the agent’s incentive compatibility and a set of limited

liability constraints. Notice that we have not imposed a participation constraint

for the agent. This is because the assumption c(e1) = 0 together with limited

liability implies that setting e = e1 guarantees a non-negative payo� for the

agent. Let W (e, π) represent the optimal value in (1). This is the minimum ex-

pected wage the principal must pay the agent to implement e�ort e given the

information structure π chosen by the agent.
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Given W (e, π), the problem of the principal is to choose an e�ort level to

maximize her expected utility, or,

max
e

E [g (x) |e]−W (e, π). (2)

It is possible to express the above as an incentive compatibility constraint and

thus write the agent’s problem in the �rst stage of the game as

max
e,π

W (e, π)− c(e)

subject to the principal’s incentive compatibility constraint

E [g (x) |e]−W (e, π) ≥ E [g (x) |ê]−W (ê, π), ∀ê ∈ E. (IC-P)

3.1 Remarks on the Environment

It is useful to discuss various interpretations of the model as well as our key

assumptions.

Performance Measure as Information Structure

In the textbook model of moral hazard, the principal cannot observe the agent’s

e�ort. He therefore uses some imperfect signal of e�ort to incentivize the agent.

If he can observe the output, he o�ers an output-contingent contract; this makes

the output the performance measure for the agent. In our model, the principal

does not observe the output but does observe a signal, which may be correlated

with e�ort, and he o�ers a signal-contingent contract. As a result, the signal is

the relevant performance measure for the agent. By choosing the information

structure, the agent in�uences the set of observables that will ultimately dictate

her compensation, which we interpret as the agent choosing her performance

measure.

We make the assumption that the principal cannot o�er output-contingent
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contracts. As we have described, while a conventional interpretation of this as-

sumption is that the principal cannot observe output directly, an alternative in-

terpretation is that this restriction arises during the negotiations between the

agent and the principal in choosing contractual performance measures.

Commitment

We assume that the agent commits to an information structure in the �rst stage of

the game. Our interpretation of the information structure as a contractual perfor-

mance measure provides a natural justi�cation of the commitment assumption.

When signing a contract, all parties are aware of and agree on the probabilistic

nature of the chosen performance measure as a function of the output. The con-

tractible nature of the performance measure makes the commitment assumption

necessary.

Comparison to the Literature on Bayesian Persuasion

As in the Bayesian persuasion literature, we can write the problem in terms of the

distribution of posteriors induced by the information structure. In the Bayesian

persuasion, every choice of information structure induces a distribution of pos-

teriors, where the whole distribution matters: not only the support, but also the

probabilities. In our setting, every choice of information structure induces a set

of distributions of posteriors, one for each choice of e�ort. These distributions

are related through their supports: given the support of one distribution, the

supports of the others are pinned down. As we will discuss in section 4, the key

su�cient statistic about the choice of information structure is the distribution

of the likelihood ratios and these are determined by the supports of the above

distributions. Therefore, in our model, only the support of the distribution of

posteriors matters.
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4 A Geometric Analysis of the Game

We now characterize the equilibrium outcomes of the game. To do so, we �rst

describe the set of e�ort levels that are implementable by some information struc-

ture. We then show a “coarse”-ness result. That is, we show that it is without

loss of generality to restrict the agent’s choice of information structures to bi-

nary structures, where the set of signals has only two discrete points. Using such

information structures, we derive su�cient conditions such that the �rst-best

level of e�ort is implementable. When these su�cient conditions are satis�ed,

we show that the agent chooses an information structure that implements the

�rst-best e�ort level and extracts the entire surplus.

While it is possible to work with zero probability events and de�ne likelihood

ratios – by describing how division by 0 is de�ned – in order to avoid complica-

tions, we make the following assumption:

Assumption 1. The performance technology is full support, i.e., ∀x ∈ X, ∀e ∈
E, f (x|e) > 0.

This assumption implies that all the likelihood ratios below are well-de�ned.

Implementable E�ort. To characterize the set of implementable e�ort lev-

els, we use backward induction and �rst re-cast the problem of the principal

geometrically. Speci�cally, we show that the likelihood ratios for each signal re-

alization s for any e�ort level e relative to the desired, implementable level e∗

are su�cient statistics to solve the principal’s problem. In other words, we ar-

gue that any desired e�ort level to implement e∗ and any information structure

(S, π) give rise to a (geometric) space of possible likelihood ratios and that the

principal’s optimal choice of compensation schemes may be reduced to choosing

a point in this space of likelihood ratios.

More formally, we de�ne an implementable e�ort level e∗ as follows:

De�nition 2. An e�ort level e∗ is implementable if there exists an information

structure (S, π) such that e∗ is a solution to the principal’s problem (2).
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Given this de�nition, an implementable e�ort level e∗ must satisfy the two

incentive compatibility constraints in (IC-P) and (IC-A) for the principal and the

agent where the agent’s incentive compatibility constraint must hold for all pos-

sible histories including those following a deviation by the principal that involves

recommending an alternative level of e�ort.

Let e∗ represent some e�ort level the agent would like to implement (in the

�rst stage of the game). To motivate the relevance of likelihood ratios, consider

the agent’s interim incentive compatibility constraint when the principal only

pays the agent following a signal realization s:

p (s|e∗)w (s)− c (e∗) ≥ p (s|ê)w (s)− c (ê) ,∀ê.

These constraints imply that for any e�ort level ê where signal s is less likely

than under e∗, i.e., p (s|ê) < p (s|e∗), the wage must satisfy

w (s) ≥ c (e∗)− c (ê)

p (s|e∗)− p (s|ê)
, (3)

and if s is more likely under ê than under e∗ then

c (ê)− c (e∗)

p (s|ê)− p (s|e∗)
≥ w (s) . (4)

The �rst set of constraints (3) imply that the expected wage must satisfy

p (s|e∗)w (s) ≥ max
ê:p(s|e∗)>p(s|ê)

c (e∗)− c (ê)

1− p(s|ê)
p(s|e∗)

.

In other words, the expected cost of implementing e∗ for the principal (and its

implicit bene�t for the agent) is determined by the likelihood of state s. The

second set of constraints (4) place an upper bound on the wages the principal

may deliver while respecting incentives of the agent. As we show below, this

restriction can also be formulated in terms of likelihood ratios.
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The above illustration only holds under the assumption that the principal

only compensates the agent following a single signal s. We now show a more

general version of this analysis for arbitrary compensation schemes. To this end,

consider an arbitrary wage schedulew (s) chosen by the principal – for any e�ort

ei ∈ E chosen by the principal on- and o�- equilibrium path . We may write the

expected wage paid to the worker as

∑
s

w (s) p (s|ei) =
∑
s

w (s) p (s|e∗) p (s|ei)
p (s|e∗)

=
∑
s

w (s) p (s|e∗) ·
∑
s

w (s) p (s|e∗)∑
sw (s) p (s|e∗)

p (s|ei)
p (s|e∗)

=
∑
s

w (s) p (s|e∗) ·
∑
s

αs
p (s|ei)
p (s|e∗)

,

where

∑
s αs = 1. Since the weights αs do not depend on ei, we may write the

agent’s interim incentive compatibility constraint as

∑
s

w (s) p (s|e∗)·
∑
s

αs
p (s|ei)
p (s|e∗)

−c (ei) ≥
∑
s

w (s) p (s|e∗)·
∑
s

αs
p (s|ej)
p (s|e∗)

−c (ej) .

Therefore, if we de�ne `i = 1−
∑

s αsp (s|ei) /p (s|e∗), this incentive constraint

may be written as∑
s

w (s) p (s|e∗) · [`j − `i] ≥ c (ei)− c (ej) ,∀j = 1, · · · , |E| . (5)

Writing the incentive constraint in this manner reveals that the choice of likeli-

hood ratios, `i, is su�cient to characterize payo�s of the principal and the agent

and that the choice of contract w (s) by the principal may be decomposed into

a choice of

∑
sw (s) p (s|e∗) as well as the choice of {αs} or alternatively `i. In

other words, if we represent the likelihood ratio `i pro�le with the following

vector

l =
(
`1, · · · , `|E|

)
,
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then l ∈ convex hull

({
1− p(s|e1)

p(s|e∗) , · · · , 1−
p(s|e|E|)
p(s|e∗)

}
s∈S

)
= co (p). Thus the

choice of the principal can be summarized by the overall level of the compensa-

tion

∑
s p (s|e∗)w (s) = w together with an element of the set co (p). We thus

have the following lemma:

Lemma 1. Consider an implementable e�ort e∗ and its associated information
structure p = {p (·|·)}. Then the cost to the principal from implementing any
e�ort is given by

W (ei,p) = min
`∈co(p)∩Ωi

(1− `i) · max
i:`j≥`i

c(ei)− c(ej)
`j − `i

, (6)

Ωi =

{
` ∈ R|E| : max

j:`j≥`i

c (ei)− c (ej)

`j − `i
≤ min

j:`j<`i

c (ei)− c (ej)

`j − `i

}
. (7)

The above lemma states that the problem of the principal can be reduced

to choosing an e�ort level as well as a point in the convex hull of likelihood

ratios – its intersection with the convex cone in (7). Note that not all likelihood

ratios `i are feasible in the sense that there may be no compensation scheme

that satis�es the agent’s interim incentive compatibility constraints. As in our

motivating example above, the likelihood ratios must permit a wage w(s) that

lies between the lower and upper bounds in (7). The convex cone Ωi de�nes the

set of likelihood ratios that admit incentive compatible compensation schemes.

These results reveal that by choosing an information structure, the agent ef-

fectively determines the convex hull co (p) and then the principal chooses a point

that is in the intersection of co (p) and the convex cone Ωi. This result by itself

does not make the analysis more tractable as it does not immediately describe

the set of feasible convex hulls co(p). The following proposition provides such a

characterization. Note that, similar to co (p), the convex hull co (f) is the convex

hull created by the points

{
1− f(x|e1)

f(x|e∗) , · · · , 1−
f(x|e|E|)
f(x|e∗)

}
x∈X

.
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Proposition 1. For any information structure (S, π) with |S| <∞, its associated
co (p) is a subset of co (f) that contains the origin 0 = (0, · · · , 0). Additionally, for
any convex subsetC of co (f) that contains the origin and has a �nite set of extreme
points, there exists an information structure (S, π) such that co (p) = C .

Proof. Let (S, π) be an information structure. Then,

p(s|ei)
p(s|e∗)

=

∑
x f(x|ei)π(s|x)∑
x f(x|e∗)π(s|x)

=
∑
x

f(x|e∗)π(s|x)∑
x f(x|e∗)π(s|x)

f(x|ei)
f(x|e∗)

.

=
∑
x

βs (x)
f(x|ei)
f(x|e∗)

where

∑
x βs (x) = 1; βs (x) is the principal’s posterior probability of x after

observing s. The above implies that(
1− p(s|e1)

p(s|e∗)
, · · · , 1−

p(s|e|E|)
p(s|e∗)

)
=
∑
x

βs (x)

(
1− f(x|e1)

f(x|e∗)
, · · · , 1−

f(x|e|E|)
f(x|e∗)

)

Hence, the left hand side of the above is a member of co (f) for all s ∈ S. As a

result co (p) ⊂ co (f). Moreover, we have

∑
s

p(s|e∗)
(

1− p(s|ei)
p(s|e∗)

)
= 1−

∑
s

p(s|ei) = 0,∀i.

This implies that the convex set co(p) includes the origin.

Now consider an arbitrary convex set C that contains the origin. Let S be

the set of extreme points of C with each of its member being of the form z =(
z1, · · · , z|E|

)
. Then, since 0 ∈ C by Caratheodory theorem – see Rockafellar

(1970) –, there must exist {τz}z∈S such that

∑
z τz = 1 and

0 =
∑
z∈S

τzzi (8)

by de�nition of co (f), we must have that zi ≤ 1 for all z ∈ C . Moreover,
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since z ∈ co (f), there must exist a subset Y ⊂ X whose members are linearly

independent together with βz (x) such that

∑
x∈Y

βz (x) = 1, βz (x) ≥ 0, zi =
∑
x∈Y

βz (x)

[
1− f (x|ei)

f (x|e∗)

]
.

Replacing the above in (8) leads to

0 =
∑
x∈Y

∑
z∈S

τzβz (x)

[
1− f (x|ei)

f (x|e∗)

]

Since the points in Y are linearly independent and we also know that

0 =
∑
x∈Y

f (x|e∗)
[
1− f (x|ei)

f (x|e∗)

]

we must have that

f (x|e∗) =
∑
z

τzβz (x)

Let us de�ne

π (z|x) =
βz (x) τz∑
z∈S βz (x) τz

=
βz (x) τz
f (x|e∗)

Then under π (z|x), we have

p (z|e)
p (z|e∗)

=

∑
x
βz(x)τz
f(x|e∗) f (x|e)∑

x
βz(x)τz
f(x|e∗) f (x|e∗)

=

∑
x βz (x) τz

f(x|e)
f(x|e∗)

τz
∑

x βz (x)

=
∑
x

βz (x)
f (x|e)
f (x|e∗)

= z

which concludes the proof.

Proposition 1 implies that any convex subset of co (f) that contains the origin
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can be chosen by the agent as co (p). This implies that instead of a choice ofp, we

can focus on a choice of a convex subset of co (f) that contains the origin. Thus

the problem of the best agent-optimal information structure that implements e∗

can be thought of as the equilibrium of the following game:

• Stage 1. The agent chooses a �nite number of points L inside the convex

set co (f) such that the convex hull of these points conv (L) includes the

origin.

• Stage 2. Principal chooses an e�ort level ei ∈ E and a point ` ∈ conv (L)∩
Ωi to maximize E [g (x) |ei]− (1− `i) ·maxj:`j>`i

c(ei)−c(ej)
`j−`i .

• Stage 3. The choice of principal in stage 2 coincides with e∗.

The following example illustrates the construction of co (f) and equilibrium re-

sponse of the principal.

Example 1. Suppose that E = {e1, e2, e3}, where c (e1) = 0, c (e2) = 0.1, and

c (e3) = 0.3. The performance technology is given byX = {x1 = 0, x2 = 1, x3 = 2}
and f (x|e) is

f =

0.35 0.50 0.15

0.05 0.50 0.45

0.10 0.15 0.75

 ,
where fij = f (xj|ei). This yields

E [x|e1] = 0.8, E [x|e2] = 1.4, E [x|e3] = 1.65.

Therefore, the �rst-best is to implement e�ort e3. If we set e∗ = e3, then since

1 − f (x|e3) /f (x|e∗) = 0, we can embed the set co (f) in R2
. The gray area in

Figure 1 represents this set with ai being the point associated with xi ∈ X .

To understand the geometry of the game between the principal and the agent,
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consider a signal structure with 4 realizations given by S = {s1, s2, s3, s4} and

π =

 0.5 0.2 0.1 0.2

0.2 0.3 0.3 0.2

0.05 0.05 0.1 0.8

 ,
where πij = π(sj|xi). We can use p (s|e) =

∑
x∈X π (s|x) f (x|e) to construct

the likelihood ratios. The green area in Figure 1 illustrates the convex set co(p).

To better illustrate the incentives in the geometric game between the princi-

pal and the agent, suppose the agent reveals x to the principal. As we have illus-

trated above, the choice of contract by the principal is equivalent to the choice

of a point in the convex set co (p).

To think about the incentives of the principal, if the principal is to implement

e3, he chooses l ∈ co (f) to minimize its cost given by

max

{
c (e3)− c (e2)

`2

,
c (e3)− c (e1)

`1

}
= max

{
0.2

`2

,
0.3

`1

}
The upper-contour sets associated with the above cost function are convex cones

in the shape of positive orthants – the shaded blue area highlighted in the right

panel of Figure 1. For this example, the above cost function is minimized at a3.

On the other hand, if the principal is to implement e2, he chooses l ∈ co (f) to

minimize the cost given by (1− `2) 0.1
`1−`2 when `1 ≥ `2. This cost is minimized

at a3. For e3 to be implementable the payo� associated with e2 – implied by the

principal choosing a3 – should be lower than the payo� associated with e3. The

set of likelihood ratios that satisfy the latter are highlighted by the blue shaded

area. Note that a3 is not contained in this area. As a result, by choosing to reveal

x to the principal, the agent is unable to implement e3. One can show that e2 is

implementable under full revelation of x.
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a3

a2

a1

`2

`1

a3

a2

a1

`2

`1

Figure 1: The geometric representation of information structures in the space of

likelihood ratios. The left panel shows an example with 4 signals; the right panel

shows the incentives of the principal when the agent reveals x.

4.1 Binary Information Structures

We now exploit our geometric interpretation to show that we may restrict the

agent to choose information structures with at most two signals without loss of

generality.

Proposition 2. If e∗ is implementable by some information structure (S, π) and
delivers expected wageW (e∗, π), to the agent, then e∗ is also implementable by a
binary information structure

(
Ŝ, π̂

)
with |S| = 2 andW (e∗, π) = W (e∗, π̂).

Proof. Suppose the e�ort level e∗ is implementable by (S, π) and consider the

optimization problem in (6). Let l∗ ∈ co (p) be the optimal choice for the prin-

cipal when choosing e∗. Given the de�nition of co (p) and the geometric game

described above, there must exist {αs}s∈S such that αs ≥ 0 and

∑
s∈S αs = 1

and

`∗i = 1−
∑
s∈S

αs
p (s|ei)
p (s|e∗)

,∀ei ∈ E
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Let the information structure

(
Ŝ, π̂

)
be de�ned as Ŝ = {L,H} and

π̂ (H|x) =
∑
s

βsπ (s|x) , π̂ (L|x) = 1− π̂ (H|x)

where

βs =
αs/p (s|e∗)∑
s αs/p (s|e∗)

The probability function given this information structure satis�es

1− p̂ (H|ei)
p̂ (H|e∗)

= 1−
∑

x π̂ (H|x) f (x|ei)∑
x π̂ (H|x) f (x|e∗)

,

= 1−
∑

s∈S
αs

p(s|e∗)
∑

x π (s|x) f (x|ei)∑
s∈S

αs
p(s|e∗)

∑
x π (s|x) f (x|e∗)

= 1−
∑

s∈S
αs

p(s|e∗)p (s|ei)∑
s∈S

αs
p(s|e∗)p (s|e∗)

= 1−
∑
s∈S

αs
p (s|e∗)

p (s|ei) = `∗i

The above implies that if the principal is to choose e∗, l∗ is feasible under the

new information structure

(
Ŝ, π̂

)
, i.e., l∗ ∈ co (p̂). Hence, in order to establish

our claim, it is su�cient to show that for any alternative ei 6= e∗, W (ei, π̂) ≥
W (ei, π). To show this, it is su�cient to show that(

1− p̂ (L|e1)

p̂ (L|e∗)
, · · · , 1−

p̂
(
L|e|E|

)
p̂ (L|e∗)

)
∈ co (p)

This would imply that co (p̂) is a subset of co (p) since co (p̂) is the line that

connects the above point to l∗.
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We have

1− p̂ (L|ei)
p̂ (L|e∗)

= 1−
∑

x (1− π̂ (H|x)) f (x|ei)∑
x (1− π̂ (H|x)) f (x|e∗)

= 1−
∑

x

∑
s (1− βs) π (s|x) f (x|ei)∑

x

∑
s (1− βs) π (s|x) f (x|e∗)

= 1−
∑

s (1− βs) p (s|ei)∑
s (1− βs) p (s|e∗)

= 1−
∑
s

(1− βs) p (s|e∗)∑
s (1− βs) p (s|e∗)

p (s|ei)
p (s|e∗)

which establishes the claim. This concludes the proof.

We can describe the intuition behind the above proof graphically. Consider

an e�ort e∗ and suppose that its associated information structure is as is depicted

in Figure 2. The green area represents the convex hull of an arbitrary information

structure, co (p̂). The point b is the point of optimality for the principal in co (p)

if he were to implement e∗. The red line represents the new information structure

π̂ – since there are only two signal realizations this has to be a line. If the principal

is to implement e∗, since b ∈ co (p̂) and b is chosen under π, b remains optimal.

Moreover, since co (p̂) ⊂ co (p), for any other e�ort ei 6= e∗, minimized cost

under π̂ must be at least as high as the minimized cost under π. This, in turn

implies that e∗ is implementable under π̂ and implements the same outcome as

π.

The above observations imply that if principal prefers to implement e�ort e∗

under the information structure π, he would prefer the same under the binary

information structure π̂ and the expected wage he has to pay to achieve this is

the same under both information structures. In what follows, we will use this

result to characterize optimal information structures.

Example 1 (Continued). Recall Example 1 in which we argued that the

principal – under full revelation – chooses to implement e2 and thus his choice

is ine�cient (since total surplus under e2 is lower than that of e3.)
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a4

a3

a2

a1

b

`2

`1

Figure 2: The intuition for the construction of a two-point signal

It is still remain to be seen whether e3 is implementable and how well can the

agent do by choosing an information structure. By Proposition 2, we can focus

on information structures that only have two support points. Note that since

the output under e1 is E [x|e1] = 0.8 and its cost is 0, the principal can always

guarantee E [x|e1] = 0.8.

Now consider the point
ˆ̀

satisfying

0.2

`2

=
0.3

`1

= 0.85

At this point, the payo� to the principal of implementing each e�ort level is given

by

e3 : 1.65−max

{
0.2

`2

,
0.3

`1

}
= 0.8

e2 : 1.40− (1− `2) · c(e2)− c(e1)

`1 − `2

= 1.40− 0.65 = 0.75

e1 : 0.8− 0 = 0.8
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ˆ̀
a3

a2

a1

`2

`1

Figure 3: Agent optimal information structure in Example 1

This implies that at
ˆ̀
, e3 maximizes the payo� of the principal. Thus if

ˆ̀∈ co (f),

we can choose an information structure that implements e3. In this example,

this is indeed the case. Figure 3 depicts the point
ˆ̀

as well as the two point

information structure that implements it; the red line going through
ˆ̀
. If we set

S = {L,H} and

π (H|x) =


27
83

x = x1

15
83

x = x2

41
83

x = x3

, π (L|x) = 1− π (H|x)

it can be readily checked that (π, S) is associated with the one depicted in Figure

3.

The above example illustrates the agent’s power in the choice of the informa-

tion structure provides. By choosing the aforementioned information structure,

not only the agent is able to implement e3, i.e., the e�cient level of e�ort, but

also able to capture all the surplus. In what follows, we show that under some
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conditions on the performance technology, this is always possible.

5 E�cient Surplus Extraction

In this section, we provide su�cient conditions on the performance technology

f (·|·) and cost function function c (·) so that the agent is able to implement �rst

best e�ort and fully extract all the surplus.

Let e∗ be the �rst-best level of e�ort that satis�es

e∗ ∈ arg max
e∈E

E [g(x)|e]− c (e) .

Suppose that the agent wishes to implement e∗ and capture all the surplus given

by E [g(x)|e∗]− c (e∗)− E [g(x)|e1]. For this to occur, we need to choose co (p)

and `∗ ∈ co (p) that satis�es

E [g(x)|e1] = E [g (x) |e∗]− max
i:`∗i≥0

c (e∗)− c (ei)

`∗i

≥ max
ej∈E,`∈co(p)∩Ωj

E [g (x) |ej]− (1− `j) max
i:`i>`j

c (ej)− c (ei)

`i − `j

Consider the likelihood vector `∗ that satis�es the following properties

∆y = E [g (x) |e∗]− E [g(x)|e1] =
c (e∗)− c (ei)

`∗i
,∀i

In words, this is a point in which the agent is indi�erent between all e�orts

– see the reformulation of (IC-A) in (5). Moreover, the principal’s payo� is his

outside option and thus should the principal choose to implement e∗ and chooses

`∗ ∈ co (p), agent captures all the surplus. In the following proposition, we show

that if `∗ ∈ co (f), we can construct an information structure – and its associated

co (p) – in which `∗ is the best choice for the principal and e∗ is the best level of

e�ort.
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Theorem 1. Suppose that `∗ ∈ co (f). Then e∗ is implementable and then there ex-
ists an information structure (π, S) for which agent’s payo� is uA = E [g (x) |e∗]−
E [g (x) |e1]− c (e∗) and uP = E [g (x) |e∗], i.e., the agent can capture all the sur-
plus.

Proof. First, we note that by Lemma 2 in the Appendix, 0 ∈ co (f) is an inte-

rior point of this convex set where interiority is de�ned in appropriatley de�ned

subspace of Rm
. We de�ne the following convex hull (and by Proposition 1 its

associated information structure):

co (p) = {λ`∗ + (1− λ) (−α`∗) : ∀λ ∈ [0, 1]}

where in the above α > 0 is such that −α`∗ ∈ co (p). Such an α always exists

due to 0 being an interior point. Since co (p) is a line through `∗ and the origin,

all of its members must satisfy

∀i, j, `i
`j

=
c (e∗)− c (ei)

c (e∗)− c (ej)
=
`∗i
`∗j
→ `i

`1

=
c (e∗)− c (ei)

c (e∗)
(9)

This implies that that the cost of choosing any member of co (p) is given by

(1− `j) max
`i≤`j

c (ej)− c (ei)

`i − `j
=

(
1− c (e∗)− c (ej)

c (e∗)
`1

)
c (e∗)

`1

=

(
1− c (e∗)− c (ej)

c (e∗)
`1

)
c (e∗)

`1

=
c (e∗)

`1

+ c (ej)− c (e∗)

Since choice of ` under ej must be a member of the cone Ωj , we must have `j ≤ `1

and this combined with (9) implies that `1 ≥ 0. Thus the above expression is

maximized at `∗. Hence, the highest payo� of the principal from choosing ej is
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given by

E [g (x) |ej]− c (ej)−
c (e∗)

`∗1
+ c (e∗) =

E [g (x) |ej]− c (ej) + c (e∗)− E [g (x) |e∗] + E [g(x)|e1]

The above is maximized at ej = e∗ which implies that e∗ can be implemented

with the chosen information structure. Moreover, the payo� of the principal is

given by E [g (x) |e1]. This concludes the proof.

The proof of the above proposition emphasizes the power of the agent when

`∗ ∈ co (f). By being able to control the information structure, the agent can

control the wage that is needed for the principal to implement his desired e�ort.

By choosing `∗, the agent is forcing the principal to have to fully compensate the

agent for her cost of e�ort. This implies that the payo� of the principal becomes

total surplus shifted by a constant. Hence, it is optimal to choose the �rst best

level of e�ort.

While Theorem 1 provides su�cient conditions for implementability of �rst

best e�ort and full surplus extraction, it is not immediately evident what it im-

poses on the structure of the model. In what follows, we try to shed light on

this.

Almost Perfect Performance Technology Suppose that the performance

technology satis�es the following property

X = E ⊂ R+, e1 = 0

f (ej|ej) = 1− (m− 1) ε

f (ei|ej) = ε, ∀i 6= j

where 1/ (m− 1) > ε > 0. In words, the above performance technology puts

probability ε on ei 6= ej if ej chosen. As ε converges to 0, it converges to a setting

where observing x ∈ X fully reveals e, i.e., a perfect performance technology.
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Note that for ε small enough, �rst best level of e�ort is given by

ej ∈ arg max
e∈E

e− c (e)

Suppose that in the above ej > e1 = 0. Moreover, as ε converges to 0, the point

`∗ converges to

`∗i =
c (e∗)− c (ei)

e∗

Finally, note that for any ε, the set co (f) is the convex hull of the following

likelihood ratios

1− f (ek|ei)
f (ek|ej)

=



1− ε
1−(m−1)ε

k = j, k 6= i

0 k = i = j

0 k 6= j, k 6= i

m− 1
ε

k 6= j, k = i

As ε converges to 0, the above set gets larger and the point associated with k = j

converges to 1, · · · , 1︸ ︷︷ ︸
j−1-times

, 0, 1, · · · , 1


while the points associated with k 6= j converges to0, · · · , 0︸ ︷︷ ︸

k−1-times

,−∞, 0, · · · , 0


This implies that as ε converges to 0, co (f)→ (−∞, 1]j−1×{0}× (−∞, 1]m−j .

This is depicted in Figure 4. Since `∗i ≤
c(ej)

ej
< 1, for ε small enough, we must

have that `∗ ∈ co (f). We thus have the following corollary to Theorem 1:

31



`2

`1

Figure 4: Almost Perfect Performance Technology for m = 3. The grey and

green shaded areas represent co (f) when as ε becomes smaller, respectively. As

ε→ 0, co (f) converges to the shaded quarter-space south-west of (1, 1).

Corollary 1. Let f (·|·) be a almost perfect performance technology satisfying

X = E ⊂ R+, e1 = 0

f (ej|ej) ≤ 1− (m− 1) ε

f (ei|ej) ≥ ε,∀i 6= j

Then there exists ε such that for all ε ≤ ε, such that the agent can implement �rst
level of e�ort and capture all the surplus.

6 Continuous E�ort and Output

In this section, we consider a version of the model from Section 3 where the e�ort

space and the output space are continuous. Applying a �rst-order approach, we

derive su�cient conditions such that the optimal indicator structure takes the
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form of monotone or hump-shaped threshold signals. In other words, we derive

conditions such that the optimal information structure is characterized by an

indicator with at most two thresholds.

Consider a principal employing an agent to perform a task whose output is

represented by a real number x ∈ X = [0, 1]. The agent chooses e�ort e ∈
E = [0, 1] to perform the task. The agent’s e�ort choice induces a probability

distribution f(x|e) over the output space X , whose density function f(x|e) is

assumed to be di�erentiable with respect to e for every x ∈ X . E�ort is costly

to the agent; the cost of e�ort e is given by c(e) for some real-valued function

c : E → R+ where c′(e) ≥ 0, c′′(e) > 0, ∀e ∈ E. For simplicity, let c(0) = 0.

The timing and payo� functions of the game are otherwise the same as in the

model in Section 3. To proceed, we assume that the �rst-order approach is valid

for all the optimization problems faced by the agent and the principal.

We characterize this continuous version of the game in the same manner as

the discrete case. Given the result in Proposition 2, one can use an approxima-

tion argument to show that optimal signal is binary; s = L,H . As a result, let

p (e) : E → [0, 1] represent the probability of s = H induced by a given infor-

mation structure (S, π) and the underlying probability distribution of outcomes

given e�ort f(x|e). Note, for any level of e�ort e, p (e) =
∫ 1

0
f (x|e) π (H|x) dx.

Di�erentiating the stochastic mapping p with respect to e, yields

p′ (e) =

∫ 1

0

fe (x|e) π (H|x) dx, ∀e ∈ E

The agent’s problem in the last stage of the game given an information struc-

ture and a compensation scheme is

max
e∈E

p (e)w (H) + [1− p (e)]w (L)− c (e)

The �rst-order condition characterizing the agent’s optimal e�ort is

p′ (e) [w (H)− w (L)] = c′(e).
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For any desired level of e�ort, the principal chooses a compensation scheme

that solves

min
w

p (e)w (H) + (1− p (e))w (L)

s.tp′ (e) [w (H)− w (L)] = c′ (e) ,

w (H) , w (L) ≥ 0.

(10)

If λ(e, π) denotes the Lagrange multiplier on the agent’s incentive compati-

bility constraint in 10, then

λ(e, π) = min

{
p (e)

p′ (e)
,−1− p (e)

p′ (e)

}
.

Exactly as in the discrete case, the above reveals that the agent’s choice of in-

formation structure, which induces a set of likelihood ratios dependent on the

stochastic mapping p determines the principal’s shadow cost of incentivizing a

given e�ort level.

If we de�ne the expected payo� to the principal of a given e�ort levelE [g(x)|e] =∫
X
g(x)f(x|e)dx, then the principal’s optimal choice of e�ort solves

max
e

E [g (x) |e]− λ (e, π) c′ (e)

with associated optimality condition

∂E [g(x)|e]
∂e

− ∂λ(e, π)

∂e
c′(e)− λ(e, π)c′′(e) = 0.

Using the above sequence of optimality conditions, we obtain the following

optimization problem that describes the agent’s choice of e�ort and information
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structure in the �rst stage of the game:

min
e,π

λ(e, π)− c(e) s.t.

∂E[g(x)|e]
∂e

− ∂λ(e, π)

∂e
c′(e)− λ(e, π)c′′(e) = 0,

1

λ(e, π)
= max

{ ∫
X
f(x|e)π(x)dx∫

X
fe(x|e)π(x)dx

,−
1−

∫
X
f(x|e)π(x)dx∫

X
fe(x|e)π(x)dx

}
.

(11)

The following assumption allows us to provide a sharp characterization of opti-

mal information structure:

Assumption 2. Given any e�ort e ∈ E, the likelihood fe(x|e)
f(x|e) is strictly monotone

in output x and its derivative ∂
∂e

fe(x|e)
f(x|e) is a convex function of the likelihood fe(x|e)

f(x|e) .

Several distribution functions satisfy Assumption 2. Examples include power

distributions: f (x|e) = exe−1
, and truncated exponential distributions: f (x|e) =

d
dx

ex−1
e−1

.

Our main characterization of optimal information structure is as follows:

Proposition 3. Suppose that Assumption 2 holds. Then, the equilibrium informa-
tion structure is characterized by at most two thresholds in the output space. If the
equilibrium information structure has a single threshold, say x∗, then π (H|x) = 1

if and only if x ≥ x∗. If the equilibrium information structure has two thresholds,
say (x∗1, x

∗
2) then π (H|x) = 1 if and only if x ∈ [x∗1, x

∗
2].

Given an e�ort choice, the agent’s optimal choice of information structure

requires the agent to choose the probability of being paid at output x̃, i.e., π(x̃),

such that there is no net marginal bene�t from a marginal change in this prob-

ability. Generally, it is not possible to satisfy this condition for all output levels.

The agent ends up choosing the extreme probabilities for output x̃, depending on

whether her net marginal bene�t is increasing or decreasing in the probability

of being paid at that output level. The assumptions of the Proposition ensure

that the output intervals at which the agent uses either of the extreme probabili-
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ties are structured such that the optimal information structure takes the form of

monotone or hump-shaped thresholds signals.

Example 2. Let f(x|e) = 3ex3e−1
. As mentioned earlier, this distribution sat-

is�es Assumption 2. If the e�ort cost is c(e) = e2

2
,the equilibrium information

structure is characterized by x∗ = 0.45 where π (H|x) = 1 if and only if x ≥ x∗.

The principal pays the agent w = 0.1048 if he receives the high signal; other-

wise, he pays nothing. This choice implements e�ort e∗ = 0.2725 yielding the

following payo�s: UP = 0.3450, UA = 0.0677. For comparison, the �rst-best

e�ort is e = 0.4708. In this case, and opposite to that of section 5, the agent is

unable to implement e�cient outcome.

7 Conclusion

In this paper, we have developed the theoretical tool in the design of contracts in

principal-agent settings. Part of the design of contract is what indicators should

be used as contingencies for payments. Despite the importance of this question

and its relevance for analysis of contracting decisions, this part of the contracting

procedure is less explored.

Our paper has two broad implications. First, our methodology of thinking

about likelihood ratios can be applied to other settings in which considerations

of communication o� the equilibrium path are important. In our setup, unlike

other models of communication and information design, the design of informa-

tion structure for the equilibrium level of e�ort a�ects communication o�-path

and a�ects the ability of the principal and agent to capture the surplus. This can

arise in other settings with strategic information transmission and our method

can be useful for that.

Second, our paper ties the choice of indicators in contracting to the bargain-

ing power of the parties. In the textbook moral hazard problem, principal makes

a take-it-or-leave it o�er. As a result, a version of informativeness principle often

holds; principal wishes to use all the information available, if possible, to use as
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contingency for payments. In contrast, in our model, agent has di�erent incen-

tives for choice of indicators. There are some casual observations that are in line

with this explanation. For example, contracts in NFL are often extremely detailed

and payments to football players are highly contingent on various measures of

individual and team outcomes. In contrast, contracts found in the English Pre-

mier League are not as detailed. They are often contingent on very coarse per-

sonal outcomes such as number of goals scored reaching a particular threshold.

In light of our theory, the level of competition in English/European soccer (in the

form of increased player bargaining power) compared to a lack thereof in NFL

could be behind this observation. Future work can hopefully shed light on the

importance of this channel in the data.
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8 Appendix

Lemma 2. Let S represent the lowest-dimensional linear subspace in R|E| that
contains co (f). If f(·|e∗) is full-support, then the origin is an interior point of
co (f) with respect to S.

Proof. Notice that the origin can be written as a convex combination of the points

de�ning co (f) with weights f(x|e∗):

∑
x

f(x|e∗)
(

1− f(x|ei)
f(x|e∗)

)
=
∑
x

f(x|e∗)−
∑
x

f(x|ei) = 1− 1 = 0, ∀i,

where f(x|e∗) > 0, ∀x ∈ X because of the full-support assumption. There-

fore, the origin is always included in the convex set co (f). Suppose by contra-

diction that the origin is not an interior point of co (f) with respect to S. By the

supporting hyperplane theorem, there exists a hyperplane in the linear subspace

S that contains the origin and co (f) is entirely contained in one of the two closed

half-spaces bounded by the hyperplane. However, since f(x|e∗) > 0, ∀x ∈ X ,

this is possible only if co (f) is entirely contained in this hyperplane. This is a

contradiction because S is the lowest-dimensional linear subspace in R|E| that

contains co (f).

Proof of Proposition 3 : Without loss of generality, for any desired im-

plementable e�ort level e, we impose

∫
X
fe(x|e)π(x)dx ≥ 0. Consequently, we

have

λ(e, π) =

∫
X
f(x|e)π(x)dx∫

X
fe(x|e)π(x)dx

≥ 0.
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We may then write the agent’s problem in (11) as

max
e,π

λ(e, π)c′(e)− c(e) s.t.

∂E[g(x)|e]
∂e

− ∂λ(e, π)

∂e
c′(e)− λ(e, π)c′′(e) = 0,

λ(e, π) =

∫
X
f(x|e)π(x)dx∫

X
fe(x|e)π(x)dx

,

λ(e, π) ≥ 0, 0 ≤ π(x) ≤ 1, ∀x ∈ X.

(12)

We write the Lagrangian corresponding to (12), momentarily ignoring the in-

equality constraints:

L(e, π, η) = λ(e, π)c′(e)− c(e) +η

[
∂E[g(x)|e]

∂e
− ∂λ(e, π)

∂e
c′(e)−λ(e, π)c′′(e)

]
.

For every output x̃ ∈ X , the agent’s optimal information structure in (12) must

satisfy

∂L(e, π, η)

∂π(x̃)
= 0, if 0 < π(x̃) < 1,

∂L(e, π, η)

∂π(x̃)
≥ 0, if π(x̃) = 1, (13)

∂L(e, π, η)

∂π(x̃)
≤ 0, if π(x̃) = 0.

With some algebra, we get

∂L(e, π, η)

∂π(x̃)
= f(x̃|e)

[
A1(e, π, η)− A2(e, π, η)

fe(x̃|e)
f(x̃|e)

+ A3(e, π, η)
fee(x̃|e)
f(x̃|e)

]
(14)
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where A1, A2, A3 are some functions independent of x̃. Note that since

fee(x|e)
f(x|e)

=
∂

∂e

fe(x|e)
f(x|e)

+

(
fe(x|e)
f(x|e)

)2

,

we can write (14) as

∂L(e, π, η)

∂π(x̃)
= f(x̃|e)

[
A1(e, π, η)− A2(e, π, η)

fe(x̃|e)
f(x̃|e)

+

A3(e, π, η)

(
fe(x̃|e)
f(x̃|e)

)2

+ A3(e, π, η)
∂

∂e

fe(x̃|e)
f(x̃|e)

]
. (15)

Since
fe(x|e)
f(x|e) is monotone, the function in (15) inherits the curvature of

∂
∂e

fe(x|e)
f(x|e) .

That is,
1

f(x|e)
∂L(e,π,η)
∂π(x)

is a convex or concave function of
fe(x|e)
f(x|e) depending on the

sign of A3(e, π, η). As a result, the sign of
∂L(e,π,η)
∂π(x)

changes at most twice over

the interval X .

Note that if
∂L(e,π,η)
∂π(x)

is always positive or always negative (for a given e�ort

level e) then the information structure is fully uninformative. Such informa-

tion structures cannot be incentive compatible as they provide no incentives for

the agent to conduct any e�ort level e > e. Consequently, the equilibrium in-

formation structure has either one or two thresholds. In either case, it follows

immediately from (13) that if the equilibrium information structure has a single

threshold, say x∗, then s(x) = 1 if and only if x ≥ x∗. If the equilibrium infor-

mation structure has two thresholds, say (x∗1, x
∗
2), then s(x) = 1 if and only if

x ∈ [x∗1, x
∗
2].
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