
Generalized Topological Semantics for

First-Order Modal Logic1

Kohei Kishida

1Draft of November 14, 2010.

Draft of November 14, 2010

Abstract. This dissertation provides a new semantics for first-order modal logic. It is philosophi-

cally motivated by the epistemic reading of modal operators and, in particular, three desiderata in

the analysis of epistemic modalities.

(i) The semantic modelling of epistemic modalities, in particular verifiability and falsifiability,

cannot be properly achieved by Kripke’s relational notion of accessibility. It requires instead a

more general, topological notion of accessibility.

(ii) Also, the epistemic reading of modal operators seems to require that we combine modal logic

with fully classical first-order logic. For this purpose, however, Kripke’s semantics for quanti-

fied modal logic is inadequate; its logic is free logic as opposed to classical logic.

(iii) More importantly, Kripke’s semantics comes with a restriction that is too strong to let us se-

mantically express, for instance, that the identity of Hesperus and Phosphorus, even if meta-

physically necessary, can still be a matter of epistemic discovery.

To provide a semantics that accommodates the three desiderata, I show, on the one hand, how the

desideratum (i) can be achieved with topological semantics, and more generally neighborhood se-

mantics, for propositional modal logic. On the other hand, to achieve (ii) and (iii), it turns out

that David Lewis’s counterpart theory is helpful at least technically. Even though Lewis’s own

formulation is too liberal—in contrast to Kripke’s being too restrictive—to achieve our goals, this

dissertation provides a unification of the two frameworks, Kripke’s and Lewis’s. Through a series

of both formal and conceptual comparisons of their ontologies and semantic ideas, it is shown that

structures called sheaves are needed to unify the ideas and achieve the desiderata (ii) and (iii). In

the end, I define a category of sheaves over a neighborhood frame with certain properties, and show

that it provides a semantics that naturally unifies neighborhood semantics for propositional modal

logic, on the one hand, and semantics for first-order logic on the other. Completeness theorems are

proved.

3

Contents

Chapter I. Mathematical Introduction 9

I.1. Neighborhood Semantics for Propositional Modal Logic 9

I.1.1. Basic Definition 9

I.1.2. Some Conditions on Neighborhood Frames 11

I.2. Semantics for First-Order Logic 13

I.2.1. Denotational Interpretation 13

I.2.2. Interpretation and Images 15

I.3. Topological Semantics for First-Order Modal Logic 18

I.3.1. Domain of Possible Individuals 18

I.3.2. Interpreting First-Order Logic 21

I.3.3. Sheaves over a Topological Space 23

I.3.4. Topological-Sheaf Semantics for First-Order Modal Logic 25

I.3.5. First-Order Modal Logic FOS4 27

I.3.6. An Example of Interpretation 29

I.4. Neighborhood Semantics for First-Order Modal Logic 31

I.4.1. Why Sheaves are Needed 31

I.4.2. Sheaves over a Neighborhood Frame 35

I.4.3. Neighborhood-Sheaf Semantics for First-Order Modal Logic 38

Chapter II. Philosophical Introduction 41

II.1. Questions that this Dissertation Tries to Answer 41

II.1.1. Epistemic Logic and Topological Semantics 41

Chapter III. Semantics for First-Order Logic Revisited 51

III.1. More General Languages of First-Order Logic 51

III.1.1. Standard Semantics for Classical First-Order Logic 51

III.1.2. The Forgotten Trio 57

5

Draft of November 14, 2010

III.1.3. What If the Language is not Pure 64

III.2. Operational Semantics for First-Order Free Logic 79

III.2.1. Existence and Two Notions of Domain 79

III.2.2. Operational Semantics: A First Step 85

III.2.3. A Bit Categorical Preliminary 92

III.2.4. Autonomy of Domain of Quantification 98

Chapter IV. Kripkean Semantics for Quantified Modal Logic 111

IV.1. Kripke Semantics for Quantified Modal Logic 111

IV.1.1. Kripke’s Ontology and Semantics 111

IV.1.2. Separation of Modal and Classical 118

IV.2. Autonomous Domains of Quantification for the Kripkean Setting 124

IV.2.1. Operational Form of Kripkean Semantics: A First Step 124

IV.2.2. Kripke’s Operations 132

IV.2.3. Autonomy of Kripkean Domains of Quantification 139

IV.2.4. Autonomy of Domains and Converse Barcan Formula 145

IV.3. Operational Form of Kripkean Semantics: A Second Step 151

IV.3.1. Free-Variable-Sensitive Interpretation of Operators 152

IV.3.2. Preservation of Local Determination Generalized 155

IV.3.3. DoQ-Restrictability Generalized 158

Chapter V. Accessibility and Counterparts 169

V.1. David Lewis’s Counterpart Theory 169

V.1.1. Disjoint Ontology of Possible Individuals and the Notion of Counterparts 169

V.1.2. Counterpart Translation of a Modal Language 173

V.2. Counterpart-Theoretic Semantics 182

V.2.1. Semantically Rewriting Lewis’s Semantic Ideas 182

V.2.2. Operational Form of Counterpart-Theoretic Semantics 190

V.2.3. Bundle Formulation of Counterpart Theory 197

Chapter VI. Generalized Topological Semantics for First-Order Modal Logic 205

VI.1. Topological Semantics for First-Order Modal Logic 205

VI.1.1. Upshots from the Previous Chapters 205

6

Draft of November 14, 2010

VI.1.2. Classical Semantics in a Category of Sets over a Set 209

VI.1.3. Topological Spaces over a Space 213

VI.1.4. Sheaves over a Topological Space 216

VI.1.5. Topological-Sheaf Semantics for First-Order Modal Logic 219

VI.2. Neighborhood Semantics for First-Order Modal Logic 221

VI.2.1. Basic Definitions for Neighborhood Frames 221

VI.2.2. Products of Neighborhood Frames 225

VI.2.3. Some Subcategories of Neighborhood Frames 232

VI.2.4. Neighborhood Frames over a Frame 235

VI.2.5. Sheaves over a Neighborhood Frame 241

VI.2.6. Neighborhood-Sheaf Semantics for First-Order Modal Logic 246

VI.3. Completeness 247

VI.3.1. Sufficient Set of Models with All Names 248

VI.3.2. Frames of Models with Logical Topology 252

VI.3.3. Products and Logical Topology 258

VI.3.4. Completing the Completeness Proof 259

Bibliography 265

7

CHAPTER I

Mathematical Introduction

In this short chapter, I briefly lay out, without proofs, the principal mathematical results of this

dissertation. The precise, full exposition of them is found in later chapters, mostly in Chapter ??,

along with proofs.

I.1. Neighborhood Semantics for Propositional Modal Logic

To describe it in mathematical terms, the chief result of this dissertation is to extend neighbor-

hood semantics for propositional modal logic to first-order modal logic. In this section, we lay out

neighborhood semantics for propositional modal logic to prepare ourselves for the extension.

I.1.1. Basic Definition. Let us fix a propositional modal language L, that is, a language ob-

tained by adding unary sentential operators □ and ^, called modal operators, to any language of

classical propositional logic.

Neighborhood semantics can be regarded as a kind of possible-world semantics, in the sense

that it interprets L with a structure that consists of

• a set X , ∅, and

• a map ⟦−⟧ : sent(L)→ PX, where sent(L) is the set of sentences of L,

among other things. We may call points in X possible worlds, and subsets of X propositions, so

that we can read w ∈ ⟦φ⟧ as meaning that φ is true at w. In a manner coherent to this reading, we

define validity in ⟦−⟧ (or in a suitable tuple such as (X, ⟦−⟧)) in the following manner. Note that

we take binary sequents as units of validity; so, accordingly, we will consider formulations of logic

in which a logic or theory proves binary sequents.

• A binary sequent φ ⊢ ψ is valid in ⟦−⟧ if ⟦φ⟧ ⊆ ⟦ψ⟧. By the validity of a sentence φ, we

mean the validity of ⊤ ⊢ φ, where ⟦⊤⟧ = X—that is, φ is valid in ⟦−⟧ if ⟦φ⟧ = X.

• An inference (Γ, (φ ⊢ ψ))—deriving a sequent φ ⊢ ψ from premises Γ of sequents—is

valid in ⟦−⟧ if it preserves validity, that is, if either ⟦φi⟧ ⊈ ⟦ψi⟧ for some sequent φi ⊢ ψi

in Γ or ⟦φ⟧ ⊆ ⟦ψ⟧.

9

Draft of November 14, 2010

Propositional logic ///o/o/o/o/o/o/o/o/o/o X

φ ///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o ⟦φ⟧ ⊆ X

We can extend ⟦−⟧ to interpret sentential operators, so that, for each n-ary operator ⊗, we have

⟦⊗⟧ : (PX)n → PX and then

⟦⊗⟧(⟦φ1⟧, . . . , ⟦φn⟧) = ⟦⊗(φ1, . . . , φn)⟧.

For the logic to have its non-modal base classical, we set

⟦¬⟧ = X \ −, so that ⟦¬φ⟧ = X \ ⟦φ⟧;

⟦∧⟧ = ∩, so that ⟦φ ∧ ψ⟧ = ⟦φ⟧ ∩ ⟦φ⟧;

⟦∨⟧ = ∪, so that ⟦φ ∨ ψ⟧ = ⟦φ⟧ ∪ ⟦φ⟧;

⟦→⟧ =→, so that ⟦φ→ ψ⟧ = ⟦φ⟧→ ⟦φ⟧.1

What is characteristic of neighborhood semantics is to further equip X with

• a map N : X → PPX,

called a neighborhood function. Such a map N is mathematically equivalent to

• an operation int : PX → PX,

called an interior operation, via the correspondence

w ∈ int(A) ⇐⇒ A ∈ N(w)(1)

for every A ⊆ X and w ∈ X. We assume no constraint at all forN or int, though we will consider a

few in Subsection I.1.2 (and some turn out essential for the extension of neighborhood semantics

to the first-order modal logic). Any pair (X,N) of the type above is called a neighborhood frame.

Over such a structure (X,N), the modal operator □ is interpreted by the interior operation int

defined by N . That is,

⟦□⟧ = int, so that ⟦□φ⟧ = int(⟦φ⟧),

which means, by (1), that

w ∈ ⟦□φ⟧ ⇐⇒ ⟦φ⟧ ∈ N(w);

1The binary operation→ : (PX)2 → PX is such that A→ B = (X \ A) ∪ B.

10

Draft of November 14, 2010

thus, when □ is read as “necessarily”,N(w) amounts to the family of propositions necessarily true

at w. The operator ^ is interpreted by a dual of int, the closure operation cl : PX → PX, such that

cl(A) = X \ int(X \ A);

that is,

⟦^⟧ = cl, so that ⟦^φ⟧ = X \ int(X \ ⟦φ⟧).

Hence, with ¬ interpreted classically, that is, with ⟦¬⟧ = X \ −, ^ can simply be defined as ¬□¬.

Any neighborhood frame equipped with ⟦−⟧ satisfying these conditions is called a neighborhood

model, and neighborhood semantics is given by the class of all neighborhood models.

To describe the logic of neighborhood semantics, write E for the following rule.

φ ⊢ ψ ψ ⊢ φ

□φ ⊢ □ψ
E

This is valid in neighborhood semantics because, trivially, ⟦φ⟧ = ⟦ψ⟧ implies int(⟦φ⟧) = int(⟦ψ⟧).

Therefore modal logic E obtained by adding E to classical propositional logic is sound with respect

to neighborhood semantics; and, indeed, it is also complete, in the following strong form:

Theorem (Scott [17], Montague [15], Segerberg [19]). For any consistent theory T containing E,

there exists a neighborhood model (X,N , ⟦−⟧) that validates all and only theorems of T.

I.1.2. Some Conditions on Neighborhood Frames. Though any set X can be paired with any

arbitrary mapN : X → PPX and (X,N) forms a neighborhood frame, we may consider conditions

thatN should satisfy. Many of them are directly reflected in the modal logic of the class of frames

satisfying them.

For instance, consider

A ⊆ B ⊆ X and A ∈ N(w) =⇒ B ∈ N(w),(2)

A, B ∈ N(w) =⇒ A ∩ B ∈ N(w),(3)

X ∈ N(w),(4)

A ∈ N(w) =⇒ w ∈ A,(5)

A ∈ N(w) =⇒ int(A) ∈ N(w).(6)

11

Draft of November 14, 2010

It is easy to see that these are the case iff

A ⊆ B =⇒ int(A) ⊆ int(B),

int(A) ∩ int(B) ⊆ int(A ∩ B),

int(X) = X,

int(A) ⊆ A,

int(A) ⊆ int(int(A)),

respectively. This immediately gives a correspondence result: For each of (2)–(6), a neighborhood

frame (X,N) satisfies it iff its corresponding rule or axiom below is valid in all models (X,N , ⟦−⟧)
over (X,N).2

φ

□φ

⊢ ψ

⊢ □ψ
M

□φ ∧ □ψ ⊢ □(φ ∧ ψ)C

⊢ φ

⊢ □φ
N

□φ ⊢ φT

□φ ⊢ □□φ4

We should observe that (2)–(6) together characterize topology, in the sense that the topological

spaces are exactly the neighborhood frames satisfying (2)–(6). To describe the details, on the one

hand, every topological space (X,OX), where OX ⊆ PX is the family of its open sets, comes with

an interior operation intOX : PX → PX and a neighborhood function NOX : X → PPX, by

A ∈ NOX(w)
(1)
⇐⇒ w ∈ intOX(A) ⇐⇒ w ∈ U ⊆ A for some U ∈ OX.

And (2)–(6) for NOX follow straightforwardly from the assumption that OX is a topology. On the

other hand, for any neighborhood frame (X,N) satisfying (2)–(6), it is easy to show that the family

of images of the corresponding int, that is,

ONX = { int(A) | A ⊆ X },

2We let ⊢ φ be short for ⊤ ⊢ φ.

12

Draft of November 14, 2010

is a topology. Moreover, these operations (X,OX) 7→ (X,NOX) and (X,N) 7→ (X,ONX) are inverse

to each other.3 This correspondence extends to semantics, because topological semantics interprets

□ with topological interior operations (and ^ with closure operations); thus, topological semantics

is subsumed by neighborhood semantics, being just neighborhood semantics with (2)–(6).

For the purpose of this dissertation, (2) and (3) are the most crucial conditions. Soundness and

completeness results extend to the logics MC and S4 obtained by adding M, C and M, C, N, T, 4,

respectively, to classical propositional logic.

Theorem 1 (Segerberg [19]). For any consistent theory T extending MC, there exists a neigh-

borhood model (X,N , ⟦−⟧) with N satisfying (2) and (3) that validates all and only theorems of

T.

Theorem 2 (McKinsey-Tarski [14]). For any consistent theory T extending S4, there exists a

topological model (X,OX, ⟦−⟧) that validates all and only theorems of T.

I.2. Semantics for First-Order Logic

This dissertation aims at extending neighborhood semantics to first-order modal logic. In this

section, we introduce a notation for the standard semantics of first-order non-modal logic that will

be convenient for the purpose of this extension.

I.2.1. Denotational Interpretation. Fix any classical first-order language L; it has primitive

predicates Ri (i ∈ I), function symbols f j (j ∈ J), and (individual) constants ck (k ∈ K). Then, as

usual, an L structure M = (D,Ri
M, f j

M, ck
M)i∈I, j∈J,k∈K consists of the following.

• a set D, called the domain of individuals;

• for each n-ary primitive predicate R, a subset RM ⊆ Dn of the n-fold Cartesian product

of the domain D;

• for each n-ary function symbol f , a map fM : Dn → D; and

• for each constant c, an individual cM ∈ D.

Given such a structure M, we recursively define the the relation of satisfaction as usual, so that

M ⊨[a1,...,an/x1,...,xn] φ

3This extends to an isomorphism between the categories of topological spaces and of neighborhood frames that

satisfy (2)–(6), once we define continuous maps between neighborhood frames in Subsection I.4.2.

13

Draft of November 14, 2010

means that, in M, an open sentence φ is true of elements a1, . . . , an ∈ D, with ai in place of the free

variable xi. This notation makes sense only if no variables occur freely in φ except x1, . . . , xn. We

will write ā and x̄ for tuples (that are n-ary, unless noted otherwise).

Now we extend the “denotational” point of view to first-order languages. Whereas we gave an

interpretation ⟦φ⟧ to sentences φ in Section I.1, here for first-order logic we give an interpretation

also to formulas containing free variables; so we extend the notation to include interpretations

⟦ x̄ | φ ⟧

of all sentences, closed or open. Again, this notation makes sense only if no variables occur freely

in φ except x̄; but not all of x̄ may actually occur in φ. We also give interpretation ⟦ x̄ | t ⟧ to a term

t(x̄) built up from constants and variables with function symbols.

First-order logic ///o/o/o/o/o/o/o/o/o/o/o M

φ(x̄) ///o/o/o/o/o/o/o/o/o/o/o/o/o/o ⟦ x̄ | φ ⟧ ⊆ Dn

The interpretation of an open sentence φ is essentially the subset of the model M defined by φ:

⟦ x̄ | φ ⟧ = { ā ∈ Dn |M ⊨[ā/x̄] φ } ⊆ Dn.

That is, the set of tuples satisfying φ. Then the following properties are easily derived:

⟦ x̄ | Rx̄ ⟧ = RM for n-ary primitive predicate R, and

⟦ x, y | x = y ⟧ = { (a, a) ∈ D × D | a ∈ D } in particular;

⟦ x̄ | ⊤ ⟧ = Dn;

⟦ x̄ | ¬φ ⟧ = Dn \ ⟦ x̄ | φ ⟧ (that is, ⟦¬⟧ = Dn \ −);

⟦ x̄ | φ ∧ ψ ⟧ = ⟦ x̄ | φ ⟧ ∩ ⟦ x̄ | ψ ⟧ (that is, ⟦∧⟧ = ∩);

⟦ x̄ | φ ∨ ψ ⟧ = ⟦ x̄ | φ ⟧ ∪ ⟦ x̄ | ψ ⟧ (that is, ⟦∨⟧ = ∪);

⟦ x̄ | φ→ ψ ⟧ = ⟦ x̄ | φ ⟧→ ⟦ x̄ | ψ ⟧ (that is, ⟦→⟧ =→);

⟦ x̄ | ∀y .φ ⟧ = { ā ∈ Dn | (ā, b) ∈ ⟦ x̄, y | φ ⟧ for every b ∈ D };

⟦ x̄ | ∃y .φ ⟧ = { ā ∈ Dn | (ā, b) ∈ ⟦ x̄, y | φ ⟧ for some b ∈ D }.

These properties can also be used as conditions to define the interpretation recursively, skipping ⊨
altogether. In doing so, we need to define ⟦ x̄, y | φ(x̄) ⟧ ⊆ Dn+1 also for a sentence φ(x̄) in which

14

Draft of November 14, 2010

y does not actually occur freely, so that we can define, for instance, ⟦ x̄, y | φ(x̄) ∧ ψ(x̄, y) ⟧ ⊆ Dn+1

as the intersection of ⟦ x̄, y | ψ(x̄, y) ⟧ ⊆ Dn+1 with ⟦ x̄, y | φ(x̄) ⟧. Yet it can be done simply by

⟦ x̄, y | φ ⟧ = { (ā, b) ∈ Dn+1 |M ⊨[ā/x̄] φ }

= ⟦ x̄ | φ ⟧ × D.

Similarly, when a term t(x̄) has n arguments, its interpretation ⟦ x̄ | t ⟧ is the function f : Dn → D

recursively defined from f M, cM in the expected way.

This definition covers the case of n = 0 naturally, with D0 = {∗}, any one-element set. That is,

while an open sentence φ is interpreted with a subset ⟦ x̄ | φ ⟧ of Dn, the interpretation of a closed

sentence σ is in a similar manner given as a subset ⟦σ⟧ of D0 (a “truth value”) as follows.

⟦σ⟧ = { ∗ ∈ D0 |M ⊨ σ } =


1 = {∗} = D0 if M ⊨ σ,

0 = ∅ ⊆ D0 if M ⊭ σ.

We define validity in M in a manner similar to the definition in Section I.1. That is, φ ⊢ ψ is

valid in M iff ⟦ x̄ | φ ⟧ ⊆ ⟦ x̄ | ψ ⟧, where no variables occur freely in φ or ψ except x̄. In particular,

φ is valid in M iff ⟦ x̄ | φ ⟧ = Dn. An inference is valid iff it preserves validity of sequents. Now, in

terms of ⟦−⟧, the usual soundness and completeness of first-order logic are expressed as follows.

Theorem. Given a language L of first-order logic, for any pair of formulas φ, ψ of L in which no

variables occur freely except x̄,

φ ⊢ ψ is provable ⇐⇒ every L structure M has ⟦ x̄ | φ ⟧ ⊆ ⟦ x̄ | ψ ⟧.

I.2.2. Interpretation and Images. We saw in Subsection I.2.1 that Boolean connectives can

be interpreted with Boolean operations on sets, such as ⟦∧⟧ = ∩. We can extend this insight by

observing that other syntactic operations can be interpreted with images of maps. We sum up this

fact in this subsection, because it will later play a crucial role.

First let us introduce some notation for images. Given a map f : X → Y and subsets A ⊆ X

and B ⊆ Y , the direct image of A and the inverse image of B under f shall be written as

f [A] = { f (a) ∈ Y | a ∈ A },

f −1[B] = { a ∈ X | f (a) ∈ B }.

15

Draft of November 14, 2010

respectively. We also define, for each n, the projection

pn : Dn+1 → Dn :: (ā, b) 7→ ā;

in particular, p0 : D→ D0 = {∗} has p0(b) = ∗ for all b ∈ D.

Then we have

⟦ x̄ | ∃y .φ ⟧ = { ā ∈ Dn | (ā, b) ∈ ⟦ x̄, y | φ ⟧ for some b ∈ D } = pn[⟦ x̄, y | φ ⟧],

⟦ x̄, y | ψ ⟧ = ⟦ x̄ | ψ ⟧ × D = pn
−1[⟦ x̄ | ψ ⟧].

Dn+1

Dn
��

pn

⟦ ⟧EEEEEEEEE ⟦ ⟧

CCCCCCCC

CCCCCCCC

CCCCCCCC

CCCCCCCC

CCCCCCCC

CCCCCCCC

CCCCCCCC

CCCCCCCC

CCCCCCCC

CCCC
CCCC

CCCC
CCCCCCCCC

⟦ x̄ | ∃yφ ⟧

⟦ x̄, y | φ ⟧

⟦ x̄ | ψ ⟧

⟦ x̄, y | ψ ⟧
D D

For instance, ⟦ y | φ ⟧ and its direct image under the projection p0, that is, p0[⟦ y | φ ⟧] = ⟦∃y .φ⟧,
are in the relation illustrated as:

⟦ y | φ ⟧ , ∅ ks +3
KS

��

p0[⟦ y | φ ⟧] = ⟦∃y .φ⟧ = {∗} , ∅
KS

��

M ⊨[b/y] φ for some b ∈ M ks +3 M ⊨ ∃y .φ

Observe that, for any map f : X → Y , the direct-image operation under f is left adjoint to the

inverse-image operation; that is, f always has

f [A] ⊆ B

A ⊆ f −1[B]
,

where we draw a double line for equivalence. Therefore, as an instance, we have

⟦ x̄ | ∃y .φ ⟧ = pn[⟦ x̄, y | φ ⟧] ⊆ ⟦ x̄ | ψ ⟧

⟦ x̄, y | φ ⟧ ⊆ pn
−1[⟦ x̄ | ψ ⟧] = ⟦ x̄, y | ψ ⟧

,

which corresponds to the (two-way) rule of first-order logic that

∃y .φ ⊢ ψ

φ ⊢ ψ
.

Here the “eigenvariable” condition that y does not occur freely in ψ is expressed by ⟦ x̄ | ψ ⟧making

sense. Thus, we interpret ∃ with the direct-image operation under a suitable projection p, and this

16

Draft of November 14, 2010

operation can be characterized as a (unique) left adjoint to the inverse-image operation p−1 under

p. In addition, p−1 also has a (unique) right adjoint, and we can interpret ∀ with it.4

Moreover, substitution of terms can also be interpreted by inverse images. For instance, given

a sentence φ(z) with only one free variable z and a term t(ȳ) with m variables ȳ, using the obvious

notation for substitution we have

⟦ ȳ | φ(t(ȳ)) ⟧ = { b̄ ∈ Dm |M ⊨[b̄/ȳ] φ(t(ȳ)) }

= { b̄ ∈ Dm |M ⊨[⟦ ȳ | t ⟧(b̄)/z] φ(z) }

= { b̄ ∈ Dm | ⟦ ȳ | t ⟧(b̄) ∈ ⟦ z | φ(z) ⟧ }

= ⟦ ȳ | t ⟧−1[⟦ z | φ(z) ⟧],

where ⟦ ȳ | t ⟧ : Dm → D is the interpretation of t. More generally, more variables may occur freely

in φ; so, assume x̄, ȳ, z are disjoint, and we have

⟦ x̄, ȳ | [t/z]φ ⟧ = (1Dn × ⟦ ȳ | t ⟧)−1[⟦ x̄, z | φ ⟧],

where [t/z] denotes the substitution of t for z and we define

1Dn × ⟦ ȳ | t ⟧ : Dn+m → D :: (ā, b̄) 7→ (ā, ⟦ ȳ | t ⟧(b̄)).

We have another type of substitution of terms, namely, to obtain φ(y, y) from φ(y, z), and this

can also be interpreted by inverse images. Let ∆ be the “diagonal map”, that is,

∆ : D→ D2 :: a 7→ (a, a).

Then we have

⟦ y | φ(y, y) ⟧ = { a ∈ D | (a, a) ∈ ⟦ y, z | φ(y, z) ⟧ } = ∆−1[⟦ y, z | φ(y, z) ⟧],

and, more generally,

⟦ x̄, y | [y/z]φ ⟧ = (1Dn × ∆)−1[⟦ x̄, y, z | φ ⟧].

It is worth noting that we can write

⟦ x, y | x = y ⟧ = { (a, a) ∈ D × D | a ∈ D } = ∆[D];

4 The insight that ∃ and ∀ are left and right adjoints to an inverse-image operation is due to Lawvere [7].

17

Draft of November 14, 2010

indeed, since for each A ⊆ D we have ∆[A] = p1
−1[A] ∩ ∆[D], it follows that

∆[⟦ y | φ ⟧] = p1
−1[⟦ y | φ ⟧] ∩ ∆[D] = ⟦ y, z | φ ∧ y = z ⟧;

(1Dn × ∆)[⟦ x̄, y | φ ⟧] = ⟦ x̄, y, z | φ ∧ y = z ⟧.

Therefore, by the adjunction of the direct-image and inverse-image operations, we have

⟦ x̄, y, z | φ ∧ y = z ⟧ = (1Dn × ∆)[⟦ x̄, y | φ ⟧] ⊆ ⟦ x̄, y, z | ψ ⟧

⟦ x̄, y | φ ⟧ ⊆ (1Dn × ∆)−1[⟦ x̄, y, z | ψ ⟧] = ⟦ x̄, y | [y/z]ψ ⟧

for a sentence φ in which z does not occur freely; and this corresponds to the rule

φ ∧ x = y ⊢ ψ
(y does not occur freely in φ)

φ ⊢ [x/y]ψ
(7)

of first-order logic, from which we can derive the (more familiar) axioms on identity as follows.5

x = y ⊢ x = y

⊢ x = x

[x/y]φ ⊢ [x/y]φ

[x/y]φ ∧ x = y ⊢ φ

I.3. Topological Semantics for First-Order Modal Logic

In extending the semantics reviewed in Section I.1 to first-order logic, the chief idea is given

by the notion of a sheaf over a topological space. In this section, we show how topological sheaves

provide semantics for first-order modal logic, as a preparation for the more general extension we

will give in Section I.4.2 of neighborhood semantics to the first-order modal logic.

I.3.1. Domain of Possible Individuals. On one hand, as we reviewed in Section I.1, we use

more than one possible world to interpret modality. On the other hand, as in Section I.2, we equip

a model—or a world—with a domain of individuals to interpret the first-order vocabulary. In this

subsection, we lay out how to unify these two ideas (setting aside the interpretation of modality).

The unification is done by considering a map in the following way. Given any map π : D→ X,

each w ∈ X has its inverse image

Dw = π
−1[{w}] ⊆ D,

called the fiber over w, for the reason that should be obvious from the following picture.

5This insight is also due to Lawvere; see his [8].

18

Draft of November 14, 2010

Dw
Dv Du

w v u
• • •

D

π

��

= Dw

��

∪ Dv

��

∪ · · ·

X = {w} ∪ {v} ∪ · · ·

D is then the “bundle” of all the fibers taken over X, meaning that D is the disjoint union of all Dw.

To indicate this bundle idea, we use the “sum” notation and write

D =
∑
w∈X

Dw.

Using this picture, we can regard each w ∈ X as a possible world, and the fiber Dw as the domain

of individuals that live in w. Then D is the set of “possible individuals” that live in some world or

other. Indeed, each individual a ∈ D lives in a unique world π(a) ∈ X; in this sense, we can call π

a residence map.

The bundle idea can be extended to give the set of “all possible pairs”. For any π : D→ X, we

define the (two-fold) product of D over X by

D ×X D =
∑
w∈X

(Dw × Dw),

that is, by first taking the product Dw × Dw of Dw for each w and then bundling up all of them.

Dw
2 Dv

2
Du

2

w v u
• • •

D2

π2

��

= Dw
2

��

+ Dv
2

��

+ · · ·

X = {w} + {v} + · · ·

D ×X D is naturally equipped with a map π2 : D ×X D→ X; it sends (a, b) ∈ Dw × Dw to w.

The point of introducing the product D×X D over X, as opposed to the usual Cartesian product

D × D, is as follows. Note that we can also describe D ×X D as

D ×X D = { (a, b) ∈ D × D | π(a) = π(b) };

19

Draft of November 14, 2010

that is, in terms of residence, D×X D is the set of pairs (a, b) of possible individuals that live in the

same worlds π(a) = π(b). In our semantics, we will use R ⊆ D ×X D, rather than any R ⊆ D × D,

to interpret a binary relation, say “x and y are friends” for instance. By doing so, we rule that the

sentence “x and y are friends” makes sense only when x and y refer to a pair from the same world.

We have just taken the two-fold product D×X D over X; let us write D2 for it (instead of for the

Cartesian product of D). This obviously extends to general Dn, the n-fold product over X or the set

of “all possible n-tuples”, by taking

Dn =
∑
w∈X

Dw
n.

In particular, we have

D0 =
∑
w∈X

Dw
0 �
∑
w∈X

{w} = X;

that is, the set X of possible worlds can be written as a product over X itself.

With the bundle idea we can also take a map over X. Given maps πD : D→ X and πE : E → X,

we say that a map f : D→ E is over X if

f =
∑
w∈X

(fw : Dw → Ew).

Or, equivalently, f is over X if it has πE ◦ f = πD, making the triangle to the left below commute,

by bundling up the trivially commutative triangles to the right.

D
f

//

πD
��/
//
//
//
//

=

E

πE
����
��
��
��
�

Dw

fw
//

��3
33

33
33

33

=

Ew

����
��
��
��
�

Dv

fv
//

��2
22
22
22
22

=

Ev

��

= + + · · ·

X {w} {v}

The point of taking a map over X is as follows. In our semantics, we will use a map f : Dn → D

over X, rather than just any map, to interpret a function symbol, say “the father of x”. By doing so,

we rule that the father of a must be found in the same world π(a) in which a lives.

Let us write Sets for the category of sets. Then, given a fixed set X, the kinds of structures we

reviewed in this subsection form a category Sets/X, the slice category of Sets over X; its objects

are maps π : D → X and arrows from πD : D → X to πE : E → X are maps f : D → E over X.

Products over X are just products in Sets/X. Therefore, what we laid out in this subsection can be

20

Draft of November 14, 2010

summarized by saying that we can regard Sets/X as the category of domains of, sets of tuples of,

and functions among, possible individuals, over the set X of possible worlds.

I.3.2. Interpreting First-Order Logic. With the bundle representation of possible individu-

als we introduced in Subsection I.3.1, we can formulate the non-modal part of our semantics in the

following way. Given a first-order language L, a model M consists of:

• a surjection π; let us write D and X for its domain and codomain, so that π : D↠ X;6

• for each n-ary primitive predicate R, a subset RM ⊆ Dn of the n-fold product of D over

X;

• for each n-ary function symbol f , a map fM : Dn → D over X; and

• for each constant c, a map cM : D0 → D over X, that is, a map cM : X → D such that

π ◦ cM = 1X.

Then, restricted to each fiber Dw,

Mw = (Dw, (Ri
M)w, (f j

M)w, (ck
M)w)i∈I, j∈J,k∈K

is a standardL structure, just as we reviewed in Section I.2. Therefore we interpret first-order logic

by first interpreting it in each Mw and then bundling up all of them. That is, with each L structure

Mw interpreting a sentence φ with ⟦ x̄ | φ ⟧w ⊆ Dw
n, the entire model M interprets φ with

⟦ x̄ | φ ⟧ =
∑
w∈X

⟦ x̄ | φ ⟧w ⊆
∑
w∈X

Dw
n = Dn.

Dn

X
��

πn

w v u
• • •

Dw
n Dv

n
Du

n

Mw Mv Mu

⟦
⟧

⟦
⟧

⟦
⟧ ⟦ x | φ ⟧

Then the definition of validity we gave before extends straightforwardly; that is, φ ⊢ ψ is valid in

M iff ⟦ x̄ | φ ⟧ ⊆ ⟦ x̄ | ψ ⟧, and an inference is valid iff it preserves validity.

6We require π to be surjective, so that Dw , ∅ for every w ∈ X.

21

Draft of November 14, 2010

Observe moreover that the interpretations of classical operators reviewed in Section I.2 simply

carry over to this setting involving many worlds, because they all commute with
∑
w∈X

. For instance,

given ⟦ x | φ ⟧ ⊆ D, we have

⟦∃x .φ⟧ =
∑
w∈X

⟦∃x .φ⟧w =
∑
w∈X

π[⟦φ⟧w] = π[
∑
w∈X

⟦φ⟧w] = π[⟦φ⟧];

D

X
��

π

Dw
Dv Du

⟦ x | φ ⟧

⟦
⟧

⟦
⟧

∅ {v} {u}
◦ • •⟦ ⟧EEEEEEEEEE

⟦∃xφ⟧
◦ • •

that is, ∃ is again interpreted by the direct-image operation under a suitable projection p : Dn+1 →
Dn (with n = 0 in the example above). Hence we set as follows. Here ∆ is again the diagonal map;

note that it is of the type ∆ : D→ D ×X D and is over X.

⟦ x̄ | Rx̄ ⟧ = RM for n-ary primitive predicate R, and

⟦ x, y | x = y ⟧ = ∆[D] in particular;

⟦ x̄ | ⊤ ⟧ = Dn;

⟦ x̄ | ¬φ ⟧ = Dn \ ⟦ x̄ | φ ⟧ (that is, ⟦¬⟧ = Dn \ −);

⟦ x̄ | φ ∧ ψ ⟧ = ⟦ x̄ | φ ⟧ ∩ ⟦ x̄ | ψ ⟧ (that is, ⟦∧⟧ = ∩);

...

⟦ x̄ | ∃y .φ ⟧ = p[⟦ x̄, y | φ ⟧];

⟦ x̄, y | φ(x̄) ⟧ = p−1[⟦ x̄ | φ(x̄) ⟧];

⟦ x̄, ȳ | [t/z]φ ⟧ = (1Dn × ⟦ ȳ | t ⟧)−1[⟦ x̄, z | φ ⟧];

⟦ x̄, y | [y/z]φ ⟧ = (1Dn × ∆)−1[⟦ x̄, y, z | φ ⟧].

This is how first-order logic is interpreted in the category Sets/X. And then, as one may expect, the

upshot of our semantics is to interpret □with interior operations of suitable topologies on the struc-

ture; in particular, we interpret ⟦ x̄ | φ ⟧ 7→ ⟦ x̄ | □φ ⟧—that is, □ operating on n-ary formulas—with

22

Draft of November 14, 2010

the interior operation intDn : P(Dn)→ P(Dn) of a suitable topology on the n-fold product Dn over

X. For this purpose, we need to define with what topology Dn should be equipped.

I.3.3. Sheaves over a Topological Space. In Section I.1, we showed how to interpret propo-

sitional modal logic by interpreting modal operators with interior and closure operations on a topo-

logical space X of possible worlds. In Subsection I.3.1, we showed how to equip the set X with a

domain D of possible individuals by using a residence map π : D → X, and then, in Subsection

I.3.2, we showed how to interpret first-order logic in the category Sets/X of such structures. We

are not yet ready, however, to interpret modal operators, because we have not given any topology

to those structures. In this subsection, we show how to equip D, and Dn in general, with suitable

topologies, so that, in Subsection I.3.4, we can finally give a semantics for first-order modal logic.

Let us first recall that, given any pair of topological spaces X and Y ,7 we say a map f : Y → X

is

• continuous if f −1[U] ∈ OY for every U ∈ OX (that is, if f : Y → X pulls open sets of X

back to open sets of Y), and

• a homeomorphism if f is a continuous bijection with a continuous inverse (or, equiva-

lently, if X and Y share the same topological structure, with points renamed by f).

Then the topological notion of a sheaf is defined as follows.

Definition. Given topological spaces X and D, a map π : D→ X is called a local homeomorphism

if every a ∈ D has some U ∈ OD such that a ∈ U, π[U] ∈ OD, and the restriction π↾U : U → π[U]

of π to U is a homeomorphism.

D

X
��

π

(

(U

π[U]

•a

)

)

7For the sake of simplicity, from this subsection on we write X for topological spaces (|X|,OX); we write |X|, when

we would like it explicit that we mean underlying sets. We write f : Y → X for any maps, not necessarily continuous,

from |Y | to |X|.

23

Draft of November 14, 2010

When this is the case, we say that the pair (D, π) is a sheaf over the space X, and also that X, D,

and π are respectively the base space, total space, and projection of the sheaf.8

Taking a concrete example, R (with its usual topology) and π : R→ S 1 such that

π(a) = ei2πa = (cos 2πa, sin 2πa)

form a sheaf over the circle S 1 (with the subspace topology in R2). As in the picture below, we

may say that R draws a helix over S 1; indeed, for every a ∈ R, a small enough open set U around

a is homeomorphic to its image π[U].

R

S 1
��

π

(

(

)

)U

π[U]

− 1
2

1
2

3
2

5
2

0
1
2

(1, 0)(−1, 0)
(0, 1)

Given two sheaves (D, πD : D→ X) and (E, πE : E → X), we say a map f : D→ E is a map of

sheaves over X if f is continuous and over the set |X|. Therefore, sheaves and maps of sheaves over

X form a full subcategory of Top/X—the category Top of topological spaces and continuous maps

over X—since local homeomorphisms are continuous maps. Moreover, we can show that maps of

sheaves are themselves local homeomorphisms; due to this fact, the category of sheaves and maps

of sheaves is just LH/X, the category LH of topological spaces and local homeomorphisms over

X. (This fact turns out crucial for the purpose of providing semantics for first-order modal logic.)

This is how we add topological structures to objects and maps in Sets/|X|.
The category Top/X of topological spaces and continuous maps over a topological space X has

finite products, because for any finite collection of spaces (Di, πi : Di → X) over X (i = 1, . . . , n),

its product can be defined explicitly in Top/X as follows. First take the product of the sets |Di| over

|X|, that is,

|D| = |D1| ×|X| · · · ×|X| |Dn| = { (a1, . . . , an) ∈ |D1| × · · · × |Dn| | π1(a1) = · · · = πn(an) };

8The notion of a sheaf is sometimes defined in terms of the notion of a functor, in which case the version used

here is called an étale space. The functorial notion is equivalent (in the category-theoretical sense) to the version here.

24

Draft of November 14, 2010

this comes with a projection

π = π1 ×X · · · ×X πn : |D1| ×|X| · · · ×|X| |Dn| → |X| :: (a1, . . . , an) 7→ π1(a1).

Then, because |D| is a subset of the Cartesian product |D1| × · · · × |Dn|, on which the product space

D1 × · · · × Dn is defined, we simply let D be the subspace of D1 × · · · × Dn; that is,

U ∈ OD ⇐⇒ U =
∪
i∈I

Bi ∩ |D| for a collection {Bi}i∈I such that, for each i ∈ I,

Bi = V1 × . . . × Vn for some V1 ∈ OD1, . . . ,Vn ∈ ODn

⇐⇒ U =
∪
i∈I

Bi for a collection {Bi}i∈I such that, for each i ∈ I,

Bi = V1 ×|X| . . . ×|X| Vn for some V1 ∈ OD1, . . . ,Vn ∈ ODn.

Then π is continuous, as are the projections pi : D → Di. Indeed, (D, π) moreover serves as the

product of (Di, πi) in LH/X as well: We can show that, if πi are all local homeomorphisms, π is a

local homeomorphism, that is, (D, π) is a sheaf over X; it follows that pi are maps of sheaves. And,

as we can also show, it is the product in LH/X of (Di, πi). The n-fold product in LH/X of the same

sheaf, which we will use to interpret logic, is just a special case of this definition.

I.3.4. Topological-Sheaf Semantics for First-Order Modal Logic. In Subsection I.3.2 we

showed how to interpret first-order logic with a map π. Now that we have added a nice topological

structure to π in Subsection I.3.3, we can further add a topological interpretation of modal operators

to the interpretation with π of first-order logic.

Let us fix any first-order modal language L, that is, a language obtained by adding □ and ^ to

a classical first-order language. About this addition, we should make a remark (that will be crucial

later) that, syntactically, we treat □, ^ as unary sentential operators just like ¬; in particular, we

have [t/z](□φ) = □([t/z]φ). Then recall from Subsection I.3.2 that we take the following type of

structures to semantically interpret the non-modal part of L.

• a surjection π; let us write |D| and |X| for its domain and codomain, so that π : |D|↠ |X|;
• for each n-ary primitive predicate R, a subset RM ⊆ |D|n of the n-fold product of |D| over

|X|;
• for each n-ary function symbol f , a map fM : |D|n → |D| over |X|;
• for each constant c, a map cM : |D|0 → |D| over |X|, that is, a map cM : |X| → |D| such

that π ◦ cM = 1X.

25

Draft of November 14, 2010

Now, rather than just any surjection π, we take a surjective local homeomorphism to further inter-

pret modal operators. Then, to interpret a primitive predicate, we may take any arbitrary subset (of

the type above). By contrast, to interpret function symbols and constants, we need to take maps of

sheaves over X rather than just any maps over |X|. So, we enter:

Definition. Given a first-order modal language L, by a topological-sheaf model for L we mean a

structure M = (π,Ri
M, f j

M, ck
M)i∈I, j∈J,k∈K consisting of

• a surjective local homeomorphism π; let us write X and D for its base and total spaces,

so that π : D↠ X;

• for each n-ary primitive predicate R, a subset RM ⊆ |D|n of the n-fold product of |D| over

|X|;
• for each n-ary function symbol f , a continuous map fM : Dn → D over X; and

• for each constant c, a continuous map cM : X → D over X, that is, such that π ◦ cM = 1X.

On such a structure, we interpret the non-modal part of L as we did before in Subsection I.3.2,

and moreover □, ^ with the interior operation of the corresponding space Dn.

Definition. Given a first-order modal language L, by a topological-sheaf interpretation for L we

mean a pair (M, ⟦−⟧) of a topological-sheaf model M with a map ⟦−⟧ (of the suitable type) defined

inductively by

⟦ x̄ | Rx̄ ⟧ = RM for n-ary primitive predicate R, and

⟦ x, y | x = y ⟧ = ∆[D] in particular;

⟦ x̄ | ⊤ ⟧ = Dn;

⟦ x̄ | ¬φ ⟧ = Dn \ ⟦ x̄ | φ ⟧ (that is, ⟦¬⟧ = Dn \ −);

⟦ x̄ | φ ∧ ψ ⟧ = ⟦ x̄ | φ ⟧ ∩ ⟦ x̄ | ψ ⟧ (that is, ⟦∧⟧ = ∩);

...

⟦ x̄ | ∃y .φ ⟧ = p[⟦ x̄, y | φ ⟧];

⟦ x̄, y | φ(x̄) ⟧ = pn
−1[⟦ x̄ | φ(x̄) ⟧];

⟦ x̄, ȳ | [t/z]φ ⟧ = (1Dn × ⟦ ȳ | t ⟧)−1[⟦ x̄, z | φ ⟧];

⟦ x̄, y | [y/z]φ ⟧ = (1Dn × ∆)−1[⟦ x̄, y, z | φ ⟧];

26

Draft of November 14, 2010

⟦ x̄ | □φ ⟧ = intDn(⟦ x̄ | φ ⟧) (that is, ⟦□⟧ = intDn);

⟦ x̄ | ^φ ⟧ = clDn(⟦ x̄ | φ ⟧) (that is, ⟦^⟧ = clDn).

The class of such interpretations constitutes topological-sheaf semantics for first-order modal

logic. To figuratively illustrate how the semantics works, recall our pictures of sheaves. On the one

hand, the first-order part of a first-order modal language is interpreted by the “vertical” aspect of a

sheaf, that is, within each fiber as a world, as in the picture on p. 21. On the other hand, the modal

part is interpreted by the “horizontal” aspect, that is, as in the picture on p. 241, with open sets of

X and neighborhoods U in D that are locally homeomorphic to open sets of X. To take a sheaf is to

take a “product” of these two directions, and then, correspondingly, the logic of topological-sheaf

semantics—which we lay out in Subsection I.3.5—is a “product” of the two logics, first-order and

modal.

I.3.5. First-Order Modal Logic FOS4. The semantics we reviewed in Subsection I.3.2 is a

semantics for first-order logic, while topological semantics is a semantics for (propositional) modal

logic S4, as we mentioned in Subsection I.1.2. Topological-sheaf semantics, which we just laid out

in Subsection I.3.4, unifies these two semantics naturally, in the sense that it gives rise to a logic

that is a simple union of first-order logic and S4. More precisely, let us enter:

Definition. First-order modal logic FOS4 consists of the following two sorts of axioms and rules.

1. All axioms and rules of (classical) first-order logic.

2. The rules and axioms of propositional modal logic S4; that is, M, C, N, T, 4.

We should emphasize that, in this logic, first-order axioms and rules are □- (and^-) insensitive,

in the sense that, in applying schemes, sentences containing modal operators and ones not are not

distinguished. For instance, in the following axiom of identity, φ may contain modal operators.

x = y ⊢ [x/z]φ→ [y/z]φ.(8)

Also, modal axioms and rules are insensitive to the first-order structure of sentences. This is why

we call FOS4 a simple union of first-order logic and S4.

To illustrate this point, let us take some examples of proofs in FOS4. To instantiate (8), take

□(x = z) for φ; this is allowed by the □-insensitivity. Then (8) yields the left sequent in the middle

27

Draft of November 14, 2010

below. The top sequent to the right is another axiom on =; the first inference after that is by N,

whereas the last inference is by a kind of cut.

x = y ⊢ □(x = x)→ □(x = y)

⊢ x = x

⊢ □(x = x)

x = y ⊢ □(x = y)

Thus x = y ⊢ □(x = y) is provable in FOS4. Also, the so-called converse Barcan formula and its

∃ variant are provable as follows.

∀x .φ ⊢ φ

□∀x .φ ⊢ □φ

□∀x .φ ⊢ ∀x□φ

φ ⊢ ∃x .φ

□φ ⊢ □∃x .φ

∃x□φ ⊢ □∃x .φ

In each proof, the first sequent is an axiom on ∀ or ∃, and the first inference is by M. The second

inference is justified by the rule on ∀ or ∃, because x occurs freely neither in □∀x .φ nor in □∃x .φ

(and, again, because the rule is □-insensitive).

By contrast,

x , y ⊢ □(x , y)

∀x□φ ⊢ □∀x .φ

□∃x .φ ⊢ ∃x□φ

are not theorems of FOS4. For the Barcan formula ∀x□φ ⊢ □∀x .φ and its ∃ variant, we will give

a countermodel to illustrate their invalidity in Subsection I.3.6.

Using an axiom more characteristic of S4, we can extend the proof above of ∃x□φ ⊢ □∃x .φ

as follows. As before, the first inference to the right is by N, and the last is by the rule on ∃. Then

the instance □φ ⊢ □□φ of axiom 4 yields the second inference by the transitivity of ⊢.

□φ ⊢ □□φ

□φ ⊢ ∃x□φ

□□φ ⊢ □∃x□φ

□φ ⊢ □∃x□φ

∃x□φ ⊢ □∃x□φ

Combined with the instance □∃x□φ ⊢ ∃x□φ of axiom T, this means that ∃x□φ and □∃x□φ are

provably equivalent in FOS4.

It can be checked straightforwardly that FOS4 is sound with respect to topological-sheaf se-

mantics. It is moreover complete, in the strong form that exactly extends Theorem 2 (Subsection

28

Draft of November 14, 2010

I.1.2), the completeness S4 for propositional modal logic. This is one of the chief results of this

dissertation.

Theorem (Awodey-Kishida [3]). For any consistent theory T of first-order modal logic extending

FOS4, there exists a topological-sheaf interpretation (π, ⟦−⟧) that validates all and only theorems

of T.

I.3.6. An Example of Interpretation. Recall the example of a sheaf given in Subsection I.3.3,

that is, the infinite helix over the circle S1 with the projection π : R→ S1 :: a 7→ (cos 2πa, sin 2πa).

Let us now take D = R+ = { a ∈ R | 0 < a }, the positive reals, instead of R, as a total space; so we

have a helix infinitely continuing upward but with an open lower end at 0.

R+

S1
��

π

•

)◦0
•1
•2
•3

(1, 0)

This is also a sheaf. Observe that each fiber Dw is of the form { n + aw | n ∈ N } for the unique aw

such that 0 < aw ⩽ 1 and π(aw) = w. Then let a topological-sheaf model M = (π,⩽M) interpret the

binary primitive predicate ⩽ with the usual ⩽ relation of real numbers restricted to D; that is, for

all a, b ∈ R,

(a, b) ∈ ⩽M = ⟦ x, y | x ⩽ y ⟧ ⇐⇒ 0 < a ⩽ b and π(a) = π(b),

where ⟦−⟧ is the topological-sheaf interpretation on M.

Then consider the truth of the following sentences under this interpretation:

∃x ∀y . x ⩽ y “Some x is the least number.”(9)

∃x□∀y . x ⩽ y “Some x is necessarily the least number.”(10)

By looking at each fiber Dw = { n + a | n ∈ N }, we can see that ⟦ x | ∀y . x ⩽ y ⟧w = {aw}, the least

point in Dw; so, bundling up all fibers, we have

⟦ x | ∀y . x ⩽ y ⟧ = { a ∈ R | 0 < a ⩽ 1 } = (0, 1].

29

Draft of November 14, 2010

Therefore, by applying the direct-image operation ⟦∃x⟧ under π to this, we have

⟦ ∃x ∀y . x ⩽ y ⟧ = π[⟦ x | ∀y . x ⩽ y ⟧] = π[(0, 1]] = S1;

that is, (9) is valid in (M, ⟦−⟧). On the other hand, by applying the interior operation intR+ = ⟦□⟧,

we have

⟦ x | □∀y . x ⩽ y ⟧ = intR+(⟦ x | ∀y . x ⩽ y ⟧) = intR+((0, 1]) = { a ∈ R | 0 < a < 1 } = (0, 1).

This is why, by again applying the direct-image operation ⟦∃x⟧ under π, we have

⟦ ∃x□∀y . x ⩽ y ⟧ = π[(0, 1)] = S 1 \ {π(1)} , S 1;

that is, (10) is not valid in (M, ⟦−⟧).

R+

S1
��

π

⟦ x | □∀y . x ⩽ y ⟧
= ⟦ x | ∀y . x ⩽ y ⟧ \ {1}

⟦ ∃x□∀y . x ⩽ y ⟧
= S1 \ {π(1)}

◦0

•2
•3

(1, 0)

)
([◦1

) (◦

In other words, 1 ∈ D = R+ is “actually the least” in its fiber Dπ(1) = { n + 1 | n ∈ N } but not

“necessarily the least”. Speaking in terms of worlds and individuals, the individual 1 is the least

number in its world π(1), but any neighborhood of π(1), no matter how small a one we may take,

contains some world w (with Dw = { n + ε | n ∈ N } for ε > 0) in which (the counterpart of) 1 is

no longer the least. Note the notion of a counterpart we used here. Even though 1 only lives in

the world π(1), it still makes intuitive sense to talk about “1 in worlds near by” because, due to the

local homeomorphism property of π, if you take a small enough neighborhood U around 1 then

a ∈ U corresponds one-to-one to π(a) and therefore can be called “(the counterpart of) 1 in the

world π(a)”.

Finally, let us observe that (M, ⟦−⟧) is a countermodel to the formulas of the Barcan sort which

we claimed were invalid in Subsection I.3.5. First, because ⟦∃x∀y.x ⩽ y⟧ = S 1, we have

⟦□∃x ∀y . x ⩽ y⟧ = intS1(⟦∃x ∀y . x ⩽ y⟧) = intS1(S1) = S1.

30

Draft of November 14, 2010

This means, since ⟦∃x□∀y . x ⩽ y⟧ = S1 \ {π(1)}, that the instance

□∃x ∀y . x ⩽ y ⊢ ∃x□∀y . x ⩽ y,

of the ∃ variant of Barcan formula, “□∃ ⊢ ∃□”, is not valid in (M, ⟦−⟧). Also, observe that

⟦ x, y | □(x ⩽ y) ⟧ = intD2(⟦ x, y | x ⩽ y ⟧) = ⟦ x, y | x ⩽ y ⟧.

While it is not hard to see this by formally checking that ⟦ x, y | x ⩽ y ⟧ is open, we can intuitively

see it by taking an arbitrary pair (a, b) ∈ ⟦ x, y | x ⩽ y ⟧ and “sliding” it a little bit; around the world

π(a) = π(b), there is a neighborhood in which the counterpart of a is always no greater than that of

b, which means that a is necessarily no greater than b. Then it follows that

⟦ x | ∀y□(x ⩽ y) ⟧ = ⟦ x | ∀y . x ⩽ y ⟧ = (0, 1],

and therefore, again because ⟦ x | □∀y . x ⩽ y ⟧ = (0, 1), that

∀y□(x ⩽ y) ⊢ □∀y . x ⩽ y

is not valid in (M, ⟦−⟧); and this provides a countermodel to the Barcan formula, “∀□→ □∀”.

I.4. Neighborhood Semantics for First-Order Modal Logic

As its most mathematically significant result, this dissertation extends topological-sheaf se-

mantics of Section I.3 to a more general semantics, namely, a semantics for first-order modal logic

in terms of an extended notion of sheaves over a more general neighborhood frame.

I.4.1. Why Sheaves are Needed. For the purpose of obtaining neighborhood semantics for

first-order modal logic, we need to analyze the topological notion of sheaves and identify an aspect

of sheaves that is essential in providing semantics for the unification of first-order and modal logics,

so that we can preserve it as we move to a more general notion of sheaves.

Although we used a standard definition of local homeomorphisms in Subsection I.3.3, it is

helpful for our purpose to rewrite it in terms more directly related to logic. The notion crucial for

this rewriting is openness of maps. Given topological spaces X and Y , we say that a map f : Y → X

is open if f [V] ∈ OX for every V ∈ OY , that is, if it sends open sets to open sets.9

9In the usual terminology, only continuous maps can be open. We adopt a terminology, however, in which open

maps may not be continuous, because openness (in our sense) by itself has consequences for logic.

31

Draft of November 14, 2010

To give an example of the connection between openness of maps and logic, recall the fact we

saw in Subsection I.3.5 that, in FOS4, □∃x□φ and ∃x□φ are equivalent; or, to put it semantically

with a topological interpretation,

int(p[int(A)]) = ⟦□⟧⟦∃x⟧⟦□⟧(A) = ⟦∃x⟧⟦□⟧(A) = p[int(A)].

Because a set U is open iff U = int(A) for some A and also iff int(U) = U, this means that the

direct image of an open set under p is always open; that is, projections pn : Dn+1 → Dn, and in

particular p0 = π : D→ X, are open maps.

Then sheaves can be described in terms of openness of maps in the following way.

Fact 1. For any topological spaces X and D and any map π : D→ X, the following are equivalent:

• π is a local homeomorphism (as defined in Subsection I.3.3).

• π satisfies (i) and (ii) below.

• π satisfies (i) and (iii) below.

(i) π is continuous and open.

(ii) For every a ∈ D there is U ∈ OD such that a ∈ U and π↾U : U → π[U] is bijective.

D

X
��

π

(

(U

π[U]

•a

)

)

(iii) The diagonal map ∆ : D→ D2 is open.

Note that the diagonal map ∆ is continuous by definition. Also, recall a fact we mentioned in

Subsection I.3.3, namely that maps of sheaves are themselves local homeomorphisms. Therefore

we can summarize the fact above by saying that, in topological-sheaf semantics, all the maps we

use to interpret the first-order part of first-order modal logic—projections π and pn, interpretations

⟦ ȳ | t ⟧ of terms, and the diagonal map ∆—are continuous and open, and indeed that, in order for

this to be the case, we must take a sheaf.

Let us further analyze why this should be the case for the purpose of interpreting logic. For this

analysis, it is particularly helpful to redefine continuous maps and open maps in terms of interior

32

Draft of November 14, 2010

operations—rather than in terms of open sets as in the common definition—because it is interior

operations that are directly connected to logic via the interpretation of □. So let us observe that,

given topological spaces X and Y , a map f : Y → X is continuous iff

f −1[intX(B)] ⊆ intY(f −1[B])

for all B ⊆ X, and open iff

intY(f −1[B]) ⊆ f −1[intX(B)]

for all B ⊆ X. That is, open continuous maps f : Y → X are characterized by

f −1[intX(B)] = intY(f −1[B]),

the commutation of its inverse-image operation with the interior operations int. This should make

it obvious what it means to use open continuous maps to interpret logic, once we recall what are

interpreted by inverse-image operations and interior operations. That is, given our interpretations

⟦ x̄, y | φ(x̄) ⟧ = pn
−1[⟦ x̄ | φ(x̄) ⟧],

⟦ ȳ | [t/z]φ ⟧ = ⟦ ȳ | t ⟧−1[⟦ z | φ ⟧],

⟦ y | [y/z]φ ⟧ = ∆−1[⟦ y, z | φ ⟧]

on the one hand and

⟦ x̄ | □φ ⟧ = intDn(⟦ x̄ | φ ⟧)

on the other, taking a sheaf means that we assume that these operations—adding a vacuous variable

to the context of free variables, and substituting and duplicating terms—all commute with □.

Let us consider this commutation more closely. For instance, given an n-ary formula φ, we can

regard φ, and moreover □φ, as (n+ 1)-ary formulas; and, accordingly, we need—for the reason we

gave in Subsection I.2.2—to obtain ⟦ x̄, y | □φ ⟧ from ⟦ x̄ | φ ⟧. Nonetheless, there are two ways to

do so, as in the following diagram, the commutation of which exactly means the openness of pn.

⟦ x̄ | φ ⟧
_

pn
−1

��

� intDn
//

=

⟦ x̄ | □φ ⟧
_

pn
−1

��
⟦ x̄, y | φ ⟧ �

intDn+1

// ⟦ x̄, y | □φ ⟧

33

Draft of November 14, 2010

In this way, the well-definedness of the semantics requires that projections pn be open.10

The other cases of commutation, for f M and ∆, are also required by the well-definedness of

the semantics. As we noted, the syntax of first-order modal language we adopt has the feature that,

given any variables y, z and sentence φ(y, z) in which only y and z occur freely,

• □([y/z]φ), the sentence obtained by first substituting y for z in φ and then applying □,

• [y/z](□φ), the sentence obtained by first applying □ to φ and then substituting t for z,

are identical; if you write down these two sentences unpacking the defined operation [y/z], in both

cases you just have □φ(y, y)—taking y = z as an instance of φ, it is just □(y = y).11 Corresponding

10That is, on the assumption that we interpret ⟦ x̄, y | φ ⟧ 7→ ⟦ x̄, y | □φ ⟧ with intDn+1 . This is a non-trivial assump-

tion. Even when we adopt the general idea that we interpret □ with interior operators, it is possible to implement that

idea with a “non-uniform” interpretation of □; that is, instead of the single operation intDn+m , we may use a family of

operations (each of which may be induced by interior operations) to define

⟦ x̄, ȳ | φ ⟧ 7→ ⟦ x̄, ȳ | □φ ⟧,

so that what interpretation is given to the application of □ to φ depends on what free variables actually occur in φ. To

given an example of a non-uniform interpretation, we may set

⟦ x̄, ȳ | □φ ⟧ = intDn (⟦ x̄ | φ ⟧) × Dm,

where all of x̄ actually occur freely in φ whereas none of ȳ does; and the square in question, with this interpretation in

place of intDn+m , commutes trivially, regardless of whether projections are open or not.

One cost of the non-uniformity in this sense is that we would have to give up

φ ⊢ ψ ψ ⊢ φ

□φ ⊢ □ψ
.E

This may fail because, even when ⟦ x̄ | φ ⟧ = ⟦ x̄ | ψ ⟧, under a non-uniform interpretation of □ the application of □ to φ

and to ψ may be interpreted differently, if different sets of free variables are in φ and ψ, so that ⟦ x̄ | □φ ⟧ , ⟦ x̄ | □ψ ⟧.
We will give a thorough analysis of non-uniformity and variable-sensitivity in Chapter ??. Here we choose to save E

(and M, C, K, and so on) by interpreting □ uniformly.
11In other words, if you need to distinguish the two orders of applying the two syntactic operations, then you need

to treat the substitution operation as a primitive syntactic operation of the language, rather than as a derived one as in

the usual language.

34

Draft of November 14, 2010

to these two orders of applying syntactic operations, we semantically need

⟦ y, z | φ(y, z) ⟧
_

∆−1

��

� intD2
//

=

⟦ y, z | □φ(y, z) ⟧
_

∆−1

��
⟦ y | φ(y, y) ⟧ �

intD

// ⟦ y | □φ(y, y) ⟧

to commute in order for ⟦ y | □φ(y, y) ⟧ to be well-defined.

Similarly, given any sentence φ (in which only z occurs freely) and term t (that is free for z in

φ), □([t/z]φ) and [t/z](□φ) are identical; it is just the sentence □φ(t). Therefore,

⟦ z | φ ⟧
_

⟦ ȳ | t ⟧−1

��

� intD //

=

⟦ z | □φ ⟧
_

⟦ ȳ | t ⟧−1

��
⟦ ȳ | [t/z]φ ⟧ �

intDm

// ⟦ ȳ | □([t/z]φ) ⟧ ⟦ ȳ | [t/z](□φ) ⟧

needs to commute for ⟦ ȳ | □φ(t) ⟧ to be well-defined. These are how, under certain assumptions

on syntax and semantics,12 Fact 1 implies that the sheaf property is needed to make the semantics

well defined.

I.4.2. Sheaves over a Neighborhood Frame. In Subsection I.4.1, we saw an aspect of topo-

logical sheaves that is essential in interpreting first-order modal logic. In this subsection, we extend

this aspect and obtain a generalized notion of sheaves over more general neighborhood frames.

This extension can be done with a straightforward idea because, even though the notion of open

sets may not make sense any more in general neighborhood frames, the notions of continuous and

open maps can be defined without open sets, but with interior operations and hence, equivalently,

with neighborhood functions. (The non-trivial part of the extension is to make sure that the desired

property of topological sheaves still obtains with our generalized definition of sheaves, as well as

that a completeness result is available.) Recall, as we saw in Subsection I.4.1, that a map f : Y → X

between topological spaces Y , X is continuous iff

f −1[intX(B)] ⊆ intY(f −1[B])

12In particular, that the syntax comes with the usual substitution, and that □ is interpreted uniformly (see footnote

10).

35

Draft of November 14, 2010

and open iff

intY(f −1[B]) ⊆ f −1[intX(B)].

Rewriting these relations in terms of neighborhood functions, we enter:

Definition. Given any pair of neighborhood frames X and Y ,13 a map f : Y → X is said to be

continuous if

B ∈ NX(f (x)) =⇒ f −1[B] ∈ NY(x)

for every x ∈ Y and B ⊆ X, and open if

f −1[B] ∈ NY(x) =⇒ B ∈ NX(f (x))

for every x ∈ Y and B ⊆ X.

Clearly, continuous maps and open maps are both composable. Thus neighborhood frames and

these maps (continuous maps, open maps, or both) form subcategories of Sets; in particular, we

consider the category Nb of continuous maps. And we take the slice category Nb/X over a fixed

neighborhood frame X, which is a subcategory of Sets/|X|, for the sake of interpreting first-order

logic. Indeed, not just the category Nb of all neighborhood frames, we also have full subcategories

of it with constraints on frames (Top is an example of such a category). In particular, let us say

that a neighborhood frame (X,N) is MC (after the logical rule M and axiom C, to which (2) and

(3) correspond) if it satisfies

A ⊆ B ⊆ X and A ∈ N(w) =⇒ B ∈ N(w),(2)

A, B ∈ N(w) =⇒ A ∩ B ∈ N(w);14(3)

we can combine (2) and (3) together into the following, equivalent condition:

int(A ∩ B) = int(A) ∩ int(B),

that is, that the interior operation preserves binary meets (and hence all finite meets, except possibly

the empty meet X). And let us write MCNb for the category of MC frames and continuous maps.

13Just like our notation for topological spaces, we write X for neighborhood frames (|X|,NX).
14We could instead say such (X,N) is quasifiltered, since that (X,N) is MC means that eachN(w) is closed under

supersets and binary meets, and therefore is a quasifilter. But we opt for the shorter name.

36

Draft of November 14, 2010

It is crucial to distinguish MCNb from Nb for several reasons. One is that, given an MC frame

X, Nb/X and MCNb/X have different products. In MCNb/X, products are defined in essentially

the same way they are in Top/X; that is, given MC frames (Di, πDi : Di → X) over X, their product

in MCNb/X is D1 ×X · · · ×X Dn equipped with a neighborhood function N such that

U ∈ N(x1, . . . , xn) ⇐⇒ U1 ×X · · · ×X Un ⊆ U for some U1 ∈ ND1(x1), . . . ,Un ∈ NDn(xn)

for every (x1, . . . , xn) ∈ D1 ×X · · · ×X Dn, and with the projection

π : D1 ×X · · · ×X Dn → X :: (x1, . . . , xn) 7→ πD1(x1) = · · · = πDn(xn).

Then all the projections pi : D1 ×X · · · ×X Dn → Di are continuous and open. Also, the continuity

of all πi implies that π is continuous. Moreover, this definition guarantees that the diagonal map

∆ : D→ D2 is continuous.

With these notions, we can extend Fact 1 as a definition of topological sheaves to sheaves over

general neighborhood frames.

Definition. Given neighborhood frames X and D, we say that a map π : D→ X is a local isomor-

phism if

(i) π is continuous and open, and

(ii) for every a ∈ D such that ND(a) , ∅, there is U ∈ ND(a) such that π↾U : U → π[U] is

bijective.

We say that the pair (D, π : D→ X) is a neighborhood sheaf over X if π is a local isomorphism.15

And, as we did before, we define maps of sheaves over X to be continuous maps over X, so that

the category of sheaves and maps of sheaves over X is a full subcategory of MCNb/X. Then all

the nice properties of the category of topological sheaves we mentioned in Subsections I.3.3 and

I.4.1 carry over to the category of sheaves over an MC neighborhood frame X. In particular,

Fact. Maps of sheaves are local isomorphisms; hence the category of sheaves over a given MC

neighborhood frame X is LI/X, the category of local isomorphisms over X.

Fact. For any MC neighborhood frames X and D and any continuous and open map π : D → X

(that is, that satisfies (i) in the definition above), (ii) is the case iff

15Kripke sheaves (see [?]) are neighborhood sheaves in this sense.

37

Draft of November 14, 2010

(iii) The diagonal map ∆ : D→ D2 is open.

That is, in the same way as we did with topological sheaves, we have all relevant maps continu-

ous and open if and only if we take sheaves. This completes our preparation of semantic structures

needed for extending topological-sheaf semantics to neighborhood-sheaf semantics.

I.4.3. Neighborhood-Sheaf Semantics for First-Order Modal Logic. Now we are ready to

extend sheaf semantics to more general, MC neighborhood frames and to provide a semantics for

first-order modal logic that is more general than FOS4. We can take a straightforward extension of

the semantics in Subsection I.4.1, because in Subsection I.4.2 we extended all the relevant notions

to the category LI/X of neighborhood sheaves.

Let us again fix any first-order modal language L. Then we enter:

Definition. Given a first-order modal language L, by a neighborhood-sheaf model for L we mean

a structure M = (π,Ri
M, f j

M, ck
M)i∈I, j∈J,k∈K consisting of

• a surjective local isomorphism π; let us write X and D for its base and total spaces, so

that π : D↠ X;

• for each n-ary primitive predicate R, a subset RM ⊆ |D|n of the n-fold product of |D| over

|X|;
• for each n-ary function symbol f , a continuous map fM : Dn → D over X; and

• for each constant c, a continuous map cM : X → D such that π ◦ cM = 1X.

Definition. Given a first-order modal language L, by a neighborhood-sheaf interpretation for L
we mean a pair (M, ⟦−⟧) of a neighborhood-sheaf model M with a map ⟦−⟧ (of the suitable type)

that satisfies

⟦ x̄ | Rx̄ ⟧ = RM for n-ary primitive predicate R, and

⟦ x, y | x = y ⟧ = ∆[D] in particular;

⟦ x̄ | ⊤ ⟧ = Dn;

⟦ x̄ | ¬φ ⟧ = Dn \ ⟦ x̄ | φ ⟧ (that is, ⟦¬⟧ = Dn \ −);

⟦ x̄ | φ ∧ ψ ⟧ = ⟦ x̄ | φ ⟧ ∩ ⟦ x̄ | ψ ⟧ (that is, ⟦∧⟧ = ∩);

...

38

Draft of November 14, 2010

⟦ x̄ | ∃y .φ ⟧ = p[⟦ x̄, y | φ ⟧];

⟦ x̄, y | φ(x̄) ⟧ = pn
−1[⟦ x̄ | φ(x̄) ⟧];

⟦ x̄, ȳ | [t/z]φ ⟧ = (1Dn × ⟦ ȳ | t ⟧)−1[⟦ x̄, z | φ ⟧];

⟦ x̄, y | [y/z]φ ⟧ = (1Dn × ∆)−1[⟦ x̄, y, z | φ ⟧];

⟦ x̄ | □φ ⟧ = intDn(⟦ x̄ | φ ⟧) (that is, ⟦□⟧ = intDn);

⟦ x̄ | ^φ ⟧ = clDn(⟦ x̄ | φ ⟧) (that is, ⟦^⟧ = clDn).

The class of such interpretations constitutes neighborhood-sheaf semantics for first-order modal

logic. In the same way topological-sheaf semantics unified classical first-order logic and S4, the

new semantics unifies classical first-order logic and MC.

Definition. First-order modal logic FOMC consists of the following two sorts of axioms and rules.

1. All axioms and rules of (classical) first-order logic.

2. The rule and axiom of propositional modal logic MC; that is, M and C.

The converse Barcan formula and its ∃ variant are provable in FOMC, with the same proofs

we saw in Subsection I.3.5. By contrast,

x = y ⊢ □(x = y)

is no longer provable, for its proof needs N. Instead, we can use M in place of N to prove

x = y ⊢ □(x = x)→ □(x = y)

φ ⊢ x = x

□φ ⊢ □(x = x)

□φ ∧ x = y ⊢ □(x = y)

,

a theorem that says “If anything is necessary, identity is necessary (though it may be that nothing

is necessary)”.

Again, it can be checked straightforwardly that FOMC is sound with respect to neighborhood-

sheaf semantics. Moreover, as the principal result of this dissertation, it is complete in the following

form that extends Theorem 1 (Subsection I.1.2).

Theorem. For any consistent theory T of first-order modal logic extending FOMC, there exists a

neighborhood-sheaf interpretation (π, ⟦−⟧) that validates all and only theorems of T.

39

CHAPTER II

Philosophical Introduction

II.1. Questions that this Dissertation Tries to Answer

II.1.1. Epistemic Logic and Topological Semantics. Modal logic has many applications, as

modal operators can be read in many ways. While it is not a goal of this dissertation to discuss any

of such particular readings, the epistemic reading provides the driving force for this dissertation. In

this subsection, we briefly lay out a possible-world interpretation of propositional epistemic logic.

This interpretation, as it will turn out, gives rise to topological semantics for modal logic; in fact,

we give an epistemic interpretation of topology in terms of verifiability and falsifiability. And this

interpretation will show that Kripke’s semantics in terms of an accessibility relation is inadequate

in representing the verifiability and falsifiability reading of modal operators.

By a possible-world semantics, let us refer to a semantics equipped with a (nonempty) set of

points in which subsets of the set can represent propositions; so, whereas Kripke’s semantics with

an accessibility relation among possible worlds is surely a possible-world semantics, not every

possible-world semantics is equipped with an accessibility relation. Indeed, while we are going to

lay out a semantics for modal logic (propositional, in this subsection), we give an interpretation of

modal operators that does not presuppose—but even precludes, as we will argue—an accessibility

relation.

Let us take a set W , ∅ and regard it as a set of possible worlds, in the sense that we represent

propositions with subsets of W. Then assume that some subsets of W represent observable propo-

sitions. A typical example is the following: Consider an infinite series of coin tosses (the first toss,

the second, . . . , ad infinitum) and assume that, for each toss, we can observe its outcome. That is,

when we introduce an atomic sentence

pn for “The nth toss comes up heads”

for each n ∈ N (for the sake of simplicity, let us say the series of tosses starts with the “0th” toss),

it seems plausible that each pn expresses an observable proposition. Then we provide a possible-

world semantics, for these sentences pn, with the set of all possible histories, each of which is an

41

Draft of November 14, 2010

infinite sequence of coin-toss outcomes; formally, with 0 and 1 standing for heads and tails, each

history is of the form w : N→ 2, so that W = 2N, the Cantor set. So we interpret each sentence pn

and its negation ¬pn with the propositions

⟦pn⟧ = {w : N→ 2 | w(n) = 0 } ⊆ W,

⟦¬pn⟧ = {w : N→ 2 | w(n) = 1 } ⊆ W,

and we assume both ⟦pn⟧ and ⟦¬pn⟧ to be observable for each n ∈ N. In this way, we have a set

W of possible worlds along with a special family of observable propositions.

We can extend this to a possible-world semantics for classical propositional logic by interpret-

ing the Boolean connectives ¬, ∧, ∨,→ with the corresponding Boolean operations on P(W), that

is, W \ −, ∩, ∪, and→.1 Furthermore, we interpret the modal operators □ and ^. In particular, we

are interested in the epistemic reading of □ in which, for each sentence φ, we read

□φ as “It is verifiably true that φ”, or “We can verify that φ”.

Let us take the notion of verification in a way that to verify something is to observe something that

entails it. This idea seems to yield the truth condition that □φ is true at w—that is, φ is verifiably

true at w—iff

• There is a proposition B ⊆ W such that

– B is observable,

– B is true at w, and

– B entails φ.

More formally, writing B ⊆ P(W) for the family of observable propositions, we set

w ∈ ⟦□φ⟧ ⇐⇒ w ∈ B ⊆ ⟦φ⟧ for some B ∈ B.(11)

In the example of coin tosses above, consider the sentence “At least one toss comes up heads”,

that is, ∨
n∈N

pn,

and the world wtails such that wtails(n) = 1 for all n ∈ N—that is, in which all tosses come up tails.

Then □
∨
n∈N

pn is true at every w ∈ W except wtails, since if w(m) = 0 for some m ∈ N—that is, if

1We define the Boolean operation→ : P(W) × P(W)→ P(W) so that A→ B = (W \ A) ∪ B for every A, B ⊆ W.

42

Draft of November 14, 2010

some toss, say the mth, comes up heads in w—then

w ∈ ⟦pm⟧ ⊆
∪
n∈N
⟦pn⟧ = ⟦

∨
n∈N

pn⟧

for the observable proposition ⟦pm⟧—that is, observing the mth toss coming up heads verifies φ at

w. By contrast, consider the sentence “All tosses come up heads”, that is,∧
n∈N

pn.

Then □
∧
n∈N

pn is true at no w ∈ W, not even at the world wheads at which
∧
n∈N

pn is actually true (that

is, such that wheads(n) = 0 for all n ∈ N). Conceptually, it is because, in any sense of observability

good enough to express the problem of induction, we can never observe the outcomes of all tosses

(although, by a crucial contrast, we can observe the outcome of each toss). Indeed, in this setting of

infinite coin tosses, we can formalize the problem of induction, in one of its forms, by the fact that,

at wheads for instance, pn and □pn are true for every n ∈ N and
∧
n∈N

pn is true as well, but nonetheless

□
∧
n∈N

pn is not true. For the rest of this subsection, by the problem of induction we mean this form

of it.

A formal proof that □
∧
n∈N

pn is not true at wheads depends on a formal definition of B (note that,

although we have already assumed ⟦pn⟧, ⟦¬pn⟧ ∈ B for all n ∈ N, we have not said anything about

what is not in B). We might set, for instance,

B = { ⟦φn⟧ | n ∈ N and φn ∈ {pn,¬pn} },

assuming we can only observe the outcomes of single tosses.2 Then, for any B ∈ B, say B = ⟦pm⟧,

there is w ∈ W at which pm is true but pk is not (for some k , m), that is, w ∈ B but w < ⟦
∧
n∈N

pn⟧;

thus B ⊆ ⟦
∧
n∈N

pn⟧ for no B ∈ B and therefore wheads < ⟦□
∧
n∈N

pn⟧. Put intuitively, this proof says

that any observation B is consistent with the possibility w that the hypothesis
∧
n∈N

pn (“All tosses

comes up heads”) eventually turns out false, thereby capturing the problem of induction.

Instead of defining ⟦□φ⟧ only for sets ⟦φ⟧ interpreting sentences with (11), let us more gener-

ally define an operation int : P(W) → P(W) (called an “interior” operation for the reason that we

2This assumption seems too strong, and we will weaken it by assuming a condition (ii) for B shortly.

43

Draft of November 14, 2010

will clarify shortly) such that

w ∈ int(A) ⇐⇒ w ∈ B ⊆ A for some B ∈ B,(12)

and interpret □ with int by setting ⟦□φ⟧ = int(⟦φ⟧); this enables us to investigate the structure

of observability and verifiability on the set W of possible worlds that obtains independently of a

particular interpretation ⟦−⟧ of sentences.

This operation int is a monotone operation, that is,

A0 ⊆ A1 =⇒ int(A0) ⊆ int(A1),(13)

because if A0 ⊆ A1 then

w ∈ int(A0)
(12)
=⇒ w ∈ B ⊆ A0 ⊆ A1 for some B ∈ B

(12)
=⇒ w ∈ int(A1).

Also, by (12), w ∈ int(A) entails w ∈ A; hence

int(A) ⊆ A.(14)

It is important to observe

int(A) ⊆ int(int(A)).(15)

This holds because

w ∈ int(A)
(12)
=⇒ there is B ∈ B such that w ∈ B ⊆ A

=⇒ there is B ∈ B such that w ∈ B and w′ ∈ B ⊆ A for every w′ ∈ B

(12)
=⇒ there is B ∈ B such that w ∈ B and w′ ∈ int(A) for every w′ ∈ B

=⇒ there is B ∈ B such that w ∈ B ⊆ int(A)

(12)
=⇒ w ∈ int(int(A)).

These two properties (14) and (15) justify calling int an interior operation on P(W). Moreover,

when we say a binary sequent φ ⊢ ψ is valid in a model (W,B, ⟦−⟧) if ⟦φ⟧ ⊆ ⟦ψ⟧ (and in particular

that ⊢ φ is valid if ⟦φ⟧ = W), (13)–(15) translate respectively into the validity of the rule and

axioms

φ

□φ

⊢ ψ

⊢ □ψ
M

44

Draft of November 14, 2010

□φ ⊢ φT

□φ ⊢ □□φ4

of modal logic.3

With a few assumptions on B, we can also show

int(W) = W,(16)

int(A0) ∩ int(A1) = int(A0 ∩ A1).(17)

To have (16), we should assume

(i) For every w ∈W, there is B ∈ B such that w ∈ B;

that is, in every world something is observable (in the sense of being observable and true in that

world). Then it follows that W ⊆ int(W), and hence (16), because

w ∈ W
(i)
=⇒ w ∈ B ⊆ W for some B ∈ B

(12)
=⇒ w ∈ int(W).

For (17), we may assume

• B0 ∩ B1 ∈ B for every B0, B1 ∈ B.

This roughly means that a combination of finitely many observations is itself an observation. Think

of tossing a coin n times; not only can we observe the outcome of each toss, we can observe all

the outcomes throughout (since the series of n tosses ends in a finite amount of time). So, for the

example of infinite coin tosses, we set

B = {
∩
n∈J

⟦φn⟧ | J is a finite (nonempty) subset of N and φn ∈ {pn,¬pn} for each n ∈ J }.

(With this B, essentially the same argument as the one on p. 43 shows wheads < ⟦□
∧
n∈N

pn⟧.) For a

more general setting, however, it may be plausible to weaken the assumption above to

(ii) For B0, B1 ∈ B, if w ∈ B0 ∩ B1 then w ∈ B2 ⊆ B0 ∩ B1 for some B2 ∈ B,

since how observations are combined may depend on each world, so that different w, w′ ∈ B0 ∩ B1

may have different B2, B3 ∈ B such that w ∈ B2 ⊆ B0∩B1 and w′ ∈ B3 ⊆ B0∩B1. With this weaker

assumption (ii), (17) is derived as follows.

w ∈ int(A0), int(A1)
(12)
=⇒ w ∈ B0 ⊆ A0 and w ∈ B1 ⊆ A1 for some B0, B1 ∈ B

3In this chapter, we formulate logic in terms of binary sequents. ⊢ φ is short for ⊤ ⊢ φ with ⊤ for the truth.

45

Draft of November 14, 2010

(ii)
=⇒ w ∈ B2 ⊆ B0 ∩ B1 ⊆ A0 ∩ A1 for some B2 ∈ B
(12)
=⇒ w ∈ int(A0 ∩ A1).

(16) and (17) correspond respectively to the following rule and axiom.

⊢ φ

⊢ □φ
N

□φ ∧ □ψ ⊢ □(φ ∧ ψ)C

In this way, the semantics given by (W,B, ⟦−⟧) satisfying (12) along with (i) and (ii) validates M,

T, 4, N, C (in addition to all the rules and axioms of classical propositional logic). This means that,

with respect to this semantics, modal logic S4 is sound.4

As is immediately implied by the classical result of McKinsey and Tarski [14], propositional

S4 is sound and complete with respect to topological semantics, which interprets modal logic with

• a topological space, that is, a set W equipped with a topological interior operation int :

P(W)→ P(W) that satisfies the axioms (13)–(17); and

• a map ⟦−⟧, sending sentences to subsets of W, such that ⟦□φ⟧ = int(⟦φ⟧).

Indeed, what we have done with (W,B, ⟦−⟧) is to use (12), which formally expresses how verifia-

bility is related to observability, to define a topological interior operation int (with the assumption

of (i) and (ii)), thereby deriving topological semantics as well as S4 from the notions of observ-

ability and verifiability.5

While we have laid out the verifiability interpretation of int and □, other notions from topology

are susceptible of epistemic interpretations as well. In particular, let us lay out interpretations for

open sets, closed sets, and the closure operation.

Every topological space (W, int) comes with two privileged families of subsets, the open and

the closed subsets. Open sets are defined as fixed points of int; or, because int is idempotent by

4S4 is often formulated with T, 4, N and

□(φ→ ψ) ⊢ □φ→ □ψK

instead of M and C, but it is easy to show that, on classical logic, M and C entail K, while N and K entail M and C.
5Any family of subsets that satisfies (i) and (ii) is called a basis for a topology, and “generates” a topology via (12).

Therefore, what we have shown is that, when we take the family of observable propositions as a basis, it generates a

topology of verifiability.

46

Draft of November 14, 2010

(14) and (15), open sets can also be defined as the images of int. Thus, writing O ⊆ P(W) for the

family of open sets, we have

O = { A ⊆ W | int(A) = A } = { int(A) | A ⊆ W }.

Openness of subsets of W, or propositions, can be interpreted epistemically as follows. While int

represents one sense of verifiability by interpreting □ as read as “It is verifiably true that . . .”, there

is a closely related but crucially different notion of verifiability, namely, verifiability as a property

of propositions. Taking the example of infinite coin tosses again, let φ be short for

p2 ∨
∧
n∈N
¬pn,

that is, “Either the second toss comes up heads or no toss does”. We can verify φ if we are lucky;

that is, if the second toss comes up heads and so p2 is true at a world w, then w ∈ ⟦p2⟧ ⊆ ⟦φ⟧ for

⟦p2⟧ ∈ B and hence w ∈ ⟦□φ⟧. On the other hand, if we are unlucky and p2 false, we cannot verify

φ even if it is true. Consider the world wtails at which all tosses comes up tails and pn is false for all

n ∈ N. At wtails, even though φ is true (since
∧
n∈N
¬pn is true), □φ is not (since for every B ∈ B such

that wtails ∈ B there is w ∈ B at which p2 is false but pm is true for some m, which means B ⊈ ⟦φ⟧).

In this way, whether φ is verifiably true or not (verifiability in the sense we laid out above) depends

contingently on worlds, since □φ can be false even if φ is true; and, to describe this contingency,

we say that the proposition ⟦φ⟧ is not verifiable by itself. In other words, for a proposition to be

verifiable in the second, world-independent sense, we require that it be verifiably true (verifiable

in the first, world-dependent sense) whenever it is true. So, formally, we say

⟦φ⟧ is verifiable if ⟦φ⟧ ⊆ ⟦□φ⟧, or generally

A ⊆ W is verifiable if A ⊆ int(A);

but this, combined this with (14), amounts to saying that A ⊆ W is verifiable iff int(A) = A, that is,

iff A is open.

Closed sets are defined as the complements of open sets; that is, A ⊆ W is closed if W \ A is

open—or we can read this epistemically, with help of the classical interpretation ⟦¬φ⟧ = W \ ⟦φ⟧,
as saying A is closed if its negation is verifiable. Hence we can interpret closedness of a proposition

as representing its falsifiability, as a world-independent property of propositions. To make this

more obvious, let us further unpack the definition and we can see that A is closed iff

47

Draft of November 14, 2010

• For every w ∈ W, if w < A then there is B ∈ B such that w ∈ B ⊆ W \ A,

where we can read w ∈ B ⊆ W \ A as observable B falsifying A at w. Thus we interpret closedness

with falsifiablity, so that a proposition is falsifiable iff we can falsify it whenever it is false.

In any topological space (W, int), the interior operation int has a dual, the closure operation

cl : P(W)→ P(W), which is defined as

cl(A) = W \ int(W \ A).

Let us interpret the modal operator ^ with cl, so that

⟦^φ⟧ = cl(⟦φ⟧);

this, combined with ⟦¬φ⟧ = W \ ⟦φ⟧, implies

⟦^φ⟧ = W \ int(W \ ⟦φ⟧) = ⟦¬□¬φ⟧.

It should be obvious from this that we can read

^φ as “It is not verifiably false that φ”, or “We cannot falsify the hypothesis that φ”.

To make the reading clearer, let us observe that

w ∈ cl(A) ⇐⇒ w < int(W \ A) ⇐⇒ w ∈ B ⊆ W \ A for no B ∈ B,

and again take the world wtails in the example of infinite coin tosses; at wtails, pn is false for all

n ∈ N—all tosses comes up tails—and so
∨
n∈N

pn—“At least one toss comes up heads”—is false.

Observe that, nonetheless, ^
∨
n∈N

pn—“We cannot falsify the hypothesis that at least one toss comes

up heads”—is true at wtails, since any B ∈ B contains some w ∈ W at which some pm is true and

so B ⊈ W \ ⟦
∨
n∈N

pn⟧. It is worth noting that wtails constitutes a counterexample to ⟦^φ⟧ ⊆ ⟦φ⟧ for

φ =
∨
n∈N

pn. Indeed, dually to the discussion for verifiability above, falsifiability of propositions

can be characterized by saying

A ⊆ W is falsifiable iff cl(A) ⊆ A,

which is another way to formally express the idea (which we saw in the previous paragraph) that

we can falsify a falsifiable proposition unless it is true.

Let us compare the semantics we have laid out with Kripke semantics for S4, that is, a possible-

world semantics with a reflexive and transitive accessibility relation among possible worlds. As is

48

Draft of November 14, 2010

shown in Kripke [5], propositional S4 is sound and complete with respect to S4 Kripke semantics.

This fact may appear to mean that the difference between topological and S4 Kripke semantics is

not semantically or logically significant. That is not correct, since the difference becomes logically

significant once the language is extended to have infinitary conjunction. Recall that, as we showed

above using the example of infinite coin tosses,∧
i∈I

□φi ⊢ □
∧
i∈I

φi (I may be infinite)(18)

is not valid in topological semantics; this invalidity indeed represents the problem of induction.

By contrast, we should observe, Kripke semantics manages to validate (18), thereby preventing us

from representing the problem of induction.

(18) is valid in Kripke semantics for the following reason. Recall Kripke’s truth condition for

□, that is, □φ is true at a world w iff φ is true at all worlds accessible from w. It follows from this

that the following are equivalent:

•
∧
i∈I

□φi is true at w;

• □
∧
i∈I

φi is true at w;

• φi is true at u, for all i ∈ I and all u accessible from w.

Thus, not only does it validate (18), Kripke semantics equates
∧
i∈I

□φi and □
∧
i∈I

φi, thereby pre-

cluding the verifiability reading of □.

It is more instructive to observe this preclusion from a viewpoint of our observablity semantics.

Given a set W of possible worlds and an accessibility relation R on W, write, for each w ∈ W,

−→
R (w) = { u ∈ W | Rwu }

for the set of worlds accessible from w. Then Kripke’s truth condition for □ can be written as

w ∈ ⟦□φ⟧ ⇐⇒ −→
R (w) ⊆ ⟦φ⟧.

Assuming R to be S4, and reflexive in particular, we have w ∈ −→R (w) for each w ∈ W; hence we can

also write

w ∈ ⟦□φ⟧ ⇐⇒ w ∈ −→R (w) ⊆ ⟦φ⟧.

Compare this to

w ∈ ⟦□φ⟧ ⇐⇒ w ∈ B ⊆ ⟦φ⟧ for some B ∈ B,(11)

49

Draft of November 14, 2010

which states our idea that φ is verifiably true at w iff some or another observable proposition true at

w verifies (by entailing) φ; then it should be obvious that, in Kripke semantics,
−→
R (w) serves as the

observable proposition for w, verifying everything verifiably true at w.6 This is why the problem of

induction is not expressible (or at least not straightforwardly) in Kripke semantics. In topological

semantics, different propositions can be verified by different observable propositions; in the exam-

ple of infinite coin tosses, ⟦p1⟧ verifies that some toss comes up heads, but it cannot verify, and we

need some ⟦¬pn⟧ to verify, that some other toss comes up tails. Moreover, although we can refine

observations in a finitary manner, we cannot generally obtain a single, universal observation that

encompasses all the other observations. This is how we distinguish between observing each and

observing all at once, a distinction essential for the problem of induction. And this distinction is

not available when
−→
R (w) is given the privilege of verifying everything verifiably true. Therefore,

even though the difference between topological and S4 Kripke semantics has no logical role when

the language is finitary (and so the problem of induction cannot be expressed even syntactically),

Kripke’s notion of accessibility as a relation among possible worlds has conceptual shortcomings

in semantically representing the epistemic reading of □ and ^.

This observation provides a motivation for the project of this dissertation. We have seen that,

in a certain reading of modal operators, they should be interpreted in terms of a generalized notion

of accessibility more general than a relation among worlds—formally, by a family B (in the case

of topological semantics) rather than by single
−→
R (w). One of the questions this dissertation tries to

answer is how we can combine this insight with quantification and extend it to the first-order level.

This is a not only technically but also philosophically significant question, because, as we will

argue, we should assume a certain parallelism between accessibility among worlds and transworld

identity—or transworld identification, to render it coherent with the epistemic reading of modal

operators—of possible individuals; therefore, in so far as we generalize the notion of accessibility

by replacing the observable proposition
−→
R (w) with a family B of observable propositions, we need

also to seek a good conception of (perhaps a family of) transworld identifications to generalize the

transworld identity.

6More formally, given any S4 Kripke frame (W,R), we can define a topological space (W, int) by setting

B = {
∩
w∈J

−→
R (w) | J is a finite (nonempty) subset of W }

and using (12). Then, for each w ∈ W,
−→
R (w) is the smallest B ∈ B such that w ∈ B.

50

CHAPTER III

Semantics for First-Order Logic Revisited

III.1. More General Languages of First-Order Logic

III.1.1. Standard Semantics for Classical First-Order Logic. In this subsection, we review

one formulation of standard semantics for classical first-order logic, so that we can later extend it

to obtain semantics for first-order modal logic.

We start with a brief definition of first-order language (we assume the reader is familiar enough

with the terminology and the ideas involved).1

Definition 1. A (purely) classical first-order language is a language given by the following:2

• any number (at least one) of primitive predicates (perhaps 0-ary);

• individual terms given by infinitely many variables and any number (perhaps none) of

function and constant symbols; and

• the following sentential operators, called the classical operators: a unary connective ¬;

binary connectives ∧, ∨,→; and quantifiers ∀x and ∃x for all individual variables x (but

not for any other variables x).

Given a classical first-order languageL, by an atomic sentence ofLwe mean a result of combining

(in a manner allowed by the grammar of L) an n-ary primitive predicate of L with n individual

terms of L. And then, from the atomic sentences of L, we define the set of sentences of L, written

sent(L), recursively with the sentential operators ofL. We also write var(L) for the set of variables

of L.

We call such a language a classical first-order language; we will discuss in Subsection III.1.3

a first-order language that is not classical, that is, that has sentential operators other than ¬, ∧, ∨,

→, and ∀x, ∃x (for all x ∈ var(L)), so that we can deal with □ and ^.

1By a language, we mean a purely grammatical entity independent of any proof theory or semantics.
2Languages or operators being classical is purely a matter of grammar, and not semantic at all, or not even proof-

theoretic. For example, even when we consider intuitionistic axioms or semantics for the operator→, we nonetheless

say→ itself, as a grammatical entity, is classical.

51

Draft of November 14, 2010

To interpret a classical first-order language, in the standard semantics for first-order logic, the

notion of truth of a sentence is relativized to a model. More precisely,

Definition 2. Given a first-order language L, an L structure M is a tuple

M = (|M|, FM, f M, cM | F is a primitive predicate of L,

f is a primitive function symbol of L,

c is a individual constant symbol of L)

such that

• |M| is a nonempty set;

• FM ⊆ |M|n for each n-ary primitive predicate F of L;

• =M = { (a, a) | a ∈ |M| } for the binary primitive predicate =, if L has it;

• f M : |M|n → |M| for each n-ary primitive function symbol f of L;

• cM ∈ |M| for each individual constant symbol c of L.

Instead of the notation above, which makes explicit that M is equipped with FM, f M, cM for each

F, f , c, we will simply write, when it causes no confusion,

M = (|M|, FM, f M, cM)

for L structures.

An L structure M interprets a primitive predicate F of L by assigning to it an extension FM.

In particular, when L has the binary relation symbol =, it is always interpreted by what may be

called the diagonal line (on the plane |M|2 = |M| × |M|), that is,

=M = { (a, a) | a ∈ |M| }.

When F is 0-ary, FM ⊆ |M|0. Note that |M|0 is a singleton {∗}. Let us regard its subsets 1 = {∗}
and 0 = ∅ as the truth values, so that 2 = {0, 1} = P({∗}). Then we can regard FM ⊆ |M|0 = {∗} as

FM ∈ P({∗}) = 2; and FM = {∗} = 1 and FM = ∅ = 0 respectively mean that F is true and that F

is false (in M).

Also, though L may have no individual function or constant symbols, if it does, an L structure

M interprets a constant symbol c with its referent cM ∈ |M|, and an n-ary function symbol f with

an n-ary function f M on |M|, so that, when individual terms t1, . . . , tn refer to a1, . . . , an ∈ |M|, the

term f t1, . . . , tn refers to f M(a1, . . . , an) ∈ |M|. It is worth noting that the case of function symbols

52

Draft of November 14, 2010

subsumes that of constant symbols, by regarding a constant symbol c as a 0-ary function symbol

and its interpretation as a map cM : |M|0 → |M| with |M|0 = {∗}, so that c refers to cM(∗).
In such a structure, a given sentence is either true or false, if it is closed.3 Generally, however, as

sentences in first-order logic may contain free (individual) variables, their truth is also relativized

to an assignment of objects to variables. For example, the truth of the sentence “x is a logician”

depends on the object to which the variable x refers; it is true when x refers to, say, Russell. To

formally implement this idea of assignment, each structure M is equipped with a set |M| of objects

that can be assigned to variables, so that an assignment is a map from variables to elements in |M|.
Let us call |M| the domain of individuals and its elements individuals, in the sense that

• the domain of individuals is the range of assignments, and

• individuals are values of assignments.

In other words, an assignment α is a map from variables to individuals in the domain |M|; here,

following an idea due to Tarski, we let an assignment assign individuals in |M| to all variables of

L, so that α : var(L) → |M|, where var(L) is the set of all individual variables of L.4 We also

write |M|var(L) for the set var(L)→ |M|, that is, the set of all assignments. Then, for an L structure

M, an assignment α : var(L)→ |M|, and a sentence φ of L, we write

M ⊨α φ

to mean that, when x1, . . . , xn are the free variables occurring in φ,

• φ is true, in M, of the (sequence of) individuals α(x1), . . . , α(xn) ∈ |M| in place of

x1, . . . , xn.

We may equivalently and interchangeably say that

• (The sequence) α(x1), . . . , α(xn) satisfies φ in M.5

3This is a desideratum rather than something we simply assume for the formal semantics. For it to hold with the

formal semantics as we are going to define, satisfaction relations (Definition 4) need to satisfy the property called local

determination (Definition 7). See p. 58.
4(Draft: historical remarks to be filled in.)
5We may keep the order of variables x1, . . . , xn implicit if it is obvious.

53

Draft of November 14, 2010

This reading of ⊨ , together with the reading of FM as the extension in M of an n-ary primitive

predicate F, should make the following truth condition natural:

M ⊨α Fx1 · · · xn ⇐⇒ (α(x1), . . . , α(xn)) ∈ FM for an n-ary primitive predicate F.(19)

This serves as the basis clause for the recursive definition of the M ⊨α φ relation along the con-

struction of φ. Among the inductive clauses, those regarding the (classical) sentential connectives

simply carry over from propositional logic:

M ⊨α ¬φ ⇐⇒ M ⊭α φ,(20)

M ⊨α φ ∧ ψ ⇐⇒ M ⊨α φ and M ⊨α ψ,(21)

M ⊨α φ ∨ ψ ⇐⇒ M ⊨α φ or M ⊨α ψ,(22)

M ⊨α φ→ ψ ⇐⇒ M ⊭α φ or M ⊨α ψ.(23)

To lay out truth conditions for ∀x and ∃x, observe that our intuitive understanding of what they

mean makes the following (semi-intuitive) equivalences desirable:

• ∀x .φ is true in M, iff

• φ is true in M of each thing (in place of x),

and

• ∃x .φ is true in M, iff

• φ is true in M of something (in place of x).

We cash out the notions of “each thing” and “something” here with “each a ∈ |M|” and “some

a ∈ |M|”; in other words, we take |M| as the domain of quantification, in the sense that

• the domain of quantification is the set over which “thing” as in “each thing” and “some-

thing” (or, formally, the variable x of a quantifier ∀x or ∃x) ranges.6

To formally express this idea, it is helpful to introduce the notation that, when a ∈ |M|, x ∈
var(L), and α is an assignment, [a/x]α is the assignment that assigns a to x but agrees with α on

6Compare this notion to that of domain of individuals introduced on p. 53; these two notions are based on two

ideas that are in principle different. Indeed, whereas they refer to the same set in this subsection, we will distinguish

them in Subsection III.2.1 and on.

54

Draft of November 14, 2010

all other variables; that is, [a/x]α : var(L)→ |M| such that

([a/x]α)(y) =


a if y = x,

α(y) otherwise.

Then we set

M ⊨α ∀x .φ ⇐⇒ M ⊨[a/x]α φ for every a ∈ |M|,(24)

M ⊨α ∃x .φ ⇐⇒ M ⊨[a/x]α φ for some a ∈ |M|,(25)

so that these yield

• ∀x .φ is true in M of α(x1), . . . , α(xn) (in place of x1, . . . , xn), iff

• φ is true in M of α(x1), . . . , α(xn) and every a ∈ |M| (in place of x1, . . . , xn and x),

and

• ∃x .φ is true in M of α(x1), . . . , α(xn) (in place of x1, . . . , xn), iff

• φ is true in M of α(x1), . . . , α(xn) and some a ∈ |M| (in place of x1, . . . , xn and x),

which subsume our desired equivalences above (with |M| the domain of quantification).

We reviewed so far how to settle the truth—relative to an L structure and an assignment—of

sentences without function or constant symbols. We extend this to all sentences, containing not

only variables but also function and constant symbols, in the following manner. First we extend

the interpretion of variables x in terms of α(x) to all individual terms.

Definition 3. Fix a first-order language L, an L structure M and an assignment α : var(L)→ |M|.
Given an individual term t, its interpretation tM,α, relative to M and α, is given recursively as

follows:

xM,α = α(x) for a variable x,

(f t1, . . . , tn)M,α = f M(t1
M,α, . . . , tn

M,α) for an n-ary function symbol f .

Note that the latter subsumes the case of n = 0, that is,

cM,α = cM for a constant symbol c.

With the interpretation of variables extended in this way to all terms, we simply extend (19) to

M ⊨α Ft1 · · · tn ⇐⇒ (t1
M,α, . . . , tn

M,α) ∈ FM for an n-ary primitive predicate F,(26)

55

Draft of November 14, 2010

which clearly subsumes (19). Then combining the new base clause (26) with the inductive clauses

(20)–(25) extends the recursive definition of the semantic relation ⊨ to all sentences.

This semantic relation (for each M) provides the classical semantics for first-order logic; so let

us simply define the classical semantics, regarded as a formal object, to be the class of relations

that satisfy the truth conditions (20)–(26).

Definition 4. Given a first-order language L, a classical-type satisfaction relation for L is a pair

of an L structure M and any relation (M ⊨− −), as in M ⊨α φ, of

• an assignment α : var(L)→ |M|, and

• a sentence φ of L;

in other words, it is a pair (M,⊨) of M and any subset ⊨ of |M|var(L) × sent(L), where, we should

recall, |M|var(L) is the set var(L)→ |M| and sent(L) is the set of sentences ofL. We say a classical-

type satisfaction relation for L is on M if its first coordinate is an L structure M.

One might find the first coordinate M in the pair (M,⊨) above redundant, but it is needed for

the following purpose. Suppose a pair of L structures M0, M1 has |M0| = |M1| but FM0 , FM1 ,

and fix any ⊨ ⊆ |M|var(L) × sent(L). (26) may hold with M0 in place of M (and with the set ⊨
in the place denoted by “⊨” in (26)), but then it cannot hold with M1 in place of M. Hence we

need to relativize satisfaction relations to L structures and say that (M0,⊨) satisfies (26) whereas

(M1,⊨) does not.

Definition 5. Given a classical first-order language L, a classical-type satisfaction relation for L
is said to be classical, and called simply a classical satisfaction relation for L, if it satisfies (20)–

(26). The class of all the classical satisfaction relations for L is called the classical semantics for

L.

Indeed, an L structure M corresponds one-to-one to a classical satisfaction relation for L on

M (under the assumption that all the sentential operators of L are first-order—which will not hold

generally in Subsection III.1.3), as follows:

Fact 2. IfL is a classical first-order language, then on eachL strucure M there is a unique classical

satisfaction relation for L.

Proof. By induction on the construction of φ (we need to use the assumption that L is classi-

cal). □

56

Draft of November 14, 2010

We can define the notion of validity with respect to classical satisfaction relations. Indeed, the

definition can be independent of classical semantics; it works with any satisfaction relation for a

first-order language.

Definition 6. Given a first-order language L, we say, for each classical-type satisfaction relation

(M,⊨) for L,

• a sentence φ of L is valid in (M,⊨), and write M ⊨ φ (with a slight abuse of notation),

meaning that M ⊨α φ for every assignment α : var(L)→ |M|; and

• an inference (Γ, φ) in L is valid in (M,⊨), meaning that if M ⊨ ψ for all ψ ∈ Γ then

M ⊨ φ.7

Given a class of classical-type satisfaction relations for L, we say a sentence or inference is valid

in that class if it is valid in every member of that class.

So, in particular, a sentence or inference is valid in the classical semantics for L if it is valid in

every classical satisfaction relation for L.

Let us close this subsection by introducing an “overscore” notation to use for a sequence. For

example, ā is short for (a1, . . . , an); also, α(x̄) is short for (α(x1), . . . , α(xn)); then (26) becomes

M ⊨α Ft̄ ⇐⇒ t̄M,α ∈ FM for an n-ary primitive predicate F.

The length of the sequence is typically assumed to be n, unless otherwise noted.

III.1.2. The Forgotten Trio. In this subsection, we review three properties of classical se-

mantics. They seem so obvious and natural that logicians often take them for granted and rarely

mention them explicitly;8 but they are essential in conceptually connecting the semantics as a tech-

nical machinery and what we take it as expressing. Also, as will be shown in Subsection III.1.3,

they are essential in characterizing classical semantics, once the language is extended beyond the

classical one.

First, we consider the notion of local determination.

7An inference in L is a pair of a set of sentences of L and a sentence of L.
8A respectable exception is Belnap, [4], to whom I owe the notions (and their names) of local determination and

semantics of substitution.

57

Draft of November 14, 2010

Definition 7. Let (M,⊨) be a classical-type satisfaction relation for a first-order language L. We

say a sentence φ of L is locally determined in (M,⊨) if it satisfies, for every pair of assignments

α, β : var(L)→ |M|,

M ⊨α φ ⇐⇒ M ⊨β φ if α(x) = β(x) for every free variable x in φ.(27)

We also say (M,⊨) is locally determined if every sentence of L is locally determined in it, and

that a class of classical-type satisfaction relations for L is locally determined if all its members are

locally determined.

In short, local determination means that the truth of a sentence φ does not depend on the referent

of a variable that does not occur freely in φ. It is a property with various imports, both technical

and conceptual. To list two,9 local determination is needed to make sure that the truth of a closed

sentence is independent of assignments; indeed, this independence amounts exactly to the local

determination of the closed sentence. Also, without local determination, it is hard to maintain the

connection between the syntactic and semantic conceptions of an n-ary predicate. It surely makes

perfect sense, without local determination, to say that φ is a unary predicate, when φ contains (at

most) one free variable, say x—this is a syntactic conception of a unary predicate. In contrast, it

seems to make sense to say that φ is a unary predicate true (in M) of an individual a, only if any

assignment α with α(x) = a has M ⊨α φ. Otherwise, if assignments α and β had α(x) = β(x) = a

but M ⊨α φ and M ⊭β φ, then we could no longer sensibly say either that φ is true of a or that it

is not.

Fortunately, classical semantics is locally determined. To prove it, we need to first show that

the interpretation of terms is locally determined (so to speak). It is worth noting that the statement

of Fact 3 depends on L structures but not on any satisfaction relation.

Fact 3. Suppose M is an L structure for a first-order language L. Then, for every term t of L and

pair of assignments α, β : var(L)→ |M|,

tM,α = tM,β if α(x) = β(x) for every (free) variable x in t.

Proof. By induction on the construction of t. □

9Another import, which we will discuss on p. 67, is that local determination is needed to validate a rule of classical

first-order logic.

58

Draft of November 14, 2010

Fact 4. If L is a classical first-order language, every classical satisfaction relation for L is locally

determined; this means that the classical semantics for L is locally determined.

Proof. By induction on the construction of sentences (we need to use the assumption that L is

classical). Use Fact 3 for the base case. □

Next, we review how substitution of terms works semantically in classical semantics. First let

us introduce a notation for substitution of terms.

Definition 8. Given any term t, variable x, and sentence φ, we say t is free for x in φ if t contains

no variable y such that x occurs freely in the scope of either ∀y or ∃y in φ.

Definition 9. Given a first-order language, let x be an individual variable, let t, t0 be terms, and let

φ be a sentence in which t is free for x. Then

[t/x]t0, [t/x]φ

respectively stand for the term and the sentence obtained by substituting t for all the free occur-

rences of x in t0 and φ, respectively. More rigorously, [t/x]t0 and [t/x]φ are recursively defined as

follows:

[t/x]y =


t if x = y,

y if x , y,

[t/x] f t1 · · · tn = f ([t/x]t1) · · · ([t/x]tn) for any n-ary function symbol f ,

[t/x]Ft1 · · · tn = F([t/x]t1) · · · ([t/x]tn) for any n-ary primitive predicate F,

[t/x]⊗(φ1, . . . , φn)

=


⊗(φ1, . . . , φn) if ⊗ binds x,

⊗([t/x]φ1, . . . , [t/x]φn) otherwise
for any n-ary sentential operator ⊗.

With this [t/x] notation, we define the following notion, the SoS property, with SoS short for

“semantics-of-substitution-respecting”.

Definition 10. Let (M,⊨) be a classical-type satisfaction relation for a first-order language L. We

say (M,⊨) is SoS for a sentence φ of L if, for every assignment α : var(L)→ |M|, variable x, and

59

Draft of November 14, 2010

individual term t,

M ⊨α [t/x]φ ⇐⇒ M ⊨[tM,α/x]α φ if t is free for x in φ.(28)

We also say (M,⊨) is SoS if it is SoS for every sentence of L, and that a class of classical-type

satisfaction relations for L is SoS if all its members are SoS.

Like local determination, the SoS property also has both technical and philosophical imports.10

Conceptually, SoS means that whether or not an individual has a given property does not depend

on what individual term we use to refer to the individual. For example, to express that an individual

a ∈ |M| has a (unary) property FM ⊆ |M| (in M) with a sentence of a given language, we can write

M ⊨α Fx for a pair of a variable x and an assignment α : var(L)→ |M| such that α(x) = a. In this

expression, however, the choice of x and α should not be significant: we should be able to express

the same thing with M ⊨β Fy, as long as β(y) = a, even when β = [a/y]α. To put it differently, if

M ⊨α Fx and M ⊨[a/y]α Fy did not coincide, we could no longer use either of them to express that

a satisfies FM. That they coincide is guaranteed by the SoS property of Fy (since Fx = [x/y]Fy

and [a/y]α = [xM,α/y]α).

Again, fortunately, classical semantics is SoS. To show it, we need—as we did in the case of

local determination—to first show that the interpretation of terms is SoS (so to speak); this fact,

again, depends on L structures but not on any satisfaction relation.

Fact 5. Suppose M is an L structure for a first-order language L. Then, for every pair of terms t,

t0, variable x, and assignment α : var(L)→ |M|,

([t/x]t0)M,α = t0
M,[tM,α/x]α

Proof. By induction on the construction of t0. □

Fact 6. If L is a classical first-order language, every classical satisfaction relation for L is SoS;

this means that the classical semantics for L is SoS.

Proof. By induction on the construction of sentences (we need to use the assumption that L is

classical). Fixing any classical satisfaction relation (M,⊨) for L, use Fact 5 for the base case. The

10The SoS property is needed to validate a rule of classical first-order logic, as we will discuss on p. 67.

60

Draft of November 14, 2010

inductive case for ∀ goes as follows. Because [t/x](∀x .φ) = ∀x .φ, local determination of ∀x .φ in

(M,⊨) (by Fact 4) entails

M ⊨α [t/x](∀x .φ) ⇐⇒ M ⊨α ∀x .φ ⇐⇒ M ⊨[tM,α/x]α ∀x .φ.

On the other hand, if y , x, then [t/x](∀y .φ) = ∀y ([t/x]φ) entails the equivalence marked with !

below. The one with ∗ is by the induction hypothesis. Fact 3 implies tM,[a/y]α = tM,α and hence the

equivalence with †, because y does not occur in t, due to the assumption of the notation [t/x](∀y .φ)

that t is free for x in ∀y .φ. And, finally, x , y entails [tM,α/x][a/y]α = [a/y][tM,α/x]α and hence

the equivalence with ‡.

M ⊨α [t/x](∀y .φ)
!⇐⇒ M ⊨α ∀y ([t/x]φ)

(24)
⇐⇒ M ⊨[a/y]α [t/x]φ for every a ∈ |M|
∗⇐⇒ M ⊨[tM,[a/y]α/x][a/y]α φ for every a ∈ |M|
†
⇐⇒ M ⊨[tM,α/x][a/y]α φ for every a ∈ |M|
‡
⇐⇒ M ⊨[a/y][tM,α/x]α φ for every a ∈ |M|

(24)
⇐⇒ M ⊨[tM,α/x]α ∀y .φ. □

Lastly, we introduce the notion of alpha-equivalence.

Definition 11. We say a sentence φ1 is an alpha-conversion of a sentence φ0, and write α0 ∝0 α1,

if φ1 is obtained by replacing a subformula ∀x .ψ of φ0 with ∀y ([y/x]ψ), or a subformula ∃x .ψ of

φ0 with ∃y ([y/x]ψ), for any pair of variables x, y such that y does not occur freely in ψ and y is

free for x in ψ. More precisely, ∝0 is the smallest binary relation R on sent(L) such that

(i) R(∀x .φ, ∀y ([y/x]φ)) if y does not occur freely in φ and y is free for x in φ;

(ii) R(∃x .φ, ∃y ([y/x]φ)) if y does not occur freely in φ and y is free for x in φ;

(iii) for every n-ary sentential operator ⊗ of L, R(⊗(φ̄),⊗(ψ̄)) if R(φi, ψi) for exactly one i ⩽ n

and φ j = ψ j for all the other j ⩽ n.

Moreover, we write ∝ for the reflextive and transitive closure of ∝0; we say ψ is alpha-equivalent

to φ if φ ∝ ψ.11

11In this definition, we assume that ∀x and ∃x are the only sentential operators of the language that bind variables.

It should be clear how to extend the definition to languages with more operators that bind variables.

61

Draft of November 14, 2010

To see the point of this definition, suppose φ1 is an alpha-conversion of φ0 obtained by replacing

a subformula ∀x .ψ of φ0 with ∀y ([y/x]ψ). For the sake of explanation, let us call these occurrences

of ∀x (in φ0) and ∀y (in φ1) their principal occurrences. Then observe:

• Every free occurrence of x in ψ, which was originally bound by the principal occurrence

of ∀x in φ0, is replaced by a new occurrence of y but then bound in φ1, because it occurs

within ∀y ([y/x]ψ). (So, there is no variable that was bound in φ0 but is no longer bound

in φ1.)

• These new occurrences of y are bound by the principal occurrence of ∀y in φ1, due to the

requirement that y is free for x in ψ.

• Moreover, the requirement that y does not occur freely in ψ guarantees that no free oc-

currence of y in φ0 is newly bound in φ1.

In short, φ0 and φ1 share the same variable structure, while the bound variable x in φ0—not just an

occurrence but the occurrence in the principal occurrence of ∀x and all the occurrences it binds—

is replaced with y in φ1. And this property extends to the case of alpha-equivalence in general; that

is, alpha-equivalence between φ and ψ means that φ and ψ share the same variable structure with

possibly different bound variables (but the same free variables hold the same places).

It is easy to observe:

Fact 7. ∝0 is a symmetric relation.

Proof. Write R(φ, ψ) to mean that both φ ∝0 ψ and ψ ∝0 φ; then, to show ∝0 symmetric, it is

enough to show that R satisfies (i)–(iii) of Definition 11, because then ∝0 ⊆ R. To show (i), suppose

y does not occur freely in φ and y is free for x in φ. Then ∀x .φ ∝0 ∀y ([y/x]φ). Yet it also follows

that x does not occur freely in [y/x]φ and x is free for y in [y/x]φ, and therefore ∀y ([y/x]φ) ∝0

∀x ([x/y][y/x]φ), while it moreover follows that [x/y][y/x]φ = φ. So, ∀y ([y/x]φ) ∝0 ∀x .φ as

well. Thus R satisfies (i), and similarly (ii). (iii) for R is straightforward. □

Hence the reflextive and transitive closure ∝ of ∝0, that is, alpha-equivalence, is an equivalence

relation.

Our ordinary conception of bound variables implies that alpha-equivalent sentences should be

treated as equivalent semantically. Given an assignment α : var(L) → |M|, different variables x

and y generally refer to different individuals α(x) and α(y), and then different sentences Fx and

Fy make different claims: Fx claims that α(x) satisfies F, whereas Fy claims that α(y) satisfies F.

62

Draft of November 14, 2010

We should however note here that, in order for Fx and Fy to make different claims, it is essential

that the occurrences of x and y are free. By contrast, we regard ∀x Fx and ∀y Fy, for example, as

making the same claim. This is because bound variables are mere labels, or placeholders, and do

not refer to anything significantly—we read ∀x .φ as “Regardless of to what x may refer, φ is true

of it in place of x”. The only significant role bound variables play instead is to indicate the binding

structure, that is, which quantifier binds which occurrence of variables. To extract the conceptual

content of ∀x .φ, it is “Regardless of to what − may refer, φ is true of it in place of −”, which is

invariant whether we formally use x, y, or any variable in the place indicated by “−”. This is why

our technical semantics should treat alpha-equivalent sentences as equivalent.

Classical semantics indeed treats alpha-equivalent sentences as equivalent, as stated in Fact 8.

We call the property the AE property, with AE short for “alpha-equivalence-respecting”.

Definition 12. Let (M,⊨) be a classical-type satisfaction relation for a first-order language L. We

say (M,⊨) is AE if, for every assignment α : var(L)→ |M| and sentences φ, ψ of L,

M ⊨α φ ⇐⇒ M ⊨α ψ if φ ∝ ψ.(29)

We also say a class of classical-type satisfaction relations for L is AE if all its members are AE.

Fact 8. If L is a classical first-order language, every classical satisfaction relation for L is AE,

which means that the classical semantics for L is AE.

To prove Fact 8, let us first observe the following, more general lemma (the proof is straight-

forward and we omit it).

Fact 9. SupposeL is a classical first-order language. Fix any classical satisfaction relation (M,⊨)

for L, let us write R(φ, ψ) to mean that

M ⊨α φ ⇐⇒ M ⊨α ψ for every α : var(L)→ |M|.(30)

Then, for every n-ary sentential operator ⊗ of L, if R(φi, ψi) for all i ⩽ n then R(⊗(φ̄),⊗(ψ̄)).

Using this, we give:

Proof for Fact 8. Fix (M,⊨) and write R(φ, ψ) as in Fact 9. Then, clearly, to prove Fact 8 it is

enough to show that if φ ∝0 ψ then R(φ, ψ). To show it, then, it is enough to show that R satisfies

63

Draft of November 14, 2010

(i)–(iii) of Definition 11; but (iii) for R is immediate from Fact 9. To show (i), suppose y does not

occur freely in φ and y is free for x in φ. Then, for every α : var(L)→ |M|,

M ⊨α ∀y ([y/x]φ)
(24)
⇐⇒ M ⊨[a/y]α [y/x]φ for every a ∈ |M|
∗⇐⇒ M ⊨[a/x][a/y]α φ for every a ∈ |M|
†
⇐⇒ M ⊨[a/x]α φ for every a ∈ |M|

(24)
⇐⇒ M ⊨α ∀x .φ.

Here the equivalence marked with ∗ holds by Fact 6, because yM,[a/y]α = a; the one with † follows

from Fact 4, because [a/x][a/y]α and [a/x]α agree on all variables except y, which does not occur

freely in φ. Thus R satisfies (i), and similarly (ii). □

III.1.3. What If the Language is not Pure. So far we have discussed semantics for languages

that are classical first-order—that is, languages whose only sentential operators are ¬, ∧, ∨,→, ∀x,

∃x (for all variables x). In this subsection, we expand our semantics to a wider class of languages,

to include other operators; the typical example we have is a language with the modal operators □

and ^. This generality will be useful in later chapters, where we discuss quantified modal logic.

Let us give a more general definition of a first-order language than we did in Definition 1. The

generalization consists in the introduction of sentential operators beyond the classical ¬, ∧, ∨,→,

∀x, ∃x.

Definition 13. A first-order language is a language given by the following:

• any number (at least one) of primitive predicates (perhaps 0-ary);

• individual terms given by infinitely many variables and any number (perhaps none) of

function and constant symbols; and

• a number of sentential operators including all the classical ones—but no ∀x or ∃x unless

x is an individual variable—and perhaps ones that are not classical; such operators are

called non-classical.

Modal operators □ and ^ are the typical examples of non-classical operators (we will say that

a first-order modal language is a first-order language that is not classical but modal).

The introduction of non-classical operators gives rise to a new notion of atomic sentence: Let

us say a sentence is classically atomic if none of the classical operators is its major operator. Then,

64

Draft of November 14, 2010

whereas all atomic sentences in the sense we defined before—that is, results of combining an n-ary

primitive predicate of L with n individual terms of L—are classically atomic, there can be a clas-

sically atomic sentences of L that are not atomic in this sense, for example, □∀x (φ → ψ); let us

say the former kind of classically atomic sentences are primitive, while the latter are non-primitive.

We can put this differently as follows: Given a first-order language L, by a primitive classically

atomic sentence, or atomic sentence for short, of L we mean a result of combining an n-ary prim-

itive predicate of L with n individual terms of L. We define the set of sentences of L recursively

from the atomic sentences of L with the sentential operators of L. Then, among sentences of L
that are not atomic, those whose major operators are non-classical are called non-primitive classi-

cally atomic sentences, or non-primitive atomic sentences for short. We also say that a sentence is

non-classical if it contains non-classical operators and is purely classical otherwise.

Given a first-order language L, let us write ca(L) for the set of classically atomic sentences of

L. Regarding this set of sentences, it is crucial to make:

Observation 1. Let L be a first-order language. Its sentences could be recursively defined from

ca(L) with classical operators. More precisely, when we write R(φ, ψ) for sentences φ, ψ of L iff

• ψ = ⊗(φ1, . . . , φn) and φ = φi for some φ1, . . . , φn, i ⩽ n, and n-ary classical operator ⊗,

the transitive closure of R is a well-founded relation on sent(L).

For a first-order language L in the general sense as above, we can use the same definition of L
structures (Definition 2). Yet we need to note that, whileL structures interpret primitive predicates

F, thereby interpreting atomic sentences Ft̄ of L (with the help of (26), of course), they by no

means interpret other classically atomic sentences, namely non-primitive ones, such as □φ.

The definitions of assignments α : var(L) → |M|, interpretation of terms tM,α (Definition 3),

classical-type semantic relations (M,⊨) (Definition 4), validity (Definition 6), and local determi-

nation (Definition 7) all work fine as they were. Then, using the same truth conditions (20)–(26),

we might try (though we will give up) keeping the same definition for classical semantic relations

(the first half of Definition 5), namely,

• A classical-type satisfaction relation (M,⊨) for a first-order languageL (that, in general,

may not be classical) is called a classical satisfaction relation if it satisfies (20)–(26).

65

Draft of November 14, 2010

Here the generalization starts to make difference: Under this definition of classical satisfaction

relations, (the consequent of) Fact 2 no longer holds. That is, given an L structure M for a non-

classical first-order language L, there is more than one classical satisfaction relation for L on M.

This is because, as mentioned above, M does not interpret non-primitive atomic sentences—for

example, □φ—and the definition above simply gives no constraints on how classical satisfaction

relations for L on M should evaluate the truth of these sentences. This can be formally expressed

by the following generalization of Fact 2. For a first-order language L, write npa(L) for the set of

non-primitive atomic sentences of L; then:

Fact 10. Given a first-order language L, for every L structure M there is a bijection e such that

• e is from P(|M|var(L) × npa(L)) to the set of classical-type satisfaction relations for L on

M that satisfy (20)–(26), and

• for each A ⊆ |M|var(L) × npa(L), e(A) = (M,⊨) satisfies

M ⊨α φ ⇐⇒ (α, φ) ∈ A(31)

for every assignment α and non-primitive atomic sentence φ of L.

Fact 10 subsumes Fact 2 because, ifL is classical then npa(L) = ∅, which impliesP(|M|var(L)×
npa(L)) is a singleton and, by e being bijective, so is the set of classical satisfaction relations for

L on M (as defined in Definition 5).

Proof for Fact 10. Fix any L structure M and write C for the set of classical-type satisfaction

relations for L on M that satisfies (20)–(26). Then define an operation r : C → P(|M|var(L) ×
npa(L)) so that r(M,⊨) = ⊨ ∩ (|M|var(L) × npa(L)) for every (M,⊨) ∈ C; that is, r(M,⊨) is the set

A that satisfies (31).

Fix any A ⊆ |M|var(L) × npa(L). By Observation 1, induction on the construction of sentences

of L from ca(L) with the classical operators enables us to define e(A) as the unique (M,⊨) ∈ C

that satisfies (31). This uniqueness entails e ◦ r = 1. Moreover, clearly, r ◦ e = 1. Therefore e is

bijective. □

This wild behavior regarding non-classical sentences, according to the proposed definition of

classical satisfaction relations, moreover prevents (27)–(29)—that is, local determination, SoS

property, and AE property—from holding. This is a serious issue, conceptually because, as we

argued in Subsection III.1.2, these properties are essential in connecting the technical with the

66

Draft of November 14, 2010

conceptual, but also, technically, because the failure of these properties results in the violation of

some rules of classical first-order logic, as follows.

Assuming that a first-order language L has a sentential operator □, pick an L structure M such

that |M| = {a, b} with a , b, a variable x, and an assignment α : var(L)→ |M| such that α(x) = a.

It follows that [b/x]α , α; hence, for a sentence φ in which x does not occur freely, there is a set

A ⊆ |M|var(L) × npa(L) such that (α,□φ) ∈ A but ([b/x]α,□φ) < A. Then Fact 10 yields a “classical

satisfaction relation” for L (as in the definition above), (M,⊨) = e(A), such that

M ⊨α □φ, M ⊭[b/x]α □φ.

These mean, since α and [b/x]α only differ at x, which does not occur freely in □φ, that □φ violates

(27); that is, it is not locally determined in (M,⊨). Moreover, it follows immediately from (23)

that

M ⊨β □φ→ □φ

for every assignment β : var(L)→ |M|. On the other hand, M ⊭[b/x]α □φ entails

M ⊭α ∀x□φ

by (24), and hence M ⊨α □φ entails

M ⊭α □φ→ ∀x□φ

by (23). Thus □φ → □φ is valid in (M,⊨) but □φ → ∀x□φ is not, even though x does not occur

freely in φ; therefore the rule

⊢ ψ0 → ψ1
(x does not occur freely in ψ0)

⊢ ψ0 → ∀x .ψ1

of classical first-order logic is not valid in (M,⊨).

Also, for the same L, pick an L structure M such that, to make the example simple, |M| = {a};
so there is exactly one assignment α : var(L)→ |M|—namely, the one that maps all variables to a.

Fix a variable x, a sentence φ in which x occurs freely, and a term t , x that is free for x in φ. Then

□φ and [t/x](□φ) are not identical; hence there is A ⊆ |M|var(L) × npa(L) such that (α,□φ) ∈ A but

67

Draft of November 14, 2010

(α, [t/x](□φ)) < A. Then, again, Fact 10 yields a “classical satisfaction relation” (M,⊨) = e(A) for

L such that

M ⊨α □φ, M ⊭α [t/x](□φ).

This straightforwardly violates (28) (note that [tM,α/x]α = α because |M| = {a}). Moreover, □φ is

valid in (M,⊨) (because α is the only assignment) whereas [t/x](□φ) is not; therefore the rule

⊢ ψ

⊢ [t/x]ψ

of classical first-order logic is not valid in (M,⊨).

This is why, to maintain classical first-order logic with a non-classical first-order language, we

need to rule out satisfaction relations that violate (27) or (28). Also, for a reason we will explain

later, we need to assume (29). Therefore we define classical satisfaction relations to be satisfaction

relations satisfying not only (20)–(26) but also (27)–(29).

Definition 14. Given a first-order language L, a classical-type satisfaction relation for L is said to

be classical, and called simply a classical satisfaction relation for L, if it satisfies (20)–(29). The

class of all the classical satisfaction relations for L is called the classical semantics for L.

This definition subsumes the case of classical languages in Definition 5, due to Facts 4, 6, and

8. Indeed, to fill in the gap from satisfying (20)–(26) to being classical, we only need to assume

(27)–(29) for non-primitive atomic sentences, due to the following generalization of Facts 4, 6, and

8 (it subsumes Facts 4, 6, and 8 because a classical first-order language L has npa(L) = ∅, that is,

it has no non-primitive atomic sentences).

Fact 11. Given any first-order language L, suppose (M,⊨) is a classical-type satisfaction relation

for L that satisfies (20)–(26) for every φ ∈ sent(L). Then

(i) (M,⊨) satisfies (27) for every φ ∈ sent(L), if it satisfies (27) for every φ ∈ npa(L).

(ii) (M,⊨) satisfies (28) for every φ ∈ sent(L), if it satisfies (27) for every φ ∈ sent(L) and

(28) for every φ ∈ npa(L).

(iii) (M,⊨) satisfies (29) for every φ, ψ ∈ sent(L), if it satisfies (27), (28) for every φ ∈
sent(L) and (29) for every φ, ψ ∈ npa(L).

68

Draft of November 14, 2010

Proof. By Observation 1, induction on the construction of sentences from ca(L) with classical

operators proves (i) and (ii). The induction goes in the same way as in the proofs for Facts 4 and 6

except that we now have two base cases, one for atomic sentences and the other for non-primitive

atomic sentences; but the latter is simply assumed to be the case.

To show (iii), assume its antecedent and write R(φ, ψ) to mean that both φ ∝0 ψ and (30). Then

we claim that R satisfies (iii) of Definition 11. This is proven by induction on the usual construction

of sentences—from primitive atomic sentences with all sentential operators—in a manner similar

to the proof for Fact 9, except that in case ⊗ is non-classical we use the assumption that (29) holds

for every φ, ψ ∈ npa(L). Because we can show that R satisfies (i), (ii) of Definition 11 in a manner

similar to the proof for Fact 8, it follows that ∝0 ⊆ R. Therefore φ ∝ ψ for the transitive closure ∝
of ∝0 entails the equivalence relation (30); thus (29). □

Thus, the definition of classical semantics assumes (27)–(29), at least for non-primitive atomic

sentences. As argued above, this assumption is needed to validate certain rules of classical first-

order logic: To assume more conditions for classical satisfaction relations is to make smaller the

class of those relations; and (27)–(29) make that class small enough to validate the rules at issue.

They are, nonetheless, not just assumed ad hoc to patch up the validity; rather, (27)–(29) are essen-

tial properties of classical semantics, in the sense that they make the class of classical satisfaction

relations the right size, as in:

Lemma 1. For every first-order language L, there exist

• a purely classical first-order language L′ such that var(L) = var(L′),
• a surjection ∗ : sent(L)↠ sent(L′) from the sentences of L onto those of L′, and

• a (class-sized) bijection ∗ : (M,⊨) 7→ (M∗,⊨∗) from the class of classical satisfaction

relations (M,⊨) for L—that is, classical-type satisfaction relations for L that satisfy

(27)–(29) in addition to (20)–(26)—to the class of classical satisfaction relations (M∗,⊨∗

) for L′—that is, classical-type satisfaction relations for L′ that satisfy (20)–(26)—such

that, for each classical satisfaction relation (M,⊨) for L,

– |M| = |M∗| (which implies that M and M∗ share the same set |M|var(L) = |M∗|var(L′)

of assignments) and,

– for every assignment α : var(L)→ |M| and sentence φ of L,

M ⊨α φ ⇐⇒ M∗ ⊨∗α φ∗.

69

Draft of November 14, 2010

We can say L′ as above is a purely classical or “purified” version of L; hence we will call this

lemma the “purification lemma”. This lemma means that the classical semantics for a non-classical

first-order language L is, when defined with (27)–(29), equivalent to the classical semantics for a

purified version of L, with which (27)–(29) are just derivable. In other words, when a given

language is not classical, (27)–(29) are exactly what we need to have essentially the same semantics

as for classical languages. Thus, for example, the following corollary follows from Lemma 1 (and

the soundness and completeness of classical logic for classical first-order languages):

Corollary 1. Given a first-order language L (whether classical or not), the classical logic for L is

sound and complete with respect to the classical semantics for L.

Hence the upshot of Lemma 1 is that, as long as the logic of classical semantics—validity in

it or soundness and completeness with respect to it—is concerned, we can restrict our attention to

classical first-order languages. We close this section by providing a construction and a proof for

the lemma. Although its statement above only mentiones the syntactic and semantics aspects of

“purification”, we will also show the proof-theoretic aspect as well, as Fact 13.

To construct a purified version L′ of L and operations ∗ as in Lemma 1, we need the following

definitions and observations. First, fixing a first-order languageL, let us write φ ≾ ψ, for sentences

φ and ψ of L, to mean that

• ψ = [tn/xn] · · · [t1/x1]φ for some terms t1, . . . , tn and variables x1, . . . , xn (perhaps n = 0,

to allow φ ≾ φ).12

That is, φ ≾ ψ if ψ can be obtained from φ by substituting terms. ≾ is clearly a preorder, that is,

a reflexive and transitive binary relation. It is also worth noting that, writing φ ∼ ψ to mean that

both φ ≾ ψ and ψ ≾ φ, we have φ ∼ ψ iff φ and ψ share the same variable structure with possibly

different free variables. Then, recalling that φ ∝ ψ—alpha-equivalence between φ and ψ—means

that φ and ψ share the same variable structure with possibly different bound variables, write ≈ for

the transitive closure of ∝ ∪ ∼; that is, φ ≈ ψ if

• there is a sequence of sentences φ = φ0, φ1, . . . , φn−1, φn = ψ (perhaps n = 0) such that,

for each i < n, either φi ∝ φi+1 or φi ∼ φi+1.

Thus φ ≈ ψ means that φ and ψ share the same variable structure with possibly different variables,

bound or free. ≈ is an equivalence relation because ∝ and ∼ are so.

12To make the scopes of operations explicit, [tn/xn] · · · [t1/x1]φ is [tn/xn](· · · ([t2/x2]([t1/x1]φ)) · · ·).

70

Draft of November 14, 2010

Moreover, let us introduce:

Definition 15. We say a sentence φ of L is minimally termed if φ is ≾-minimal, that is, if φ ∼ ψ
whenever ψ ≾ φ for a sentence ψ of L.

Here is a more concrete description of being minimally termed.

Observation 2. A sentence φ of L is minimally termed iff the following are the case.

• no variable occurs freely in φ more than once, and,

• moreover, if φ contains a term t that is not a variable, then t contains some variable that

is bound in φ.

For a minimally termed sentence φ of L, let us say φ is n-ary if φ contains exactly n free

variables, and then write φ(x1, . . . , xn) to refer to φ with the assumption that x1, . . . , xn occur freely

in φ in that order. Observe that every sentence ψ ofL can be written as [tn/xn] · · · [t1/x1]φ for some

minimally termed φ(x1, . . . , xn) (for some n) such that none of variables x̄ occurs in any of terms t̄;

in particular, if ψ is non-primitive atomic, then ψ = [tn/xn] · · · [t1/x1]φ for some minimally termed,

non-primitive atomic φ(x1, . . . , xn) (such that none of x̄ occurs in any of t̄).

Then write mnpa(L) for the set of minimally termed, non-primitive atomic sentences of L. So

we write mnpa(L)/≈ for the quotient of mnpa(L) by ≈; that is, writing [φ] for the equivalence

class

[φ] = {ψ ∈ mnpa(L) | φ ≈ ψ }

under ≈ to which φ ∈ mnpa(L) belongs,

mnpa(L)/≈ = { [φ] | φ ∈ mnpa(L) }

is the set of equivalence classes under ≈ of minimally termed, non-primitive atomic sentences of

L.

Using this set, we give the following language as a language L′ as required in Lemma 1:

Definition 16. Given a first-order language L, its purification, written Lpc, is the purely classical

first-order language given by the following:

• the primitive predicates of L together with the elements of mnpa(L)/≈ regarded as new

primitive predicates, so that the set of primitive predicates of Lpc is the union of the set

of those of L and mnpa(L)/≈;

71

Draft of November 14, 2010

• the same individual variables, function symbols, and constant symbols as L has; and

• the classical operators, but no other sentential operators.

By definition, var(L) = var(Lpc) as required in Lemma 1. We then further define a surjection

∗ : sent(L)↠ sent(Lpc) as in Lemma 1, by the following induction:

φ∗ = φ for an atomic sentence φ of L,

ψ∗ = [φ]t1 · · · tn for an non-primitive atomic sentence ψ of L such that

ψ = [tn/xn] · · · [t1/x1]φ for some φ(x1, . . . , xn) ∈ mnpa(L),

where none of variables x̄ occurs in any of terms t̄,

(¬φ)∗ = ¬φ∗ (similarly for ∀x and ∃x),

(φ ∧ ψ)∗ = φ∗ ∧ ψ∗ (similarly for ∨ and→).

With this definition, the following need checking, but it is easy to check them:

• The induction defines φ∗ for all φ ∈ sent(L), because all sentences of L are constructed

from classically atomic sentences of L with the classical operators.

• ∗ is well-defined, because, for each non-primitive atomic sentence ψ of L, if

ψ = [tn/xn] · · · [t1/x1]φ0 = [t′n/yn] · · · [t′1/y1]φ1

for φ0(x̄), φ1(ȳ) ∈ mnpa(L) then φ0 ∼ φ1, which implies [φ0] = [φ1], and ti = t′i for every

i ⩽ n.

• ∗ is surjective since, for each atomic sentence Ft̄ of Lpc, if F is a primitive predicate of

L then Ft̄ = (Ft̄)∗, whereas Ft̄ = ([tn/xn] · · · [t1/x1]φ)∗ if F = [φ] for φ(x̄) ∈ mnpa(L).

So far, we have “purified” L syntactically. It is worth observing that the “purification” extends

to proof-theory; Fact 13 expresses the proof-theoretic aspect of the “purification”. Let us first

observe

Fact 12. For every pair of sentences φ, ψ of L, if φ∗ = ψ∗ then φ ∝ ψ.

Proof. By induction on the construction of sentences of L from classically atomic sentences

with classical operators. □

Then we have

72

Draft of November 14, 2010

Fact 13. If a theory T in L respects alpha-equivalence, in the sense that

φ ∝ ψ =⇒ T proves φ iff it proves ψ

for every pair of sentences φ, ψ of L, then there is a theory Tpc in Lpc such that

Tpc proves φ∗ ⇐⇒ T proves φ(32)

for every sentence φ of L.

Proof. Given any theory T in L, define a theory Tpc as

Tpc proves φ ⇐⇒ T proves φ0 for some sentence φ0 of L such that φ0
∗ = φ

for every sentence φ of Lpc; in other words, Tpc is the direct image of T under ∗. Then “⇐” of (32)

is trivial. On the other hand, if T respects alpha-equivalence, it implies the last entailment below,

while Fact 12 implies the second:

Tpc proves φ∗ =⇒ T proves φ0 for some sentence φ0 of L such that φ0
∗ = φ∗

=⇒ T proves φ0 for some sentence φ0 of L such that φ0 ∝ φ

=⇒ T proves φ. □

Finally, we show the semantic aspect of the “purification”, by constructing a bijective operation

∗ : (M,⊨) 7→ (M∗,⊨∗) as in Lemma 1, as follows.

Definition 17. Given any classical satisfaction relation (M,⊨) for L, define M∗ as the expansion

M∗ = (|M|, FM, [φ]M
∗
, f M, cM)

of L structure M to Lpc such that, for each φ(x̄) ∈ mnpa(L),

[φ]M
∗
= { ā ∈ |M|n |M ⊨α φ for some α : var(L)→ |M| such that α(xi) = ai for each i ⩽ n },

and define ⊨∗ as the relation such that (M∗,⊨∗) is the classical satisfaction relation for Lpc (which

is unique because Lpc is classical).

We need to check and prove:

Remark 1. [φ]M
∗

in Definition 17 is well-defined.

To prove this, it is helpful to show:

73

Draft of November 14, 2010

Remark 2. If φ ≈ ψ for φ(x̄), ψ(ȳ) ∈ mnpa(L) then, for every α : var(L)→ |M|,

M ⊨α φ ⇐⇒ M ⊨[α(xn)/yn]···[α(x1)/y1]α ψ.

Proof. Suppose φ ≈ ψ for φ(x̄), ψ(ȳ) ∈ mnpa(L). Then there is a sequence of sentences

φ(x̄) = φ0(y0
1, . . . , y

0
n), φ1(y1

1, . . . , y
1
n), . . . , φm−1(ym−1

1 , . . . , ym−1
n), φm(ym

1 , . . . , y
m
n) = ψ(ȳ)

such that, for each i < m, φi ∈ mnpa(L) and either

(i) φi ∝ φi+1, with yi
j = y

i+1
j for all j ⩽ n, or

(ii) φi+1 = [yi+1
k /yi

k]φi for some k ⩽ n, where yi+1
k does not occur freely in φi, with yi

j = y
i+1
j

for all j ⩽ n except k.

Hence, fixing α : var(L)→ |M|, we show by induction on this sequence that

M ⊨α φ ⇐⇒ M ⊨[α(xn)/yi
n]···[α(x1)/yi

1]α φi(33)

for each i ⩽ n. This is trivial for i = 0, since φ = φ0 and [α(xn)/y0
n] · · · [α(x1)/y0

1]α = α. Suppose

(33) holds for i; we want to show that it holds for i+ 1. We have two cases corresponding to Cases

(i) and (ii) described above:

(i) In Case (i), that yi
j = y

i+1
j for all j ⩽ n trivially entails

[α(xn)/yi+1
n] · · · [α(x1)/yi+1

1]α = [α(xn)/yi
n] · · · [α(x1)/yi

1]α

and hence, by (29), φi ∝ φi+1 entails

M ⊨[α(xn)/yi
n]···[α(x1)/yi

1]α φi ⇐⇒ M ⊨[α(xn)/yi+1
n]···[α(x1)/yi+1

1]α φi+1.

(ii) In Case (ii), we have[(
[α(xn)/yi+1

n] · · · [α(x1)/yi+1
1]α
)
(yi+1

k)/yi
k

]
[α(xn)/yi+1

n] · · · [α(x1)/yi+1
1]α

= [α(xk)/yi
k][α(xn)/yi+1

n] · · · [α(x1)/yi+1
1]α

= [α(xn)/yi
n] · · · [α(x1)/yi

1][α(xk)/yi+1
k]α

because yi
j = y

i+1
j for all j ⩽ n except k (and because yi

1, . . . , y
i
n, y

i+1
k are all distinct); and

hence, by (27) and (28), φi+1 = [yi+1
k /yi

k]φi entails

M ⊨[α(xn)/yi+1
n]···[α(x1)/yi+1

1]α φi+1 ⇐⇒ M ⊨[α(xn)/yi+1
n]···[α(x1)/yi+1

1]α [yi+1
k /yi

k]φi

(28)
⇐⇒ M ⊨[([α(xn)/yi+1

n]···[α(x1)/yi+1
1]α)(yi+1

k)/yi
k][α(xn)/yi+1

n]···[α(x1)/yi+1
1]α φi

74

Draft of November 14, 2010

⇐⇒ M ⊨[α(xn)/yi
n]···[α(x1)/yi

1][α(xk)/yi+1
k]α φi

(27)
⇐⇒ M ⊨[α(xn)/yi

n]···[α(x1)/yi
1]α φi,

where the last equivalence holds by (27) because yi+1
k does not occur freely in φi.

Therefore, in either case, (33) for i implies

M ⊨α φ ⇐⇒ M ⊨[α(xn)/yi
n]···[α(x1)/yi

1]α φi ⇐⇒ M ⊨[α(xn)/yi+1
n]···[α(x1)/yi+1

1]α φi+1,

that is, that (33) holds for i + 1. □

Proof for Remark 1. For n-ary φ(x̄), ψ(ȳ) ∈ mnpa(L), suppose [φ] = [ψ]. This means φ ≈ ψ,

and hence Remark 2 implies, for every ā ∈ |M|n,

ā ∈ [φ]M
∗
=⇒ M ⊨α φ for some α : var(L)→ |M| such that α(xi) = ai for each i ⩽ n

=⇒ M ⊨[α(xn)/yn]···[α(x1)/y1]α ψ for some α : var(L)→ |M|

such that α(xi) = ai for each i ⩽ n

=⇒ M ⊨[an/yn]···[a1/y1]α ψ for some α : var(L)→ |M|

=⇒ M ⊨β ψ for some β : var(L)→ |M| such that β(yi) = ai for each i ⩽ n

=⇒ ā ∈ [ψ]M
∗
,

and, symmetrically, ā ∈ [φ]M
∗

if ā ∈ [ψ]M
∗
. Thus [φ]M

∗
= [ψ]M

∗
. □

We have two more things left to prove to establish Lemma 1.

Remark 3. For each classical satisfaction relation (M,⊨) for L, assignment α : var(L) → |M|
and sentence φ of L,

M ⊨α φ ⇐⇒ M∗ ⊨∗α φ∗.

Proof. By induction on the construction of φ from classically atomic sentences of L with the

classical operators. If φ = Ft̄ for an n-ary primitive predicate F of L, then φ∗ = Ft̄ and

M ⊨α φ ⇐⇒ t̄M,α ∈ FM ⇐⇒ M∗ ⊨∗α φ∗

for every assignment α : var(L) → |M|. If φ is an non-primitive atomic sentence of L, then

φ = [tn/xn] · · · [t1/x1]ψ for some ψ(x1, . . . , xn) ∈ mnpa(L) such that none of variables x̄ occurs in

75

Draft of November 14, 2010

any of terms t̄, and hence φ∗ = [ψ]t̄ and, for every assignment α : var(L)→ |M|,

M ⊨α φ ⇐⇒ M ⊨α [tn/xn] · · · [t1/x1]ψ

(28)
⇐⇒ M ⊨[tnM,α/xn]α [tn−1/xn−1] · · · [t1/x1]ψ

(28)
⇐⇒ M ⊨[tn−1M,[tnM,α/xn]α/xn−1][tnM,α/xn]α [tn−2/xn−2] · · · [t1/x1]ψ

†
⇐⇒ M ⊨[tn−1M,α/xn−1][tnM,α/xn]α [tn−2/xn−2] · · · [t1/x1]ψ

···
⇐⇒ M ⊨[t1M,α/x1]···[tnM,α/xn]α ψ

‡
⇐⇒ M ⊨[tnM,α/xn]···[t1M,α/x1]α ψ

⇐⇒ t̄M,α ∈ [ψ]M
∗

⇐⇒ M∗ ⊨∗α [ψ]t̄

⇐⇒ M∗ ⊨∗α φ∗.

Here the equivalence marked with † holds by Fact 3 since none of variables x̄ occurs in any of

terms t̄, which also yields the equivalence marked with ‡.
Now, given sentences φ and ψ of L, suppose

M ⊨α φ ⇐⇒ M∗ ⊨∗α φ∗, M ⊨α ψ ⇐⇒ M∗ ⊨∗α ψ∗

for every assignment α : var(L)→ |M|. Then, for every α : var(L)→ |M|,

M ⊨α φ ∧ ψ ⇐⇒ M ⊨α φ and M ⊨α ψ

⇐⇒ M∗ ⊨∗α φ∗ and M∗ ⊨∗α ψ∗

⇐⇒ M∗ ⊨∗α φ∗ ∧ ψ∗

⇐⇒ M∗ ⊨∗α (φ ∧ ψ)∗

because (φ ∧ ψ)∗ = φ∗ ∧ ψ∗, and also

M ⊨α ∀x .φ ⇐⇒ M ⊨[a/x]α φ for every a ∈ |M|

⇐⇒ M∗ ⊨∗[a/x]α φ
∗ for every a ∈ |M|

⇐⇒ M∗ ⊨∗α ∀x .φ∗

⇐⇒ M∗ ⊨∗α (∀x .φ)∗

76

Draft of November 14, 2010

because (∀x .φ)∗ = ∀x .φ∗. Similarly for ¬, ∨,→, and ∃x. □

Remark 4. The operation ∗ : (M,⊨) 7→ (M∗,⊨∗) defined in Definition 17 is bijective.

Proof. To show ∗ injective, fix two distinct classical satisfaction relations (M,⊨), (M′,⊨′) for

L. If M , M′ then M∗ , M′∗ and hence (M∗,⊨∗) , (M′∗,⊨′∗). Assume M = M′, on the other

hand. Then ⊨ , ⊨′ , which means M ⊨α φ ⇐⇒ M′ ⊭′α φ for some sentence φ of L. Therefore

Remark 3 implies M∗ ⊨∗α φ∗ ⇐⇒ M′∗ ⊭′∗α φ∗, which means (M∗,⊨∗) , (M′∗,⊨′∗). Thus ∗ is

injective.

To show ∗ surjective, fix a classical satisfaction relation (M,⊨) for Lpc. Let M′ be the restric-

tion of M to L, and let ⊨′ ⊆ |M|var(L) × sent(L) be such that

M′ ⊨′α φ ⇐⇒ M ⊨α φ
∗

for every α : var(L)→ |M| and φ ∈ sent(L). We first claim that (M′,⊨′) is a classical satisfaction

relation for L, by showing that it satisfies (20)–(29). It satisfies (21) because

M′ ⊨′α φ ∧ ψ ⇐⇒ M ⊨α (φ ∧ ψ)∗

⇐⇒ M ⊨α φ
∗ ∧ ψ∗

⇐⇒ M ⊨α φ
∗ and M ⊨α ψ

∗

⇐⇒ M′ ⊨′α φ and M′ ⊨′α ψ;

similarly for (20), (22), (23). (M′,⊨′) satisfies (24) because

M′ ⊨′α ∀x .φ ⇐⇒ M ⊨α (∀x .φ)∗

⇐⇒ M ⊨α ∀x .φ∗

⇐⇒ M ⊨[a/x]α φ
∗ for every a ∈ |M|

⇐⇒ M′ ⊨′[a/x]α φ for every a ∈ |M| = |M′|;

similarly for (25). (M′,⊨′) satisfies (26) because

M′ ⊨′α Ft̄ ⇐⇒ M ⊨α (Ft̄)∗ ⇐⇒ M ⊨α Ft̄ ⇐⇒ t̄M,α ∈ FM = FM′
.

To show that (M′,⊨′) satisfies (27)–(29), it is enough, by Fact 11, to show just that it satisfies

(27)–(29) for every non-primitive atomic sentence of L. Fix any non-primitive atomic φ; then

77

Draft of November 14, 2010

φ = [tn/xn] · · · [t1/x1]ψ for some ψ(x1, . . . , xn) ∈ mnpa(L) such that none of variables x̄ occurs in

any of terms t̄, and hence φ∗ = [ψ]t̄.

Now, fix any assignments α, β : var(L) → |M| such that α(y) = β(y) for every free variable y

in φ. Then α(y) = β(y) for every variable y that occurs in any of t̄ and hence for every free variable

y in φ∗ = [ψ]t̄. Therefore

M′ ⊨′α φ ⇐⇒ M ⊨α φ
∗ ⇐⇒ M ⊨β φ

∗ ⇐⇒ M′ ⊨′β φ

because (M,⊨) satisfies (27). Thus (M′,⊨′) satisfies (27) for φ.

Fix a variable y that occurs freely in φ (which implies y is not any of x̄) and a term t that is free

for y in φ. Then y does not occur freely in ψ and hence

[t/y]φ = [t/y]([tn/xn] · · · [t1/x1]ψ) = [[t/y]tn/xn] · · · [[t/y]t1/x1]ψ,

([t/y]φ)∗ = [ψ]([t/y]t1) · · · ([t/y]t1) = [t/y]([ψ]t̄).

Therefore, for every assignment α : var(L)→ |M|,

M′ ⊨′α [t/y]φ ⇐⇒ M ⊨α ([t/y]φ)∗

⇐⇒ M ⊨α [t/y]([ψ]t̄)

⇐⇒ M ⊨[tM,α/y]α [ψ]t̄

⇐⇒ M ⊨[tM,α/y]α φ
∗

⇐⇒ M′ ⊨′[tM,α/y]α φ

because (M,⊨) satisfies (28). Thus (M′,⊨′) satisfies (28) for φ.

Fix any sentence φ′ of L such that φ′ ∝ φ. Then, clearly, φ′ = [tn/yn] · · · [t1/y1]ψ′ for some

ψ′(y1, . . . , yn) ∈ mnpa(L) such that none of variables ȳ occurs in any of t̄ and such that ψ′ ∝ ψ,

which means [ψ′] = [ψ]. Hence φ′∗ = [ψ′]t̄ = [ψ]t̄ = φ∗ and, for every assignment α : var(L) →
|M|,

M′ ⊨′α φ ⇐⇒ M ⊨α φ
∗ ⇐⇒ M ⊨α φ

′∗ ⇐⇒ M′ ⊨′α φ′.

Thus (M′,⊨′) satisfies (29) for φ. Therefore (M′,⊨′) is a classical satisfaction relation for L.

Lastly, we claim (M,⊨) = (M′∗,⊨′∗). Fix any φ(x̄) ∈ mnpa(L); then φ∗ = [φ]x̄. Hence

ā ∈ [φ]M
∗ ⇐⇒ M ⊨α [φ]x̄ for some α : var(L)→ |M| such that α(xi) = ai for each i ⩽ n

78

Draft of November 14, 2010

⇐⇒ M ⊨α φ
∗ for some α : var(L)→ |M| such that α(xi) = ai for each i ⩽ n

⇐⇒ M′ ⊨′α φ for some α : var(L)→ |M| such that α(xi) = ai for each i ⩽ n.

Therefore (M,⊨) = (M′∗,⊨′∗) by Definition 17. Thus ∗ is bijective. □

Thus we have proven:

Lemma 1 (Purification lemma). For any first-order language L and its purification Lpc, which is

given by (perhaps) adding new primitive predicates to L, there exist

• a surjection ∗ : sent(L)↠ sent(Lpc) such that

– if a theory T in L respects alpha-equivalence, then there is a theory Tpc in Lpc such

that, for every sentence φ of L,

Tpc proves φ∗ ⇐⇒ T proves φ,

• a (class-sized) bijective operation ∗ : (M,⊨) 7→ (M∗,⊨∗) from the class of classical

satisfaction relations for L to the class of those for Lpc such that, for each classical

satisfaction relation (M,⊨) for L,

– M∗ is an expansion of the L structure M to Lpc;

– (M∗,⊨∗) is the unique classical satisfaction relation for Lpc on M∗; and,

– moreover, for every assignment α : var(L)→ |M| and sentence φ of L,

M ⊨α φ ⇐⇒ M∗ ⊨∗α φ∗.

III.2. Operational Semantics for First-Order Free Logic

III.2.1. Existence and Two Notions of Domain. Recall that in Subsection III.1.1 we intro-

duced two terms, domain of individuals (on p. 53) and domain of quantification (on p. 54), and

that, although we did let them refer to the same set |M| (given an L structure M), we associated

with those two terms two different ideas:

(i) the domain of individuals is the range of assignments (p. 53);

(ii) the domain of quantification is the set over which the variable x of a quantifier ∀x or ∃x

ranges (p. 54).

Henceforth we distinguish the two notions by, given an L structure M, writing |M| for its domain

of individuals and ∀M for its domain of quantification. So, to expand the ideas,

79

Draft of November 14, 2010

(i) The assignments are exactly the maps from var(L) to |M|, so that we regard the notation

M ⊨α φ as making sense for any α : var(L) → |M|. In other words, for any a ∈ |M|,
it makes sense to ask whether or not a satisfies a given property F in M (via taking an

assignment α such that α(x) = a and asking whether M ⊨α Fx or not).

(ii) The variable x in quantifiers ∀x and ∃x ranges over ∀M, in the sense that

M ⊨α ∀x .φ ⇐⇒ M ⊨[a/x]α φ for every a ∈ ∀M,(34)

M ⊨α ∃x .φ ⇐⇒ M ⊨[a/x]α φ for some a ∈ ∀M,(35)

replacing (24) and (25).

It should be clear that we need to set ∀M ⊆ |M| because, for M ⊨[a/x]α φ to make sense, we need

to have [a/x]α : var(L)→ |M| and hence a = ([a/x]α)(x) ∈ |M|. In Subsection III.1.1, we further

set ∀M = |M|; but this is a stipulation, however natural it may be. In this subsection, we discuss

both the technical and conceptual import of this stipulation.

Before starting the discussion, let us introduce the following terminology, because our discus-

sion in this subsection, and for the most part of the next subsection, ignores function and constant

symbols.

Definition 18. A quantified language is a first-order language (Definition 13) that has no function

or constant symbols.

To start discussing the import of the stipulation ∀M = |M|, then, let us define what the semantics

would look like without the stipulation. The essential idea is merely to add ∀M ⊆ |M| to structures

and to replace (24) and (25) with (34) and (35).

Definition 19. Given a quantified language L, we call a tuple M = (|M|,∀M, FM) a two-domain

L structure if (|M|, FM) is an L structure (Definition 2) and ∅ , ∀M ⊆M.

Definition 20. Given a quantified language L, a two-domain-type satisfaction relation for L is

a pair of a two-domain L structure M and any relation (M ⊨− −) ⊆ |M|var(L) × sent(L), as in

M ⊨α φ. We say a two-domain-type satisfaction relation for L is on M if its first coordinate is a

two-domain L structure M.

Definition 21. Given a quantified language L, we say, for each two-domain-type satisfaction rela-

tion (M,⊨) for L,

80

Draft of November 14, 2010

• a sentence φ of L is valid in (M,⊨), and write M ⊨ φ, meaning that M ⊨α φ for every

assignment α : var(L)→ |M|; and

• an inference (Γ, φ) in L is valid in (M,⊨), meaning that if M ⊨ ψ for all ψ ∈ Γ then

M ⊨ φ.

Given a class of two-domain-type satisfaction relations for L, we say a sentence or inference is

valid in that class if it is valid in every member of that class.

Definition 22. Given a quantified language L, a two-domain-type satisfaction relation for L is

called a two-domain satisfaction relation for L if it satisfies (20)–(23), (26)–(29), (34), (35) (in

which M now ranges over two-domainL structures).13 The class of all the two-domain satisfaction

relations for L is called the two-domain semantics for L.

Here we take (27)–(29)—local determination, SoS property, and AE property—as part of the

definition of two-domain satisfaction relations, rather than as derived properties, for the same rea-

son we discussed in Subsection III.1.3. And, in a similar manner to our proofs in Subsection III.1.3,

we can prove the two-domain versions not only of Fact 11 but also of Lemma 1, the purification

lemma.

Lemma 2. For every first-order language L and its purification Lpc (Definition 16), there exist a

surjection ∗ : sent(L) ↠ sent(Lpc) and an bijective operation ∗ : (M,⊨) 7→ (M∗,⊨∗) from the

class of two-domain satisfaction relations for L to the class of those for Lpc such that, for each

two-domain satisfaction relation (M,⊨) for L,

• M∗ is an expansion of L structure M to Lpc;

• (M∗,⊨∗) is the (unique) two-domain satisfaction relation for Lpc on M∗; and,

• moreover, for every assignment α : var(L)→ |M| and sentence φ of L,

M ⊨α φ ⇐⇒ M∗ ⊨∗α φ∗.

Now that we have defined the semantics without the stipulation ∀M = |M|, let us discuss

the import of that stipulation. It should be clear that, given a quantified language L, every L
structure M = (|M|, FM) can be identified with the two-domain L structure (|M|,∀M, FM) with

13As the quantified language L has no function or constant symbols, we could take the simpler (19) in place

of (26); yet the definition with (26) extends to the general case of first-order languages with function and constant

symbols.

81

Draft of November 14, 2010

∀M = |M|, for which (34) and (35) coincide with (24) and (25). So it follows that the class

of classical satisfaction relations for L as in Subsection III.1.1 is just the class of two-domain

satisfaction relations for L restricted to the class of L structures. Therefore, the technical import

of the stipulation ∀M = |M| can be captured by the axioms and rules that are valid in the classical

semantics but not in the two-domain semantics: the stipulation is required to validate those axioms

and rules.

In this sense, the stipulation is required to validate, in particular, the axioms

∀x .φ→ φ, φ→ ∃x .φ.

To see this (that is, to show these invalid in the two-domain semantics), fix a two-domain L struc-

ture M such that ∀M ⊆ FM ⊂ |M| for a unary predicate F, so that we can pick b ∈ |M| \ FM and

α : var(L)→ |M| such that α(x) = b. Then (26) implies

M ⊭α Fx, M ⊨α ¬Fx

because α(x) = b < FM. On the other hand, (34) and (35) imply

M ⊨α ∀x Fx, M ⊭α ∃x¬Fx

because each a ∈ ∀M has ([a/x]α)(x) = a ∈ ∀M ⊆ FM and hence

M ⊨[a/x]α Fx, M ⊭[a/x]α ¬Fx.

Therefore, by (23),

M ⊭α ∀x Fx→ Fx, M ⊭α ¬Fx→ ∃x¬Fx.

To describe this invalidity in less rigorous terms, Fx is true of “everything” but not of b = α(x),

and ¬Fx is true of b but not of “something”; in this sense, b < ∀M means that b does not count as

a “thing” as in “everything” and “something”. Or one may find it better to say b is a non-existing

individual. For example, we might think it makes some sense to ask whether Sherlock Holmes is

a logician or not; but, even if Holmes is a logician, it does not imply that a logician exists, since

Holmes does not exist. Thus we can regard ∀M as the set of existing individuals, with |M| the set

of all individuals, existing or not. This reading of stipulating (or not stipulating) ∀M = |M| turns

out to be conceptually significant in the context of Kripke’s semantics for quantified modal logic,

which we will review in Section IV.1.

82

Draft of November 14, 2010

It is interesting (and will be relevant later in Subsection IV.1.2) to note that if ∀M ⊂ |M| then,

even though the axioms ∀x .φ → φ and φ → ∃x .φ are not valid, their universally quantified

versions, namely

∀x (∀x .φ→ φ), ∀x (φ→ ∃x .φ),

are still valid. Whereas we discussed above what is not valid in two-domain semantics, let us also

discuss what is valid.

To show the sentences above to be valid in the two-domain semantics for a given quantified

language L, fix any two-domain satisfaction relation (M,⊨) for L, assignment α : var(L) → |M|
and a ∈ ∀M. Then, if M ⊨[a/x]α ∀x .φ, then (34) implies M ⊨[a/x]([a/x]α) φ because a ∈ ∀M, but then

M ⊨[a/x]α φ since [a/x]([a/x]α) = [a/x]α; thus

M ⊨[a/x]α ∀x .φ→ φ

by (23). Also, if M ⊨[a/x]α φ, then M ⊨[a/x]([a/x]α) φ because [a/x]α = [a/x]([a/x]α), and hence

a ∈ ∀M implies M ⊨[a/x]α ∃x .φ by (35); thus (23) implies

M ⊨[a/x]α φ→ ∃x .φ.

Because these hold for every a ∈ ∀M, (34) implies

M ⊨α ∀x (∀x .φ→ φ), M ⊨α ∀x (φ→ ∃x .φ).

The moral of this proof is that, even though the individuals b < ∀M outside ∀M may not validate

classical quantifier logic, it does not prevent the individuals a ∈ ∀M in ∀M from validating it. This

observation can be formally stated as Theorem 3 below, but to state it we need some definitions.

First, let us introduce a subclass of assignments:

Definition 23. Given a quantified language L and a two-domain L structure M, we mean by a

domain-of-quantification assignment, or DoQ-assignment for short, any map α : var(L)→ ∀M.

Using this notion, we can add a new notion of validity.

Definition 24. We rename the notion of validity in Definition 21 all-assignment validity, or AA-

validity for short, and introduce a new notion, domain-of-quantification validity, or DoQ-validity

for short: Given a quantified language L, we say, for each two-domain-type satisfaction relation

(M,⊨) for L,

83

Draft of November 14, 2010

• a sentence φ of L is DoQ-valid in (M,⊨), and write M ⊨∀ φ, meaning that M ⊨α φ for

every DoQ-assignment α : var(L)→ ∀M; and

• an inference (Γ, φ) in L is DoQ-valid in (M,⊨), meaning that if M ⊨∀ ψ for all ψ ∈ Γ
then M ⊨∀ φ.

Given a class of two-domain-type satisfaction relations for L, we say a sentence or inference is

DoQ-valid in that class if it is DoQ-valid in every member of that class.

Note the following, immediate consequence of (27), that is, of local determination.

Fact 14. In a two-domain satisfaction relation for a quantified language L, any closed sentence φ

of L is AA-valid if and only if it is DoQ-valid.

The observation above that classical quantifier logic is valid within ∀M, though not valid outside

∀M, is formally incorporated in:

Theorem 3. For a quantified language L, classical quantifier logic is sound and complete with

respect to the DoQ-validity in the two-domain semantics for L.

This together with Fact 14 entails:

Corollary 2. For a quantified language L, if a sentence φ of L is a theorem of classical quantifier

logic and if x1, . . . , xn are the only free variables in φ, then ∀x1 · · · ∀xn .φ is valid in the two-domain

semantics for L.

To prove Theorem 3, the completeness of classical quantifier logic with respect to the two-

domain semantics is immediate from its completeness with respect to the classical semantics, since

the latter semantics is a subclass of the former. The soundness is more significant; even though

we can prove it by fixing an axiomatic system of classical quantifier logic and checking that its

axioms and rules are DoQ-valid, the soundness follows from a conceptually more interesting prop-

erty of the two-domain semantics for quantifier logic. Intuitively put, this property is that, in the

two-domain semantics, whatever holds outside the domain of quantification does not make any

difference to what holds within the domain. In this sense, we may adopt the slogan that the domain

of quantification is “autonomous” in the two-domain semantics.

It is, however, a tricky problem how to formally express this intuitive idea. In order to solve

this problem, it is essential to have available a different notation to the semantics we reviewed so

far.

84

Draft of November 14, 2010

III.2.2. Operational Semantics: A First Step. As defined in Subsection III.2.1, a two-domain

satisfaction relation (M,⊨) for a first-order language L consists of a two-domain L structure M

and a relation ⊨ ⊆ |M|var(L) × sent(L) that satisfies certain conditions. In this subsection, we first

rewrite this relation and interpret sentences with their “extensions”, and then extend the notation

to also interpret other parts of the vocabulary—not only terms but also sentential operators. In

Subsection III.2.4, this new notation will serve the purpose of formally expressing the idea that the

domain of quantification is “autonomous” in the two-domain semantics.

Given any sets X and Y , a relation R ⊆ X×Y is mathematically equivalent to its “left transpose”
←−
R : Y → P(X), which is defined by

←−
R (b) = { a ∈ X | Rab } ⊆ X.

In other words, when we identify the relation R with its characteristic function

R : X × Y → 2,

where 2 = {0, 1} is the set of truth values, the left transpose
←−
R is the map

←−
R : Y → (X → 2).

With X = |M|var(L) and Y = sent(L), we take the left transpose of

⊨ ⊆ |M|var(L) × sent(L), or ⊨ : |M|var(L) × sent(L)→ 2;

that is, we define

⟦−⟧ : sent(L)→ P(|M|var(L)), or ⟦−⟧ : sent(L)→ (|M|var(L) → 2),

by

⟦φ⟧ = {α ∈ |M|var(L) |M ⊨α φ } ⊆ |M|var(L).

In other words, ⟦φ⟧ is the set of assignments relative to which φ is true in M.14 So, in this notation,

φ is valid in (M,⊨) ⇐⇒ ⟦φ⟧ = |M|var(L)

14⟦−⟧ as the left transpose of ⊨ is determined solely by ⊨ , and is not dependent on M (except that the type of ⊨
depends on the domain |M| of individuals). We will, however, extend the ⟦−⟧ notation to interpret terms, and then it

will depend partly on M.

85

Draft of November 14, 2010

for classical-type satisfaction relations; and, for two-domain-type satisfaction relations,

φ is AA-valid in (M,⊨) ⇐⇒ ⟦φ⟧ = |M|var(L),

φ is DoQ-valid in (M,⊨) ⇐⇒ (∀M)var(L) ⊆ ⟦φ⟧,

where (∀M)var(L) is the set var(L)→ ∀M of DoQ-assignments for a two-domain L structure M.

In this notation, the truth condition (21), for example, amounts to

α ∈ ⟦φ ∧ ψ⟧ ⇐⇒ α ∈ ⟦φ⟧ and α ∈ ⟦ψ⟧,

and hence

⟦φ ∧ ψ⟧ = ⟦φ⟧ ∩ ⟦ψ⟧.

We express this fact by saying that the operation ∩ interprets the operator ∧, and write (with abuse,

or extension, of notation) that

⟦∧⟧ = ∩|M|var(L) : P(|M|var(L)) × P(|M|var(L))→ P(|M|var(L)),

so that ⟦φ ∧ ψ⟧ = ⟦∧⟧(⟦φ⟧, ⟦ψ⟧);15 or, more tellingly,

⟦φ ∧ ψ⟧ = ⟦φ⟧⟦∧⟧⟦ψ⟧.

Similarly, (20) and (22) are expressed by

⟦¬⟧ = |M|var(L) \ − : P(|M|var(L))→ P(|M|var(L)),

⟦∨⟧ = ∪|M|var(L) : P(|M|var(L)) × P(|M|var(L))→ P(|M|var(L)).

(23) can be expressed by saying that

⟦→⟧ : P(|M|var(L)) × P(|M|var(L))→ P(|M|var(L))

satisfies, for any A, B ⊆ |M|var(L),

⟦→⟧(A, B) = {α ∈ |M|var(L) | either α < A or α ∈ B }.

15Strictly speaking, (21) defines the interpretation of ∧ only on subsets of |M|var(L) of the form ⟦φ⟧. In this sense,

⟦∧⟧ = ∩|M|var(L) is stronger than (21). This difference is, however, not significant for our purpose.

86

Draft of November 14, 2010

It is worth noting that ⟦¬⟧ can be alternatively defined as follows. Let us write ¬2 : 2 → 2 for

the truth function—that is, the operation on 2—such that

¬2(1) = 0, ¬2(0) = 1.

Also write ◦ for the composition of two maps. Then, identifying A ⊆ |M|var(L) with A : |M|var(L) →
2, we can see (20) means that

⟦¬⟧(A) = ¬2 ◦ A : |M|var(L) → 2,

as in the following commutative diagram:

|M|var(L) A //

⟦¬⟧(A)
$$I

II
II

II
II

II
II

II

=

2

¬2

��
2

In short, ⟦¬⟧ is given by the “postcomposition” with ¬2, so that

⟦¬⟧ = ¬2 ◦ −.(36)

To define ⟦∧⟧, ⟦∨⟧, ⟦→⟧ in a similar vein, write ∧2,∨2,→2 : 2 × 2 → 2 for the truth functions

such that

∧2(0, 0) = ∧2(0, 1) = ∧2(1, 0) = 0, ∧2(1, 1) = 1,

∨2(0, 0) = 0, ∨2(0, 1) = ∨2(1, 0) = ∨2(1, 1) = 1,

→2(1, 0) = 0, →2(0, 0) =→2(0, 1) =→2(1, 1) = 1.

Also, let us introduce the notation that, given maps f1 : X → Y1, . . . , fn : X → Yn of the same

domain X, ⟨ f1, . . . , fn⟩ is the map ⟨ f1, . . . , fn⟩ : X → Y1 × · · · × Yn such that

⟨ f1, . . . , fn⟩(a) = (f1(a), . . . , fn(a)).

Then, given A, B : |M|var(L) → 2, (21)–(23) mean that

⟦∧⟧(A, B) = ∧2 ◦ ⟨A, B⟩ : |M|var(L) → 2, ⟦∧⟧ = ∧2 ◦ −,(37)

⟦∨⟧(A, B) = ∨2 ◦ ⟨A, B⟩ : |M|var(L) → 2, ⟦∨⟧ = ∨2 ◦ −,(38)

⟦→⟧(A, B) =→2 ◦ ⟨A, B⟩ : |M|var(L) → 2, ⟦→⟧ =→2 ◦ −,(39)

87

Draft of November 14, 2010

as in:

|M|var(L)
⟨A, B⟩

//

⟦∧⟧(A, B)
%%KK

KKK
KKK

KKK
KKK

KK

=

2 × 2

∧2

��
2

|M|var(L)
⟨A, B⟩

//

⟦∨⟧(A, B)
%%KK

KKK
KKK

KKK
KKK

KK

=

2 × 2

∨2

��
2

|M|var(L)
⟨A, B⟩

//

⟦→⟧(A, B)
%%KK

KKK
KKK

KKK
KKK

KK

=

2 × 2

→2

��
2

In general, let us adopt:

Definition 25. We say an (n-ary) operation f : P(|M|var(L))n → P(|M|var(L)) is truth-functional if it

is a postcomposition f = f2 ◦ − with some (n-ary) truth function f2 : 2n → 2.

To interpret the quantifiers with ⟦∀x⟧, ⟦∃x⟧ : P(|M|var(L))→ P(|M|var(L)) so that

⟦∀x .φ⟧ = ⟦∀x⟧⟦φ⟧, ⟦∃x .φ⟧ = ⟦∃x⟧⟦φ⟧,

consider the conditions that

⟦∀x⟧(A) = {α ∈ |M|var(L) | [a/x]α ∈ A for every a ∈ ∀M },(40)

⟦∃x⟧(A) = {α ∈ |M|var(L) | [a/x]α ∈ A for some a ∈ ∀M }.(41)

(34) and (35) mean (40) and (41), respectively, because we have

α ∈ ⟦∀x .φ⟧ = ⟦∀x⟧⟦φ⟧ ks
(40)

+3
KS

��

[a/x]α ∈ ⟦φ⟧ for every a ∈ ∀M

KS

��

M ⊨α ∀x .φ ks
(34)

+3 M ⊨[a/x]α φ for every a ∈ ∀M

for ∀x, and similarly for ∃x.16 We will provide a further analysis of such ⟦∀x⟧ and ⟦∃x⟧ in Sub-

section III.2.3.

Before expressing the truth condition (26) for atomic sentences in the ⟦−⟧ notation, we need

to extend that notation to interpret terms. This requires fixing an L structure;17 but once we fix M,

16We can also interpret the quantifiers ∀ and ∃ themselves—as opposed to ∀x and ∃x—with ⟦∀⟧, ⟦∃⟧ : var(L)→

(P(|M|var(L))→ P(|M|var(L))) such that ⟦∀⟧(x) = ⟦∀x⟧ and ⟦∃⟧(x) = ⟦∃x⟧, though they are not useful for our purpose.
17We have not discussed how to interpret function and constant symbols in two-domainL structures. Nonetheless,

as long as a two-domainL structure M interprets f with a map of the type fM : |M|n → |M| (perhaps subject to certain

restrictions)—as we will see it does—the following remarks on how to rewrite tM,α with ⟦t⟧ extend straightforwardly

to the two-domain case.

88

Draft of November 14, 2010

we can interpret terms simply by taking ⟦t⟧ : α 7→ tM,α (Definition 3); that is,

⟦t⟧ : |M|var(L) → |M|

such that ⟦t⟧(α) = tM,α. Indeed, by observing that the recursive definition of tM,α in Definition 3

amounts to

⟦x⟧(α) = xM,α = α(x),

⟦ f t1, . . . , tn⟧(α) = (f t1, . . . , tn)M,α = fM(t1
M,α, . . . , tn

M,α) = f M(⟦t1⟧(α), . . . , ⟦tn⟧(α)),

we can define ⟦t⟧ as follows. First let us introduce the notation that, given maps f1 : X → Y1,

. . . , fn : X → Yn (note that they share the same domain X), we write ⟨ f1, . . . , fn⟩ for the map

⟨ f1, . . . , fn⟩ : X → Y1 × · · · × Yn such that

⟨ f1, . . . , fn⟩(a) = (f1(a), . . . , fn(a)).

So, ⟨⟦t1⟧, . . . , ⟦tn⟧⟩ : |M|var(L) → |M|n is such that

⟨⟦t1⟧, . . . , ⟦tn⟧⟩(α) = (⟦t1⟧(α), . . . , ⟦tn⟧(α)).

Then the observation above on ⟦ f t1, . . . , tn⟧(α) amounts to

⟦ f t1, . . . , tn⟧(α) = f M ◦ ⟨⟦t1⟧, . . . , ⟦tn⟧⟩(α),

that is,

|M|var(L)

⟨⟦t1⟧, . . . , ⟦tn⟧⟩
//

⟦ f t1, . . . , tn⟧

((

=

|M|n
f M

// |M|,

Hence we can define ⟦t⟧ : |M|var(L) → |M| recursively with

⟦x⟧ : α 7→ α(x);

⟦ f t1, . . . , tn⟧ = f M ◦ ⟨⟦t1⟧, . . . , ⟦tn⟧⟩.

It is worth noting that the latter clause subsumes the case of constant symbols, with n = 0. Recall

cM : |M|0 → |M|, where |M|0 = {∗}, so c refers to cM(∗). Then, with n = 0 for ⟨⟦t1⟧, . . . , ⟦tn⟧⟩ :

89

Draft of November 14, 2010

|M|var(L) → |M|n, write ⟨⟩ : |M|var(L) → |M|0 (so that ⟨⟩(α) = ∗ for all α ∈ |M|var(L)). This yields

⟦c⟧ = cM ◦ ⟨⟩ as in

|M|var(L)

⟨⟩
//

⟦c⟧

''

=

|M|0
cM

// |M|,

and, for each α ∈ |M|var(L),

⟦c⟧(α) = cM ◦ ⟨⟩(α) = cM(∗).

Now that we have rewritten the interpretation of terms, we can rewrite the truth condition (26)

for atomic sentences. It is helpful to regard ⟦φ⟧ ⊆ |M|var(L), for a sentence φ in general, as a map

⟦φ⟧ : |M|var(L) → 2.

In a similar vein, the interpretation FM ⊆ |M|n (in M) of an n-ary primitive predicate ofL is a map

FM : |M|n → 2.

Then (26) can be expressed by

⟦Ft1 · · · tn⟧ = FM ◦ ⟨⟦t1⟧, . . . , ⟦tn⟧⟩(42)

as in

|M|var(L)

⟨⟦t1⟧, . . . , ⟦tn⟧⟩
//

⟦Ft1, . . . , tn⟧

((

=

|M|n
FM

// 2,

because we have the following:

⟦Ft̄⟧(α) = 1 ks
(42)

+3
KS

��

FM ◦ ⟨⟦t1⟧, . . . , ⟦tn⟧⟩(α) = 1
KS

��

⟨⟦t1⟧, . . . , ⟦tn⟧⟩(α) ∈ FM

KS

��

M ⊨α Ft̄ ks
(26)

+3 t̄M,α ∈ FM

Let us summarize the observations so far into the following form of definition.

90

Draft of November 14, 2010

Definition 26. Given a first-order language L, a two-domain-type interpretation for L is a pair of

a two-domain L structure M and a map ⟦−⟧ that assigns, to each term t, sentence φ, and n-ary

sentential operator ⊗ of L, maps

⟦t⟧ : |M|var(L) → |M|,

⟦φ⟧ : |M|var(L) → 2,

⟦⊗⟧ : P(|M|var(L))n → P(|M|var(L))

that satisfy

⟦x⟧ : α 7→ α(x),

⟦ f t1 · · · tn⟧ = fM ◦ ⟨⟦t1⟧, . . . , ⟦tn⟧⟩,

⟦Ft1 · · · tn⟧ = FM ◦ ⟨⟦t1⟧, . . . , ⟦tn⟧⟩,

⟦⊗(φ1, . . . , φn)⟧ = ⟦⊗⟧(⟦φ1⟧, . . . , ⟦φn⟧).

We say a two-domain-type interpretation for L is on M if its first coordinate is M. Moreover, we

say it is a classical-type interpretation forL if it is on anL structure (that is, on M with ∀M = |M|).

Note that, whereas every two-domain-type (or, respectively, classical-type) interpretation for

L gives rise to a two-domain-type (or, respectively, classical-type) satisfaction relation for L via

transposition, not every satisfaction relation arises in that way. This is because the clause (26) for

atomic sentences and Fact 9 are part of the definition for interpretations—(26) is expressed by (42),

and Fact 9 simply means that ⟦⊗⟧(⟦φ1⟧, . . . , ⟦φn⟧) = ⟦⊗⟧(⟦ψ1⟧, . . . , ⟦ψn⟧) if ⟦φi⟧ = ⟦ψi⟧ for all

i ⩽ n—but not for satisfaction relations. Nonetheless, when L is classical, the following subclass

of two-domain-type (or, respectively, classical-type) interpretations for L is equivalent to the class

of two-domain (or, respectively, classical) satisfaction relations for L.

Definition 27. Given a classical first-order language L, a two-domain-type interpretation for L on

M is said to be a two-domain interpretation for L, if it satisfies (36)–(41):

⟦¬⟧ = ¬2 ◦ −,(36)

⟦∧⟧ = ∧2 ◦ −,(37)

⟦∨⟧ = ∨2 ◦ −,(38)

91

Draft of November 14, 2010

⟦→⟧ =→2 ◦ −,(39)

⟦∀x⟧ : A 7→ {α ∈ |M|var(L) | [a/x]α ∈ A for every a ∈ ∀M },(40)

⟦∃x⟧ : A 7→ {α ∈ |M|var(L) | [a/x]α ∈ A for some a ∈ ∀M }.(41)

Moreover, by a classical interpretation for L we mean a classical-type two-domain interpretation

for L (that is, a two-domain interpretation for L on M with ∀M = |M|).

The remark above, just before Definition 47, can be put more rigorously, as follows:

Fact 15. Let L be a quantified language. Given any two-domain-type interpretation (M, ⟦−⟧) for

L, define a relation ⊨ ⊆ W × Dvar(L) × sent(L) by transposition

M, w ⊨α φ ⇐⇒ (w, α) ∈ ⟦φ⟧.

This gives an operation from the class of two-domain-type interpretations (M, ⟦−⟧) for L to the

class of two-domain-type satisfaction relations (M,⊨) for L. Restricted to the class of classical-

type interpretations for L, this operation is to the class of classical-type satisfaction relations.

Moreover, if L is classical, this operation is bijective when restricted to the class of two-domain

interpretations for L (or to the class of classical interpretations for L).

Therefore, when L is classical, the classical semantics and the two-domain semantics for L—

which are simply the classes of classical and two-domain satisfaction relations—are given by the

classes of classical and two-domain interpretations for L.18

III.2.3. A Bit Categorical Preliminary. In this subsections, we give a more algebraic analy-

sis of two-domain-type interpretations, with the help of some notions and insights from category

theory and topos theory. This makes available some observations that will be useful later in proofs,

as well as technical tools essential in expressing the autonomy of a domain of quantification.

First let us observe that any map f : X → Y induces three operations f ∗, ∃ f , ∀ f of the types

X

f
��

Y

P(X)

∃ f
��

OO

f ∗ ∀ f
��

P(Y)

18When L is not classical, we need to further assume (27)–(29), as we did in Definition 14.

92

Draft of November 14, 2010

by the definitions that f ∗ is the “precomposition” − ◦ f with f , that is,

f ∗(B) = f −1[B] = { a ∈ X | f (a) ∈ B } = B ◦ f : X → 2

for every B : Y → 2, and that, for every A ⊆ X,

∃ f (A) = { b ∈ X | a ∈ A for some a such that b = f (a) } = f [A],

∀ f (A) = { b ∈ X | a ∈ A for every a such that b = f (a) };

in other words, f ∗ and ∃ f are the inverse- and direct-image operations under f ; we may sometimes

write f! for ∃ f . Take, as a concrete example, the inclusion map i : X ↪→ Y for sets X ⊆ Y . Then i∗

and ∃i are such that, for A ⊆ Y and B ⊆ X ⊆ Y ,

i∗(A) = A ∩ X,

∃i(B) = B.

The maps f ∗, ∃ f , and ∀ f between powersets are obviously monotone in the sense that they preserve

⊆; that is, in the case of f ∗ for example, B ⊆ B′ ⊆ Y entails f ∗(B) ⊆ f ∗(B′).

It is important that the following hold for every A ⊆ X and B ⊆ Y , where double lines signify

equivalence (in contrast to single lines, which mean one-way entailment).

∃ f (A) ⊆ B

A ⊆ f ∗(B)
,

f ∗(B) ⊆ A

B ⊆ ∀ f (A)
.

To refer to this property, we write ∃ f ⊣ f ∗ ⊣ ∀ f . In general, given two monotone operators between

powersets ℓ : P(X) ⇆ P(Y) : r, we write ℓ ⊣ r, and say that ℓ is a left adjoint to r and that r is a

right adjoint to ℓ, if

ℓ(A) ⊆ B

A ⊆ r(B)

for every A ⊆ X and B ⊆ Y .19 Adjoints are unique, because if ℓ ⊣ r and ℓ′ ⊣ r for ℓ, ℓ′ : P(X) ⇒

P(Y) and r : P(Y)→ P(X) then for every A ⊆ X we have ℓ(A) = ℓ′(A) by

ℓ(A) ⊆ ℓ(A)

A ⊆ r ◦ ℓ(A)

ℓ′(A) ⊆ ℓ(A)

,

ℓ′(A) ⊆ ℓ′(A)

A ⊆ r ◦ ℓ′(A)

ℓ(A) ⊆ ℓ′(A)

.

19Although we define the notion of adjoints only for monotone maps between powersets here, it is defined in more

general terms for functors between categories. See [?] and [?].

93

Draft of November 14, 2010

Now, fixing a two-domain-type interpretation (M, ⟦−⟧) for a given first-order language L, let

us consider the following three maps: Since |M|var(L) is clearly isomorphic to |M|var(L)\{x} × |M| and

∀M ⊆ |M|, there is an obvious injection

i : |M|var(L)\{x} × ∀M // // |M|var(L) :: (β, a) � // β ∪ {(x, a)} .

Also, let us write p for the projection

p : |M|var(L)\{x} × ∀M // // |M|var(L)\{x} :: (β, a) � // β,

which is clearly surjective. Finally, write r for the restriction

r : |M|var(L) // // |M|var(L)\{x} :: α � // α↾(var(L) \ {x}) ,

which is also clearly surjective. These three maps induce the following nine operations in the way

described above. (We will show shortly that they are injective or surjective as indicated.)

|M|var(L)

|M|var(L)\{x} × ∀M

OO
i

OO

p
����

|M|var(L)\{x}

|M|var(L)

r
OOOO

P(|M|var(L))
OO

∃i OO
⊣ i∗

����
⊣

OO

∀iOO

P(|M|var(L)\{x} × ∀M)

∃p
����
⊣

OO

p∗
OO
⊣ ∀p

����

P(|M|var(L)\{x})
OOOO

∃r ⊣
��

r∗
��
⊣

OOOO

∀r

P(|M|var(L))

To more concretely describe ∃p and ∀p, in particular, they are such that, for every β : var(L)\{x} →
|M| and A ⊆ |M|var(L)\{x} × ∀M,

β ∈ ∃p(A) ⇐⇒ (β, a) ∈ A for some a ∈ ∀M,

β ∈ ∀p(A) ⇐⇒ (β, a) ∈ A for every a ∈ ∀M.

Then ⟦∀x⟧ and ⟦∃x⟧ satisfying (40) and (41) can be analyzed with:

Observation 3. ⟦∀x⟧ satisfies (40) and ⟦∃x⟧ satisfies (41), respectively, if and only if

⟦∀x⟧ = r∗ ◦ ∀p ◦ i∗,

⟦∃x⟧ = r∗ ◦ ∃p ◦ i∗.

94

Draft of November 14, 2010

Proof. For every α : var(L)→ |M| and A ⊆ |M|var(L),

α ∈ r∗ ◦ ∀p ◦ i∗(A) ⇐⇒ α↾(var(L) \ {x}) = r(α) ∈ ∀p ◦ i∗(A)

⇐⇒ (α↾(var(L) \ {x}), a) ∈ i∗(A) for every a ∈ ∀M

⇐⇒ [a/x]α = i(α↾(var(L) \ {x}), a) ∈ A for every a ∈ ∀M;

that is, r∗ ◦ ∀p ◦ i∗ satisfies (40) in place of ⟦∀x⟧. Hence ⟦∀x⟧ = r∗ ◦ ∀p ◦ i∗ iff (40). The similar

argument with “some” in place of “every” above shows that ⟦∃x⟧ = r∗ ◦ ∃p ◦ i∗ iff (41). □

In this way, ⟦∃x⟧ and ⟦∀x⟧ can be defined uniquely by precompositions and their adjoints. It

is also worth observing that ⟦∃x⟧ and ⟦∀x⟧ are themselves adjoints. Note that the adjunctions are

“composable”, in the sense that

P(X)
ℓ0 //

oo
r0

⊥ P(Y)
ℓ1 //

oo
r1

⊥ P(Z) entails P(X)
ℓ1 ◦ ℓ0 //

oo
r0 ◦ r1

⊥ P(Z) ,

because, for every A ⊆ X and B ⊆ Z,

ℓ1 ◦ ℓ0(A) ⊆ B

ℓ0(A) ⊆ r1(B)

A ⊆ r0 ◦ r1(B)

.

So we have ⟦∃x⟧ = r∗ ◦ ∃p ◦ i∗ ⊣ ∀i ◦ p∗ ◦ ∀r and ∃i ◦ p∗ ◦ ∃r ⊣ r∗ ◦ ∀p ◦ i∗ = ⟦∀x⟧ by composing

the adjunctions (twice each).

Let us make some more observations on the induced operations ∃ f ⊣ f ∗ ⊣ ∀ f and adjunctions.

First, for any f : X → Y and g : Y → Z, we have (g ◦ f)∗ = f ∗ ◦ g∗ : P(Z) → P(X), because

(g◦ f)∗(C) = C◦g◦ f = g∗(C)◦ f = f ∗(g∗(C)). Note that, by composing the adjunctions ∃ f ⊣ f ∗ and

∃g ⊣ g∗, we have ∃g ◦∃ f ⊣ f ∗ ◦ g∗; therefore ∃g◦ f = ∃g ◦∃ f : P(X)→ P(Z), since (g ◦ f)∗ = f ∗ ◦ g∗

has a unique left adjoint. Similarly ∀g◦ f = ∀g ◦ ∀ f : P(X)→ P(Z).

Note also that, if f is surjective, then f ∗ is injective because B ◦ f = B′ ◦ f implies B = B′. On

the other hand, if f is injective, then ∃ f is injective because f [A] = f [A′] implies A = A′ by

a ∈ A ⇐⇒ f (a) ∈ f [A] = f [A′] ⇐⇒ a ∈ A′.

So, for example, ∃i, p∗, and r∗ are all injective.

95

Draft of November 14, 2010

Moreover, if ℓ ⊣ r for monotone ℓ : P(X) ⇄ P(Y) : r then ℓ ◦ r ◦ ℓ = ℓ because, for every

A ⊆ X,

ℓ(A) ⊆ ℓ(A)

A ⊆ r ◦ ℓ(A)

ℓ(A) ⊆ ℓ ◦ r ◦ ℓ(A)

,
r ◦ ℓ(A) ⊆ r ◦ ℓ(A)

ℓ ◦ r ◦ ℓ(A) ⊆ ℓ(A)
;

we can symmetrically show r ◦ ℓ ◦ r = r. To put this in other words, suppose that either m ⊣ e or

e ⊣ m is the case for m : P(X) ⇆ P(Y) : e. Then m ◦ e ◦ m = m and e ◦ m ◦ e = e. It follows that

e ◦ m = 1 if either m is injective or e is surjective, while e ◦ m = 1 implies both that m is injective

and that e is surjective.

Therefore, for example, i∗ ◦ ∃i ◦ i∗ = i∗ ◦ ∀i ◦ i∗ = i∗. This implies

i∗ ◦ ∃i = i∗ ◦ ∀i = 1

since ∃i is injective; it follows that i∗ is surjective and hence ∀i is injective. Also, f ∗ ◦ ∃ f ◦ f ∗ =

f ∗ ◦ ∀ f ◦ f ∗ = f ∗ for f = p, r implies

∃p ◦ p∗ = ∀p ◦ p∗ = 1,

∃r ◦ r∗ = ∀r ◦ r∗ = 1,

because p∗ and r∗ are injective; therefore ∃p, ∀p, ∃r, ∀r are surjective.

Next let us list some properties of the category-theoretic notion of pullbacks. While the reader

should consult [2] for instance for a general definition of pullbacks, we can take the following fact

as providing a definition for the particular case of the category Sets of sets.

Fact 16. Given any maps f0 : X → Z and f1 : Y → Z, a set P with maps π0 : P → Y and

π1 : P→ X is a pullback of f0 and f1 if and only if

• f0 ◦ π1 = f1 ◦ π0 and,

• moreover, for every x ∈ X and y ∈ Y such that f0(x) = f1(y), there is an unique element

of P, written ⟨x, y⟩, such that x = π1(⟨x, y⟩) and y = π0(⟨x, y⟩).

96

Draft of November 14, 2010

When P with π0 and π1 is a pullback of f0 and f1 as above, we indicate it with the diagram

P
π0 //

π1
��

Y

f1
��

X
f0

// Z

and also say π0 is a pullback of f0 along f1 (and symmetrically that π1 is a pullback of f1 along f0).

In Sets, pullbacks always exist, as they can be constructed as follows.

Definition 28. Given any maps f0 : X → Z and f1 : Y → Z, the fibered product of X and Y is the

set

X ×Z Y = { (x, y) ∈ X × Y | f0(x) = f1(y) }

together with the “projections”

π1 : X ×Z Y → X :: (x, y) 7→ x, π0 : X ×Z Y → Y :: (x, y) 7→ y.

Then the fibered product X ×Z Y with p0 and p1 is a pullback of f0 and f1.

X ×Z Y
π0 //

π1
��

Y

f1
��

X
f0

// Z

The following lemma states that the category Sets of sets satisfies the “Beck-Chevalley condi-

tion”. See [12], 205, for a general definition of the condition and a proof that it holds of categories

called “elementary topoi”. (A proof for the case of Sets is straightforward and we omit it.)

Lemma 3. For every pullback as in the diagram to the left below, we have ∃π1 ◦ π0
∗ = f0

∗ ◦∃ f1 and

∀π1 ◦ π0
∗ = f0

∗ ◦ ∀ f1 , that is, the two diagrams to the right both commute.

P

π1
��

π0 // Y

f1
��

X
f0

// Z

P(P)

∃π1

��

=

P(Y)
π0
∗

oo

∃ f1
��

P(X) P(Z)
f0
∗

oo

P(P)

∀π1

��

=

P(Y)
π0
∗

oo

∀ f1
��

P(X) P(Z)
f0
∗

oo

97

Draft of November 14, 2010

So far we have observed how a map f : X → Y induces operations between P(X) and P(Y) and

some properties that hold among the induced operations. To close this subsection, let us observe

that these observations extend to the case of P(X)n and P(Y)n.

X

f
��

Y

P(X)

∃ f
��
⊣ f ∗

��
⊣ ∀ f

��
P(Y)

P(X)n

∃ f
n

��
⊣ (f ∗)n

��
⊣ ∀ f

n

��
P(Y)n

That is, for every n and f : X → Y , we also have operations (f ∗)n, ∃ f
n, ∀ f

n of the types above. To

describe (f ∗)n : P(Y)n → P(X)n concretely, it maps (B1, . . . , Bn) to (f ∗(B1), . . . , f ∗(Bn)); but it is

more simply described as the precomposition − ◦ f with f , as in the following:

Y
B //

=
2n

X

f

OO

(f ∗)n(B) = B ◦ f

<<xxxxxxxxxxx

Also, whereas ∃ f
n,∀ f

n : P(X)n → P(Y)n are such that

∃ f
n(A1, . . . , An) = (∃ f (A1), . . . , ∃ f (An)), ∀ f

n(A1, . . . , An) = (∀ f (A1), . . . , ∀ f (An)),

we can simply say they are the left and right adjoints to (f ∗)n. Everything we observed above for

the case of n = 1 extends to the general case of n. We will omit the superscript n and write simply

f ∗, ∃ f , ∀ f for (f ∗)n, ∃ f
n, ∀ f

n, unless it causes confusion.

III.2.4. Autonomy of Domain of Quantification. Using the operational formulation of se-

mantics we introduced in Subsection III.2.2, we can formally express the intuitive idea we men-

tioned in Subsection III.2.1 that, in the two-domain semantics, the domain of quantification is “au-

tonomous”, in the sense that whatever holds outside the domain of quantification does not make

any difference to what holds within the domain.

As defined above in Definition 26, a two-domain-type interpretation for a first-order language

L is a pair (M, ⟦−⟧), and consists of sets |M| and ∀M and maps

FM : |M|n → 2 for each n-ary primitive predicate F,

f M : |M|n → |M| for each n-ary function symbol f ,

cM : |M|0 → |M| for each constant symbol c,

98

Draft of November 14, 2010

⟦t⟧ : |M|var(L) → |M| for each term t,

⟦φ⟧ : |M|var(L) → 2 for each sentence φ,

⟦⊗⟧ : P(|M|var(L))n → P(|M|var(L)) for each n-ary sentential operator ⊗ of L.

While the set |M| defines the types of these maps, it contains existing individuals but perhaps some

non-existing individuals as well. We are going to lay out in what sense we can (or cannot) ignore

non-existing individuals and restrict our attention to the set ∀M ⊆ |M| of existing individuals.

Let us first discuss the most trivial case of restricting our attention to ∀M. Suppose we want

to ask whether or not a given existing individual a ∈ ∀M has a property F; this is to ask whether

a ∈ FM or not. Suppose we indeed ask the same question for all the existing individuals; this is,

in effect, to ask what set FM ∩ ∀M is. And we should note the following truism: To tell whether

given a ∈ ∀M has F or not, this piece of information of what set FM ∩ ∀M is is sufficient and it is

irrelevant whether any non-existing individual b < ∀M has F or not. In this sense, it is by restricting

FM to FM ∩ ∀M that we restrict our attention to ∀M and ignore non-existing individuals.

Let us observe that, from the point of view of FM as a map FM : |M| → 2, what we have just

seen is to restrict the map FM to the map FM ∩ ∀M : ∀M → 2, which is of the same type as FM,

except that FM ∩ ∀M takes ∀M in place of |M|.

|M| FM
// 2

∀M FM ∩ ∀M
// 2

Indeed, the fact that the second map is the intersection of FM with ∀M can be expressed by saying

that, when we connect the “vertices” above with “edges”, the obtained square

|M| FM
//

=

2

∀M

?�
i

OO

FM ∩ ∀M

// 2

commutes, where we write i for the inclusion map.

This idea of “drawing a square by connecting vertices” extends to all the other types of maps

we use to interpret L. For instance, it extends straightforwardly to a map ⟦φ⟧ : |M|var(L) → 2. That

an assignment α : var(L) → |M| lies in ⟦φ(x̄)⟧ means that a sentence φ is true of the tuple α(x̄) of

99

Draft of November 14, 2010

individuals. But if we want to know, in particular, which tuples of existing individuals satisfy φ, we

can restrict our attention to DoQ-assignments α : var(L) → ∀M in place of just any assignments;

that is, we take the following commutative square with the inclusion map ivar(L).20

|M|var(L)
⟦φ⟧

//

=

2

(∀M)var(L)
?�

ivar(L)

OO

⟦φ⟧ ∩ ∀M

// 2

These cases, namely of FM and ⟦φ⟧, are trivial cases of restriction, in the sense that the restric-

tions FM ∩∀M and ⟦φ⟧∩∀M are always available. It is because, from the viewpoint of maps, their

restriction is defined by the precomposition − ◦ i with the inclusion map i. In general, given any

set X and subset D ⊆ X, the operation of restricting subsets of X to D, that is,

(− ∩ D)n : P(X)n → P(D)n :: (A1, . . . , An) 7→ (A1 ∩ D, . . . , An ∩ D),

can be written as the precomposition i∗ = − ◦ i with the inclusion map i : D ↪→ X, as in:

X
⟨A1, . . . , An⟩ //

=

2n

D
?�

i

OO

⟨A1 ∩ D, . . . , An ∩ D⟩

66mmmmmmmmmmmmmmmmmmmm

P(X)n

i∗ = ⟨−, . . . ,−⟩ ◦ i = (− ∩ D)n
����

P(D)n

By contrast, with f M, cM, ⟦t⟧, ⟦⊗⟧, the restriction to ∀M is not trivial in this sense. Let us take

f M for instance. For a map f M : |M|n → |M|, we can always define its restriction to ∀M in the

usual sense, namely,

f M↾(∀M)n : (∀M)n → |M|.

20It may be worth noting that, given an inclusion map i : D ↪→ X (for instance, D = ∀M and X = |M|), any set V

(for instance, var(L)) induces another inclusion map iV : DV ↪→ XV by the postcomposition i ◦ −, as in

V
α //

i ◦ α
%%J

JJ
JJ

JJ
JJ

JJ
JJ

D
� _

i
��

=

X

DV
� _

iV = i ◦ −
��

XV

100

Draft of November 14, 2010

This, however, does not generally serve our purpose of restricting a semantics to the domain of

quantification ∀M, as long as the semantics works recursively, by building up interpretations of

compound expressions from interpretations of primitive expressions. To see this, suppose we want

to know which existing individuals satisfy a sentence Ffx (for unary F and f). As we have seen,

once we already know ⟦Ffx⟧∩ (∀M)var(L), it is the only relevant piece of information. But the point

of a recursive semantics is to show how to obtain ⟦Ffx⟧ (or ⟦Ffx⟧∩ (∀M)var(L)), by the composition

of FM ◦ f M ◦ ⟦x⟧. Therefore, if

f M↾∀M : ∀M → |M|

sends an existing individual a ∈ ∀M to non-existing b ∈ |M| \∀M (which may well be the case!), we

cannot restrict the semantics to ∀M, because then whether existing a satisfies Ffx or not depends

on whether non-existing b is in FM or not.

This is why, for our purpose, f M : |M|n → |M| needs—non-trivially—to be restrictable to a

map of the type (∀M)n → ∀M; that is, for f M, there needs to be a map f M∀M making

|M|n
f M

//

=

|M|

(∀M)n
?�

in

OO

f M∀M

// ∀M

?�
i

OO

commute. In other words, since the usual restriction f M↾(∀M)n is simply f M ◦ i0, we can say that

f M is restrictable to ∀M (in the sense we need) if f M↾(∀M)n factors through ∀M. And similar things

can be said for the restriction of cM and ⟦t⟧ as well. So let us enter, in general:

Definition 29. Given sets X, V , U and a subset D ⊆ X, a map

f : XV → XU

is said to be restrictable (from X) to D if there is a map g : DV → DU that makes

XV
f

//

=

XU

DV
?�

iV

OO

g
// DU

?�
iU

OO

commute.

101

Draft of November 14, 2010

Fact 17. If f : XV → XU is restrictable to D ⊆ X, then g as in Definition 29 is unique, so we can

call it the restriction of f to D, written fD.

Proof. Since iU is an injection, iU ◦ g = f ◦ iV = iU ◦ g′ implies g = g′. □

Then, by the autonomy of ∀M regarding f M, cM, or ⟦t⟧, we mean the restrictability of f M, cM,

or ⟦t⟧ to ∀M. Note that ∀M is trivially autonomous regarding interpretations of terms if L has no

function symbols or constants, due to

Fact 18. In a two-domain-type interpretation (M, ⟦−⟧) for a given first-order languageL, for every

variable x of L the map ⟦x⟧ : |M|var(L) → |M| is restrictable to any D ⊆ |M|.

Restrictability of f M, cM, ⟦t⟧ in this sense enables us to restrict the semantics to ∀M regarding

(primitive) atomic sentences. Taking ⟦Ffx⟧ as an example again, observe that if f M is restrictable

to ∀M—while FM and ⟦x⟧ are trivially restrictable—it gives us three commutative squares that can

be composed as follows.

|M|var(L)
⟦x⟧

//

=

⟦Ffx⟧

((

=

|M|
f M

//

=

|M| FM
//

=

2

(∀M)var(L)
?�

ivar(L)

OO

⟦x⟧∀M
// ∀M

?�
i

OO

fM∀M

// ∀M

?�
i

OO

FM ∩ ∀M

// 2

This commutative diagram means that

⟦Ffx⟧ ∩ (∀M)var(L) = ⟦Ffx⟧ ◦ ivar(L)

can be obtained by composing the restrictions ⟦x⟧∀M , fM∀M , and FM ∩ ∀M of ⟦x⟧, f M, and FM to

∀M. More intuitively put, when we want to know which existing individual satisfies the sentence

Ffx, we can compute that piece of information by ignoring non-existing individuals from the outset

and building up interpretations without any regard, at any stage of interpretation, to whatever is the

case outside the domain of quantification ∀M. This point can be formally captured in general by

Fact 19. Given sets X, W, V , U and a subset D ⊆ X, if maps f : XW → XV and g : XV → XU are

both restrictable to D, then so is g ◦ f : XW → XU.

102

Draft of November 14, 2010

Proof. gD ◦ fD gives (g ◦ f)D. □

XW
f

//

=

XV
g

//

=

XU

DW
?�

iW

OO

fD

// DV
?�

iV

OO

gD

// DU
?�

iU

OO

The insight so far is about how we can restrict to ∀M the process of building up interpretations

of atomic sentences from interpretations of terms and primitive predicates. This insight, expressed

by commutative squares, can indeed be extended to the process of building up interpretations of

compound sentences from interpretations of atomic ones; in other words, restrictability to ∀M of

the interpretation

⟦⊗⟧ : P(|M|var(L))n → P(|M|var(L))

of a sentential operator ⊗ can be defined in terms of a commutative square. So, let us introduce the

following definition; its point will be clarified shortly by Corollary 3 and Fact 21.

Definition 30. Given a set X and a subset D ⊆ X with the inclusion map i : D ↪→ X, an operation

f : P(X)n → P(X)m

is said to be restrictable to D if there is an operation

g : P(D)n → P(D)m

that makes the following diagrams commute:

P(X)n
f

//

i∗ ����
=

P(X)m

i∗����
P(D)n

g
// P(D)m

(A1, . . . , An) �
f

//
_

i∗
��

=

(B1, . . . , Bm)
_

i∗
��

(A1 ∩ D, . . . , An ∩ D) �

g
// (B1 ∩ D, . . . , Bm ∩ D)

Let us note that, since i∗ is surjective, if f : P(X)m → P(X)n is restrictable to D then g such

that g ◦ i∗ = i∗ ◦ f is unique, so we can call it the restriction of f to D, written fD. Indeed, a more

concrete definition of fD is available.

103

Draft of November 14, 2010

Fact 20. Given a set X and a subset D ⊆ X with the inclusion map i : D ↪→ X, a map f : P(X)n →
P(X)m is restrictable to D for some fD, if and only if i∗ ◦ f ◦ i! ◦ i∗ = i∗ ◦ f in:

P(X)n
f

//

i∗����
⊣

P(X)m

i∗����
P(D)n
?�

i!

OO

g
// P(D)m

It follows that the restriction fD of f to D, if it exists, is i∗ ◦ f ◦ i!.

Proof. The “if” direction is by definition: i∗ ◦ f ◦ i! ◦ i∗ = i∗ ◦ f means that i∗ ◦ f ◦ i! serves

as g in Definition 30. On the other hand, for the “only if” direction, suppose f is restrictable to D,

that is, g ◦ i∗ = i∗ ◦ f for some g. This entails the equalities marked with ! below, while i∗ ◦ i! = 1

entails the one marked with †:

i∗ ◦ f ◦ i! ◦ i∗ !
= g ◦ i∗ ◦ i! ◦ i∗

†
= g ◦ i∗ !

= i∗ ◦ f . □

Rewriting Fact 20 in terms of intersections with D rather than precompositions with i, we have

the following description of restrictable maps and their restrictions, in the case of m = 1.

Corollary 3. Given a set X and a subset D ⊆ X, a map f : P(X)n → P(X) is restrictable to D if

and only if

f (A1 ∩ D, . . . , An ∩ D) ∩ D = f (A1, . . . , An) ∩ D

for every tuple (A1, . . . , An) ∈ P(X)n. When this is the case, the restriction of f to D is the map

fD : P(D)n → P(D) such that, for every (B1, . . . , Bn) ∈ P(D)n,

fD(B1, . . . , Bn) = f (B1, . . . , Bn) ∩ D.

Hence, for instance, the restrictability of ⟦∧⟧ : P(|M|var(L))2 → P(|M|var(L)) to (∀M)var(L) (which

we will prove shortly for two-domain interpretations) means the following. Suppose we want to

know which DoQ-assignments are in ⟦φ ∧ ψ⟧; then it is sufficient to figure out what sets ⟦φ⟧ ∩
(∀M)var(L) and ⟦ψ⟧ ∩ (∀M)var(L) are, and we can ignore anything outside (∀M)var(L), because we can

compute ⟦φ ∧ ψ⟧ ∩ (∀M)var(L) from those two sets. Or, more intuitively, suppose we want to know

what tuples of existing individuals satisfy φ ∧ ψ; then we can ignore any non-existing individuals

and we only need to know what tuples of existing individuals satisfy φ and ψ.

104

Draft of November 14, 2010

And the restrictability of ⟦⊗⟧ extends to the restrictability of interpretations of all sentences,

due to

Fact 21. Given a set X and a subset D ⊆ X, if maps f : P(X)n → P(X)m and g : P(X)m → P(X)k

are both restrictable to D, then so is g ◦ f : P(X)n → P(X)k.

Proof. gD ◦ fD gives (g ◦ f)D. □

P(X)n
f

//

i∗
����

=

P(X)m
g

//

i∗
����

=

P(X)k

i∗
����

P(D)n

fD

// P(D)m
gD

// P(D)k

For instance, consider the interpretation of the sentence ∀x .φ→ φ, that is,

⟦∀x .φ→ φ⟧ = ⟦→⟧ ◦ ⟨⟦∀x⟧, 1⟩(⟦φ⟧).

Then the restrictability of the operations ⟦∀x⟧ and ⟦→⟧ to (∀M)var(L) implies that the composition

P(|M|var(L))
⟨⟦∀x⟧, 1⟩

// P(|M|var(L))2
⟦→⟧

// P(|M|var(L))

⟦φ⟧ � // (⟦∀x .φ⟧, ⟦φ⟧) � // ⟦∀x .φ→ φ⟧

can be restricted to (∀M)var(L), as in

P(|M|var(L))
⟨⟦∀x⟧, 1⟩

//

i∗
����

=

P(|M|var(L))2
⟦→⟧

//

i∗
����

=

P(|M|var(L))

i∗
����

P((∀M)var(L))
⟨⟦∀x⟧(∀M)var(L) , 1P((∀M)var(L))⟩

// P((∀M)var(L))2

⟦→⟧(∀M)var(L)

// P((∀M)var(L))

It is crucial to observe here that, given this commutative diagram, the DoQ-validity of the scheme

∀x .φ→ φ—that is, the fact that

(∀M)var(L) ⊆ ⟦→⟧ ◦ ⟨⟦∀x⟧, 1⟩(A)

is the case for every A ⊆ |M|var(L)—is equivalent to the condition that

(∀M)var(L) = ⟦→⟧(∀M)var(L) ◦ ⟨⟦∀x⟧(∀M)var(L) , 1P((∀M)var(L))⟩(B)

105

Draft of November 14, 2010

is the case for every B ⊆ (∀M)var(L), which expresses the validity of the same scheme in terms of the

classical interpretations of→ and ∀x, that is, the restrictions of ⟦→⟧ and ⟦∀x⟧ to (∀M)var(L). This

is how Theorem 3 follows from the autonomy of the domain of quantification ∀M, in the sense of

the restrictability of all the maps FM, f M, cM, ⟦t⟧M, ⟦φ⟧M, ⟦⊗⟧M.

Let us finally enter

Definition 31. Given any two-domain-type interpretation (M, ⟦−⟧) for a first-order language L on

a two-domain L structure M = (|M|,∀M, FM, f M, cM), we say that its interpretation

FM : |M|n → 2 of an n-ary primitive predicate F,

f M : |M|n → |M| of an n-ary function symbol f ,

cM : |M|0 → |M| of a constant symbol c,

⟦t⟧ : |M|var(L) → |M| of a term t,

⟦φ⟧ : |M|var(L) → 2 of a sentence φ, or

⟦⊗⟧ : P(|M|var(L))n → P(|M|var(L)) of an n-ary sentential operator ⊗ of L

is DoQ-restrictable if it is restrictable to ∀M (or, strictly speaking, to (∀M)var(L) in the case of ⟦⊗⟧);
in that case we refer to the restriction FM

∀M , etc., by the DoQ-restriction of FM, etc. Moreover,

extending this to the entire interpretation (M, ⟦−⟧), we say (M, ⟦−⟧) is DoQ-restrictable if all the

maps above are DoQ-restrictable; in that case, by the DoQ-restriction of (M, ⟦−⟧) we mean the

pair of

• the L structure (∀M, FM
∀M , f M∀M , cM∀M), and

• the map ⟦−⟧∀M .

It is easy to check the definition to see that the DoQ-restriction of any two-domain-type inter-

pretation for L is a classical-type interpretation for L.

Then we can prove that, ifL is a classical quantified language, that is, ifL has no non-classical

sentential operators and no function symbols or constants, then every two-domain interpretation for

L is DoQ-restrictable. We show this more generally by taking any set D such that ∀M ⊆ D ⊆ |M|
for a given two-domain L structure M = (|M|,∀M, FM). Then, in the two-domain interpretation

on M, ⟦¬⟧, ⟦∧⟧, ⟦∨⟧, and ⟦→⟧ are restrictable (from |M|) to D, because:

106

Draft of November 14, 2010

Fact 22. Every truth-functional operator f ◦ − : P(X)n → P(X) is restrictable to any D ⊆ X, with

the same postcomposition f ◦ − (defined on P(D)n) being the restriction (f ◦ −)D.

Proof. Writing i : D ↪→ X for the inclusion map, we have (f ◦ A) ◦ i = f ◦ (A ◦ i) for every

A : X → 2n, which means that the diagram below commutes. □

P(X)n
f ◦ −

//

i∗ = − ◦ i
����

=

P(X)

i∗ = − ◦ i
����

P(D)n

f ◦ −
// P(D)

Moreover, we have

Fact 23. Suppose that a two-domain-type interpretation (M, ⟦−⟧) for a given first-order language

L interprets ∀x and ∃x respectively with (40) and (41), that is, with

⟦∀x⟧ = r0
∗ ◦ ∀p0 ◦ i0

∗, ⟦∃x⟧ = r0
∗ ◦ ∃p0 ◦ i0

∗

for the inclusion i0, projection p0, and restriction r0 as below. Then ⟦∀x⟧ and ⟦∃x⟧ are restrictable

(from |M|) to any set D such that ∀M ⊆ D ⊆ |M|, with the restrictions

⟦∀x⟧D = r1
∗ ◦ ∀p1 ◦ i1

∗, ⟦∃x⟧D = r1
∗ ◦ ∃p1 ◦ i1

∗

for the similar i1, p1, r1 as below.

|M|var(L) Dvar(L)? _
ioo

|M|var(L)\{x} × ∀M

OO
i0

OO

p0
����

Dvar(L)\{x} × ∀M? _
i2oo

OO
i1

OO

p1
����

|M|var(L)\{x} Dvar(L)\{x}? _
i3oo

|M|var(L)

r0

OOOO

Dvar(L)? _
ioo

r1

OOOO

P(|M|var(L))
OO

∃i0 OO
⊣ i0

∗
����
⊣

OO

∀i0OO

i∗ // // P(Dvar(L))
OO

∃i1 OO
⊣ i1

∗
����
⊣

OO

∀i1OO

P(|M|var(L)\{x} × ∀M)

∃p0 ����
⊣

OO

p0
∗
OO
⊣ ∀p0����

i2
∗
// // P(Dvar(L)\{x} × ∀M)

∃p1 ����
⊣

OO

p1
∗
OO
⊣ ∀p1����

P(|M|var(L)\{x})
OOOO

∃r0 ⊣
��

r0
∗

��
⊣

OOOO

∀r0

i3
∗

// // P(Dvar(L)\{x})
OOOO

∃r1 ⊣
��

r1
∗

��
⊣

OOOO

∀r1

P(|M|var(L))
i∗ // // P(Dvar(L))

Proof. The diagram to the left above clearly commutes; therefore the top and bottom squares

below commute. Note that the middle square to the left above is a pullback (indeed, all the squares

107

Draft of November 14, 2010

to the left are pullbacks); hence, by Lemma 3, the middle square below commutes as well.

P(|M|var(L))

i0
∗
����

i∗ // // P(Dvar(L))

i1
∗

����

P(|M|var(L)\{x} × ∀M)

∀p0 ����

i2
∗
// // P(Dvar(L)\{x} × ∀M)

∀p1����

P(|M|var(L)\{x})
��

r0
∗

��

i3
∗

// // P(Dvar(L)\{x})
��
r1
∗

��

P(|M|var(L))
i∗ // // P(Dvar(L))

Thus the outermost square commutes, that is, ⟦∀x⟧D ◦ i∗ = i∗ ◦ ⟦∀x⟧ for ⟦∀x⟧D = r1
∗ ◦ ∀p1 ◦ i1

∗.

Similarly for ⟦∃x⟧D = r1
∗ ◦ ∃p1 ◦ i1

∗. □

These two facts together establish:

Lemma 4. Given any classical quantified language L, every two-domain interpretation for L is

DoQ-restrictable and, moreover, its DoQ-restriction is a classical interpretation for L. Clearly,

this defines a (class-sized) surjection from the two-domain semantics for L to the classical seman-

tics for L.

This lemma then entails Theorem 3.

Proof for Theorem 3. Any sentence of (or inference in) L is DoQ-valid in a two-domain L
structure M if and only if it is valid in the DoQ-restriction M∀M of M. Therefore, by Lemma 4,

the sentence (or inference) is DoQ-valid in the two-domain semantics for L if (because the DoQ-

restriction is surjective) and only if it is valid in the classical semantics for L. □

This proof is just an instance of the following conceptual upshot of the autonomy of the domain

of quantification. Given any two-domain L structure M = (|M|, ∀M, FM), suppose x is the free

variable of a unary predicate φ of L. Then any object b such that b < ∀M has three possibilities

regarding whether φ is true of b:

• b ∈ |M| and M ⊨α φ for an assignment α : var(L)→ |M| such that α(x) = b, and so φ is

true of b;

108

Draft of November 14, 2010

• b ∈ |M| and M ⊨α ¬φ for an assignment α : var(L) → |M| such that α(x) = b, and so φ

is false of b;

• b < |M|, so it simply does not make sense either to say φ is true or to say φ is false of b.

One may find it a philosophically interesting, significant, or difficult question which of these pos-

sibilities is the case; nonetheless, the DoQ-restrictability of the two-domain semantics guarantees

that these possibilities do not matter, as far as we are concerned with the logic of DoQ-validity.

We can simply ignore any b outside ∀M, or, formally speaking, take the L structure M∀M in place

of the two-domain L structure M, to see what the logic of DoQ-validity looks like. In this sense,

DoQ-restrictability allows us to focus on the logic satisfied by existing individuals, without settling

on the philosophical question of whether or not it makes sense to say that a non-existing individual

has a certain property, and, if it does, whether it is true or false that that individual has that property.

109

CHAPTER IV

Kripkean Semantics for Quantified Modal Logic

IV.1. Kripke Semantics for Quantified Modal Logic

IV.1.1. Kripke’s Ontology and Semantics. In this subsection, we review the semantics that

Kripke [5] proposed for quantified modal logic.

We should first define a language of quantified modal logic; but the generality of Definitions

13 (on p. 64) and 18 (on p. 18) makes it simple. Let us say a language is modal if it has unary

sentential operators □ and ^; then we can simply say that a quantified modal language is just a

quantified language that is modal (and hence is not purely first-order). For the rest of the chapter,

we will only deal with quantified languages—that is, we will not deal with function or constant

symbols. Also, we will assume that □ and ^ are the only non-classical operators. Let us sum these

up as follows:

Definition 32. A quantified modal language is a language given by the following:

• any number (at least one) of primitive predicates (perhaps 0-ary);

• infinitely many individual variables, but no function or constant symbols; and

• sentential operators that consist of the first-order operators, ¬, ∧, ∨, →, and ∀x and ∃x

for all individual variables x, and the modal operators, □ and ^, but no other.

Given a quantified modal language L, by an atomic sentence of L we mean a result of combining

(in a manner allowed by the grammar of L) an n-ary primitive predicate of L with n individual

variables of L. And, from the atomic sentences of L, we define the set of sentences of L, written

sent(L), recursively with the sentential operators of L.

Recall that a Kripke frame F for propositional modal logic consists of a set W of worlds and

an accessibility relation R on W, that a Kripke model M over F interprets each atomic sentence p

with its proposition pM ⊆ W, and that the truth of a sentence is relativized not just to a model M

but also to a world w ∈ W, so that the semantic relation is of the form

M, w ⊨ φ,

111

Draft of November 14, 2010

and satisfies the following truth conditions:

M, w ⊨ p ⇐⇒ w ∈ pM for atomic p,(43)

M, w ⊨ ¬φ ⇐⇒ M, w ⊭ φ,(44)

M, w ⊨ φ ∧ ψ ⇐⇒ M, w ⊨ φ and M, w ⊨ ψ,(45)

M, w ⊨ φ ∨ ψ ⇐⇒ M, w ⊨ φ or M, w ⊨ ψ,(46)

M, w ⊨ φ→ ψ ⇐⇒ M, w ⊭ φ or M, w ⊨ ψ,(47)

M, w ⊨ □φ ⇐⇒ M, u ⊨ φ for every u such that Rwu,(48)

M, w ⊨ ^φ ⇐⇒ M, u ⊨ φ for some u such that Rwu.(49)

To interpret variables and quantification on top of this framework, Kripke equips a frame with a

domain of possible individuals, so that the truth of sentences is further relativized to an assignment

of individuals to variables. So, using the notation for assignments we reviewed in Subsection

III.1.1, Kripke’s idea can be expressed as follows. Let α be a map from var(L) to a domain of

individuals (which we will review shortly in more detail);1 then the semantic relation is of the form

M, w ⊨α φ,

to mean that, in the model M, the sentence φ is true, at the world w, of individuals α(x̄) in place of

the free variables x̄ in φ. With an assignment added to the semantic relation, Kripke lets (44)–(49)

simply carry over:

M, w ⊨α ¬φ ⇐⇒ M, w ⊭α φ,(50)

M, w ⊨α φ ∧ ψ ⇐⇒ M, w ⊨α φ and M, w ⊨α ψ,(51)

M, w ⊨α φ ∨ ψ ⇐⇒ M, w ⊨α φ or M, w ⊨α ψ,(52)

M, w ⊨α φ→ ψ ⇐⇒ M, w ⊭α φ or M, w ⊨α ψ,(53)

M, w ⊨α □φ ⇐⇒ M, u ⊨α φ for every u such that Rwu,(54)

M, w ⊨α ^φ ⇐⇒ M, u ⊨α φ for some u such that Rwu.(55)

1It is worth noting that, in [5], Kripke does not take assignments as maps from all of var(L). Even though he does

not give a full definition explicitly, he considers assignments of individuals to a finite set of variables containing all

those occurring freely in the sentence to be evaluated.

112

Draft of November 14, 2010

With the satisfaction relation relativized to assignments, Kripke gives truth conditions to the

quantifiers in the following manner. First, he equips his models with a map D− that assigns a set

Dw , ∅ to each world w ∈ W. Then, saying “Intuitively Dw is the set of all individuals existing in

w”,2 Kripke adopts

M, w ⊨α ∀x .φ ⇐⇒ M, w ⊨[a/x]α φ for every a ∈ Dw,(56)

M, w ⊨α ∃x .φ ⇐⇒ M, w ⊨[a/x]α φ for some a ∈ Dw.(57)

As he explains, “the restriction a ∈ Dw means that, in w, we quantify only over the objects actually

existing in w”.3 So, recalling the discussion in Subsection III.2.1, we should be justified in calling

Dw the domain of quantification for w. Then Kripke takes the union D of all Dw, that is,

D =
∪
w∈W

Dw,

and permits every map α : var(L)→ D to this set D to serve as an assignment as in M, w ⊨α φ, for

any w and φ. In this sense, we can call D the domain of individuals (of a given model M) in our

terminology. Or we may call it the domain of possible individuals, since it is the set of individuals

that exist in some possible world or other.

Let us take the example of Sherlock Holmes again, as we did in Subsection III.2.1, to recall the

two notions of domains and their connection to quantification. Holmes may exist in world w but

not in u. He may be a logician in w; in notation, M, w ⊨[a/x]α φ for any assignment α : var(L)→ D,

where we write a for Holmes and φ for “x is a logician”. Then this implies that a logician exists

in w—that is, M, w ⊨α ∃x .φ, because Holmes exists in w, that is, a ∈ Dw. In contrast, he may be

a logician in u as well; in notation, M, u ⊨[a/x]α φ. This, nonetheless, fails to imply that a logician

exists in u—that is, M, u ⊨α ∃x .φ—because Holmes does not exist in u—that is, a < Du.

Note that, in this example, M, u ⊨[a/x]α φ makes sense—that is, it makes sense to ask whether

Holmes is a logician or not in u—even though a < Du—that is, Holmes does not exist in u. The

technical reason why it does make sense in the setting laid out above is that, since a ∈ Dw ⊆ D, the

map [a/x]α : var(L) → D is an assignment. To put it a little more intuitively, Holmes, who exists

in some possible world (namely w), is in the domain of possible individuals, and, in so far as he is

in that domain, it makes sense to ask whether or not he has some property in whatever world u.

2[5], 65; I have changed Kripke’s notations ψ(H) and H into Dw and w, respectively.
3[5], 67; again, I have changed Kripke’s ψ(H) and H into Dw and w.

113

Draft of November 14, 2010

We should further note that, in Kripke’s semantics, it is semantically significant that M, u ⊨[a/x]α

φ makes sense. The reason lies in Kripke’s truth conditions for the modal operators, namely (54)

and (55). To see this, let us assume in the example above that Rwu and that Holmes is necessarily a

logician in w—that is, M, w ⊨[a/x]α □φ. Then (54) implies that M, u ⊨[a/x]α φ, that is, that Holmes

is a logician in u whether he exists in u or not. In this way, (54) and (55) provide a semantic reason

why we should deem M, u ⊨[a/x]α φ to make sense even when a < Du. And this semantic role that

M, u ⊨[a/x]α φ plays has significant import for the logic of Kripke’s semantics; we will come back

to this shortly, after fully defining Kripke semantics.

To complete our review of Kripke semantics, let us discuss the last of Kripke’s truth condi-

tions, namely, the one for atomic sentences. We should emphasize that the question of what truth

condition atomic sentences should have is really a question of what type of interpretation models

should have. To illustrate this point, take as an example the truth conditions for atomic sentences

(with no function or constant symbols) in the classical semantics, namely,

M ⊨α Fx̄ ⇐⇒ α(x̄) ∈ FM for an n-ary primitive predicate F.(19)

The left-hand side is simply required so that (19) is, in the first place, a truth condition for atomic

sentences; hence the conceptually significant part of this condition is that we let FM be a subset

of |M|n; in other words, that an L structure M should interpret F with a subset of |M|n, the n-fold

product of the domain of individuals. In a similar vein, in Kripke semantics, we need to discuss

with what type of sets we should interpret primitive predicates.

The type of interpretation used in classical semantics, namely FM ⊆ Dn, where D is the domain

of possible individuals, does not work in the Kripke setting. For it would give

M, w ⊨α Fx̄ ⇐⇒ α(x̄) ∈ FM for an n-ary primitive predicate F,

which would then entail

M, w ⊨α Fx̄ ⇐⇒ α(x̄) ∈ FM ⇐⇒ M, u ⊨α Fx̄

for any pair of worlds w, u. For example, if we interpret the predicate “x is a logician” with the

property of being-a-logician that possible individuals may or may not have, but which is indepen-

dent of worlds, then Sherlock Holmes is or is not a logician independently of worlds, so he is a

logician either at all worlds or at no worlds, and then (54) implies that he is either necessarily a

logician or necessarily not a logician.

114

Draft of November 14, 2010

This is why we should relativize FM to worlds. In the example above, a world w should have

its own set of logicians, or the extension of “x is a logician”, and another world u may well have

a different extension; then Holmes may be a logician at w but may not at u. In other words, we

should use the property of being-a-logician-at-w rather than being-a-logician simpliciter. So, for

each w ∈ W, let us write
−−→
FM(w) for the extension of F (in M) at w—which stands for the property

of being-a-logician-at-w, in the example—so that
−−→
FM(w) ⊆ Dn and

M, w ⊨α Fx̄ ⇐⇒ α(x̄) ∈
−−→
FM(w) for an n-ary primitive predicate F.(58)

Thus we can interpret F with the family of
−−→
FM(w) for all w.

It is helpful to note that the map
−−→
FM : W → P(Dn), or

−−→
FM : W → (Dn → 2), is mathematically

equivalent to a set FM ⊆ W × Dn, or FM : W × Dn → 2, via

(w, ā) ∈ FM ⇐⇒ ā ∈
−−→
FM(w).

So, plugging this biconditional in to (58), the truth condition for atomic sentences is

M, w ⊨α Fx̄ ⇐⇒ (w, α(x̄)) ∈ FM for an n-ary primitive predicate F.(59)

Whereas FM subsumes the case of n = 0 easily, by setting pM ⊆ W = W × D0 for a propositional

variable p,4
−−→
FM(w) is easier to grasp conceptually, or at least easier to express in English—in the

example, FM is the set of world-individual pairs such that the individual is a logician at the world.

Although we use FM in our official definition,5 we will use both FM and
−−→
FM in later discussions.

Now that we have completed the review of Kripke’s semantic ideas, we can give

4Although D0 = {∗} may suggest W × D0 = { (w, ∗) | w ∈ W }, we take W × D0 = W instead, as suggested by the

sequence

...

(w, a1, . . . , an) ∈ W × Dn,

...

(w, a1, a2) ∈ W × D2,

(w, a1) ∈ W × D1,

w ∈ W × D0.

On the other hand, in terms of
−−→
FM, the case of n = 0 is treated as

−−→
pM : W → P(D0), which agrees with pM ⊆ W

since D0 = {∗} and implies P(D0) = P({∗}) = 2.
5Kripke [5] uses

−−→
FM instead of FM as primitive.

115

Draft of November 14, 2010

Definition 33. A Kripke frame with domains is a tuple F = (W,R,D−) such that

• (W,R) is a Kripke frame, namely, W is a set and R ⊆ W ×W; we call W the set of worlds

of F, and R the accessibility relation of F.

• D− is a map that assigns to each w ∈ W a set Dw , ∅, called the domain of quantification

for w; we also call D =
∪
w∈W

Dw the domain of possible individuals of F.

Definition 34. Let L be a language L of quantified modal logic. A Kripke model for L is a tuple

M = (W,R,D−, FM) such that

• (W,R,D−) is a Kripke frame with domains as in Definition 33; by the set of worlds,

accessibility relation, and domain of possible individuals of M, we mean those of the

frame (W,R,D−);

• M is equipped with FM ⊆ Dn ×W for each n-ary primitive predicate of L.

We say M = (W,R,D−, FM) is a Kripke model for L over the frame (W,R,D−).

Definition 35. Given a quantified modal language L, a Kripke-type satisfaction relation for L is a

pair (M,⊨) of a Kripke model M for L and any relation (M,− ⊨− −) ⊆ W × Dvar(L) × sent(L), as

in M, w ⊨α φ, where W and D are the set of worlds and domain of possible individuals of M. We

say a Kripke-type satisfaction relation for L is on M if its first coordinate is M.

Definition 36. Given a quantified modal language L, for each Kripke-type satisfaction relation

(M,⊨) for L with W and D the set of worlds and domain of possible individuals of M, we say

• a sentence φ of L is valid in (M,⊨), and write M ⊨ φ, meaning that M, w ⊨α φ for

every w ∈ W and assignment α : var(L)→ D; and

• an inference (Γ, φ) in L is valid in (M,⊨), meaning that if M ⊨ ψ for all ψ ∈ Γ then

M ⊨ φ.

Given a class of Kripke-type satisfaction relations for L, we say a sentence or inference is valid in

that class if it is valid in every member of that class.

Definition 37. A Kripke-type satisfaction relation for a quantified modal language L is called a

Kripke satisfaction relation for L if it satisfies (50)–(59). By Kripke semantics for L, we mean the

class of all Kripke satisfaction relations for L.

116

Draft of November 14, 2010

Due to our assumption that □ and ^ are the only non-classical operators of a quantified modal

language L, we have a one-to-one correspondence between Kripke models and Kripke satisfaction

relations on them, as follows.

Fact 24. Given a quantified modal language L the only non-classical operators of which are □ and

^, every Kripke model for L has a unique Kripke satisfaction relation on it.

Thus Kripke models correspond one-to-one to Kripke satisfaction relations on them, and hence

the notion of validity makes sense not only regarding the latter but also regarding the former.

Definition 38. Given a quantified modal language L, we say a sentence of L or inference in L is

Kripke-valid in a Kripke model M if it is valid in the Kripke satisfaction relation on M; we say it

is Kripke-valid (with respect to L) in a Kripke frame F with domains if it is Kripke-valid in every

Kripke model for L over F; we say it is Kripke-valid (with respect to L) in a given class of Kripke

frames with domains if it is Kripke-valid (with respect to L) in every member of that class. When

a sentence or an inference is Kripke-valid (with respect to L) in a Kripke model, a Kripke frame

with domains, or a class thereof, we also say that the latter Kripke-validates the former.

We extend the “forgotten trio” of Subsection III.1.2 straightforwardly to the Kripke setting, as

follows.

Definition 39. Given any Kripke-type satisfaction relation (M,⊨) for a quantified modal language

L, with W and D the set of worlds and domain of possible individuals of M, we say (M,⊨) is

• locally determined if, for every sentence φ of L and pair of assignments α, β : var(L)→
D such that α(x) = β(x) for every free variable x of φ,

M, w ⊨α φ ⇐⇒ M, w ⊨β φ;(60)

• SoS if, for every assignment α : var(L)→ D, sentence φ and variables x, y such that y is

free for x in φ,

M, w ⊨α [y/x]φ ⇐⇒ M, w ⊨[α(y)/x]α φ;(61)

• AC if, for every assignment α : var(L)→ D and pair of sentences φ, ψ such that φ ∝ ψ,

M, w ⊨α φ ⇐⇒ M, w ⊨α ψ.(62)

117

Draft of November 14, 2010

These three properties hold of Kripke semantics, again due to our assumption that □ and ^ are

the only non-classical operators of a quantified modal language L.

Fact 25. Given a quantified modal language L the only non-classical operators of which are □ and

^, every Kripke satisfaction relation for L is locally determined, SoS, and AC.

Proof. The proof is similar to those for Facts 4, 6, and ??, by induction on the construction

of sentences (we need to use the assumption that the only non-classical operators of L are □ and

^). □

Let us close the section by noting that the logic K, which is given by adding the axiom

□(φ→ ψ)→ (□φ→ □ψ)K

and the rule

⊢ φ

⊢ □φ
N

to classical propositional logic, is sound with respect to the Kripke semantics, in the sense that K

and N as well as the axioms and rules of classical propositional logic are valid in the semantics.

Fact 26. K is sound with respect to the Kripke semantics.

IV.1.2. Separation of Modal and Classical. To illustrate how his semantics as we reviewed

in Subsection IV.1.1 works, Kripke takes as examples two sentence schemes,

∀x□φ→ □∀x .φ,

□∀x .φ→ ∀x□φ,

which are called the Barcan formula and converse Barcan formula, respectively. Following Kripke,

let us say, given any Kripke frame F = (W,R,D−) with domains (or any Kripke model M),

• F has a decreasing domain if Du ⊆ Dw for each u, w ∈ W such that Rwu, and that

• F has an increasing domain if Dw ⊆ Du for each u, w ∈ W such that Rwu.

Then it is easy to see that a Kripke frame with domains Kripke-validates the Barcan formula if and

only if it has a decreasing domain. (For the sake of brevity, let us omit “Kripke” in “Kripke-valid”

for the rest of this subsection.) It is also easy to see that a frame validates the converse Barcan

118

Draft of November 14, 2010

formula if and only if it has an increasing domain. For the purpose of our discussion, however, we

need a more refined analysis of how the converse Barcan formula may or may not be valid.

Let us first review how a frame can fail to validate the converse Barcan formula. Kripke uses

the following counterexample.6 Let F be a unary primitive predicate, and let F = (W,R,D−) and

M = (W,R,D−, FM) be given by

W = {w, u}, R = {(w, w), (w, u)},

Dw = {a, b}, where a , b, Du = {a},
−−→
FM(w) = {a, b},

−−→
FM(u) = {a}.

Note that M does not have an increasing domain. Fixing any assignment α : var(L)→ D, consider

whether M, w ⊨α □∀x .Fx or not; it holds because of the following chain of equivalences (ignore

the underline on the second line for the moment):

M, w ⊨α □∀x .Fx
(54)
⇐⇒ M, w ⊨α ∀x .Fx and M, u ⊨α ∀x .Fx

(56)
⇐⇒ M, w ⊨[a/x]α Fx, M, w ⊨[b/x]α Fx, and M, u ⊨[a/x]α Fx

(58)
⇐⇒ [a/x]α(x) ∈

−−→
FM(w), [b/x]α(x) ∈

−−→
FM(w), and [a/x]α(x) ∈

−−→
FM(u)

⇐⇒ a, b ∈
−−→
FM(w) and a ∈

−−→
FM(u).

On the other hand, M, w ⊨α ∀x□Fx is not the case, because

M, w ⊨α ∀x□Fx
(56)
⇐⇒ M, w ⊨[a/x]α □Fx and M, w ⊨[b/x]α □Fx

(54)
⇐⇒ M, w ⊨[a/x]α Fx, M, u ⊨[a/x]α Fx, M, w ⊨[b/x]α Fx, and M, u ⊨[b/x]α Fx

(58)
⇐⇒ a, b ∈

−−→
FM(w) and a, b ∈

−−→
FM(u),

where in fact b <
−−→
FM(u). Thus M, w ⊭α □∀x .Fx → ∀x□Fx; therefore M fails to, and hence F

also fails to, validate the instance of the converse Barcan formula, □∀x .Fx→ ∀x□Fx.

Comparing the two chains of equivalences above, and noting that the two underlined parts are

equivalent, we can see that the difference between the right-hand sides for M, w ⊨α □∀x .Fx and

M, w ⊨α ∀x□Fx is that

M, u ⊨[b/x]α Fx(63)

6[5], 67f.

119

Draft of November 14, 2010

occurs in the latter but not in the former. So it is easy to see how M would validate the converse

Barcan formula □∀x .Fx→ ∀x□Fx if it had an increasing domain: If Du were {a, b} (so M had an

increasing domain), the application of (56) in the first chain of equivalences would also yield (63)

to the right.

More importantly, what we should emphasize about the key clause (63) is that b < Du, that is,

that b does not exist in u. In Kripke semantics, it makes sense to say that b has the property F-at-u

even when b does not exist in u; and, as we mentioned on p. 114, its making sense has semantic

consequences. The invalidity of the converse Barcan formula above is one of such consequences.

Indeed, against the near-orthodoxy of modal logicians that whether a frame validates the converse

Barcan formula or not is a matter of whether it has an increasing domain or not, I propose a

refinement—namely, whether a frame validates the converse Barcan formula or not is a matter of

whether non-existent beings have semantic significance or not. An argument for this refinement

will be laid out in Subsection IV.2.4.

The invalidity of the converse Barcan formula is just an instance of a more general invalidity

in Kripke semantics. Consider the following derivation of the converse Barcan formula.

⊢ ∀x .φ→ φ (i)
(N)

⊢ □(∀x .φ→ φ) ⊢ □(∀x .φ→ φ)→ (□∀x .φ→ □φ) (K)
(ii)

⊢ □∀x .φ→ □φ
(iii)

⊢ □∀x .φ→ ∀x□φ

The sentence marked with (i) is an axiom of classical quantified logic; the next step, marked with

(N), is an application of rule N. The sentence (K) is an instance of axiom K. (ii) is modus ponens,

the rule of classical propositional logic. (iii) is a rule of classical quantified logic, that allows the

following inference:

⊢ φ→ ψ
(x does not occur freely in φ)

⊢ φ→ ∀x .ψ

In this way, even though its conclusion, the converse Barcan formula, is invalid in Kripke seman-

tics, the derivation above is justified by the axioms and rules of K and classical quantified logic.

Then recall Fact 26—K is sound with respect to Kripke semantics. So, the upshot is that classical

quantified logic is not sound with respect to Kripke semantics.

120

Draft of November 14, 2010

Looking further into what of classical quantified logic is invalid, it is easy to see that the rule

above (the one used for (iii)) is valid. The invalidity lies in the axiom ∀x .φ→ φ (which is why we

cannot apply N after (i) above and the derivation does not go). And the reason should be obvious,

once we observe that

Mw = (D,Dw,
−−→
FM(w))

is a two-domain L structure (Definition 19) and, moreover, that

(Mw, (M, w ⊨− −))

is a two-domain satisfaction relation (Definition 22 on p. 81) for L, due to Fact 25. As we saw

in Subsection III.2.1, ∀x .φ → φ is not AA-valid (Definition 24 on p. 83) in the two-domain

semantics, which is exactly why it is not valid in Kripke semantics either.

Given the unsoundness of classical quantified logic with respect to his semantics, Kripke con-

siders two options on how to combine quantified logic with modal logic. One is to give up classi-

cal quantified logic, being content with the logic of (AA-validity in) the two-domain semantics;7

it should be obvious from the observation above that that logic is sound with respect to Kripke

semantics. The other option is to restrict our attention to closed sentences, as opposed to all sen-

tences. This allows us to ignore the difference between classical quantified logic and the logic of

the two-domain semantics, because these two logics coincide when restricted to closed sentences,

as in Corollary 2 (on p. 84).8

While I find the first option more illuminating,9 the motivation for the second option seems

well grounded: As he says, Kripke chose it “since [he] wished to show that the difficulty can be

solved without revising quantification theory or modal propositional logic”.10 For the rest of this

section and Section IV.2, we further pursue the possibility of recovering classical quantified logic

7Kripke mentions this option in his footnote 13 on p. 68 of [5].
8Kripke lays out an axiomatization in this option on p. 69 of [5].
9There are several reasons why I find the first option more illuminating. One is that it illustrates more explicitly

why certain sentences or inferences—the converse Barcan formula, for example—are invalid. Another reason is that,

at least in our semantics, we do not give up dealing with open sentences. It seems difficult to find a coherent account

of sentences according to which open sentences are not admissible proof-theoretically but admissible semantically.
10[5], 68, footnote 13.

121

Draft of November 14, 2010

in a more genuine manner (than the second option’s simply ignoring the non-classical part of the

logic of two-domain semantics).

To recover classical quantified logic, we should recall Theorem ?? (on p. ??); that is, although

classical quantified logic is not sound with respect to AA-validity in the two-domain semantics, it

is sound with respect to DoQ-validity (Definition 24 on p. 83). This result can be extended to the

setting of Kripke semantics, by extending the notion of DoQ-validity to Kripke-type satisfaction

relations in the following manner. First recall Definition 23 (on p. 83): For a quantified languageL
and a two-domain L structure M = (|M|,∀M, FM), a DoQ-assignment is just a map α : var(L) →
∀M. This should be the case with the two-domain L structure Mw = (D,Dw,

−−→
FM(w)) given by a

Kripke model M for a quantified modal language L and a world w ∈ W; that is, for this Mw, a

DoQ-assignment is a map α : var(L)→ Dw. So we have

Definition 40. Given a quantified modal language L, a Kripke frame M = (W,R,D−), and w ∈ W,

we mean by a DoQ-assignment for w, or a w-DoQ-assignment, any map α : var(L)→ Dw.

A sentence φ of L is DoQ-valid in a two-domain-type satisfaction relation (Mw, (M, w ⊨− −))

if M, w ⊨α φ for all the DoQ-assignments for Mw, that is, all the w-DoQ-assignments. Extending

this, we say φ is DoQ-valid in a Kripke-type satisfaction relation (M, (M,− ⊨− −)) if φ is DoQ-

valid in (Mw, (M, w ⊨− −)) for all w ∈ W; that is,

Definition 41. We rename the notion of validity in Definition 36 AA-validity, and introduce DoQ-

validity for the Kripke setting: Given a quantified modal language L, we say, for each Kripke-type

satisfaction relation (M,⊨) for L on M = (W,R,D−, FM),

• a sentence φ of L is DoQ-valid in (M,⊨), and write M ⊨∀ φ, meaning that M, w ⊨α φ

for every pair of w ∈ W and w-DoQ-assignment α : var(L)→ Dw; and

• an inference (Γ, φ) in L is DoQ-valid in (M,⊨), meaning that if M ⊨∀ ψ for all ψ ∈ Γ
then M ⊨∀ φ.

Given a class of Kripke-type satisfaction relations for L, we say a sentence or inference is DoQ-

valid in that class if it is DoQ-valid in every member of that class.

Clearly, classical quantified logic, which is sound with respect to the DoQ-validity in the two-

domain semantics (Theorem ?? on p. ??), is also sound with respect to the DoQ-validity in Kripke

semantics.

122

Draft of November 14, 2010

Therefore, if K were also sound with respect to DoQ-validity in Kripke semantics, that validity

could provide semantics for the union of K with classical quantified logic. Unfortunately, this is not

the case. On one hand, the axiom K of K is DoQ-valid in Kripke semantics; indeed, any AA-valid

sentence is DoQ-valid as well, because the AA-validity (truth for all worlds and assignments) of a

sentence entails its DoQ-validity (truth for all worlds and DoQ-assignments). On the other hand,

the AA-validity of rules, including the rule

⊢ φ

⊢ □φ
N

of K, fails to entail their DoQ-validity, and N is in fact DoQ-invalid.

Let us see how N can fail to be DoQ-valid, that is, how □φ can fail to be DoQ-valid while φ is.

Note that the DoQ-validity of φ does not imply its AA-validity (if it did, then, by the AA-validity

of N, □φ would be AA-valid and hence DoQ-valid, thereby making N DoQ-valid). For instance,

Fx is DoQ-valid but not AA-valid in (any Kripke-type satisfaction relation on) the Kripke model

we considered on p. 119. It is because, intuitively put, everything that exists in w, namely a and b,

satisfies Fx at w, whereas everything that exists in u, namely a, satisfies Fx at u. Or, in terms of

assignments, it is because any assignment α : var(L)→ D, whether α(x) = a or α(x) = b, satisfies

M, w ⊨α Fx, whereas every α such that α(x) = a—and hence every u-DoQ-assignment—satisfies

M, u ⊨α Fx. Thus Fx is DoQ-valid.

Note that, although M, u ⊨α Fx fails for any α such that α(x) = b, it does not keep Fx from

being DoQ-valid, since such α is not a u-DoQ-assignment; or, intuitively put, the failure of b to

satisfy Fx at u, in which it does not exist, is irrelevant to the DoQ-validity of Fx. It is, nonetheless,

this failure that makes □Fx DoQ-invalid (in the Kripke satisfaction relation on the Kripke model).

That is, for α such that α(x) = b, M, u ⊭α Fx entails M, w ⊭α □Fx by (54), even though α is

a w-DoQ-assignment. Intuitively put, though the failure of b to satisfy F at u is irrelevant to the

DoQ-validity of Fx, it implies that b fails to satisfy □Fx at w, in which b exists, and therefore that

□Fx is not DoQ-valid, whereas Fx. The rule N is DoQ-invalid in this way.

This observation suggests that the DoQ-invalidity of N is due to the non-autonomy of domains

of quantification in Kripke semantics, that is, the fact that the truth values of sentences—modal

ones, in particular—within the domains of quantification depends on what is the case outside the

domains of quantification. In the example above, whether or not Fx is true of b at a world in

123

Draft of November 14, 2010

which b does not exist was crucial to whether or not □Fx is true of b at a world in which b exists,

and hence whether or not the DoQ-validity of Fx implies that of □Fx. This is why, in an attempt

to unify modal logic with quantified logic, which is sound with respect not to AA-validity but to

DoQ-validity, we will try in Section IV.2 to modify and replace Kripke’s truth conditions (54) for

□ and (55) for ^ with DoQ-restrictable versions (in the sense extending the definition we laid out

in Subsection III.2.4), so that the new versions make N DoQ-valid.

IV.2. Autonomous Domains of Quantification for the Kripkean Setting

IV.2.1. Operational Form of Kripkean Semantics: A First Step. In this subsection, we first

lay out what types of operations are needed to give an operational formulation to Kripke semantics,

and then extend the notion of DoQ-restrictability to the Kripke setting. (Kripke’s truth conditions

will be reformulated operationally in Subsection IV.2.2).

First we import Definition 26 (on p. 91) of two-domain-type interpretations for a quantified

modal language L from the two-domain setting to the Kripke setting. Clearly, we need to replace

two-domain L structures with Kripke models for L. So let us fix a Kripke model M for L, with W

the set of worlds and D the domain of possible individuals of M. Then recall that an interpretation

consists of certain maps. The map ⟦x⟧ that interprets a variable x can keep its type and definition,

that is,

⟦x⟧ : Dvar(L) → D and ⟦x⟧(α) = α(x)

as before (except that we replace |M| with D), since assignments assign individuals to variables in

the same way as before.

In contrast, the type of the map ⟦φ⟧ that interprets a sentence φ needs modifying, because the

truth of a sentence is now relativized to not only assignments but also to worlds. For modification,

recall the type of ⊨ in a Kripke-type satisfaction relation, that is,

(M,− ⊨− −) ⊆ W × Dvar(L) × sent(L), or (M,− ⊨− −) : W × Dvar(L) × sent(L)→ 2,

and note that ⊨ is therefore equivalent to

⟦−⟧ : sent(L)→ P(W × Dvar(L)), or ⟦−⟧ : sent(L)→ (W × Dvar(L) → 2).

This is why we have

⟦φ⟧ ⊆ W × Dvar(L), or ⟦φ⟧ : W × Dvar(L) → 2,

124

Draft of November 14, 2010

for each sentence φ, and, accordingly, for each n-ary sentential operator ⊗ of L,

⟦⊗⟧ : P(W × Dvar(L))n → P(W × Dvar(L)),

with

⟦⊗(φ1, . . . , φn)⟧ = ⟦⊗⟧(⟦φ1⟧, . . . , ⟦φn⟧).

The clause for the interpretation ⟦Fx1 · · · xn⟧ : W × Dvar(L) → 2 of an atomic sentence must be

modified, since FM now has a different type, that is, FM ⊆ W × Dn. Yet it is simple to see how to

modify it, because (59) implies

⟦Fx1 · · · xn⟧(w, α) = 1 ⇐⇒ (w, α(x1), . . . , α(xn)) ∈ FM,

where

(w, α(x1), . . . , α(xn)) = (w, ⟦x1⟧(α), . . . , ⟦xn⟧(α))

= (w, ⟨⟦x1⟧, . . . , ⟦xn⟧⟩(α))

= 1W × ⟨⟦x1⟧, . . . , ⟦xn⟧⟩(w, α);

that is,

⟦Fx1 · · · xn⟧(w, α) = FM ◦ (1W × ⟨⟦x1⟧, . . . , ⟦xn⟧⟩)(w, α),

and hence

W × Dvar(L)

1W × ⟨⟦x1⟧, . . . , ⟦xn⟧⟩
//

⟦Fx1 · · · xn⟧

))

=

W × Dn

FM

// 2.

To sum these up, we have

Definition 42. Given a quantified modal language L, a Kripke-type interpretation for L is a pair

of a Kripke model M for L and a map ⟦−⟧ that assigns, to each variable x, sentence φ, and n-ary

sentential operator ⊗ of L, maps

⟦x⟧ : Dvar(L) → D,

⟦φ⟧ : W × Dvar(L) → 2,

⟦⊗⟧ : P(W × Dvar(L))n → P(W × Dvar(L))

125

Draft of November 14, 2010

that satisfy

⟦x⟧ : α 7→ α(x),

⟦Fx1 · · · xn⟧ = FM ◦ (1W × ⟨⟦x1⟧, . . . , ⟦xn⟧⟩),

⟦⊗(φ1, . . . , φn)⟧ = ⟦⊗⟧(⟦φ1⟧, . . . , ⟦φn⟧).

We say a Kripke-type interpretation for L is on a Kripke model M if its first coordinate is M, and

is over a Kripke frame F with domains if it is on a Kripke model over F.

We should make a remark—exactly similar to the one we made after Definition 26 (on p. 91)—

that, whereas every Kripke-type interpretation gives rise to a Kripke-type satisfaction relation via

transposition, not every Kripke-type satisfaction relation arises in that way, since the definition for

Kripke-type interpretations incorporates the truth condition (59) for atomic sentences. Neverthe-

less, once we rewrite the conditions (50)–(57) for sentential operators, we can define the subclass

of Kripke-type interpretations for L that is equivalent to the class of Kripke satisfaction relations

for L. We will summarize these facts in Fact 28, after reformulating (50)–(57) operationally in

Subsection IV.2.2.

Now that we have given an operational formulation to the Kripke setting, we can extend notions

we expressed in Section III.2 for two-domain semantics to this setting. Before discussing the notion

of DoQ-restrictability, let us first describe how to express the notions of local determination and its

preservation in terms of Kripke-type interpretations. Because a term t is interpreted by the same

type of map ⟦t⟧ : Dvar(L) → D as it was before in two-domain semantics, local determination of t

is expressed in the same way as before, that is, by the factorization of ⟦t⟧ through the restriction

surjection −↾x̄ : α 7→ α↾x̄ for the set x̄ of (free) variables in t, as in:

Dvar(L)

⟦t⟧

&&

−↾x̄
// //

=

Dx̄

⟦ x̄ | t ⟧
// D

In a quantified language L, every term x is a variable and hence locally determined trivially.

The expression of local determination of sentences needs some modification since sentences

are now interpreted by a different type of maps, but the modification is straightforward once we

observe that A : W × Dvar(L) → 2 can be called determined by variables x̄, in a slightly generalized

sense, if A factors through the (generalized) restriction surjection 1W × (−↾x̄) : (w, α) 7→ (w, α↾x̄),

126

Draft of November 14, 2010

as in the following commutative diagram for some Ax̄:

W × Dvar(L)

A

((

1W × (−↾x̄)
// //

=

W × Dx̄

Ax̄

// 2

So, let us write rx̄ for the restriction 1W × (−↾x̄), and just replace |M|var(L) and |M|x̄ in Definitions

?? (on p. ??) and ?? (on p. ??) with W × Dvar(L) and W × Dx̄, respectively, so that we enter the

following (only local determination of sentences is significant for local determination of a Kripke-

type interpretation, because every term of a quantified L is locally determined trivially).

Definition 43. Given a quantified modal language L, suppose x̄ are the free variables in a sentence

φ of L. Then we say that φ is locally determined in a Kripke-type interpretation (M, ⟦−⟧) for L,

with D the domain of individuals of M = (W,R,D−), if its interpretation ⟦φ⟧ : W × Dvar(L) → 2

factors through rx̄ = 1W × (−↾x̄), as in

W × Dvar(L)

⟦φ⟧

''

rx̄

// //

=

W × Dx̄

⟦ x̄ | φ ⟧
// 2

If this is the case, we write ⟦ x̄ | φ ⟧ : W ×Dx̄ → 2 for the unique map such that ⟦φ⟧ = ⟦ x̄ | φ ⟧ ◦ rx̄.

Moreover, we say a Kripke-type interpretation for L is locally determined if every sentence of

L is locally determined in it. We also say a class of Kripke-type interpretations for L is locally

determined if every member of that class is locally determined.

Now, using the precomposition operation rx̄
∗ = − ◦ rx̄ with rx̄, that is,

rx̄
∗(B) = B ◦ rx̄ : W × Dvar(L) → 2n

for every B : W × Dx̄ → 2n (see Subsection III.2.3 for details), we enter:

Definition 44. Let L be a quantified modal language and let (W,R,D−) be a Kripke frame with

domains, with a domain D of possible individuals. Then, for variables ȳ of L, we say an operation

f : P(W × Dvar(L))n → P(W × Dvar(L)) preserves local determination with the binding of ȳ if, for

every finite set x̄ of variables of L, there is an operation fx̄ : P(W ×Dx̄)n → P(W ×Dx̄\ȳ) such that,

for every B : W × Dx̄ → 2n,

fx̄(B) ◦ rx̄\ȳ = f (B ◦ rx̄),

127

Draft of November 14, 2010

that is, that makes the following diagram commute.

P(W × Dvar(L))n

f
��

=

P(W × Dx̄)noo
rx̄
∗

oo

fx̄

��

P(W × Dvar(L)) P(W × Dx̄\ȳ)oo
rx̄\ȳ

∗
oo

We also say f : P(W × Dvar(L))n → P(W × Dvar(L)) preserves local determination for a sentential

operator ⊗ ofL if ⊗ is n-ary and if f preserves local determination with the binding of the variables

that ⊗ binds. Moreover, we say a Kripke-type interpretation for L preserves local determination if

it interprets every sentential operator ⊗ of L with an operation that preserves local determination

for ⊗.

Since atomic sentences are locally determined in any Kripke-type interpretation, we have:

Fact 27. Any Kripke-type interpretation for a given quantified modal language L is locally deter-

mined if it preserves local determination.

Let us finally discuss how to express the notion of DoQ-restrictability in terms of Kripke-type

interpretations. Fix a quantified modal language L, a Kripke model M = (W,R,D−, FM) for L
with the domain D of possible individuals, and a Kripke-type interpretation (M, ⟦−⟧) for L on M.

We need to decide when the following four types of maps (only four, since L has no function or

constant symbols) are said to be restrictable to the domain of quantification:

FM : W × Dn → 2,

⟦x⟧ : Dvar(L) → D,

⟦φ⟧ : W × Dvar(L) → 2,

⟦⊗⟧ : P(W × Dvar(L))n → P(W × Dvar(L)).

This question is trickier than it was with the two-domain semantics because, in Kripke semantics,

domains Dw of quantification vary with worlds w.

Since a different world w has a different domain Dw of quantification, it has a different DoQ-

restriction of ⟦x⟧ : Dvar(L) → D. Nonetheless, as before, ⟦x⟧ is always restrictable to any Dw ⊆ D,

128

Draft of November 14, 2010

as in:

Dvar(L)
⟦x⟧

//

=

D

Dw
var(L)
?�

OO

⟦x⟧Dw

// Dw

?�

OO(64)

So let us call ⟦x⟧Dw
as above the w-DoQ-restriction of ⟦x⟧.

To restrict FM : W × Dn → 2 and ⟦φ⟧ : W × Dvar(L) → 2 to proper types of maps, observe that

some (w, ā) ∈ W × Dn may be such that each ai exists in w—that is, such that ā lies in the n-fold

product Dw
n of the domain Dw of quantification for w—but another (w, b̄) ∈ W×Dn may not be, and

also that some (w, α) ∈ W × Dvar(L) may be such that α is a w-DoQ-assignment α : var(L) → Dw

but another (w, β) ∈ W × Dvar(L) may not be. So let us introduce

Definition 45. Given a Kripke frame F = (W,R,D−), we say a pair (w, ā) ∈ W × Dn is a world-

tuple DoQ-pair, or a world-individual DoQ-pair when n = 1, if ā ∈ Dw
n, and we also say a pair

(w, α) ∈ W × Dvar(L) is a world-assignment DoQ-pair if α : var(L) → Dw. We call them simply

DoQ-pairs when it causes no confusion, and call other pairs non-DoQ-pairs.

And consider the sets of DoQ-pairs, that is, the subsets

{ (w, ā) ∈ W × Dn | ā ∈ Dw
n }, { (w, α) ∈ W × Dvar(L) | α : var(L)→ Dw }

of W × Dn and W × Dvar(L); indeed, they can be written, with
∑

for disjoint union, as∑
w∈W

Dw
n =
∪
w∈W

({w} × Dw
n) = { (w, ā) ∈ W × Dn | ā ∈ Dw

n },∑
w∈W

Dw
var(L) =

∪
w∈W

({w} × Dw
var(L)) = { (w, α) ∈ W × Dvar(L) | α : var(L)→ Dw }.

Then let us take, as our candidates for the DoQ-restrictions FM
DoQ of FM and ⟦φ⟧DoQ of ⟦φ⟧, their

restrictions to the sets above, as in

W × Dn FM
//

=

2

∑
w∈W

Dw
n

?�
i

OO

FM
DoQ

// 2

(65)

129

Draft of November 14, 2010

and the following.

W × Dvar(L)
⟦φ⟧

//

=

2

∑
w∈W

Dw
var(L)

?�
i

OO

⟦φ⟧DoQ

// 2

(66)

Again, FM and ⟦φ⟧ are trivially DoQ-restrictable, since they are restrictable to any subset of W×Dn

and W × Dvar(L), respectively.

These proposed types of the DoQ-restrictions of ⟦x⟧, FM, and ⟦φ⟧ fit together nicely, since

from them it follows that the diagram

W × Dvar(L)

1W × ⟨⟦x1⟧, . . . , ⟦xn⟧⟩
//

⟦Fx1 · · · xn⟧

**

=

W × Dn

FM

// 2

for interpreting atomic sentences Fx̄ restricts to the domains of quantification, as in

W × Dvar(L)

1W × ⟨⟦x1⟧, . . . , ⟦xn⟧⟩
//

⟦Fx1 · · · xn⟧

**

=

W × Dn

FM

// 2

∑
w∈W

Dw
var(L)

∑
w∈W
⟨⟦x1⟧Dw

, . . . , ⟦xn⟧Dw
⟩

//

⟦Fx1 · · · xn⟧DoQ

44=

?�

i

OO

∑
w∈W

Dw
n

FM
DoQ

//

?�

i

OO

2,

where the map
∑
w∈W
⟨⟦x1⟧Dw

, . . . , ⟦xn⟧Dw
⟩ maps DoQ-pairs (w, α) to DoQ-pairs

(w, ⟨⟦x1⟧Dw
, . . . , ⟦xn⟧Dw

⟩(α)) = (w, ⟦x1⟧Dw
(α), . . . ⟦xn⟧Dw

(α)) = (w, α(x1), . . . , α(xn)).

The left inner square above commutes due to (64), while the right one is just (65); and these entail

the commutation of the outer square, which is an atomic instance of (66).

130

Draft of November 14, 2010

Finally, the type of the DoQ-restriction of ⟦φ⟧, that is, ⟦φ⟧DoQ :
∑
w∈W

Dw
var(L) → 2, settles the

type of the DoQ-restriction ⟦⊗⟧DoQ of ⟦⊗⟧ : P(W × Dvar(L))n → P(W × Dvar(L)); that is, it has to be

P(W × Dvar(L))n
⟦⊗⟧

//

i∗ ���� =

P(W × Dvar(L))m

i∗����

P
∑
w∈W

Dw
var(L)

n ⟦⊗⟧DoQ

// P
∑
w∈W

Dw
var(L)

m

where i∗ is the precomposition − ◦ i with the inclusion i :
∑
w∈W

Dw
var(L) ↪→ W × Dvar(L).

Summarizing these observations, we have the following definition. Only the DoQ-restrictability

of ⟦⊗⟧ plays a role in the definition, because FM, ⟦x⟧, and ⟦φ⟧ are always DoQ-restrictable.

Definition 46. Let L be a quantified modal language and M = (W,R,D−, FM) be a Kripke model

for L with a domain D of possible individuals. Then we say an operation f : P(W × Dvar(L))n →
P(W × Dvar(L))m (for any n and m) is DoQ-restrictable if it is restrictable to the set

∑
w∈W

Dw
var(L) of

DoQ-pairs, as in:

P(W × Dvar(L))n
f

//

i∗ ���� =

P(W × Dvar(L))m

i∗����

P
∑
w∈W

Dw
var(L)

n fDoQ

// P
∑
w∈W

Dw
var(L)

m
We also say a Kripke-type interpretation (M, ⟦−⟧) for L on M is DoQ-restrictable if ⟦⊗⟧ : P(W ×
Dvar(L))n → P(W × Dvar(L)) is DoQ-restrictable for each n-ary sentential operator ⊗ of L.

The following is worth noting. Recall that the equivalence (69) between subsets A =
∑
w∈W

Aw ⊆

W × Dvar(L) and families ⟨Aw⟩w∈W of subsets of Dvar(L) gives rise to the isomorphism

P(W × Dvar(L)) �
∏
w∈W
P(Dvar(L)).

Then note that this isomorphism restricts to

P
∑
w∈W

Dw
var(L)

 �∏
w∈W
P(Dw

var(L)),

because A ⊆
∑
w∈W

Dw
var(L) iff Aw ⊆ Dw

var(L) for all w ∈ W.

131

Draft of November 14, 2010

IV.2.2. Kripke’s Operations. In Subsection IV.2.1 we laid out how to give an operational

formulation of semantics to Kripke’s setting of possible worlds and possible individuals, and how

to express the notions of local determination, its preservation, and DoQ-restrictability. In this

subsection, we first operationally reformulate Kripke’s truth conditions (50)–(57) for sentential

operators, and then show that the operations given by them preserve local determination.

It should be clear that, by (50)–(53), ⟦¬⟧, ⟦∧⟧, ⟦∨⟧, ⟦→⟧ are truth-functional postcompositions

¬2 ◦−, ∧2 ◦−, ∨2 ◦−,→2 ◦− as before (although working on maps of different types), for example:

W × Dvar(L)
⟨A, B⟩

//

⟦∧⟧(A, B)
&&MM

MMM
MMM

MMM
MMM

MMM
M

=

2 × 2

∧2

��
2

P(W × Dvar(L))2

⟦∧⟧ = ∧2 ◦−
��

P(W × Dvar(L))

For the interpretation of quantifiers, since (56) means

(w, α) ∈ ⟦∀x⟧⟦φ⟧ ⇐⇒ (w, [a/x]α) ∈ ⟦φ⟧ for every a ∈ Dw,

we should set

⟦∀x⟧(A) = { (w, α) ∈ W × Dvar(L) | (w, [a/x]α) ∈ A for every a ∈ Dw }.(67)

This map ⟦∀x⟧ can be further analyzed, taking advantage of the intuitive observation that, in Kripke

semantics, the truth of ∀x .φ is determined within a world, or “world-wise”; that is, in deciding

whether or not ∀x .φ is true at w (with respect to an assignment), only the truth of φ at the world w

(with respect to certain other assignments) is relevant.

To express this formally, given any A ⊆ W × Dvar(L) and w ∈ W, let us write Aw for
−→
A(w), that

is,

Aw = {α ∈ Dvar(L) | (w, α) ∈ A }.

For example, ⟦φ⟧w is the set of assignments with respect to which φ is true at w. A amounts to the

disjoint union of Aw with indexing with w ∈ W; that is,

A =
∑
w∈W

Aw =
∪
w∈W

({w} × Aw).(68)

Note that the map
−→
A , to which the set A is equivalent, is defined by the family of its values

−→
A(w) =

Aw for all w ∈ W; in other words, any A ⊆ W × Dvar(L) is equivalent to the family of Aw ⊆ Dvar(L),

132

Draft of November 14, 2010

or, in notation,

A � ⟨Aw⟩w∈W .(69)

Thus the correspondence above between A =
∑
w∈W

Aw and ⟨Aw⟩w∈W gives an isomorphism

P(W × Dvar(L)) �
∏
w∈W
P(Dvar(L)).

In particular, the entire set W × Dvar(L) corresponds to ⟨Dvar(L)⟩w∈W , with (W × Dvar(L))w = Dvar(L)

constant for all w ∈ W, so that

W × Dvar(L) =
∑
w∈W

Dvar(L) � ⟨Dvar(L)⟩w∈W .

In this −w notation, Aw and (⟦∀x⟧(A))w are related as follows. Recall that, as noted in Subsection

IV.1.2, for each world w ∈ W, Mw = (D,Dw,
−−→
FM) is a two-domain L structure, with D the domain

of individuals and Dw the domain of quantification, and (Mw, (M, w ⊨− −)) is a two-domain

satisfaction relation forL. Therefore (Mw, ⟦−⟧w) is a two-domain interpretation forL. Let ⟦∀x⟧w :

P(Dvar(L)) → P(Dvar(L)) be its interpretation of ∀x, as defined in (40) (on p. 88); that is, for each

B ⊆ Dvar(L),

⟦∀x⟧w(B) = {α ∈ Dvar(L) | [a/x]α ∈ B for every a ∈ Dw }.

For example, since ⟦φ⟧w is the set of assignments with respect to which φ is true at w, ⟦∀x⟧w(⟦φ⟧w)

is supposed to be the set of assignments with respect to which ∀x .φ is true at w, that is, ⟦∀x .φ⟧w.

Indeed, (67) implies in general that

(w, α) ∈ ⟦∀x⟧(A) ⇐⇒ [a/x]α ∈ Aw for every a ∈ Dw ⇐⇒ α ∈ ⟦∀x⟧w(Aw),

that is

(⟦∀x⟧(A))w = ⟦∀x⟧w(Aw),(70)

and hence

⟦∀x⟧(A)
(68)
=
∑
w∈W

(⟦∀x⟧(A))w
(70)
=
∑
w∈W

(⟦∀x⟧w(Aw))
(68)
=
∪
w∈W

({w} × ⟦∀x⟧w(Aw)).

Or, in the A � ⟨Aw⟩w∈W notation,

⟦∀x⟧(A)
(69)
� ⟨(⟦∀x⟧(A))w⟩w∈W

(70)
= ⟨⟦∀x⟧w(Aw)⟩w∈W =

∏
w∈W
⟦∀x⟧w(⟨Aw⟩w∈W)

(69)
�
∏
w∈W
⟦∀x⟧w(A),

133

Draft of November 14, 2010

where the
∏

notation generalizes the “product map” notation for f1 × · · · × fn : (a1, . . . , an) 7→
(f1(a1), . . . , fn(an)); so we simply write

⟦∀x⟧ =
∏
w∈W
⟦∀x⟧w :

∏
w∈W
P(Dvar(L))→

∏
w∈W
P(Dvar(L)),

to indicate that the operation ⟦∀x⟧ is given by taking the product of operations ⟦∀x⟧w : P(Dvar(L))→
P(Dvar(L)) for all w ∈ W. Similarly,

⟦∃x⟧(A) =
∑
w∈W

(⟦∃x⟧(A))w =
∑
w∈W

(⟦∃x⟧w(Aw)) =
∪
w∈W

({w} × ⟦∃x⟧w(Aw))

= { (w, α) ∈ W × Dvar(L) | (w, [a/x]α) ∈ A for some a ∈ Dw }

and

⟦∃x⟧ =
∏
w∈W
⟦∃x⟧w :

∏
w∈W
P(Dvar(L))→

∏
w∈W
P(Dvar(L)).

Lastly, for the interpretation of modal operators, since (54) means

(w, α) ∈ ⟦□⟧⟦φ⟧ ⇐⇒ (u, α) ∈ ⟦φ⟧ for every u ∈ W such that Rwu,

we should set

⟦□⟧(A) = { (w, α) ∈ W × Dvar(L) | (u, α) ∈ A for every u ∈ W such that Rwu },(71)

and similarly, by (55), we should set

⟦^⟧(A) = { (w, α) ∈ W × Dvar(L) | (u, α) ∈ A for some u ∈ W such that Rwu }.(72)

These maps ⟦□⟧ and ⟦^⟧ can be analyzed in a manner similar to the analysis of ⟦∀x⟧ above,

since (71) and (72) determine the truth of □φ and ^φ “assignment-wise”. In a manner symmetric

to the −w notation above, let us introduce the −α notation as follows: Given any A ⊆ W × Dvar(L)

and α ∈ Dvar(L), we write Aα for
←−
A(α), that is,

Aα = {w ∈ W | (w, α) ∈ A }.

For example, ⟦φ⟧α is the set of worlds at which φ is true with respect to α. Again, A is the disjoint

union of Aα with indexing with α ∈ Dvar(L), as in

A =
∑

α∈Dvar(L)

Aα =
∪

α∈Dvar(L)

(Aα × {α}),

134

Draft of November 14, 2010

and is equivalent to the family of Aα for all α : var(L)→ D, as in

A � ⟨Aα⟩α∈Dvar(L) .

It follows that, using the right transpose
−→
R of R, which has

−→
R (w) = { u ∈ W | Rwu }, we can

rewrite (71) and (72) as

(w, α) ∈ ⟦□⟧(A) ⇐⇒ (u, α) ∈ A for every u ∈ −→R (w) ⇐⇒ −→
R (w) ⊆ Aα,(73)

(w, α) ∈ ⟦^⟧(A) ⇐⇒ (u, α) ∈ A for some u ∈ −→R (w) ⇐⇒ −→
R (w) ∩ Aα , ∅.(74)

These can be rewritten further in terms of the interior and closure operations intR, clR : P(W) →
P(W) associated with the accessibility relation R, as defined for the case of propositional modal

logic in Definition ?? (on p. ??); that is, for each U ⊆ W,

intR(U) = {w ∈ W | −→R (w) ⊆ U } = {w ∈ W | u ∈ U for every u ∈ W such that Rwu },

clR(U) = {w ∈ W | −→R (w) ∩ U , ∅ } = {w ∈ W | u ∈ U for some u ∈ W such that Rwu }.

Thus, (73) and (74) amount to

(w, α) ∈ ⟦□⟧(A) ⇐⇒ w ∈ intR(Aα), (w, α) ∈ ⟦^⟧(A) ⇐⇒ w ∈ clR(Aα),(75)

that is,

(⟦□⟧(A))α = intR(Aα), (⟦^⟧(A))α = clR(Aα),

and hence

⟦□⟧(A) =
∑

α∈Dvar(L)

(⟦□⟧(A))α =
∑

α∈Dvar(L)

intR(Aα) =
∪

α∈Dvar(L)

(intR(Aα) × {α}),

⟦^⟧(A) =
∑

α∈Dvar(L)

(⟦^⟧(A))α =
∑

α∈Dvar(L)

clR(Aα) =
∪

α∈Dvar(L)

(clR(Aα) × {α}),

and moreover

⟦□⟧ =
∏

α∈Dvar(L)

intR :
∏

α∈Dvar(L)

P(W)→
∏

α∈Dvar(L)

P(W),

⟦^⟧ =
∏

α∈Dvar(L)

clR :
∏

α∈Dvar(L)

P(W)→
∏

α∈Dvar(L)

P(W).

From these, we have

135

Draft of November 14, 2010

Definition 47. Given a quantified modal language L, a Kripke-type interpretation for L on M is

said to be a Kripke interpretation for L, if it satisfies (76)–(83):

⟦¬⟧ = ¬2 ◦ −,(76)

⟦∧⟧ = ∧2 ◦ −,(77)

⟦∨⟧ = ∨2 ◦ −,(78)

⟦→⟧ =→2 ◦ −,(79)

⟦□⟧ =
∏

α∈Dvar(L)

intR , where intR(A) = {w ∈ W | −→R (w) ⊆ A },(80)

⟦^⟧ =
∏

α∈Dvar(L)

clR , where clR(A) = {w ∈ W | −→R (w) ∩ A , ∅ },(81)

⟦∀x⟧ =
∏
w∈W
⟦∀x⟧w, where ⟦∀x⟧w(A) = {α ∈ Dvar(L) | [a/x]α ∈ A for every a ∈ Dw },(82)

⟦∃x⟧ =
∏
w∈W
⟦∃x⟧w, where ⟦∃x⟧w(A) = {α ∈ Dvar(L) | [a/x]α ∈ A for some a ∈ Dw }.(83)

Then we have:

Fact 28. Let L be a quantified modal language. Given any Kripke-type interpretation (M, ⟦−⟧)
for L, define a relation ⊨ ⊆ W × Dvar(L) × sent(L) by transposition

M, w ⊨α φ ⇐⇒ (w, α) ∈ ⟦φ⟧,

so that we have a pair (M,⊨). This gives an operation from the class of Kripke-type interpretations

for L to the class of Kripke-type satisfaction relations for L. Moreover, this operation restricted to

the class of Kripke interpretations for L is bijective to the class of Kripke satisfaction relations for

L.

We close this subsection by showing that Kripke semantics preserves local determination and

hence is locally determined by Fact 27.

Fact 29. Any Kripke interpretation for a given quantified modal language L preserve local deter-

mination.

Corollary 4. Any Kripke interpretation for a given quantified modal language L is locally deter-

mined.

136

Draft of November 14, 2010

To prove Fact 29, the following notation is useful. In the same way we define Aα =
←−
A(α) :

W → 2 from A : W × Dvar(L) → 2 and α ∈ Dvar(L), for given x̄ let us define Bβ =
←−
B(β) : W → 2

from B : W × Dx̄ → 2 and β ∈ Dx̄, so that

w ∈ Bβ ⇐⇒ (w, β) ∈ B.

Then it follows that

Bα↾x̄ = (rx̄
∗(B))α(84)

for every B ⊆ W × Dx̄ and α : var(L)→ D, because

w ∈ Bα↾x̄ ⇐⇒ rx̄(w, α) = (w, α↾x̄) ∈ B ⇐⇒ (w, α) ∈ rx̄
∗(B) ⇐⇒ w ∈ (rx̄

∗(B))α.

We use this in the last step of the following proof, where we prove that ⟦□⟧ and ⟦^⟧ preserve local

determination for □ and ^.

Proof for Fact 29. Fix a quantified modal language L and a Kripke interpretation (M, ⟦−⟧)
for L over a Kripke frame (W,R,D−) with a domain D of possible individuals. Then ⟦¬⟧, ⟦∧⟧,
⟦∨⟧, ⟦→⟧ preserve local determination for ¬, ∧, ∨,→ because they are postcompositions.

That ⟦∀x⟧ preserves local determination for ∀y follows from the fact that it operates worldwise,

in the following manner. Recall that, as in Fact ?? (on p. ??), ⟦∀y⟧w, for each w ∈ W, preserves

local determination for ∀y (in the two-domain sense of Definition ?? on p. ??), as in the following,

where r′x̄ : α 7→ α↾x̄ and r′x̄\{y} : α 7→ α↾(x̄ \ {y}).

P(Dvar(L))

⟦∀y⟧w
��

=

P(Dx̄)oo
r′x̄
∗

oo

⟦ x̄ | ∀y ⟧w
��

P(Dvar(L)) P(Dx̄\{y})oo

r′x̄\{y}
∗

oo

Observe that r∗x̄ =
∏
w∈W

r′x̄
∗ and similarly that rx̄\{y}

∗ =
∏
w∈W

r′x̄\{y}
∗, because

(u, α) ∈ rx̄
∗(B) ⇐⇒ rx̄(u, α) = (u, α↾x̄) = (u, r′x̄(α)) ∈ B

⇐⇒ r′x̄(α) ∈ Bu ⇐⇒ α ∈ r′x̄
∗(Bu) ⇐⇒ (u, α) ∈ ⟨r′x̄∗(Bw)⟩w∈W .

137

Draft of November 14, 2010

Hence the product
∏
w∈W
⟦ x̄ | ∀y ⟧w of all ⟦ x̄ | ∀y ⟧w as above makes the diagram below commute.

P(W × Dvar(L)) �
∏
w∈W
P(Dvar(L))

⟦∀y⟧ =
∏
w∈W
⟦∀y⟧w

��

=

∏
w∈W
P(Dx̄) � P(W × Dx̄)oo

rx̄
∗ =
∏
w∈W

r′x̄
∗

oo ∏
w∈W
⟦ x̄ | ∀y ⟧w

��

P(W × Dvar(L)) �
∏
w∈W
P(Dvar(L))

∏
w∈W
P(Dx̄\{y}) � P(W × Dx̄\{y})oo

rx̄\{y}
∗ =
∏
w∈W

r′x̄\{y}
∗

oo

Thus
∏
w∈W
⟦ x̄ | ∀y ⟧w serves as ⟦ x̄ | ∀y ⟧; hence ⟦∀y⟧ preserves local determination for ∀y. Similarly

for ⟦∃x⟧.

For ⟦□⟧ to preserve local determination for □, for each x̄ we need ⟦ x̄ | □ ⟧ that makes

P(W × Dvar(L))

⟦□⟧
��

=

P(W × Dx̄)oo
rx̄
∗

oo

⟦ x̄ | □ ⟧
��

P(W × Dvar(L)) P(W × Dx̄)oo
rx̄
∗

oo

commute. So, fixing x̄, define ⟦ x̄ | □ ⟧ so that, for each (w, β) ∈ W × Dx̄ and B ⊆ W × Dx̄,

(w, β) ∈ ⟦ x̄ | □ ⟧(B) ⇐⇒ w ∈ intR(Bβ).

This entails the equivalence marked with ∗ in

(w, α) ∈ ⟦□⟧(rx̄
∗(B))

(75)
⇐⇒ w ∈ intR((rx̄

∗(B))α)

(84)
⇐⇒ w ∈ intR(Bα↾x̄)
∗⇐⇒ rx̄(w, α) = (w, α↾x̄) ∈ ⟦ x̄ | □ ⟧(B)

⇐⇒ (w, α) ∈ rx̄
∗(⟦ x̄ | □ ⟧(B));

hence the diagram above commutes. Therefore ⟦□⟧ preserves local determination for □. Similarly,

⟦ x̄ | ^⟧ : P(W × Dx̄)→ P(W × Dx̄) such that

(w, β) ∈ ⟦ x̄ | ^⟧(B) ⇐⇒ w ∈ clR(Bβ).

lets ⟦^⟧ preserve local determination for ^. □

138

Draft of November 14, 2010

IV.2.3. Autonomy of Kripkean Domains of Quantification. In Subsections IV.2.1 and IV.2.2

we reformulated Kripke semantics in an operational form and discussed how to express the notion

of DoQ-restrictability in this setting. In this subsection, we first observe that in Kripke semantics—

in particular, under Kripke’s truth conditions (54) and (55)—the interpretations of □ and ^ are not

DoQ-restrictable, which, as we saw in Subsection IV.1.2, explains why Kripke semantics cannot

combine modal logic K with classical first-order. Then we propose revisions of (54) and (55) that

are DoQ-restrictable, so that classical first-order logic can be combined with modal logic in the

new revised semantics.

Let us first show how Kripke semantics fails to be DoQ-restrictable. On the one hand, the DoQ-

restrictability of two-domain semantics straightforwardly extends to the the DoQ-restrictability of

the classical-language part of Kripke semantics, as in:

Fact 30. For every Kripke interpretation (M,⊨) for a given quantified modal language L, ⟦¬⟧,
⟦∧⟧, ⟦∨⟧, ⟦→⟧, ⟦∀x⟧, ⟦∃x⟧ are DoQ-restrictable.

Proof. ⟦¬⟧, ⟦∧⟧, ⟦∨⟧, ⟦→⟧ are DoQ-restrictable because they are postcompositions. To show

⟦∀x⟧ to be DoQ-restrictable, recall that, as stated in Fact ?? (on p. ??), ⟦∀x⟧w, for each w ∈ W, is

DoQ-restrictable (in the two-domain sense of Definition ?? on p. ??), as in:

P(Dvar(L))
⟦∀x⟧w //

i∗ ����
=

P(Dvar(L))

i∗����

P(Dw
var(L))

(⟦∀x⟧w)Dw

// P(Dw
var(L))

Hence the DoQ-restriction of ⟦∀x⟧ is given by taking the product
∏
w∈W

(⟦∀x⟧w)Dw
of all (⟦∀x⟧w)Dw

as

above, as in:

P(W × Dvar(L)) �

i∗
����

∏
w∈W
P(Dvar(L))

⟦∀x⟧ =
∏
w∈W
⟦∀x⟧w

//

=

∏
w∈W
P(Dvar(L)) � P(W × Dvar(L))

i∗
����

P
∑
w∈W

Dw
var(L)

 �∏
w∈W
P(Dw

var(L)) ∏
w∈W

(⟦∀x⟧w)Dw

//
∏
w∈W
P(Dw

var(L)) � P
∑
w∈W

Dw
var(L)



139

Draft of November 14, 2010

Similarly for ⟦∃x⟧. □

The modal part of Kripke semantics, on the other hand, is not DoQ-restrictable.

Fact 31. For a Kripke interpretation (M,⊨) for a given quantified modal languageL, ⟦□⟧ and ⟦^⟧

are not in general DoQ-restrictable.

We prove this in terms of world-assignment pairs, but attach parenthesized “subtitles” translat-

ing the proof into more intuitive terms of world-individual pairs, as follows:

Proof. Consider the Kripke frame F = (W,R,D−) with domains such that

W = {u, v}, R = {(u, v)},

Du = {a, b}, where a , b, Dv = {a}.

Fix any Kripke model M for L over F, and any Kripke interpretation (M, ⟦−⟧) for L on M. Then,

fixing a variable x of L, let

A = { (v, α) ∈ W × Dvar(L) | α(x) = b } ⊆ W × Dvar(L).

(We may think of A as the property that holds exactly of b at v—or, in terms of world-individual

pairs, that holds of (v, b) but no other pairs.) It follows, since no (v, α) ∈ A is a DoQ-pair, that

i∗(A) = A ∩
∑
w∈W

Dw
var(L) = ∅ = ∅ ∩

∑
w∈W

Dw
var(L) = i∗(∅)

for the inclusion map i :
∑
w∈W

Dw
var(L) ↪→ W × Dvar(L). (Think of ∅ as the property that holds of no

world-individual pairs; then, since A holds only of the non-DoQ-pair (v, b), the properties A and ∅

are equivalent for the DoQ-pairs.)

Now pick any β : var(L)→ Du such that β(x) = b, which implies (v, β) ∈ A. Then we have:

• Since v is the only w ∈ W with Ruw, (v, β) ∈ A implies (u, β) ∈ ⟦□⟧(A) by (71). Hence

(u, β) ∈ i∗(⟦□⟧(A)), because (u, β) ∈
∑
w∈W

Dw
var(L).

• Since Ruv, (v, β) < ∅ implies (u, β) < ⟦□⟧(∅) by (71). Hence (u, β) < i∗(⟦□⟧(∅)).

(That is, the DoQ-pair (u, b) satisfies the property “necessarily-A” but not “necessarily-∅”.) Thus

i∗(⟦□⟧(A)) , i∗(⟦□⟧(∅)), whereas i∗(A) = i∗(∅). (When restricted to the DoQ-pairs, the properties

A and ∅ are equivalent, but “necessarily-A” and “necessarily-∅” are not.) Therefore there can be

no operation f : P
∑
w∈W

Dw
var(L)

→ P ∑
w∈W

Dw
var(L)

 such that f ◦ i∗ = i∗ ◦⟦□⟧; this means that ⟦□⟧

140

Draft of November 14, 2010

is not DoQ-restrictable. (The difference between “necessarily-A” and “necessarily-∅” in terms of

DoQ-pairs hinges on the difference between A and ∅ in terms of non-DoQ pairs.)

Similarly, ⟦^⟧ is not DoQ-restrictable, because we have

• Since Ruv, (v, β) ∈ A implies (u, β) ∈ ⟦^⟧(A) by (72). Hence (u, β) ∈ i∗(⟦^⟧(A)), because

(u, β) ∈
∑
w∈W

Dw
var(L).

• Since v is the only w ∈ W with Ruw, (v, β) < ∅ implies (u, β) < ⟦^⟧(∅) by (72). Hence

(u, β) < i∗(⟦^⟧(∅)). □

This is how Kripke’s truth conditions (54) for □ and (55) for ^—or their operational versions

(71) and (72)—prevent Kripke semantics from being DoQ-restrictable. The upshot of the proof is

that, due to (71) and (72), whether or not ⟦□⟧(A) and ⟦^⟧(A) (or ⟦□⟧(∅) and ⟦^⟧(∅)) contain the

DoQ-pair (u, β) depends on whether or not A (or ∅) contains the non-DoQ pair (v, β).

For the rest of this subsection, we pursue a DoQ-restrictable revision of Kripke semantics. The

upshot just laid out of the proof above indicates that the reason (71) and (72) fail to provide □ and

^ with DoQ-restrictable interpretations is their reference to non-DoQ pairs. More precisely, once

we recall that Kripke’s truth conditions (54) and (55) can be reformulated as

(w, α) ∈ ⟦□⟧(A) ⇐⇒ −→
R (w) ⊆ Aα,(73)

(w, α) ∈ ⟦^⟧(A) ⇐⇒ −→
R (w) ∩ Aα , ∅(74)

for
−→
R (w) = { u ∈ W | Rwu }, it is obvious that

−→
R (w) may contain u ∈ W regardless of whether (u, α)

is a DoQ-pair or not.

Let us observe this more conceptually. It helps to divide Kripke’s semantic idea into the fol-

lowing two aspects:

(A) In determining the truth of □φ (and ^φ, respectively) at w with respect to α, we refer to

some set U of worlds, and consider whether φ is true at every u ∈ U (and some u ∈ U)

with respect to α.

(B) Then we take, as this set U of “reference worlds”,
−→
R (w), that is, the set of worlds acces-

sible from w, independent of α.

Then U =
−→
R (w) may contain u such that (u, α) is not a DoQ-pair, in which case we make reference

to that non-DoQ-pair (u, α) by considering whether φ is true with respect to it. This observation

seems to suggest that we should revise the second aspect of Kripke’s idea by taking, as the set U

141

Draft of November 14, 2010

of reference worlds, a set that can never contain such u. So let us try taking

−→
Rα(w) = { u ∈ W | Rwu and α : var(L)→ Du },(85)

so that (u, α) is always a DoQ-pair for every u ∈ −→Rα(w), and using it as the set of reference worlds

(for w and α); that is, we modify (73) and (74) with

(w, α) ∈ ⟦□⟧(A) ⇐⇒ −→
Rα(w) ⊆ Aα,(86)

(w, α) ∈ ⟦^⟧(A) ⇐⇒ −→
Rα(w) ∩ Aα , ∅,(87)

so as to rule out the reference to non-DoQ-pairs. Then (86) and (87) certainly make ⟦□⟧ and ⟦^⟧

DoQ-restrictable (we omit a proof).

The conditions (86) and (87) cause, however, a serious problem: ⟦□⟧ and ⟦^⟧ that satisfy them

do not in general preserve local determination. To see how this problem arises, fix a Kripke frame

F = (W,R,D−) with domains and a Kripke-type interpretation (M, ⟦−⟧) for a given language L
over F, and note that a sentence φ of L is locally determined in (M, ⟦−⟧) iff the following holds

for every α, β : var(L)→ D such that α(x) = β(x) for all free variables x in φ:

• (w, α) ∈ ⟦φ⟧ iff (w, β) ∈ ⟦φ⟧ for all w ∈ W; that is,

• ⟦φ⟧α = ⟦φ⟧β.

Then it is obvious that, under (73) of Kripke semantics on one hand, ⟦□⟧ preserves local determi-

nation, because ⟦φ⟧α = ⟦φ⟧β entails the second equivalence below:

(w, α) ∈ ⟦□φ⟧
(73)
⇐⇒ −→

R (w) ⊆ ⟦φ⟧α ⇐⇒
−→
R (w) ⊆ ⟦φ⟧β

(73)
⇐⇒ (w, β) ∈ ⟦□φ⟧.

On the other hand, even if α and β agree on the free variables in φ, they may not agree on other

variables, and so, given u ∈ W, we may have α : var(L) → Du while β : var(L) ̸→ Du; therefore,

generally,
−→
Rα ,

−→
R β. It follows that the conditions that ⟦φ⟧α = ⟦φ⟧β and that α(x) = β(x) for every

free variable x in φ fail under (86) to imply that (w, α) ∈ ⟦□φ⟧ iff (w, β) ∈ ⟦□φ⟧ because, generally,

(w, α) ∈ ⟦□φ⟧
(86)
⇐⇒ −→

Rα(w) ⊆ ⟦φ⟧α = ⟦φ⟧β ⇍⇒
−→
R β(w) ⊆ ⟦φ⟧α = ⟦φ⟧β

(86)
⇐⇒ (w, β) ∈ ⟦□φ⟧.11

11For example, let F be as in the proof for Fact 31, and, fixing x ∈ var(L), assume α(y) = a for every y ∈ var(L),

β(x) = a and β(y) = b for some y ∈ var(L). Then α : var(L) → Dv and hence
−→
Rα(u) = {v}, while β : var(L) ̸→ Dv

entails
−→
Rβ(u) = ∅; thus

−→
Rα(u) ⊈ ∅whereas

−→
Rβ(u) ⊆ ∅. Now, for a unary primitive predicate F ofL, assume FM = ∅,

which implies ⟦Fx⟧α = ⟦Fx⟧β = ∅. Then (86) implies that (u, α) < ⟦□Fx⟧ while (u, β) ∈ ⟦□Fx⟧, even though α and

β agree on the free variable x in □Fx, thereby violating local determination.

142

Draft of November 14, 2010

The moral of our failed trial with (85)–(87) is as follows. In determining the truth of □φ and

^φ with respect to a DoQ-pair (w, α), we tried taking
−→
Rα(w) instead of

−→
R (w) as the set of reference

worlds, because the reference to non-DoQ-pairs—the obstacle to DoQ-restrictability—was made

in the latter but not in the former. We have just learned, however, that if α and β agree on the free

variables in φ then we must give them the same set of reference worlds in order to preserve local

determination. Our trial of defining the set
−→
Rα(w) of reference worlds for α (and w) by (85) fails

to meet this demand—it allows
−→
Rα(w) ,

−→
R β(w) even if α and β agree on all free variables in φ—

since whether or not u ∈ −→Rα(w) depends on whether or not α(x) ∈ Du for all variables x ∈ var(L),

even including those that do not occur freely in φ.

This is a technical reason (in addition to the intuitive motivation we will spell out shortly) why,

in determining the truth of □φ and ^φ in which x̄ are all and only the free variables, we should

take the set of reference worlds not relative to a global assignment α : var(L) → D but relative to

a local assignment β : x̄ → D. Hence we propose that, instead of
−→
Rα(w) for a global assignment

α : var(L)→ D, we take, for a local assignment β : x̄→ D,

−→
R β(w) = { u ∈ W | Rwu and β : x̄→ Du },(88)

and then modify (86) and (87) so that, for every (w, α) ∈ W × Dvar(L),12

If x̄ are all and only the free variables in φ, then(89)

(w, α) ∈ ⟦□φ⟧ ⇐⇒ −→
Rα↾x̄(w) ⊆ ⟦φ⟧α,

If x̄ are all and only the free variables in φ, then(90)

(w, α) ∈ ⟦^φ⟧ ⇐⇒ −→
Rα↾x̄(w) ∩ ⟦φ⟧α , ∅.

In terms of satisfaction relations, we can write these conditions as follows:

If x̄ are all and only the free variables in φ, then(91)

M, w ⊨α □φ ⇐⇒ M, u ⊨α φ for every u such that Rwu and α↾x̄ : x̄→ Du,

If x̄ are all and only the free variables in φ, then(92)

M, w ⊨α ^φ ⇐⇒ M, u ⊨α φ for some u such that Rwu and α↾x̄ : x̄→ Du.

12Rather than general subsets A and ⟦□⟧(A), ⟦^⟧(A), we focus on interpretations ⟦φ⟧, ⟦□φ⟧, ⟦^φ⟧ of sentences

φ, □φ, ^φ, partly because we need to fix the free variables x̄ in φ, but also because of technical issues involved with

the general case of general subsets A. We will discuss these issues shortly in Subsection ??.

143

Draft of November 14, 2010

It is worth noting that (91) and (92) (or (89) and (90)) coincide with Kripke’s (54) and (55) (or

(71) and (72)), respectively, for closed φ, that is, if the set of free variables in φ is x̄ = ∅, because

α↾∅ : ∅→ Du is trivially the case for any α and Du.

Let us give intuitive readings to these conditions, so that a conceptual reason for our proposing

them is clearer. We can read (91) intuitively as follows: When x̄ are all and only the free variables

in φ,

• □φ is true of α(x1), . . . , α(xn) at w, iff

• φ is true of α(x1), . . . , α(xn) at every u ∈ W such that Rwu and in which α(x1), . . . , α(xn)

all exist.

Similarly, we can read (92) intuitively as follows: When x̄ are all and only the free variables in φ,

• ^φ is true of α(x1), . . . , α(xn) at w, iff

• φ is true of α(x1), . . . , α(xn) at some u ∈ W such that Rwu and in which α(x1), . . . , α(xn)

all exist.

Or, to put these even more intuitively,

• An n-tuple ā necessarily satisfies an n-ary property φ iff ā satisfies φ in every accessible

world where ā exists (rather than just every accessible world);

• An n-tuple ā possibly satisfies an n-ary property φ iff ā satisfies φ in some accessible

world where ā exists (rather than just some accessible world).

As is obvious from these readings, the key idea of our modification with (88)–(92) is that, in

distinguishing DoQ-pairs from non-DoQ-pairs (in order to rule out the reference to non-DoQ-pairs

from truth conditions, and thereby to attain DoQ-restrictability), we refer to world-tuple DoQ-pairs

rather than world-assignment DoQ-pairs. This idea is in accord with the conceptual motivation

behind local determination that sentences should be true (or not) of tuples of individuals rather

than (global) assignments. In determining the truth of □φ or ^φ in which x̄ are all and only the

free variables, the only semantically relevant aspect of an assignment α : var(L) → D should be

its values on x̄. Accordingly, even though α may fail to be a u-DoQ-assignment due to the fact that

α(y) < Du, this fact should be relevant to the truth of □φ or ^φ only if y occurs freely in φ.

So we enter:

Definition 48. Given a quantified modal language L, a Kripke-type satisfaction relation for L is

called a DoQ-autonomous Kripkean satisfaction relation for L if it satisfies (50)–(53), (56)–(59),

144

Draft of November 14, 2010

(91) and (92). Moreover, by the DoQ-autonomous Kripkean semantics for L, we mean the class

of all DoQ-autonomous Kripkean satisfaction relations for L.

The adjective “DoQ-autonomous” means that domains of quantification for such relations are

autonomous, whereas “Kripkean” indicates that the semantic idea behind such relations is based

on, though not quite the same as, Kripke’s idea—in particular, we keep the aspect (A) of his

idea, while revising (B) (see p. 141). This semantics is indeed DoQ-restrictable, in a certain

sense; but our technical definition of DoQ-restrictability involves formulating the semantics op-

erationally, which is, however, not straightforward, and requires modification of the definition of

DoQ-restrictability. We will lay out an operational formulation of the semantics, as well as the

definition and proof of its DoQ-restrictability, in Section IV.3.

The following facts can be proven similarly to Facts 24 and 25.

Fact 32. Given a quantified modal language L (the only non-classical operators of which are □

and ^), every Kripke model for L has a unique DoQ-autonomous Kripkean satisfaction relation

on it.

Fact 33. Given a quantified modal language L, every DoQ-autonomous Kripkean satisfaction

relation is locally determined, SoS, and AC (see Definition 39).

IV.2.4. Autonomy of Domains and Converse Barcan Formula. In Subsection IV.1.2, we

made a remark that the Kripke-validity of the converse Barcan formula in a Kripke frame hinges,

not on the increase of its domain as maintained as a near-orthodoxy by modal logicians, but on the

semantic insignificance of non-existent individuals, that is, the autonomy of domains of quantifi-

cation. Now that we have given a DoQ-autonomous revision of Kripke semantics, we are finally

prepared to precisely state this near-heterodoxy.

We should first note that, although Kripke semantics in general is not DoQ-restrictable, Kripke

semantics with increasing domains is DoQ-restrictable, by Fact 30 and the following.

Fact 34. Given any quantified modal language L, suppose a Kripke frame F = (W,R,D−) with a

domain D of possible individuals has an increasing domain. Then, if a Kripke-type interpretation

(M, ⟦−⟧) over F interprets □ and ^ with ⟦□⟧ and ⟦^⟧ satisfying (73) and (74), respectively, then

⟦□⟧ and ⟦^⟧ are DoQ-restrictable.

145

Draft of November 14, 2010

To prove this, it is easy but useful to observe the following. First, for every α : var(L) → D

and A, B ⊆ W × Dvar(L), we have

(A ∩ B)α = Aα ∩ Bα,(93)

because

w ∈ (A ∩ B)α ⇐⇒ (w, α) ∈ A ∩ B ⇐⇒ (w, α) ∈ A, B ⇐⇒ w ∈ Aα, Bα.

Also, observe that if the domain is increasing then, for every (u, α) ∈
∑
w∈W

Dw
var(L), we have

−→
R (u) ⊆

∑
w∈W

Dw
var(L)


α

;(94)

this is because that the domain is increasing implies that if α : var(L) → Du and Ruv then α(x) ∈
Du ⊆ Dv for all x ∈ var(L), and hence that, for every (u, α) ∈

∑
w∈W

Dw
var(L),

v ∈ −→R (u) ⇐⇒ Ruv =⇒ α : var(L)→ Dv ⇐⇒ (v, α) ∈
∑
w∈W

Dw
var(L) ⇐⇒ v ∈

∑
w∈W

Dw
var(L)


α

.

Using these observation, we give:

Proof for Fact 34. That ⟦□⟧ is DoQ-restrictable means that there is ⟦□⟧DoQ making

P(W × Dvar(L))
⟦□⟧

//

i∗ ���� =

P(W × Dvar(L))

i∗����

P
∑
w∈W

Dw
var(L)

 ⟦□⟧DoQ

// P
∑
w∈W

Dw
var(L)


commute. So, let us define ⟦□⟧DoQ so that, for each (u, α) ∈

∑
w∈W

Dw
var(L) and A ⊆

∑
w∈W

Dw
var(L),

(u, α) ∈ ⟦□⟧DoQ(A) ⇐⇒ −→
R (u) ⊆ Aα.(95)

Then, for every (u, α) = i(u, α) ∈
∑
w∈W

Dw
var(L) and B ⊆ W × Dvar(L), we have

(u, α) ∈ i∗(⟦□⟧(B)) ⇐⇒ (u, α) = i(u, α) ∈ ⟦□⟧(B)

(73)
⇐⇒ −→

R (u) ⊆ Bα

(93)
⇐⇒ −→

R (u) ⊆ Bα ∩
∑
w∈W

Dw
var(L)


α

146

Draft of November 14, 2010

(94)
⇐⇒ −→

R (u) ⊆
B ∩∑

w∈W
Dw

var(L)


α

(95)
⇐⇒ (u, α) ∈ ⟦□⟧DoQ

B ∩∑
w∈W

Dw
var(L)

 = ⟦□⟧DoQ(i∗(B));

hence i∗ ◦ ⟦□⟧ = ⟦□⟧DoQ ◦ i∗, making the diagram above commute. Thus ⟦□⟧ is DoQ-restrictable.

Similarly, ⟦^⟧ is DoQ-restrictable, with ⟦^⟧DoQ such that

(u, α) ∈ ⟦^⟧DoQ(B) ⇐⇒ −→
R (u) ∩ Bα , ∅(96)

for every (u, α) ∈
∑
w∈W

Dw
var(L) and B ⊆

∑
w∈W

Dw
var(L). □

Corollary 5. Given a quantified modal language L, Kripke semantics for L with increasing do-

mains is DoQ-restrictable.

Next we observe that, when a domain is increasing, Kripke’s truth conditions (54) and (55) for

□ and ^ coincide with their DoQ-autonomous revisions (91) and (92) “up to DoQ-pairs”. Indeed,

this coincidence characterizes the increase of a domain, in the following sense.

Fact 35. Let F = (W,R,D−) be a Kripke frame with a domain D of possible individuals. Then the

following are equivalent:

(i) F has an increasing domain.

(ii) Given any quantified modal language L, for every w ∈ W, α : var(L)→ D, and finite set

x̄ of variables of L such that α↾x̄ : x̄→ Dw,

−→
R (w) =

−→
Rα↾x̄(w).

(iii) Given any quantified modal languageL, fix a sentence φ ofL in which x̄ are all and only

the free variables. Then, in every Kripke-type satisfaction relation (M,⊨) for L over F,

every pair of w ∈ W and α : var(L) → D such that α↾x̄ : x̄ → Dw satisfies (54) iff (91),

and (55) iff (92).

Proof. Suppose (i) and fix any L, w, α, x̄ as in (ii). Then, for any u ∈ W, Rwu entails α(xi) ∈
Dw ⊆ Du for each i ⩽ n (by (i)) and hence α↾x̄ : x̄→ Du. That is,

u ∈ −→R (w) ⇐⇒ Rwu ⇐⇒ Rwu and α↾x̄ : x̄→ Du ⇐⇒ u ∈ −→Rα↾x̄(w)

for every u ∈ W. Thus (ii) follows from (i).

147

Draft of November 14, 2010

Suppose (ii) and fix any L, φ, x̄, (M,⊨), w, α as in (iii). Then (ii) implies

Rwu ⇐⇒ Rwu and α↾x̄ : x̄→ Du

for any u ∈ W, and hence immediately implies that (54) iff (91):

M, w ⊨α □φ ⇐⇒ M, u ⊨α φ for every u ∈ W such that Rwu;(54)

(If x̄ are all and only the free variables in φ, then)(91)

M, w ⊨α □φ ⇐⇒ M, u ⊨α φ for every u ∈ W such that Rwu and α↾x̄ : x̄→ Du.

Similarly (55) iff (92). Thus (ii) entails (iii).

To show that (iii) entails (i), suppose (i) is not the case; this means that Rwu and a < Du for some

w, u ∈ W and a ∈ Dw. Fixing a unary primitive predicate F ofL, pick a DoQ-autonomous Kripkean

satisfaction relation (M,⊨) for L over F that interprets F as a kind of “existence predicate”, that

is, with the set of world-individual DoQ-pairs, so that

(v, b) ∈ FM ⇐⇒ b ∈ Dv.
13

(M,⊨) satisfies (59) and (91) by definition. Now fix x ∈ var(L) and pick any α : var(L)→ D such

that α(x) = a. Then, for every v ∈ W,

Rwv and α↾{x} : {x} → Dv =⇒ α(x) ∈ Dv =⇒ (v, α(x)) ∈ FM (59)
=⇒ M, v ⊨α Fx;

this means M, w ⊨α □Fx by (91). On the other hand, α(x) = a < Du implies (u, α(x)) < FM and

hence M, u ⊭α Fx by (59), even though Rwu. Therefore (w, α), which has α↾{x} : {x} → Dw since

α(x) = a ∈ Dw, does not satisfy (54) for φ = Fx, whereas it does (91). Thus (iii) is not the case. □

Fact 35 means that the Kripke frames with increasing domains are exactly the intersection, up

to DoQ-pairs, of the DoQ-autonomous Kripkean semantics and Kripke semantics, and then Corol-

lary 5 justifies identifying Kripke interpretations with increasing domains with DoQ-autonomous

Kripkean interpretations with increasing domains. The situation can be illustrated by the following

“class diagram”:

13Kripke discusses this interpretation of an existence predicate on p. 70 of [5].

148

Draft of November 14, 2010

DoQ-autonomous
Kripkean semantics Kripke semantics

increasing
domain

On the Basis of this observation, we can express our near-heterodoxy—that is, that the validity of

the converse Barcan formula derives not from the increase of domains but from the autonomy of

domains of quantification—by the fact that, as we will show as Fact 36 below, the converse Barcan

formula is valid in the DoQ-autonomous Kripkean semantics (the left circle above) and not just in

the semantics with increasing domains (the intersection).

Fact 36. Given any quantified modal language L, its converse Barcan formula □∀y .φ→ ∀y□φ is

AA-valid (and hence DoQ-valid) in DoQ-autonomous Kripkean semantics for L.

Proof. Fix any DoQ-autonomous Kripkean satisfaction relation (M,⊨) for L over a Kripke

frame F = (W,R,D−) with a domain D of possible individuals, any w ∈ W, and any α : var(L) →
D, and suppose M, w ⊨α □∀y .φ. Then this implies, when we write x̄ for the set of free variables

in ∀y .φ (which implies y < x̄), that

M, u ⊨[a/y]α φ for every u ∈ W such that Rwu and α↾x̄ : x̄→ Du and every a ∈ Du,(97)

by the following chain of equivalences:

M, w ⊨α □∀y .φ
(91)
⇐⇒ M, u ⊨α ∀y .φ for every u ∈ W such that Rwu and α↾x̄ : x̄→ Du

(56)
⇐⇒ (97).

Fix any a ∈ Dw; we want to show M, w ⊨[a/y]α □φ. We have two cases depending on whether

y occurs freely in φ.

• Suppose y occurs freely in φ; this means that x̄ ∪ {y} is the set of free variables in φ. Fix

any u ∈ W such that Rwu and moreover

([a/y]α)↾(x̄ ∪ {y}) : (x̄ ∪ {y})→ Du.(98)

149

Draft of November 14, 2010

This implies a = ([a/y]α)(y) ∈ Du as well as that

α↾x̄ = (([a/y]α)↾(x̄ ∪ {y}))↾x̄ : x̄→ Du.

Hence (97) implies M, u ⊨[a/y]α φ. Therefore we have M, w ⊨[a/y]α □φ by (91), as in:

M, w ⊨[a/y]α □φ
(91)
⇐⇒ M, u ⊨[a/y]α φ for every u ∈ W such that Rwu and (98).

• Suppose y does not occur freely in φ; this means that x̄ is the set of free variables in φ.

Fix any u ∈ W such that Rwu and ([a/y]α)↾x̄ : x̄ → Du, which implies α↾x̄ : x̄ → Du

since y < x̄. Also pick any b ∈ Du , ∅. Then (97) entails M, u ⊨[b/y]α φ. This implies by

local determination of φ (Fact 33) that M, u ⊨[a/y]α φ. Therefore we have M, w ⊨[a/y]α □φ

by (91), as in:

M, w ⊨[a/y]α □φ
(91)
⇐⇒ M, u ⊨[a/y]α φ for every u ∈ W such that Rwu and α↾x̄ : x̄→ Du.

Thus M, w ⊨[a/y]α □φ for every a ∈ Dw, and hence M, w ⊨α ∀y□φ by (56). Therefore (53) implies

M, w ⊨α □∀y .φ→ ∀y□φ. □

In this sense, the converse Barcan formula corresponds to the autonomy of domains of quan-

tification rather than to the increase of domains.

Whereas we have just shown the validity of the converse Barcan formula in a purely semantic

manner, it is instructive—with regard to the discussion at the end of Subsection IV.1.2—to show

it in a more axiomatic manner. That is, although the following Corollary 6 is an immediate conse-

quence of Fact 36, we can also prove it by virtue of the DoQ-validity of (a weaker version of) N,

as in Fact 37 below, in combination with the soundness of classical quantified logic with respect to

DoQ-validity in DoQ-autonomous Kripkean semantics.

Corollary 6. Given any quantified modal language L, its converse Barcan formula □∀x .φ →
∀x□φ is DoQ-valid in DoQ-autonomous Kripkean semantics for L.

Fact 37. Given any quantified modal language L, the following inference is both AA- and DoQ-

valid in DoQ-autonomous Kripkean semantics for L, when every free variable in φ occurs freely

in ψ as well:

φ→ ψ
(every free variable in φ occurs freely in ψ as well)

□φ→ □ψ

150

Draft of November 14, 2010

Proof. Fix any sentences φ, ψ of L such that x̄ ⊆ ȳ for the sets x̄, ȳ of free variables in φ, ψ,

respectively. It is enough to show the entailment marked with ! below, since those marked with ∗
and † are trivial (then ! ◦ ∗ and † ◦ ! mean the AA-validity and DoQ-validity of the inference).

φ→ ψ is AA-valid
∗ +3

AA-validity of
the inference ��

φ→ ψ is DoQ-valid

DoQ-validity of
the inference��

!

px iiii
iiii

iiii
iiii

iii

iiii
iiii

iiii
iiii

iii

□φ→ □ψ is AA-valid
†

+3 □φ→ □ψ is DoQ-valid

So, fixing any DoQ-autonomous Kripkean satisfaction relation (M,⊨) for L over a Kripke frame

F = (W,R,D−) with a domain D of possible individuals, suppose φ → ψ is DoQ-valid in (M,⊨).

Then fix any w ∈ W and α : var(L)→ D and suppose M, w ⊨α □φ. To show M, w ⊨α □ψ, fix any

u ∈ W such that Rwu and α↾ȳ : ȳ→ Du. This implies α↾x̄ : x̄→ Du by x̄ ⊆ ȳ. Hence M, w ⊨α □φ

and (91) entail M, u ⊨α φ. Now, α↾ȳ : ȳ → Du can be extended to some β : var(L) → Du, so

that α↾ȳ = β↾ȳ. Then M, u ⊨α φ implies M, u ⊨β φ by local determination of φ (Fact 33), since

α↾x̄ = β↾x̄. Also, DoQ-validity of φ → ψ entails M, u ⊨β φ → ψ. Therefore M, u ⊨β ψ by (53).

Then this implies M, u ⊨α ψ by local determination and α↾ȳ = β↾ȳ. Thus M, w ⊨α □ψ by (91). In

this way, by (53), every w ∈ W and α : var(L)→ D satisfy M, w ⊨α □φ→ □ψ. □

Alternative proof for Corollary 6. By soundness of classical quantified logic with respect to

DoQ-validity in DoQ-autonomous Kripkean semantics and by Fact 37,

∀x .φ ⊢ φ
(every free variable in ∀x .φ occurs freely in φ as well)

□∀x .φ ⊢ □φ

□∀x .φ ⊢ ∀x□φ

proves the converse Barcan formula. □

IV.3. Operational Form of Kripkean Semantics: A Second Step

In Subsection IV.2.3 we laid out a DoQ-autonomous revision of Kripke semantics with (88)–

(92); but we are yet to give a proof for its DoQ-autonomy. And, even though we formulated our

revision in terms of satisfaction relations, our technical definition of DoQ-autonomy involves an

operational formulation. In operationally formulating (88)–(92), however, we face three technical

issues and their solution requires a revision of the operational formulation we gave in Subsection

IV.2.1.

151

Draft of November 14, 2010

IV.3.1. Free-Variable-Sensitive Interpretation of Operators. The largest issue concerning

(88)–(92) is that, from (88)–(90), we cannot uniquely define operations ⟦□⟧ and ⟦^⟧ interpreting □

and ^. We may well have ⟦φ0⟧ = ⟦φ1⟧ for sentences φ0 and φ1 with different sets of free variables;

say, x̄ are the ones in φ0, whereas ȳ are the ones in φ1. Then we generally have Rα↾x̄(w) , Rα↾ȳ(w),

and moreover

(w, α) ∈ ⟦□φ0⟧
(89)
⇐⇒ Rα↾x̄(w) ⊆ ⟦φ0⟧α = ⟦φ1⟧α

⇍⇒ Rα↾ȳ(w) ⊆ ⟦φ0⟧α = ⟦φ1⟧α
(89)
⇐⇒ (w, α) ∈ ⟦□φ1⟧

by (89).14 Thus, ⟦φ0⟧ = ⟦φ1⟧ does not entail ⟦□φ0⟧ = ⟦□φ1⟧, even though it would if there were

an operation ⟦□⟧ such that ⟦□⟧⟦ψ⟧ = ⟦□ψ⟧ for all sentences ψ. In other words, there can be no

operation ⟦□⟧ that satisfies both ⟦□⟧⟦ψ⟧ = ⟦□ψ⟧ (for all ψ) and (89); similarly, no operation ⟦^⟧

can satisfy both ⟦^⟧⟦ψ⟧ = ⟦^ψ⟧ (for all ψ) and (90).

As this observation shows, the adoption of (88)–(90) requires us to give up having an operation

⟦□⟧ such that ⟦□⟧⟦ψ⟧ = ⟦□ψ⟧ or ⟦^⟧ such that ⟦^⟧⟦ψ⟧ = ⟦^ψ⟧. Instead, even when sentences

φ0 and φ1 are interpreted by the same set ⟦φ0⟧ = ⟦φ1⟧, as long as they have different sets of free

variables we need to give different interpretations to the application of □ (or ^) to φ0 and that to

φ1. To implement this idea formally, we have two options:

(i) Modifying the syntax: Instead of a single operator □, the language has different □x̄ for

each (finite) set x̄ of variables. Regarding this infinite family of □x̄, the language has the

unconventional rule of grammar that □x̄ can be applied to a sentence φ if and only if x̄ is

the set of free variables in φ. We regard □φ as a short-hand notation for □x̄φ, for the set

x̄ of free variables in φ. And semantics is modified accordingly: Different operators □x̄

are interpreted by (possibly) different operations ⟦□x̄⟧. Yet the condition is retained that

⟦□x̄φ⟧ = ⟦□x̄⟧⟦φ⟧ whenever □x̄φ is a “well-formed” sentence.

14To construct an example, let F be as in the proof for Fact 31, and, fixing a variable x ∈ var(L), pick an assignment

α : var(L) → D such that α(x) = b. It follows that α↾{x} : {x} ̸→ Dv and hence
−→
Rα↾{x}(u) = ∅, whereas

−→
R (u) = {v}.

Now take a Kripke-type interpretation (M, ⟦−⟧) for L that has FM = {(u, a), (u, b)} for a unary primitive predicate F

of L. Then it is straightforward to see that

⟦Fx⟧ = ⟦∀x .Fx⟧ = {u} × Dvar(L),

which implies ⟦Fx⟧α = ⟦∀x .Fx⟧α = {u}, and hence
−→
Rα↾{x}(u) ⊆ ⟦Fx⟧α, whereas

−→
R (u) ⊈ ⟦∀x .Fx⟧α. Therefore (89)

implies (u, α) ∈ ⟦□Fx⟧ and (u, α) < ⟦□∀x .Fx⟧; thus ⟦□Fx⟧ , ⟦□∀x .Fx⟧, even though ⟦Fx⟧ = ⟦∀x .Fx⟧.

152

Draft of November 14, 2010

(ii) Keeping the syntax intact: There is no change to the language and its grammar. On the

other hand, the semantic condition ⟦□φ⟧ = ⟦□⟧⟦φ⟧ is dropped. Instead, □ is interpreted

by the family of operators ⟦□⟧x̄ for all (finite) sets x̄ of variables, with the new rule that

⟦□φ⟧ = ⟦□⟧x̄⟦φ⟧ for the set x̄ of free variables in φ.

In either option, for each sentence φ there are ⟦□x̄⟧⟦φ⟧, ⟦□ȳ⟧⟦φ⟧, . . . , or ⟦□⟧x̄⟦φ⟧, ⟦□⟧ȳ⟦φ⟧, . . . ,

but only one of them—namely, the one indexed with the set of free variables in φ—is ⟦□φ⟧. Even

if ⟦φ0⟧ = ⟦φ1⟧, ⟦□φ0⟧ and ⟦□φ1⟧ can be the values on ⟦φ0⟧ = ⟦φ1⟧ of different operations, namely

⟦□x̄⟧ and ⟦□ȳ⟧, or ⟦□⟧x̄ and ⟦□⟧ȳ, for the sets x̄ and ȳ of free variables in φ0 and φ1, respectively;

this is how the technical issue described above for (88)–(90) is resolved.

While both options (i) and (ii) work equally well regarding the issue above, we need to decide

which of them to adopt. Here we opt for (ii), simply because it seems to require a smaller change.

Semantically, either in (i) or in (ii) we have to admit an infinite family of operations, ⟦□x̄⟧ or ⟦□⟧x̄,

for all finite sets x̄ of variables. Yet what we give up according to (i)—the grammatical condition

that □x̄φ is always “well-formed” for a sentence φ and a unary sentential operator □x̄—seems much

more serious than what we give up according to (ii)—the semantic condition that ⟦□⟧x̄⟦φ⟧ always

interprets the sentence □φ, no matter what set of free variables is in φ.

Therefore, while we do not need to generalize Definition 35 of a Kripke-type satisfaction rela-

tion (M,⊨), we generalize Definition 42 of a Kripke-type interpretation (M, ⟦−⟧) along the option

(ii) as follows. The point of generalization is that a sentential operator ⊗ is no longer interpreted by

a single operation ⟦⊗⟧ but instead by a family of operations ⟦⊗⟧x̄ for all finite sets x̄ of variables.

Definition 49. Given a quantified modal language L, a general Kripke-type interpretation for L is

a pair of a Kripke model M for L and a map ⟦−⟧ that assigns,

• to each variable x, a map

⟦x⟧ : Dvar(L) → D

that satisfies

⟦x⟧ : α 7→ α(x),

• to each sentence φ, a map

⟦φ⟧ : W × Dvar(L) → 2

153

Draft of November 14, 2010

that satisfies

⟦Fx1 · · · xn⟧ = FM ◦ (1W × ⟨⟦x1⟧, . . . , ⟦xn⟧⟩),

• and, to each n-ary sentential operator ⊗ of L, a family of maps

⟦⊗⟧x̄ : P(W × Dvar(L))n → P(W × Dvar(L))

for all finite sets x̄ of variables of L, such that

⟦⊗(φ1, . . . , φn)⟧ = ⟦⊗⟧x̄(⟦φ1⟧, . . . , ⟦φn⟧)

for the set x̄ of variables that occur freely in at least one of φ1, . . . , φn.

We say a general Kripke-type interpretation (M, ⟦−⟧) for L interprets a sentential operator ⊗ of L
uniformly if the family ⟦⊗⟧x̄ is constant, that is, if there is a unique operation f such that ⟦⊗⟧x̄ = f

for every x̄; then we simply write ⟦⊗⟧ for ⟦⊗⟧x̄. We also say a general Kripke-type interpretation

for L is on a Kripke model M if its first coordinate is M, and is over a Kripke frame F with

domains if it is on a Kripke model over F.

Clearly, any general Kripke-type interpretation for L is a Kripke-type interpretation for L (as

defined in Definition 42) iff it uniformly interprets every sentential operator ⊗ of L. So let us refer

to such interpretations by uniform Kripke-type interpretations when we need to contrast them with

general Kripke-type interpretations. It should also be noted that Definition 43 of local determina-

tion for uniform Kripke-type interpretations simply applies to general Kripke-type interpretations,

since both types of interpretations interpret sentences with the same types of maps.

In terms of general Kripke-type interpretations, our semantic idea of

(w, α) ∈ ⟦□φ⟧ ⇐⇒ −→
Rα↾x̄(w) ⊆ ⟦φ⟧α,(89)

(w, α) ∈ ⟦^φ⟧ ⇐⇒ −→
Rα↾x̄(w) ∩ ⟦φ⟧α , ∅,(90)

can be formulated as follows: We consider general Kripke-type interpretations that interpret □ and

^ respectively with the families of operations ⟦□⟧x̄ and ⟦^⟧x̄ for all finite sets x̄ of variables such

that

(w, α) ∈ ⟦□⟧x̄(A) ⇐⇒ −→
Rα↾x̄(w) ⊆ Aα,(99)

(w, α) ∈ ⟦^⟧x̄(A) ⇐⇒ −→
Rα↾x̄(w) ∩ Aα , ∅.(100)

154

Draft of November 14, 2010

IV.3.2. Preservation of Local Determination Generalized. The second technical issue on

our semantic idea in terms of (88)–(92) concerns the preservation of local determination. The

issue arises because, under (99) and (100), ⟦□⟧x̄ and ⟦^⟧x̄ fail to preserve local determination in

the sense we gave in Definition 44.

To see how they fail, let us consider the following example, taking again the same Kripke frame

F = (W,R,D−) with domains as in the proof of Fact 31; that is,

W = {u, v}, R = {(u, v)},

Du = {a, b}, where a , b, Dv = {a}.

Then, for a given quantified modal language L, take a general Kripke-type interpretation (M, ⟦−⟧)
forL over F that satisfies (99) and FM = ∅ for a unary primitive predicate F ofL; indeed, we may

consider the sentence x , x in place of Fx, so that, in (M, ⟦−⟧), no individual is distinct from itself.

Then observe that the individual a has a world accessible from u in which it exists, namely, v; to put

it in terms of assignments, fixing a variable x ∈ var(L), any assignment α : var(L) → D such that

α(x) = a has α↾{x} : {x} → Dv and hence
−→
Rα↾{x}(u) = {v}. On the other hand, the individual b has no

accessible world from u in which it exists; in terms of assignments, any β : var(L) → D such that

β(x) = b has
−→
R β↾{x}(u) = ∅ because β↾{x} : {x} ̸→ Dv. Therefore, at u, a does not necessarily satisfy

x , x whereas b does trivially, since a fails to satisfy x , x at the world accessible from u in which

it exists (namely, at v), while b has no such world. In terms of assignments, (u, α) < ⟦□⟧{x}(⟦x , x⟧)

since
−→
Rα↾{x}(u) ⊈ ∅ = ⟦x , x⟧α, whereas (u, β) ∈ ⟦□⟧{x}(⟦x , x⟧) since

−→
R β↾{x}(u) ⊆ ∅ = ⟦x , x⟧β.

Now note that, according to Definition 44, for ⟦□⟧x̄ to preserve local determination, ⟦□⟧x̄(A)

must be determined by ȳwhenever A ⊆ W×Dvar(L) is. In the example above, however, even though

∅ ⊆ W×Dvar(L) is determined by ∅ ⊆ var(L), we have just shown ⟦□⟧{x}(∅) is not, since it contains

(u, β) but not (u, α). This is how the operation ⟦□⟧x̄ under (99) fails to preserve local determination

in the sense of Definition 44 (and similarly for ⟦^⟧x̄ under (100)).

Nonetheless, this failure should not be taken as showing that (99) and (100) (and therefore our

idea of (88)–(92)) are to blame; rather, it suggests that, in accordance with our generalization in

terms of general Kripke-type interpretations, the definition of preservation of local determination

should also be generalized. The example above of the failure of preservation can be summarized

as follows: Even though x , x is false (in every world) no matter what the referent of x is, the

truth of □(x , x) depends on the referent of x (and worlds). Nothing in this summary goes against

155

Draft of November 14, 2010

the conceptual import of local determination—that is, sentences are true or false of the referents of

free variables, rather than of assignments. Indeed, formally speaking as well, local determination

is not violated (though its preservation, as defined in Definition 44, is) in the example.

Let ⊗ be a sentential operator that binds variables z̄ but not x. As in the example above, even

if x freely occurs in a sentence φ, the interpretation ⟦φ⟧ of φ may be independent of x, meaning

that ⟦φ⟧ is determined by variables ȳ such that x < ȳ. Then, in the case of uniform Kripke-type

interpretations, Definition 44 requires that, for the operation ⟦⊗⟧ to preserve local determination

for ⊗, ⟦⊗φ⟧ = ⟦⊗⟧⟦φ⟧ should also be independent of x, although x occurs freely in ⊗φ. This is

because we may have ⟦φ⟧ = ⟦ψ⟧ for a sentence ψ in which x does not occur freely (in the example

above, we indeed have ⟦x , x⟧ = ⟦∃x . x , x⟧); if this is the case, the local determination of ⊗ψ
requires—though that of ⊗φ does not—that ⟦⊗φ⟧ = ⟦⊗ψ⟧ should be independent of x. In the case

of general Kripke-type interpretations, by contrast, we generally have ⟦⊗φ⟧ , ⟦⊗ψ⟧ even though

⟦φ⟧ = ⟦ψ⟧, since that x occurs freely in φ but not in ψ entails x̄ , ȳ for the sets x̄ and ȳ of free

variables in φ and ψ, and therefore, generally, ⟦⊗φ⟧ = ⟦⊗⟧x̄⟦φ⟧ , ⟦⊗⟧ȳ⟦ψ⟧ = ⟦⊗ψ⟧. This is why

⟦⊗ψ⟧ = ⟦⊗⟧ȳ⟦ψ⟧ being independent of x is consistent with ⟦⊗φ⟧ = ⟦⊗⟧x̄⟦φ⟧ being dependent on

x. Indeed, since ⟦⊗⟧x̄⟦φ⟧ generally interprets ⊗φ only if x̄ are the free variables in φ, dependence

of ⟦⊗⟧x̄⟦φ⟧ on x ∈ x̄ \ z̄ never forms a threat to local determination. That is, to formulate a right

definition of preservation of local determination for general Kripke-type interpretations, it is too

strong to require ⟦⊗⟧x̄(A) be independent of x ∈ x̄ \ z̄, whether or not A is independent of x. What

is required instead is simply that if A is determined by x̄—regardless of whether or not A depends

on all of x̄—then ⟦⊗⟧x̄(A) is determined by x̄ \ z̄. To put this operationally, if A : W × Dvar(L) → 2n

is of the form B ◦ rx̄ for the restriction rx̄ : W ×Dvar(L) ↠ W ×Dx̄ and some B : W ×Dx̄ → 2n, then

⟦⊗⟧x̄(A) : W × Dvar(L) → 2 is of the form C ◦ rx̄\z̄ for the restriction rx̄\z̄ : W × Dvar(L) ↠ W × Dx̄\z̄

and some C : W × Dx̄\z̄ → 2. Even more operationally this means, since − ◦ rx̄ and − ◦ rx̄\z̄ are

injective, that there uniquely exists an operation ⟦ x̄ | ⊗ ⟧x̄ that makes the diagram below commute,

so that, when A = B ◦ rx̄ for unique B, ⟦ x̄ | ⊗ ⟧x̄(B) is the unique C such that ⟦⊗⟧x̄(A) = C ◦ rx̄\z̄.

P(W × Dvar(L))n

⟦⊗⟧x̄

��

P(W × Dx̄)noo
− ◦ rx̄oo

⟦ x̄ | ⊗ ⟧x̄

��

=

P(W × Dvar(L)) P(W × Dx̄\z̄)oo
− ◦ rx̄\z̄

oo

156

Draft of November 14, 2010

Therefore we enter:

Definition 50. Let L be a quantified modal language and let M = (W,R,D−) be a Kripke model

for L with a domain D of individuals. Then, for variables ȳ of L, we say a family of operations

f x̄ : P(W×Dvar(L))n → P(W×Dvar(L)) for all finite sets x̄ of variables preserves local determination

with the binding of ȳ if, for every finite set x̄ of variables of L, there is an operation f x̄
x̄ : P(W ×

Dx̄)n → P(W × Dx̄\ȳ) such that, for every B : W × Dx̄ → 2n,

f x̄
x̄ (B) ◦ rx̄\ȳ = f x̄(B ◦ rx̄) : W × Dvar(L) → 2

(where rx̄ : (w, α) 7→ (w, α↾x̄) and rx̄\ȳ : (w, α) 7→ (w, α↾(x̄ \ ȳ))), that is, that makes the following

diagram commute.

P(W × Dvar(L))n

f x̄

��

P(W × Dx̄)noo
− ◦ rx̄oo

f x̄
x̄

��

=

P(W × Dvar(L)) P(W × Dx̄\ȳ)oo
− ◦ rx̄\ȳ

oo

We also say a family of operations f x̄ : P(W × Dvar(L))n → P(W × Dvar(L)) (for a fixed n) preserves

local determination for a sentential operator ⊗ of L if ⊗ is n-ary and if the family preserves local

determination with the binding of the variables that ⊗ binds. Moreover, we say a general Kripke-

type interpretation for L preserves local determination if it interprets every sentential operator ⊗
of L with a family of operations that preserves local determination for ⊗.

This definition works as desired, in the following sense.

Fact 38. Any general Kripke-type interpretation for a given quantified modal languageL is locally

determined if it preserves local determination.

Proof. By induction on the construction of sentences of L. □

Obviously, when a constant family ⟦⊗⟧x̄ = ⟦⊗⟧ interprets ⊗ uniformly, the family ⟦⊗⟧x̄ pre-

serves local determination for ⊗ in the sense of Definition 50 iff the operation ⟦⊗⟧ does so in the

sense of Definition 44. Thus Definition 50 subsumes Definition 44, and the following immediately

follows from Fact 29.

157

Draft of November 14, 2010

Fact 39. Given a quantified modal language L and a general Kripke-type interpretation (M, ⟦−⟧)
for L, if the families ⟦¬⟧x̄, ⟦∧⟧x̄, ⟦∨⟧x̄, ⟦→⟧x̄, ⟦□⟧x̄, ⟦^⟧x̄, ⟦∀x⟧x̄, ⟦∃y⟧x̄ uniformly interpret ¬, ∧,

∨,→, □, ^, ∀x, ∃x following (76)–(83), respectively, then they preserve local determination for ¬,

∧, ∨,→, □, ^, ∀x, ∃x, respectively.

Moreover, as desired, we have:

Fact 40. Given a quantified modal language L and a general Kripke-type interpretation (M, ⟦−⟧)
for L, if the families ⟦□⟧x̄ and ⟦^⟧x̄ interpret □ and ^ following (99) and (100), respectively, then

they preserves local determination for □ and ^, respectively.

Proof. That the family ⟦□⟧x̄ satisfying (99) to preserve local determination for □ means that,

for every finite set x̄ of variables, there is ⟦ x̄ | □ ⟧x̄ making

P(W × Dvar(L))

⟦□⟧x̄

��

P(W × Dx̄)oo
− ◦ rx̄oo

⟦ x̄ | □ ⟧x̄

��

=

P(W × Dvar(L)) P(W × Dx̄)oo
− ◦ rx̄

oo

commute. So let us define ⟦ x̄ | □ ⟧x̄ so that, for every (w, β) ∈ W × Dx̄ and B ⊆ W × Dx̄,

(w, β) ∈ ⟦ x̄ | □ ⟧x̄(B) ⇐⇒ −→
R β(w) ⊆ Bβ.(101)

Then the diagram above commutes, because (84) (B ◦ rx̄)α = Bα↾x̄ entails

(w, α) ∈ ⟦□⟧x̄(B ◦ rx̄)
(99)
⇐⇒ −→

Rα↾x̄(w) ⊆ (B ◦ rx̄)α = Bα↾x̄

(101)
⇐⇒ rx̄(w, α) = (w, α↾x̄) ∈ ⟦ x̄ | □ ⟧x̄(B)

⇐⇒ (w, α) ∈ ⟦ x̄ | □ ⟧x̄(B) ◦ rx̄.

(84) similarly implies that ⟦^⟧x̄ preserves local determination for ^, with ⟦ x̄ | ^⟧x̄ such that

(w, β) ∈ ⟦ x̄ | ^⟧x̄(B) ⇐⇒ −→
R β(w) ∩ Bβ , ∅. □

IV.3.3. DoQ-Restrictability Generalized. The last of the technical issues we discuss regard-

ing out proposal of (88)–(92) concerns DoQ-restrictability; it arises because (99) and (100) fail to

make ⟦□⟧x̄ or ⟦^⟧x̄ DoQ-restrictable, thereby failing to meet our goal in designing (88)–(92), that

is, to achieve DoQ-restrictability.

158

Draft of November 14, 2010

But, one may ask, how is it possible that (99) and (100) fail DoQ-restrictability, despite the fact

that, by using
−→
Rα↾x̄, we rule out from (89) and (90)—and hence from (99) and (100)—any reference

to world-tuple non-DoQ-pairs (u, α(x̄))? The conceptual answer to this is that the non-reference

to world-tuple non-DoQ-pairs makes ⟦□⟧x̄⟦φ⟧ and ⟦^⟧x̄⟦φ⟧ behave in a DoQ-restrictable fashion

only if the truth conditions for □φ and ^φ in terms of world-tuple pairs make sense, that is, only

if φ is locally determined. The conceptual idea of not referring to world-tuple non-DoQ-pairs is a

good idea, but works technically only when the conceptual and the technical are connected through

local determination.

To see this observe that, according to (99), a world-assignment DoQ-pair (w, α) is in ⟦□⟧x̄⟦φ⟧

iff every (u, α) such that u ∈ −→Rα↾x̄(w) is in ⟦φ⟧. In other words, whether or not (w, α) ∈ ⟦□⟧x̄⟦φ⟧

depends on whether or not (u, α) ∈ ⟦φ⟧ for u ∈ −→Rα↾x̄(w), even if (u, α) is a world-assignment DoQ-

pair (since what matters for
−→
Rα↾x̄(w) is that (u, α(x̄)) is a world-tuple DoQ-pair). Thus, technically,

(99) and similarly (100) manage to make reference to world-assignment non-DoQ-pairs. This

reference is, however, not essential if φ is locally determined, that is, if ⟦φ⟧ is determined by x̄

(recall that, generally, ⟦□⟧x̄⟦φ⟧ is semantically significant only when x̄ is the set of free variables

in φ). This is because, even if (u, α) is not a DoQ-pair, the determination of ⟦φ⟧ by x̄ implies

that (u, α) ∈ ⟦φ⟧ iff (u, β) ∈ ⟦φ⟧ for any DoQ-pair (u, β) such that β(x̄) = α(x̄) (that is, β serves

the purpose, as well as α does, of expressing φ being true of the tuple α(x̄)), thereby enabling

us to replace the reference to the world-assignment non-DoQ-pair (u, α) with that to the world-

assignment DoQ-pair (u, β). On the other hand, if local determination fails, the reference to the

world-assignment non-DoQ-pair (u, α) may be essential, because then we may have (u, α) ∈ ⟦φ⟧
while no DoQ-pair (u, β) is in ⟦φ⟧, or (u, α) < ⟦φ⟧ while all DoQ-pairs (u, β) are in ⟦φ⟧.15

We can distill two upshots here:

15(v, α) and B in the following example give an instance of (u, α) < ⟦φ⟧ with all DoQ-pairs (u, β) lying in ⟦φ⟧. Let

us again take the frame F = (W,R,D−) as in the proof of Fact 31; that is,

W = {u, v}, R = {(u, v)}, Du = {a, b}, where a , b, Dv = {a}.

Then pick any α : var(L)→ Du (not just α : var(L)→ D) such that α(x) = a and α(y) = b. This means that (u, α) is a

DoQ-pair but (v, α) is not, since α(y) < Dv. Moreover,
−→
Rα↾{x}(u) = {v} because α↾{x} : {x} → Dv. Using this α, let

A = W × Dvar(L), B = (W × Dvar(L)) \ {(v, α)}.

159

Draft of November 14, 2010

(i) Under (99) and (100), operations ⟦□⟧x̄ and ⟦^⟧x̄ are DoQ-restrictable in terms of world-

tuple pairs, even though they are not in terms of world-assignment pairs.

(ii) Therefore, as long as local determination holds, it makes sense to say that interpretations

given by (99) and (100) are DoQ-restrictable in the sense involving world-tuple pairs.

Hence we first express (i) formally with:

Definition 51. Let L be a quantified modal language and F = (W,R,D−) be a Kripke frame with

a domain D of possible individuals. Then, for any finite sets x̄ and ȳ of variables of L, we say an

operation

f : P(W × Dx̄)n → P(W × Dȳ)m

(note how the type involves x̄ and ȳ) is DoQ-restrictable if it is restrictable to the sets
∑
w∈W

Dw
x̄ and∑

w∈W
Dw

ȳ of DoQ-pairs, in the sense that there is fDoQ that makes the diagram below commute.

P(W × Dx̄)n
f

//

− ◦ i ���� =

P(W × Dȳ)m

− ◦ i����

P
∑
w∈W

Dw
x̄

n fDoQ

// P
∑
w∈W

Dw
ȳ

m

And then express (ii) with the following, which makes the notion of DoQ-restrictability partly

dependent on that of local determination:

Note that B is not determined by {x} (or indeed by any finite set of variables). Then, since A and B are only different

at the non-DoQ-pair (v, α), we have

A ∩
∑
w∈W

Dw
var(L) = B ∩

∑
w∈W

Dw
var(L).

Therefore the DoQ-restriction ⟦□⟧{x}DoQ of ⟦□⟧{x}, if it exists, must have

⟦□⟧{x}(A) ∩
∑
w∈W

Dw
var(L) = ⟦□⟧{x}DoQ

A ∩∑
w∈W

Dw
var(L)

 = ⟦□⟧{x}DoQ

B ∩∑
w∈W

Dw
var(L)

 = ⟦□⟧{x}(B) ∩
∑
w∈W

Dw
var(L).

This nonetheless cannot be the case (and hence ⟦□⟧{x} is not DoQ-restrictable), because the difference between A and

B at the non-DoQ-pair (v, α)—that is,
−→
Rα↾{x}(u) = {v} ⊆ W = Aα and

−→
Rα↾{x}(u) = {v} ⊈ {u} = Bα—implies that the

DoQ-pair (u, α) is in ⟦□⟧{x}(A) but not in ⟦□⟧{x}(B). Thus the reference is essentially made to the non-DoQ-pair (v, α).

160

Draft of November 14, 2010

Definition 52. Let L be a quantified modal language and F = (W,R,D−) be a Kripke frame with

a domain D of possible individuals. Then we say a family of operations f x̄ : P(W × Dvar(L))n →
P(W × Dvar(L)) is DoQ-restrictable with the binding of variables ȳ if

• the family f x̄ preserves local determination with the binding of ȳ, and, moreover,

• for each finite set x̄ of variables, the operator f x̄
x̄ that makes

P(W × Dvar(L))n

f x̄

��

P(W × Dx̄)noo
− ◦ rx̄oo

f x̄
x̄

��

=

P(W × Dvar(L)) P(W × Dx̄\ȳ)oo
− ◦ rx̄\ȳ

oo

commute (which uniquely exists since the family f x̄ preserves local determination with

the binding of ȳ) is DoQ-restrictable.

We also say that a family of operations f x̄ : P(W × Dvar(L))n → P(W × Dvar(L)) is DoQ-restrictable

for a sentential operator ⊗ of L if ⊗ is n-ary and the family f x̄ is DoQ-restrictable with the binding

of the variables that ⊗ binds. Moreover, we say a general Kripke-type interpretation (M, ⟦−⟧) for

L is DoQ-restrictable if it interprets each sentential operator ⊗ of L with a family of operators that

is DoQ-restrictable for ⊗.

This definition is weaker than Definition 46 in the following sense:

Fact 41. Given a quantified modal language L and a Kripke frame (W,R,D−) with a domain D of

possible individuals, suppose an operation f : P(W × Dvar(L))n → P(W × Dvar(L)) preserves local

determination with the binding of variables ȳ. Then, if f is DoQ-restrictable as an operation (as in

Definition 46) then it is DoQ-restrictable with the binding of ȳ, as a constant family of operations

f x̄ (as in Definition 52).

This immediately entails the following by Facts 30 and 29.

Corollary 7. Given a quantified modal language L and any general Kripke-type interpretation

(M, ⟦−⟧) for L, if the families ⟦¬⟧x̄, ⟦∧⟧x̄, ⟦∨⟧x̄, ⟦→⟧x̄, ⟦∀x⟧x̄, ⟦∃y⟧x̄ uniformly interpret ¬, ∧, ∨,

→, ∀x, ∃x following (76)–(79), (82), (83), respectively, then they are DoQ-restrictable for ¬, ∧, ∨,

→, ∀x, ∃x, respectively.

161

Draft of November 14, 2010

We postpone the proof of Fact 41 until the end of this subsection. Let us show first that oper-

ations ⟦□⟧x̄ and ⟦^⟧x̄ under (99) and (100) are DoQ-restrictable for each x̄, and hence that DoQ-

autonomous Kripkean semantics—our new semantics the satisfaction-relation version of which we

laid out in Subsection IV.2.3—is DoQ-restrictable.

The proof of the DoQ-restrictability of operations ⟦□⟧x̄ and ⟦^⟧x̄ under (99) and (100) is

similar to the proof for Fact 34. First observe that, for every β : x̄ → D and B,C ⊆ W × Dx̄, we

have

(B ∩C)β = Bβ ∩Cβ(102)

exactly similarly to (93). Also, again similarly to (??), for every (u, β) ∈
∑
w∈W

Dw
x̄, we have

−→
R β(u) ⊆

∑
w∈W

Dw
x̄


β

,(103)

because

v ∈ −→R β(u) =⇒ β : x̄→ Dv ⇐⇒ (v, β) ∈
∑
w∈W

Dw
x̄ ⇐⇒ v ∈

∑
w∈W

Dw
x̄


β

.

Then, using these, we can prove:

Fact 42. Given a quantified modal language L and a general Kripke-type interpretation (M, ⟦−⟧)
for L, if the families ⟦□⟧x̄ and ⟦^⟧x̄ interpret □ and ^ following (99) and (100), respectively, then,

for each x̄ the operations ⟦ x̄ | □ ⟧x̄ and ⟦ x̄ | ^⟧x̄, which exist by Fact 40, are DoQ-restrictable.

Proof. A proof that ⟦ x̄ | □ ⟧x̄ is DoQ-restrictable amounts to showing that there is ⟦ x̄ | □ ⟧x̄
DoQ

making

P(W × Dx̄)
⟦ x̄ | □ ⟧x̄

//

− ◦ i ���� =

P(W × Dx̄)

− ◦ i����

P
∑
w∈W

Dw
x̄


⟦ x̄ | □ ⟧x̄

DoQ

// P
∑
w∈W

Dw
x̄


commute. So let us define ⟦ x̄ | □ ⟧x̄

DoQ so that, for every (u, β) ∈
∑
w∈W

Dw
x̄ and B ⊆

∑
w∈W

Dw
x̄,

(u, β) ∈ ⟦ x̄ | □ ⟧x̄
DoQ(B) ⇐⇒ −→

R β(u) ⊆ Bβ.(104)

162

Draft of November 14, 2010

Then, for every (u, β) ∈
∑
w∈W

Dw
x̄ and B ⊆ W × Dx̄, we have

(u, β) ∈ ⟦ x̄ | □ ⟧x̄(B) ∩
∑
w∈W

Dw
x̄ ⇐⇒ (u, β) ∈ ⟦ x̄ | □ ⟧x̄(B)

(101)
⇐⇒ −→

R β(u) ⊆ Bβ

(102)
⇐⇒ −→

R β(u) ⊆ Bβ ∩
∑
w∈W

Dw
x̄


β

(103)
⇐⇒ −→

R β(u) ⊆
B ∩∑

w∈W
Dw

x̄


β

(104)
⇐⇒ (u, β) ∈ ⟦ x̄ | □ ⟧x̄

DoQ

B ∩∑
w∈W

Dw
x̄

 ;

thus ⟦ x̄ | □ ⟧x̄(B) ◦ i = ⟦ x̄ | □ ⟧x̄
DoQ(B ◦ i), making the diagram above commute. Hence ⟦ x̄ | □ ⟧x̄

is DoQ-restrictable. Similarly, ⟦ x̄ | ^⟧x̄ is DoQ-restrictable, with ⟦ x̄ | ^⟧x̄
DoQ such that

(u, β) ∈ ⟦ x̄ | ^⟧x̄
DoQ(B) ⇐⇒ −→

R β(u) ∩ Bβ , ∅(105)

for every (u, β) ∈
∑
w∈W

Dw
x̄ and B ⊆

∑
w∈W

Dw
x̄. □

So, let us sum up the definition for the operational formulation of DoQ-autonomous Kripkean

semantics; then it is equivalent to the satisfaction-relation formulation (we omit a proof), whereas

the preservation of local determination and DoQ-restrictability follow from previous facts.

Definition 53. Given a quantified modal languageL, a general Kripke-type interpretation (M, ⟦−⟧)
for L is said to be a DoQ-autonomous Kripkean interpretation for L, if it interprets ¬, ∧, ∨, →,

∀x, ∃x uniformly with the constant families of operations

⟦¬⟧ = ¬2 ◦ −,(76)

⟦∧⟧ = ∧2 ◦ −,(77)

⟦∨⟧ = ∨2 ◦ −,(78)

⟦→⟧ =→2 ◦ −,(79)

⟦∀x⟧ =
∏
w∈W
⟦∀x⟧w, where ⟦∀x⟧w(A) = {α ∈ Dvar(L) | [a/x]α ∈ A for every a ∈ Dw },(82)

⟦∃x⟧ =
∏
w∈W
⟦∃x⟧w, where ⟦∃x⟧w(A) = {α ∈ Dvar(L) | [a/x]α ∈ A for some a ∈ Dw },(83)

163

Draft of November 14, 2010

respectively, and if it interprets □ and ^ with the families of operations ⟦□⟧x̄ and ⟦^⟧x̄ satisfying

(99) and (100), respectively, that is, with

⟦□⟧x̄ : A 7→ { (w, α) ∈ W × Dvar(L) | −→Rα↾x̄(w) ⊆ Aα },(106)

⟦^⟧x̄ : A 7→ { (w, α) ∈ W × Dvar(L) | −→Rα↾x̄(w) ∩ Aα , ∅ }.(107)

Fact 43. Let L be a quantified modal language. Given any general Kripke-type interpretation

(M, ⟦−⟧) for L, define a relation ⊨ ⊆ W × Dvar(L) × sent(L) by transposition

M, w ⊨α φ ⇐⇒ (w, α) ∈ ⟦φ⟧,

so that we have a pair (M,⊨). This gives an operation from the class of general Kripke-type inter-

pretations for L to the class of Kripke-type satisfaction relations for L. Moreover, this operation

is bijective to the class of Kripke satisfaction relations for L when restricted to the class of Kripke

interpretations for L, whereas bijective to the class of DoQ-autonomous Kripkean satisfaction re-

lations for L when restricted to the class of DoQ-autonomous Kripkean interpretations for L.

So, not just the class of DoQ-autonomous Kripkean satisfaction relations for L but also that of

DoQ-autonomous Kripkean interpretations forL can also be called the DoQ-autonomous Kripkean

semantics for L.

Fact 44. The DoQ-autonomous Kripkean semantics for any quantified modal language preserves

local determination.

Proof. By Facts 39 and 40. □

Fact 45. The DoQ-autonomous Kripkean semantics for any quantified modal language is DoQ-

restrictable.

Proof. By Corollary 7 and Fact 42. □

We are going to close this subsection by proving Fact 41. But for our proof it is useful to first

make the following two observations. Given a finite set x̄ of variables and the restriction surjection

rx̄ : W×Dvar(L) → W×Dx̄, write (rx̄)∗ and (rx̄)∗ respectively for the direct-image and inverse-image

(that is, precomposition) operations under rx̄, that is, the operations of the types

P(W × Dvar(L))
(rx̄)∗

// // P(W × Dx̄)
oo

(rx̄)∗
oo

164

Draft of November 14, 2010

such that, for every A ⊆ W × Dvar(L) and B ⊆ W × Dx̄,

(rx̄)∗(A) = rx̄[A], (rx̄)∗(B) = rx̄
−1[B] = B ◦ rx̄.

Then rx̄ being surjective implies:

Fact 46. (rx̄)∗ ◦ (rx̄)∗ = 1 for any restriction surjection rx̄ : W × Dvar(L) → W × Dx̄.

Proof. For every (u, β) ∈ W × Dx̄ and B ⊆ W × Dx̄, the “only if” direction of the equivalence

marked with ! below holds since rx̄ is surjective:

(u, β) ∈ B
!⇐⇒ there is (u, α) ∈ W × Dvar(L) such that rx̄(u, α) = (u, β) ∈ B

⇐⇒ there is (u, α) ∈ (rx̄)∗(B) such that rx̄(u, α) = (u, β)

⇐⇒ (u, β) ∈ (rx̄)∗ ◦ (rx̄)∗(B). □

Let us also consider the precompositions (r′x̄)
∗, i∗, i′∗ with the restriction surjection

r′x̄ :
∑
w∈W

Dw
var(L) ↠

∑
w∈W

Dw
x̄,

which maps (u, α) to (u, α↾x̄), and with the inclusion maps

i :
∑
w∈W

Dw
var(L) ↪→ W × Dw

var(L), i′ :
∑
w∈W

Dw
x̄ ↪→ W × Dw

x̄.

Then we have:

Fact 47. The diagram below commutes for the precompositions with suitable types of restriction

surjections and inclusion maps.

P(W × Dvar(L))

i∗
����

=

P(W × Dx̄)oo
(rx̄)∗

oo

i′∗
����

P
∑
w∈W

Dw
var(L)

 P
∑
w∈W

Dw
x̄

oo
(r′x̄)

∗
oo

Proof. rx̄ ◦ i = i′ ◦ r′x̄ because, for every (u, α) ∈
∑
w∈W

Dw
var(L),

rx̄ ◦ i(u, α) = rx̄(u, α) = (u, α↾x̄) = i′(u, α↾x̄) = i′ ◦ r′x̄(u, α).

Therefore i∗ ◦ (rx̄)∗ = − ◦ rx̄ ◦ i = − ◦ i′ ◦ r′x̄ = (r′x̄)
∗ ◦ i′∗. □

165

Draft of November 14, 2010

Proof for Fact 41. Fix a DoQ-restrictable operation f : P(W ×Dvar(L))n → P(W ×Dvar(L)) that

preserves local determination with the binding of variables ȳ, and fix any finite set x̄ of variables

of L. Then let i0, . . . , i3 and r1, . . . , r3 be the inclusion maps and restriction surjections with which

the precompositions have the types in the following diagram.

P(W × Dx̄)n
fx̄

//
((

(r0)∗ ((QQ
QQQ

QQQ
QQQ

QQQ

(i0)∗

����

=

=

P(W × Dx̄\ȳ)
vv

(r2)∗vvmmm
mmm

mmm
mmm

mm

(i2)∗

����

=

P(W × Dvar(L))n
f

//

(i1)∗
���� =

P(W × Dvar(L))

(i3)∗
����

P
∑
w∈W

Dw
var(L)

n fDoQ

// P
∑
w∈W

Dw
var(L)


(r3)∗

((((PP
PPP

PPP

P
∑
w∈W

Dw
x̄

n
66

(r1)∗ 66nnnnnnn

(fx̄)DoQ

// P
∑
w∈W

Dw
x̄\ȳ


hh

(r3)∗hhPPPPPPP

Here the existence of fDoQ and fx̄ such that

fDoQ ◦ (i1)∗ = (i3)∗ ◦ f (the middle square commutes),(108)

(r2)∗ ◦ fx̄ = f ◦ (r0)∗ (the top square commutes)(109)

is implied respectively by the DoQ-restrictability of f and the preservation of local determination

by f with the binding of ȳ. A proof that f is DoQ-restrictable, as a constant family of operations,

with the binding of ȳ amounts to showing that there is (fx̄)DoQ as above such that (fx̄)DoQ ◦ (i0)∗ =

(i2)∗ ◦ fx̄ (that is, the outer square commutes). To show it, note that Fact 47 implies

(r1)∗ ◦ (i0)∗ = (i1)∗ ◦ (r0)∗ (the left square commutes),(110)

(r3)∗ ◦ (i2)∗ = (i3)∗ ◦ (r2)∗ (the right square without (r3)∗ commutes),(111)

whereas Fact 46 implies

(r3)∗ ◦ (r3)∗ = 1.(112)

From these it follows that (r3)∗ ◦ fDoQ ◦ (r1)∗ serves as (fx̄)DoQ, because

(r3)∗ ◦ fDoQ ◦ (r1)∗ ◦ (i0)∗
(110)
= (r3)∗ ◦ fDoQ ◦ (i1)∗ ◦ (r0)∗

166

Draft of November 14, 2010

(108)
= (r3)∗ ◦ (i3)∗ ◦ f ◦ (r0)∗

(109)
= (r3)∗ ◦ (i3)∗ ◦ (r2)∗ ◦ fx̄

(111)
= (r3)∗ ◦ (r3)∗ ◦ (i2)∗ ◦ fx̄

(112)
= (i2)∗ ◦ fx̄.

Thus the constant family of operations f is DoQ-restrictable with the binding of ȳ. □

167

CHAPTER V

Accessibility and Counterparts

V.1. David Lewis’s Counterpart Theory

David Lewis [9] puts forward an ontology of possible individuals that he calls counterpart the-

ory, and that differs from the ontology of Kripke’s semantics, which we discussed in Chapter ??, in

a crucial manner.1 Lewis’s primary purpose is to describe the ontology of possible objects in an ex-

tensional language, rather than to provide a semantics for quantified modal logic. Nonetheless, we

can regard his theory as providing a semantics for quantified modal logic since, as Lewis himself

shows, we can translate a modal language into his extensional language; then the translation of a

modal sentence φ can serve as the truth condition of φ. The difference between the two ontologies

is philosophically significant, and reflected in the difference between the logics arising from the

two semantics.

V.1.1. Disjoint Ontology of Possible Individuals and the Notion of Counterparts. Coun-

terpart theory has four primitive predicates, Wx, Ixy, Cxy, and Ax, whose intended interpretations

are as follows (the range of x and y is intended to be unrestricted):

Wx x is a possible world,

Ixy x is in a possible world y,

Cxy y is a counterpart of x,2

Ax x is actual.

And, for these predicates, Lewis assumes eight postulates. A first postulate is about W and I:

∀x ∀y (Ixy→ Wy).(P1)

1Lewis has different formulations of counterpart theory; in this chapter we only discuss the version in [9].
2Lewis [9] uses x and y in the opposite order; that is, he reads Cxy as “x is a counterpart of y”. I adopt the opposite

notation above for several reasons; one is the analogy, which will turn out to be important, between the counterpart

relation and the accessibility relation, which is usually denoted by Rxy for “y is accessible from x”.

169

Draft of November 14, 2010

While Lewis reads this as “Nothing is in anything except a world”,3 it seems a little more accurate

to take it as follows. Things can be in other things in many ways; e.g., a cat is in a box, or

Pittsburgh is in the United States. Among those different senses of “is in”, we intend the predicate

Ixy to refer to the particular kind of “is in” relation between a thing and a possible world; then

this interpretation entails P1, that is, that the second argument y of Ixy must be a world. (It

should be noted that Lewis and we use the word “things” to include worlds, and not just things in

worlds. Also note that, instead of Lewis’s “is in”, I often use “live in”—which, of course, does not

presuppose that its subject is animate.)

The following may be the most crucial postulate of counterpart theory:

∀x ∀y ∀z (Ixy ∧ Ixz→ y = z).(P2)

This states that each thing lives in at most one world; in Lewis’s words, “things in different worlds

are never identical”.4 We may say the ontology of counterpart theory is disjoint, in the sense that it

assumes the set of things in a world to be disjoint from those in a different world. The disjointness

in this sense is one of the most crucial divergences from Kripke’s ontology, which is not disjoint,

that is, in which a single possible individual can live in various different worlds.

One may be tempted to say that Lewis’s counterpart-theoretic ontology is merely a special case

of Kripke’s ontology since it is just the version of Kripke’s ontology—in which different possible

worlds may have different sets of possible individuals that exist, or live, in them—gained by further

assuming disjointness, that is, that each possible individual lives in at most one world. This is half

right, but half wrong, as long as these ontologies are meant to serve as bases for semantics of modal

logic. To show this point, let us suppose a possible individual a exists in a world w, and consider

whether a satisfies a (unary) property F necessarily at w, that is, whether or not M, w ⊨α □Fx for

an assignment α such that α(x) = a. The truth condition (91) stipulates that M, w ⊨α □Fx if and

only if M, u ⊨α Fx for all worlds u that are accessible from w and in which a exists. Let us further

assume disjointness, which means that w is the only world in which a exists. Then it follows that

either:

• w is accessible from w itself, and M, w ⊨α □Fx iffM, w ⊨α Fx, or

• w is not accessible from w itself, and M, w ⊨α □Fx, no matter what F is.

3[9], 114.
4[9], 114.

170

Draft of November 14, 2010

To sum this up, the combination of (91) and disjointness trivializes the behavior of □; similarly,

the combination of (92) and disjointness trivializes the behavior of ^. This is why the conception

of the counterpart-theoretic ontology as Kripke’s ontology combined with disjointness cannot be

extended to the level of semantics.

To see how one can accommodate disjointness to the semantic ideas behind (91) and (92)—

which are essentially the same ideas as Lewis adopts—let us extract from them the following ideas

(see Chapter ?? for more detail). Here w is a world, ā is an n-tuple of individuals that exist in w,

and φ is a sentence that has exactly n free variables.

(i) That ā satisfies φ necessarily (or possibly) at w means that ā satisfies φ at all (or some)

u ∈ Uw,ā for a certain set Uw,ā of worlds (which may depend on w and ā).

(ii) In general, if not all of individuals b̄ exist in a world u, then what the tuple b̄ satisfies at

u has no semantic significance to what ā satisfies at w̄ (in which all of ā exist).

On the other hand, to repeat what it means to say an ontology is disjoint, it is that

(iii) Each possible individual exists in at most one world.

Then the observation in the previous paragraph can be put as follows. If follows from (i) that, for

each u ∈ Uw,ā, what ā satisfies at u is significant to what ā satisfies at w. Then (ii) implies that all

of ā exist in each u ∈ Uw,ā. Combining this with (iii), however, it follows that Uw,ā contains at most

one world. This, by (i), makes □ and ^ trivial. This is why Lewis, who adopts (iii), as well as (ii)

as we will discuss shortly, needs a way to reconcile (ii) and (iii) with the intuition behind (i).5 The

conceptual device he introduces for this purpose is the notion of counterparts of something, which

allows us to distinguish the following two ways of expressing the intuition behind (i).

(i′) That ā satisfies φ necessarily (or possibly) at w means that the same tuple ā itself satisfies

φ at all (or some) u ∈ Uw,ā.

(i′′) That ā satisfies φ necessarily (or possibly) at w means that, at each (or some) u ∈ Uw,ā, a

tuple (b1, . . . , bn) of counterparts bi of ai in u satisfies φ.

(i′) together with (ii) and (iii) implies (more precisely) that □ and ^ behave trivially; but, with the

help of the notion of counterparts, Lewis adopts (i′′) instead, and, as we will see shortly, it yields

nontrivial □ and ^ even on the basis of (ii) and (iii).6

5By contrast, Kripke adopts (i) but rejects (ii), which saves □ and ^ from triviality even when (iii) is assumed.
6Lewis seems ([9], 114) to think that disjointness saves the ontology from the charge that the identity of possible

individuals across different worlds is obscure. Needless to say, his notion of counterpart may well face the charge

171

Draft of November 14, 2010

Let us then list the postulates about the counterpart relation, denoted by C. The first set is

∀x ∀y (Cxy→ ∃z . Iyz),(P3)

∀x ∀y (Cxy→ ∃z . Ixz).(P4)

These state that only things in worlds are (by P3) or have (by P4) counterparts; in other words, the

counterpart relation is a relation among things in worlds. This may make our understanding of the

counterpart relation simpler, but it is of little consequence to the logic given by counterpart theory.

In contrast, the following set is more significant to the logic:

∀x ∀y ∀z (Ixy ∧ Izy ∧Cxz→ x = z),(P5)

∀x ∀y (Ixy→ Cxx).(P6)

To read these let us say, given things x, y, z, that z is a counterpart of x in y if z is a counterpart of

x and is in y, that is, if Cxz and Izy. Then P6 and P5 state that anything in any world is the one (by

P6) and only (by P5) counterpart of itself in that world. In other words, the counterpart relation,

when restricted to things in a single world, coincides with the identity relation.

Finally, the last two postulates are about the notion of actuality, expressed by A:

∃x (Wx ∧ ∀y (Iyx ≡ Ay)),(P7)

∃x Ax.(P8)

P7 states that there is a world such that anything is actual if and only if it lives in that world. We

may call such a world an actual world (we should note that an actual world itself does not satisfy

A). Then P2 and P8, which states something or other is actual, imply that an actual world exists

uniquely; so we call it the actual world and write @ for it.

Let us close this subsection by introducing two closely connected notions.7

Definition 54. We say a tuple (X,W, I,C, A) is a counterpart structure if

• X is a set,

that it is obscure when things are counterparts of other things; but it is open to question whether the obscurity of the

counterpart relation is as threatening to the status of ontology as the obscurity of the identity of individuals is, since

one may argue that the former is about us being unable to know which particular model to choose from all the models

the ontology gives, while the latter is about each model the ontology gives being not well defined.
7These are not in Lewis [9].

172

Draft of November 14, 2010

• W, A ⊆ X,

• I,C ⊆ X × X,

and if, furthermore, W, I, C, and A satisfy P1–P8 (or their set-theoretic versions). We say a tuple

(X,W, I,C, A,@) is a counterpart structure as well, if (X,W, I,C, A) is a counterpart structure as

above and if

• @ ∈ X satisfies (x,@) ∈ I iff x ∈ A for every x ∈ X.

Definition 55. When a (classical) first-order language L contains unary primitive predicates I, C

and binary primitive predicates W, A (possibly as well as a constant @), a (classical)L structure M

is called a model of counterpart theory if it validates P1–P8, or equivalently if (|M|,WM, IM,CM, AM)

(or (|M|,WM, IM,CM, AM,@M)) is a counterpart structure.

V.1.2. Counterpart Translation of a Modal Language. Using the notions reviewed in Sub-

section V.1.1, Lewis gives a scheme for translating a quantified modal language into the language

of counterpart theory. We review this translation scheme in this subsection; the review will sug-

gest that the scheme can be regarded as providing a possible-world semantics for quantified modal

logic.

Lewis is concerned with a translation between the following two languages:

• A quantified modal language, as we reviewed in Subsection IV.1.1. In addition to prim-

itive predicates, individual variables, classical sentential operators, it has the modal op-

erators □ and ^; it has no other operators, or no function or constant symbols. We also

assume it has no propositional variables; in other words, it has no 0-ary primitive predi-

cates.8 Let us call this language LM.

• An extensional—or classical first-order—language of counterpart theory. It has all the

vocabulary LM has (including, crucially, all the primitive predicates of LM) except □ and

^. Moreover, it has the special predicates W, I, C, and A and the defined term @, as we

reviewed in Subsection V.1.1. Let us call this language LC.

Given any sentence φ of LM, the scheme Lewis proposes translates it into LC. He denotes by φ@

the translation of φ, that is, the sentence of LC that translates φ; its heuristic meaning is, as Lewis

8We assume this because a proper treatment of propositional variables involves the modification of the semantics

we make in ??; after that we can dispose this assumption.

173

Draft of November 14, 2010

says, “φ holds in the actual world”.9 In other words, φ@ is an LC sentence expressing that the LM

sentence φ is actually true. To put it illustratively, a speaker of LC endorses that the LM sentence

⌜φ⌝ is actually true if and only if she endorses φ@. Then Lewis proposes his translation scheme to

define what φ@ looks like.

Lewis’s translation scheme is given by a family of maps −z, for each individual term z of LC

(including @ in particular), from LM sentences to LC sentences.10 These maps −z generalize the

case of φ@ in the sense that, given an LM sentence φ, φz is an LC sentence expressing that the LM

sentence φ is true at world z.11 To put it illustratively again, the speaker of LC endorses that the

LM sentence ⌜φ⌝ is true at world z if and only if she endorses φz.

To lay out this heuristic, illustrative idea rigorously, let us fix—in place of the speaker of LC—

an LC structure M that models counterpart theory; that is,

• M = (|M|,WM, IM,CM, AM,@M, FM) has a set |M| as a domain of quantification;

• (|M|,WM, IM,CM, AM,@M) is a model of counterpart theory as in Definition 55; and

moreover,

• M also interprets every other primitive n-ary predicate F of LC, with FM ⊆ |M|n.

Then the heuristic meaning of φz is formulated, as a first approximation, as

M ⊨ φz ⇐⇒ M ⊨ “the LM sentence ⌜φ⌝ is true at world z”.

It must be noted that φz may contain free variables, say x̄, including possibly z. Hence we need to

modify our first approximation with an assignment α : var(LC) → |M| of individuals to variables,

as follows:

M ⊨α φ
z ⇐⇒ M ⊨α “the LM sentence ⌜φ⌝ is true of fv(φ) at world z”.(113)

The notation M ⊨α φ
z, as read as above, should be helpful in extracting Lewis’s semantic idea out

of his translation scheme, as we are going to do.

9[9], 118.
10The language Lewis uses to formulate these maps may be LC, but not necessarily. It has to have, of course, the

identity predicate “=” applicable to pairs of LC sentences. It also has to be able to mention all the vocabulary of LM,

as well as the vocabulary of LC that is needed to express the translation.
11It is, however, not assumed that z stands for a world. Indeed, it may not make sense to say “z, as in φz, stands

for a world” in Lewis’s or our use language, unless we fix, in particular, a particular model of counterpart theory.

174

Draft of November 14, 2010

Lewis provides a recursive definition for maps −z with a base clause for atomic sentences and

inductive clauses for compound sentences. Keeping the heuristic meaning of φz in mind should

make it seem natural that Lewis adopts the following clauses for classical operators:

(¬φ)z = ¬φz,(114)

(φ ∧ ψ)z = φz ∧ ψz,(115)

(φ ∨ ψ)z = φz ∨ ψz,(116)

(φ→ ψ)z = φz → ψz,(117)

(∀x .φ)z = ∀x (Ixz→ φz),(118)

(∃x .φ)z = ∃x (Ixz ∧ φz).(119)

To read these clauses, we note, for example, that “¬” to the right of “=” in (114) is the negation in

LC, while “¬” to the left is in LM; hence (114) entails the first equivalence below (trivially, as the

two LC sentences are just identical), while (20) entails the second:

M ⊨α (¬φ)z (114)
⇐⇒ M ⊨α ¬φz (20)

⇐⇒ M ⊭α φz.

That is, we have

M ⊨α (¬φ)z ⇐⇒ M ⊭α φz.(120)

This means in terms of (113) that, in a given model M of counterpart theory and with respect to

the fixed interpretation α of variables, in particular x̄, z in terms of α(x̄), α(z), “the LM sentence

⌜¬φ⌝ is true of x̄ at z” holds iff “the LM sentence ⌜φ⌝ is true of x̄ at z” does not hold. Or, put much

less rigorously,

• ¬φ is true of α(x̄) at α(z), iff

• φ is not true of α(x̄) at α(z).

This heuristic reading of (114) should motivate us to adopt (114).

Similarly, (115)–(117) entail, and are motivated by, the following (121)–(123), respectively:

M ⊨α (φ ∧ ψ)z ⇐⇒ M ⊨α φ
z and M ⊨α ψ

z,(121)

M ⊨α (φ ∨ ψ)z ⇐⇒ M ⊨α φ
z or M ⊨α ψ

z,(122)

M ⊨α (φ→ ψ)z ⇐⇒ M ⊭α φz or M ⊨α ψ
z.(123)

175

Draft of November 14, 2010

The clauses (118) and (119) entail (124) and (125) below; since their derivation is more involved

than that of (120) above, we will lay out the derivation of (124) at the end of this subsection.

M ⊨α (∀y .φ)z ⇐⇒ M ⊨[a/y]α φ
z for every a ∈ |M| such that (a, α(z)) ∈ IM,(124)

M ⊨α (∃y .φ)z ⇐⇒ M ⊨[a/y]α φ
z for some a ∈ |M| such that (a, α(z)) ∈ IM.(125)

Heuristically (and not rigorously), (124) for example means that, in a given model M of counterpart

theory, when x̄ are the free variables occurring in ∀y .φ,

• ∀y .φ is true of α(x̄) at α(z), iff

• φ is true, at α(z), of α(x̄) and every a (in place of y) that lives in α(z).

Lewis adopts the following clauses for modal operators:

(□φ)z = ∀z′ ∀y1 · · · ∀yn(126)

((Wz′ ∧ Iy1z′ ∧Cx1y1 ∧ · · · ∧ Iynz′ ∧Cxnyn)→ [yn/xn] · · · [y1/x1](φz′)),

(^φ)z = ∃z′ ∃y1 · · · ∃yn(127)

((Wz′ ∧ Iy1z′ ∧Cx1y1 ∧ · · · ∧ Iynz′ ∧Cxnyn) ∧ [yn/xn] · · · [y1/x1](φz′)).12

Here it is assumed that x̄ are all distinct. We also assume that ȳ and z′ are all distinct, new variables.

It is important to note that (126) and (127) also require the assumption that the replaced variables

x̄ are all and only the free variables in φ.13 Hence, with this assumption stated explicitly, (126) and

12Lewis formulates (126) and (127), or T2i and T2j in his labels, with a different notation than ours. That is,

“If ϕ is any n-place sentence and α1 . . . αn are any n different variable, then ϕα1 · · ·αn is the sentence obtained by

substituting α1 uniformly for the alphabetically first free variable n ϕ, α2 for the second, and so on” (footnote 11

of [9], 117). If it is assumed here that ϕα1 . . . αn does not make sense unless exactly n variables occur freely in ϕ

(see footnote 13 of this chapter for a reason why it should be assumed), then Lewis needs the minor modification of

substituting (ϕγ1 · · · γn)β1 for ϕβ1γ1 · · · γn in his formulations of

(□ϕα1 · · ·αn)β = ∀β1 ∀γ1 · · · ∀γn (Wβ1 & Iγ1β1 & Cγ1α1 & · · · & Iγnβ1 & Cγnαn .⊃ ϕβ1γ1 · · · γn),T2i

(^ϕα1 · · ·αn)β = ∃β1 ∃γ1 · · · ∃γn (Wβ1 & Iγ1β1 & Cγ1α1 & · · · & Iγnβ1 & Cγnαn & ϕβ1γ1 · · · γn)T2j

([9], 118). It is because it may be the case that ϕ—take, for example, ∀x Fxy for ϕ—contains exactly n free variables

(so that ϕα1 · · ·αn and ϕγ1 · · · γn make sense under the assumption in question) but not β1, whereas β1 in addition to all

the free variables of ϕ occurs freely in ϕβ1 , which means, under the assumption, that ϕβ1γ1 · · · γn does not make sense.
13Lewis does not quite explicitly state this assumption, but it follows from his notation ϕα1 · · ·αn, if the notation

assumes that exactly n variables occur freely in the sentence ϕ (see footnote 12).

176

Draft of November 14, 2010

(127) really are

If x̄ are all and only the free variables in φ, then(126)

(□φ)z = ∀z′ ∀y1 · · · ∀yn

((Wz′ ∧ Iy1z′ ∧Cx1y1 ∧ · · · ∧ Iynz′ ∧Cxnyn)→ [yn/xn] · · · [y1/x1](φz′)),

If x̄ are all and only the free variables in φ, then(127)

(^φ)z = ∃z′ ∃y1 · · · ∃yn

((Wz′ ∧ Iy1z′ ∧Cx1y1 ∧ · · · ∧ Iynz′ ∧Cxnyn) ∧ [yn/xn] · · · [y1/x1](φz′)).

To see why this assumption is required, suppose x′ does not actually occur in φ. Then, without the

assumption, (126) yields both

(□φ)z = ∀z′ ∀y1 · · · ∀yn

((Wz′ ∧ Iy1z′ ∧Cx1y1 ∧ · · · ∧ Iynz′ ∧Cxnyn)→ [yn/xn] · · · [y1/x1](φz′)),

(□φ)z = ∀z′ ∀y1 · · · ∀yn ∀y′

((Wz′ ∧ Iy1z′ ∧Cx1y1 ∧ · · · ∧ Iynz′ ∧Cxnyn ∧ Iy′z′ ∧Cx′y′)

→ [y′/x′][yn/xn] · · · [y1/x1](φz′));

but these equations are inconsistent because, while their left-hand sides are identical, the right-hand

sides are not even equivalent. In this way, the well-definedness of maps −z requires the assumption

in question.14

The clauses (126) and (127) entail and are motivated by:

If x̄ are all and only the free variables actually occurring in φ, then(128)

M ⊨α (□φ)z ⇐⇒ M ⊨[an/xn]···[a1/x1][w/z′]α φ
z′ for every w ∈ WM and ā ∈ |M|n

such that each i has (ai, w) ∈ IM and (α(xi), ai) ∈ CM,

14Strictly speaking, the well-definedness of −z requires more things, for example that each sentence has a privi-

leged order of listing its free variables (Lewis uses the alphabetical order of variables). Such an order is required since

the right-hand sides of

(□φ)z = ∀z′ ∀y1 ∀y2 ((Wz′ ∧ Iy1z′ ∧Cx1y1 ∧ Iy2z′ ∧Cx2y2)→ [y2/x2][y1/x1](φz′)),

(□φ)z = ∀z′ ∀y1 ∀y2 ((Wz′ ∧ Iy1z′ ∧Cx2y1 ∧ Iy2z′ ∧Cx1y2)→ [y2/x1][y1/x2](φz′))

are distinct as sentences, although equivalent. We refrain, however, from being so strict because the difference between

these sentences is not semantically significant, as long as they are equivalent.

177

Draft of November 14, 2010

If x̄ are all and only the free variables actually occurring in φ, then(129)

M ⊨α (^φ)z ⇐⇒ M ⊨[an/xn]···[a1/x1][w/z′]α φ
z′ for some w ∈ WM and ā ∈ |M|n

such that each i has (ai, w) ∈ IM and (α(xi), ai) ∈ CM.

Again, we postpone the derivation of (128) until the end of this subsection. Let us read (128) and

(129) heuristically (and not rigorously) in the way we read (120) and (124): that is, in a given

model M of counterpart theory,

• □φ is true of α(x̄) at α(z), iff

• at every world w, φ is true of every ā such that, for each i,

– ai lives in w, and

– ai is a counterpart of α(xi),

and

• ^φ is true of α(x̄) at α(z), iff

• at some world w, φ is true of some ā such that, for each i,

– ai lives in w, and

– ai is a counterpart of α(xi),

Now that we have reviewed all the inductive clauses Lewis adopts for his recursive definition

of translation maps −z, let us review his base clause for atomic sentences, which is

φz = φ for atomic φ.(130)

This implies that, for any n-ary primitive predicate F,

M ⊨α (Fx̄)z (130)
⇐⇒ M ⊨α Fx̄

(19)
⇐⇒ α(x̄) ∈ FM;

that is,

M ⊨α (Fx̄)z ⇐⇒ α(x̄) ∈ FM for an n-ary primitive predicate F.(131)

Combined with (113), this can be read as:

M ⊨α “the LM sentence ⌜Fx̄⌝ is true of x̄ at world z” ⇐⇒ α(x̄) ∈ FM.(132)

Let us take an example, both to heuristically read this clause in concrete terms, and to clarify

some worries it may cause. A typical example for an atomic sentence Fx̄ is a unary sentence “x is

178

Draft of November 14, 2010

a logician”,15 and Russell can be a typical example for an individual α(x); so, taking this example,

and writing w for a world α(z), we can read (132) heuristically (though not rigorously) as:

(i) Russell satisfies the atomic sentence “x is a logician” of LM at w,16 iff

(ii) Russell is a logician.

One may well find the definiens (ii) puzzling, or even problematic. One may argue that, when

read as a sentence used to provide possible-world semantics for LM, (ii) does not seem to make

sense unless it mentions a particular world. Putting this argument in Kripke’s terms, Russell may

be a logician in a world w0, but may not be in another w1; therefore Russell may have the properties

of being-a-logician-at-w0 and not-being-a-logician-at-w1, but not the property of being-a-logician

simpliciter. Nonetheless, even if one maintains that in possible-world semantics properties have to

be relative to worlds, (ii) can still make sense, at least for individuals that live in some worlds or

other such as Russell, because in counterpart theory each individual, including Russell, only lives

in one world. That is, we can read (ii) as meaning that Russell is a logician in the unique world in

which he lives, referring to the property of being-a-logician-at-the-world-in-which-one-lives.

One may, however, further worry that, granted (ii) makes sense, it gives rise to the following

trouble for (i). That is, if (ii) holds and Russell is a logician simpliciter (or is a logician in the world

in which he lives), then the “iff” implies that (i) holds—namely, Russell satisfies the LM sentence

“x is a logician” at w—not only when w is the world in which Russell lives but indeed for every

world w. This inference is, indeed, correct. And then it seems to follow (this inference is, indeed,

incorrect) that, according to counterpart theory, if Russell is a logician then he is necessarily so

and cannot be otherwise.

15(130) does not seem to work well when φ is a 0-ary primitive predicate, for example, “It rains a lot”. It is

certainly odd to apply (132) to this example and read it as saying

(i) the atomic sentence “It rains a lot” of LM is true at w, iff

(ii) it rains a lot.

This can be solved as follows. As n-ary predicates may be true of n-tuples, extend it by stipulating that 0-tuples are

just worlds, so that 0-ary predicates may be true of worlds. Then we have (i) iff

(ii′) it is true of w that it rains a lot,

which is no longer odd. This stipulation that 0-tuples are just worlds is not ad hoc but indeed natural, as we will argue

in Subsection ??.
16Recall that I use the phrases “φ is true of a” and “a satisfies φ” interchangeably.

179

Draft of November 14, 2010

This second inference is incorrect due to Lewis’s counterpart interpretation for □, namely (128),

as follows. Suppose Russell lives in a world w (and hence only in w). Also fix any world w0. Then,

by (128) (and the postulate P5 of counterpart theory), Russell is necessarily a logician—meaning

that he satisfies the LM sentence “□(x is a logician)”—at w0 if and only if,

• not only does he satisfy “x is a logician” at w,

• but also, at every world w′ , w, “x is a logician” is true of all of his counterparts a who

live in w′.

Yet Russell is not included among such a, because he does not live in w′ , w. Hence his satisfying

“x is a logician” at w′ is irrelevant for his satisfying “□(x is a logician)” at w0.

There is indeed a more general sense in which the conclusion of the first inference—that if

Russell is a logician simpliciter then he satisfies the LM sentence “x is a logician” at every world,

whether he lives in it or not—is not troublesome to Lewis. That is, his translation scheme guar-

antees that, as far as we are concerned with the logic of what sentences individuals satisfy at the

worlds in which they live, there is no semantic significance to Russell’s satisfying the LM sentence

“x is a logician”—or indeed any LM sentence—at any world other than the one in which he lives.

This is because the semantics to which Lewis’s semantic idea gives rise has autonomous domains

of quantification, althouth, to state and prove this fact precisely and formally, we need to wait until

we rewrite Lewis’s translation scheme in semantic terms in Subsection V.2.17

It may be worth noting that the autonomy of domains of quantification in the semantics means

that, not only is the conclusion of the first inference above unproblematic for Lewis, it is indeed se-

mantically insignificant. To repeat the inference in question (with slight rephrasing), (132) implies

that an atomic sentence of LM is either true at all worlds or true at no worlds; for example, either

Russell is a logician and “x is a logician” is true of him at all worlds, or he is not a logician and “x

17One may be able to intuitively see this fact by reading the definientia in the inductive clauses of Lewis’s defi-

nition of −z. Observe that, in translating an LM sentence ψ into LC, whenever we come across an expression φz (in

our use language) for a subformula of ψ@, and whenever a variable x occurs freely in the LC sentence φz (but not

in ψ@), x is bound by a “bounded quantifier the domain of which is things in z”, as in either ∀x (Ixz → (· · ·φz · · ·))
or ∃x (Ixz ∧ (· · ·φz · · ·)) (or their equivalent). This means that it is irrelevant for the truth of ψ@ whether the LM

sentence φ is true of (the referent of) x at (the referent of) z when (the referent of) x does not live in (the referent of)

z. Nevertheless, it is rather difficult to make a precise sense of this observation, because φz as an LC sentence can be

identical to an LC sentence φz′ for another variable z′ , z. This is why our semantic rewrite will be more useful than

Lewis’s syntactic account in terms of −z.

180

Draft of November 14, 2010

is a logician” is true of him at no worlds. And, because of this technical import, (132) may well be

more susceptible of some metaphysical interpretations than of others, as regards what, according to

(132), are truthmakers for atomic sentences of LM. Notwithstanding this conceptually significant

question, how to interpret (132), or even whether to accept (132) at all, makes no difference to the

logic of (DoQ-validity in) Lewis’s semantics, due to the autonomy of domains of quantification in

the semantics. We may agree with Lewis and accept (132) only for the case in which α(x̄) all live

in α(z), so that, heuristically,

(i′) Russell satisfies the atomic sentence “x is a logician” of LM at the world in which he

lives, iff

(ii) Russell is a logician,

and, agreeing with Kripke, leave it possible that, even if “x is a logician” is true of Russell at his

world, it may not be at others. Yet, even under this condition, which is technically weaker than the

one Lewis adopts, we end up with the same logic.

This completes our review of how, technically, Lewis’s translation scheme works. His transla-

tion maps −z are defined recursively by (114)–(119), (126), (127), (130), the motivation for which

is given by the heuristic readings we laid out, namely (120)–(125), (128), (129), (131). Let us close

this subsection with deriving (124) and (128), as we promised (derivations for (125) and (129) are

similar). (118) entails (124) as follows:

M ⊨α (∀y .φ)z (118)
⇐⇒ M ⊨α ∀y (Iyz→ φz)

(24)
⇐⇒ M ⊨[a/y]α Iyz→ φz for every a ∈ |M|

(23)
⇐⇒ M ⊨[a/y]α φ

z for every a ∈ |M| such that M ⊨[a/y]α Iyz

(19)
⇐⇒ M ⊨[a/y]α φ

z for every a ∈ |M| such that (a, α(z)) ∈ IM.

(126) entails (128) in a similar vein, though in a more complicated way. Suppose x̄ are all and only

the free variables actually occurring in φ; then, using (24), (23), and (19) in a manner similar to

above, together with (21), we have

M ⊨α (□φ)z

(126)
⇐⇒ M ⊨α ∀z′ ∀y1 · · · ∀yn

((Wz′ ∧ Iy1z′ ∧Cx1y1 ∧ · · · ∧ Iynz′ ∧Cxnyn)→ [yn/xn] · · · [y1/x1](φz′))

181

Draft of November 14, 2010

⇐⇒ M ⊨[an/yn]···[a1/y1][w/z′]α [yn/xn] · · · [y1/x1](φz′) for every ā ∈ |M|n and w ∈ WM

such that (ai, w) ∈ IM and (([an/yn] · · · [a1/y1][w/z′]α)(xi), ai) ∈ CM for each i.

Note that the application of (126) above assumes that ȳ, z′ are new variables, which implies

([an/yn] · · · [a1/y1][w/z′]α)(xi) = α(xi)

for each i, and therefore, continuing the chain of equivalences above, we have

M ⊨α (□φ)z

(133)

⇐⇒ M ⊨[an/yn]···[a1/y1][w/z′]α [yn/xn] · · · [y1/x1](φz′) for every ā ∈ |M|n and w ∈ WM

such that (ai, w) ∈ IM and (α(xi), ai) ∈ CM for each i.

Here, note also that the SoS property (28) of classical first-order logic (Fact 6) implies

M ⊨[an/yn]···[a1/y1][w/z′]α [yn/xn] · · · [y1/x1](φz′)

⇐⇒ M ⊨[an/xn][an/yn]···[a1/y1][w/z′]α [yn−1/xn−1] · · · [y1/x1](φz′)

···
⇐⇒ M ⊨[a1/x1]···[an/xn][an/yn]···[a1/y1][w/z′]α φ

z′

because ([an/yn] · · · [a1/y1][w/z′]α)(yn) = an and so on. Moreover, because x̄ are assumed to be all

distinct, two assignments [a1/x1] · · · [an/xn][an/yn] · · · [a1/y1][w/z′]α and [an/xn] · · · [a1/x1][w/z′]α

agree on all variables except ȳ, whereas φz′ contains none of ȳ; hence the local determination (27)

of classical first-order logic (Fact 4) further implies

M ⊨[an/yn]···[a1/y1][w/z′]α [yn/xn] · · · [y1/x1](φz′) ⇐⇒ M ⊨[an/xn]···[a1/x1][w/z′]α φ
z′

Therefore, by substituting the right-hand side for the left-hand side of this in (133), we have (128).

V.2. Counterpart-Theoretic Semantics

V.2.1. Semantically Rewriting Lewis’s Semantic Ideas. In Subsection V.1.2, we reviewed

the translation scheme Lewis proposed for translating a quantified modal language into the exten-

sional language of counterpart theory, and laid out Lewis’s semantic ideas behind the scheme. In

this subsection, we reformulate the semantic ideas in fully semantic terms, in order to extract, in a

rigorous manner, a counterpart-theoretic semantics for quantified modal logic.

182

Draft of November 14, 2010

In our review of Lewis’s scheme of translating a language LM of quantified modal logic into

the extensional language LC of counterpart theory, we laid out (120)–(125), (128), (129), (131) to

illustrate the semantic ideas behind the translation scheme. Recall that, to connect the LC sentence

φz, Lewis’s translation of the LM sentence φ, to semantic ideas, we used the heuristic clause

M ⊨α φ
z ⇐⇒ M ⊨α “the LM sentence ⌜φ⌝ is true of x̄ at world z”.(113)

In a sense, this provides an indirect semantics forLM; we may say that (113) expresses a semantics,

in our use language, for LC and, in particular, for the semantics a speaker of LC would have for

LM. Now we assimilate this middleperson, by merging the counterpart-theoretic vocabulary into

our use language and replacing (113) with

M, w ⊨α φ ⇐⇒ in M, the LM sentence φ is true of α(x̄) at world w,

with w in place of α(z). The replacement of one semantic relation by another,

M ⊨α φ
z ///o/o/o/o/o/o M, w ⊨α φ(134)

or, notationally speaking, bringing worlds from the right-hand side of ⊨ to the left-hand side, cap-

tures our key idea: We replace the classical semantics for (certain sentences of) the extensional,

counterpart-theoretic language LC with a possible-world semantics for the quantified modal lan-

guage LM.

Needless to say, we need to define our new model M rigorously to define the semantics rigor-

ously. Recall that, in Subsection V.1.2, we used the following (classical) LC structure M as our

model:

• M = (|M|,WM, IM,CM, AM,@M, FM) has a set |M| as a domain of quantification;

• (|M|,WM, IM,CM, AM,@M) is a model of counterpart theory as in Definition 55; and

moreover,

• M also interprets every other primitive n-ary predicate F of LC with FM ⊆ |M|n.

For our new M, we use a model of a similar form, as (only) partly described as follows:

• M = (|M|,W, I,C, A,@, FM) has a set |M| as a domain of individuals—|M| is not called

a domain of quantification, since quantifiers are not interpreted relative to it, whereas it

is, or at least can be, the range of assignments;

• (|M|,W, I,C, A,@) is a counterpart structure as in Definition 54; and moreover,

183

Draft of November 14, 2010

• M interprets every primitive n-ary predicate F of LM with FM (though we delay charac-

terization of its type).

We will call such a model a counterpart-theoretic model for LM. One difference is that, whereas

W, I, C, A, @ were part of the vocabulary of LC interpreted by M, they are now part of our model.

Another is that, whereas we interpreted primitive predicates F of LC with FM ⊆ |M|n, we now

interpret primitive predicates F of LM with some FM; but we will not discuss what type the new

FM should have until we discuss how we should rewrite the clause (131) for primitive predicates.

In defining the new semantics, we should also decide, regarding the notation M, w ⊨α φ, what

range the assignment α should have. In the old notation M ⊨α φ
z of Subsection V.1.2, α ranged

over everything in |M|—whether it lives in a world or not—because what we were doing then was

to interpret LC using the classical semantics of first-order logic as reviewed in Subsection III.1.1.

By contrast, Kripke, for one, lets α range over D, namely all the possible individuals that may or

may not exist in a given world w. In this subsection, we tentatively settle for the largest possible

range; that is, we let assignments be of the type var(L)→ |M|. Since I ⊆ |M|×|M|, it is guaranteed

that D ⊆ |M|, that is, that anything that lives in some world or another belongs to |M|.
Let us rewrite the semantic ideas (120)–(125), (128), (129), (131) into truth conditions in the

new kind of structure. Applying the key idea (134) above, we rewrite

M ⊨α (¬φ)z ⇐⇒ M ⊭α φz,(120)

M ⊨α (φ ∧ ψ)z ⇐⇒ M ⊨α φ
z and M ⊨α ψ

z,(121)

M ⊨α (φ ∨ ψ)z ⇐⇒ M ⊨α φ
z or M ⊨α ψ

z,(122)

M ⊨α (φ→ ψ)z ⇐⇒ M ⊭α φz or M ⊨α ψ
z(123)

to end up with

M, w ⊨α ¬φ ⇐⇒ M, w ⊭α φ,(50)

M, w ⊨α φ ∧ ψ ⇐⇒ M, w ⊨α φ and M, w ⊨α ψ,(51)

M, w ⊨α φ ∨ ψ ⇐⇒ M, w ⊨α φ or M, w ⊨α ψ,(52)

M, w ⊨α φ→ ψ ⇐⇒ M, w ⊭α φ or M, w ⊨α ψ,(53)

184

Draft of November 14, 2010

that is, the same truth conditions as Kripke gives, as we reviewed in Section ??. Rewriting

M ⊨α (∀y .φ)z ⇐⇒ M ⊨[a/y]α φ
z for every a ∈ |M| such that (a, α(z)) ∈ IM,(124)

M ⊨α (∃y .φ)z ⇐⇒ M ⊨[a/y]α φ
z for some a ∈ |M| such that (a, α(z)) ∈ IM(125)

yields

M, w ⊨α ∀y .φ ⇐⇒ M, w ⊨[a/y]α φ for every a such that Iaw,

M, w ⊨α ∃y .φ ⇐⇒ M, w ⊨[a/y]α φ for some a such that Iaw,

which coincide with Kripke’s (56) and (57) when we read Iaw as a ∈ Dw—that is, when we read

Lewis’s “a is in w” as Kripke’s “a exists in w”. So let us set a ∈ Dw iff Iaw and write

Dw = { a ∈ |M| | Iaw };

then Lewis’s adoption of (56) and (57) means that Dw serves as the domain of quantification for the

world w in Lewis’s semantics, in the same way it does in Kripke’s semantics. Thus, Lewis shares

with Kripke the same semantic ideas, (50)–(53), (56), (57), regarding how to interpret the classical

operators. Hence it is helpful to reintroduce

Definition 56. Fix a counterpart-theoretic model M = (|M|,W, I,C, A,@, FM) for LM. Then, for

any w ∈ W, the set

Dw = { a ∈ |M| | Iaw }

is called the domain of quantification for w. For any w ∈ W, an assignment α : var(LM) → |M|
is called a DoQ-assignment for w ∈ W, or a w-DoQ-assignment, if α : var(LM) → Dw. Also, a

world-thing pair (w, a) ∈ W × |M|, a world-tuple pair (w, ā) ∈ W × |M|n, or a world-assignment

pair (w, α) ∈ W × |M|var(LM) is called a DoQ-pair if a ∈ Dw, if ā ∈ Dw
n, or if α : var(LM) → Dw,

respectively.

Once we recall the discussion on ??, it is obvious that∑
w∈W

Dw ⊆ W × |M|,
∑
w∈W

Dw
n ⊆ W × |M|n,

∑
w∈W

Dw
var(LM) ⊆ W × |M|var(LM)

are the sets of world-thing DoQ-pairs, of world-tuple DoQ-pairs, and of world-assignment DoQ-

pairs, respectively.

185

Draft of November 14, 2010

In contrast to the agreement on the classical operators, Lewis’s semantic ideas regarding how

to interpret modal operators seem to differ from Kripke’s; that is, while Lewis’s

If x̄ are all and only the free variables actually occurring in φ, then(128)

M ⊨α (□φ)z ⇐⇒ M ⊨[an/xn]···[a1/x1][u/z′]α φ
z′ for every u ∈ WM and ā ∈ |M|n

such that each i has (ai, u) ∈ IM and (α(xi), ai) ∈ CM,

If x̄ are all and only the free variables actually occurring in φ, then(129)

M ⊨α (^φ)z ⇐⇒ M ⊨[an/xn]···[a1/x1][u/z′]α φ
z′ for some u ∈ WM and ā ∈ |M|n

such that each i has (ai, u) ∈ IM and (α(xi), ai) ∈ CM.

can be rewritten, using also the Dw notation as introduced above, as

If x̄ are all and only the free variables actually occurring in φ, then(135)

M, w ⊨α □φ ⇐⇒ M, u ⊨[an/xn]···[a1/x1]α φ for every u ∈ W and ā ∈ Du
n

such that each i has Cα(xi)ai,

If x̄ are all and only the free variables actually occurring in φ, then(136)

M, w ⊨α ^φ ⇐⇒ M, u ⊨[an/xn]···[a1/x1]α φ for some u ∈ W and ā ∈ Du
n

such that each i has Cα(xi)ai,

these appear to be different from Kripke’s (54) and (55) or our revisions (91) and (92) of them. We

can surely see that, in a special case where φ is a closed sentence with no free variables, (135) and

(136) boil down respectively to

M, w ⊨α □φ ⇐⇒ M, u ⊨α φ for every u ∈ W,

M, w ⊨α ^φ ⇐⇒ M, u ⊨α φ for some u ∈ W;

that is, Lewis’s truth conditions for closed □φ and ^φ are just Kripke’s with the universal acces-

sibility relation. Yet a general case of (135) and (136) involves the counterpart relation C, which

make them appear quite different from Kripke’s (54) and (55), or their modified versions (91) and

(92). We will argue in Subsection ??, however, that in a certain sense (135) and (136) subsumes

(91) and (92) (with significant modification).

Let us now discuss how to rewrite the clause (131) for primitive predicates, which is

M ⊨α (Fx̄)z ⇐⇒ α(x̄) ∈ FM for an n-ary primitive predicate F.(131)

186

Draft of November 14, 2010

While it is straightforward by (134) how to rewrite the left-hand side, we have (at least) two options

for what type our new interpretation FM of F should have.18

• One option is to simply carry over the type we used in Subsection V.1.2, namely FM ⊆
|M|n, so that we rewrite (131) with

M, w ⊨α Fx̄ ⇐⇒ α(x̄) ∈ FM
L for an n-ary primitive predicate F,(137)

where we write FM
L (with “L” for Lewis) for this interpretation of F. In other words, we

follow Lewis more faithfully by keeping the right-hand side of (131) unchanged.

• Another option (or a family of options) is Kripke’s interpretation using, as we reviewed

in Subsection IV.1.1, a set FM
K (with “K” for Kripke) of pairs of worlds and (tuples of)

things. Though we have a choice regarding what domain of “things” we should take, let

us take the largest possible one, that is, |M|; so FM
K ⊆ W × |M|n. Then we rewrite (131)

as

M, w ⊨α Fx̄ ⇐⇒ (w, α(x̄)) ∈ FM
K for an n-ary primitive predicate F,(59)

exactly keeping the form of Kripke’s truth condition for atomic sentences.

To see the difference between the two options, take again the example “x is a logician” for Fx̄.

Then FM
K consists of

−−→
FM

K (w), for each world w, each of which stands for the property of being-a-

logician-at-w. By contrast, FM
L stands for the property of being-a-logician simpliciter—recall our

discussion on p. 179 of how it makes sense to use the property of being-a-logician simpliciter in

(131). Also recall the remark on pp. 180f. that Lewis gives a stronger constraint than Kripke does

on how to interpret atomic sentences, namely that (given a fixed assignment) each atomic sentence

is either true at all worlds or true at no worlds. To put this in terms of (137) and (59), the former

implies the following, while the latter does not, for any pair of worlds w, w′ ∈ W:

M, w ⊨α Fx̄ ⇐⇒ α(x̄) ∈ FM
L ⇐⇒ M, w′ ⊨α Fx̄.

In other words, the satisfaction relations obeying (137) with FM
L are, technically speaking, exactly

the satisfaction relations obeying (59) along with the constraint that FM
K is of the form W × FM

L .

Nonetheless, as we remarked on pp. 180f. and we will show in Subsection V.2.2, this difference

between (137) and (59) will turn out to make no difference to the logic of (DoQ-validity in) the

18Recall our tentative assumption that LM has no 0-ary primitive predicates.

187

Draft of November 14, 2010

semantics. It is because the autonomy of domains of quantification implies that, when restricted to

their semantically relevant parts, FM
L and FM

K are equivalent to each other. More precisely, while

FM
L ∩ Dn ⊆ Dn, where Dn = { ā ∈ |M|n | ā ∈ Dw

n for some w ∈ W },

and

FM
K ∩
∑
w∈W

Dw
n ⊆
∑
w∈W

Dw
n

are the only semantically significant parts respectively of FM
L and of FM

K , subsets of Dn correspond

to subsets of
∑
w∈W

Dw
n along the bijection (w, ā) 7→ ā from

∑
w∈W

Dw
n to Dn (which is bijective because

each ā ∈ Dn has exactly one w in which all of ā live). For the moment, we settle for a wider class

of satisfaction relations with fewer constraint, that is, the semantics with FM
K and (59), since it will

enable us to prove the autonomy in a stronger form than the semantics with FM
L and (137) would;

after proving the autonomy, we will reconsider FM
L and (137).

Thus, for now, we rewrite (less faithfully) the clause (131) for primitive predicates as

M, w ⊨α Fx̄ ⇐⇒ (w, α(x̄)) ∈ FM for an n-ary primitive predicate F.(59)

Moreover, we can now fully define our models:

Definition 57. Given a language L of quantified modal logic, we say a tuple

M = (|M|,W, I,C, A,@, FM)

is a counterpart-theoretic model for L if

• (|M|,W, I,C, A,@) is a counterpart structure as in Definition 54; and moreover,

• M is equipped with FM ⊆ W × |M|n for each n-ary primitive predicate F.

When M = M = (|M|,W, I,C, A,@, FM) is a counterpart-theoretic model for L, W is called the

set of worlds of M.

Let us close this subsection with a series of obvious definitions and results for the counterpart-

theoretic semantics.

Definition 58. Given a language L of quantified modal logic, a counterpart-theory-type satisfac-

tion relation for L is a pair (M,⊨) of a counterpart-theoretic model M for L and any relation

(M,− ⊨− −) ⊆ W × |M|var(L) × sent(L), as in M, w ⊨α φ, where W is the set of worlds of M. We

say a counterpart-theory-type satisfaction relation for L is on M if its first coordinate is M.

188

Draft of November 14, 2010

Definition 59. Given a quantified modal language L, for each counterpart-theory-type satisfaction

relation (M,⊨) for L with W the set of worlds of M, we say

• a sentence φ of L is valid in (M,⊨), and write M ⊨ φ, meaning that M, w ⊨α φ for

every w ∈ W and assignment α : var(L)→ |M|; and

• an inference (Γ, φ) in L is valid in (M,⊨), meaning that if M ⊨ ψ for all ψ ∈ Γ then

M ⊨ φ.

Given a class of counterpart-theory-type satisfaction relations forL, we say a sentence or inference

is valid in that class if it is valid in every member of that class.

Definition 60. A counterpart-theory-type satisfaction relation for a quantified modal language L
is called counterpart-theoretic, and said to be simply a counterpart-theoretic satisfaction relation

for L, if it satisfies (50)–(53), (56), (57), (135), (136), and (59):

M, w ⊨α ¬φ ⇐⇒ M, w ⊭α φ,(50)

M, w ⊨α φ ∧ ψ ⇐⇒ M, w ⊨α φ and M, w ⊨α ψ,(51)

M, w ⊨α φ ∨ ψ ⇐⇒ M, w ⊨α φ or M, w ⊨α ψ,(52)

M, w ⊨α φ→ ψ ⇐⇒ M, w ⊭α φ or M, w ⊨α ψ,(53)

M, w ⊨α ∀x .φ ⇐⇒ M, w ⊨[a/x]α φ for every a ∈ Dw,(56)

M, w ⊨α ∃x .φ ⇐⇒ M, w ⊨[a/x]α φ for some a ∈ Dw,(57)

If x̄ are all and only the free variables actually occurring in φ, then(135)

M, w ⊨α □φ ⇐⇒ M, u ⊨[an/xn]···[a1/x1]α φ for every u ∈ W and ā ∈ Du
n

such that each i has Cα(xi)ai,

If x̄ are all and only the free variables actually occurring in φ, then(136)

M, w ⊨α ^φ ⇐⇒ M, u ⊨[an/xn]···[a1/x1]α φ for some u ∈ W and ā ∈ Du
n

such that each i has Cα(xi)ai,

M, w ⊨α Fx̄ ⇐⇒ (w, α(x̄)) ∈ FM for an n-ary primitive predicate F.(59)

Also, by the counterpart-theoretic semantics for L, we mean the class of all counterpart-theoretic

satisfaction relations for L.

189

Draft of November 14, 2010

V.2.2. Operational Form of Counterpart-Theoretic Semantics. In Subsection V.2.1, we

laid out a satisfaction-relation formulation for Lewis’s semantic ideas. In this subsection, we fur-

ther rewrite it in an operational formulation and prove that the semantics has autonomous domains

of quantifications.

First let us define the type of interpretations. It should be similar to the type of general Kripke-

type, which we defined in Section IV.3 (Definition 49 on p. 153): the type can be similar to Kripke’s

because we chose (59), the same type of condition as Kripke did, as the truth condition for atomic

sentences; but the type has to be general rather than uniform because, under the truth conditions

(135) and (136), □ and ^ cannot be interpreted in uniformly. Then we define the notions of preser-

vation of local determination and DoQ-restrictability in a similar manner to their definitions in

Section IV.3 (Definition 50 on 157 and Definition 52 on 160); see Section IV.3 for the motivations

behind these technical definitions.

Definition 61. Given a quantified modal language L, a counterpart-theory-type interpretation for

L is a pair of a counterpart-theoretic model M for L and a map ⟦−⟧ that assigns,

• to each variable x, a map

⟦x⟧ : |M|var(L) → |M|

that satisfies

⟦x⟧ : α 7→ α(x),

• to each sentence φ, a map

⟦φ⟧ : W × |M|var(L) → 2

that satisfies

⟦Fx1 · · · xn⟧ = FM ◦ (1W × ⟨⟦x1⟧, . . . , ⟦xn⟧⟩),

• and, to each n-ary sentential operator ⊗ of L, a family of maps

⟦⊗⟧x̄ : P(W × |M|var(L))n → P(W × |M|var(L))

for all finite sets x̄ of variables of L, such that

⟦⊗(φ1, . . . , φn)⟧ = ⟦⊗⟧x̄(⟦φ1⟧, . . . , ⟦φn⟧)

190

Draft of November 14, 2010

for the set x̄ of variables that occur freely in at least one of φ1, . . . , φn.

We say a counterpart-theory-type interpretation (M, ⟦−⟧) for L interprets a sentential operator ⊗
of L uniformly if the family ⟦⊗⟧x̄ is constant, that is, if there is a unique operation f such that

⟦⊗⟧x̄ = f for every x̄; then we simply write ⟦⊗⟧ for ⟦⊗⟧x̄. We also say a counterpart-theory-type

interpretation for L is on M if its first coordinate is M, and is over a counterpart structure F if it is

on a counterpart-theoretic model over F.

Definition 62. Let L be a quantified modal language and let M be a counterpart structure with a

set W of worlds. Then, for variables ȳ ofL, we say a family of operations f x̄ : P(W×|M|var(L))n →
P(W × |M|var(L)) for all finite sets x̄ of variables preserves local determination with the binding of ȳ

if, for every finite set x̄ of variables of L, there is an operation f x̄
x̄ : P(W × |M|x̄)n → P(W × |M|x̄\ȳ)

such that, for every B : W × |M|x̄ → 2n,

f x̄
x̄ (B) ◦ rx̄\ȳ = f x̄(B ◦ rx̄) : W × |M|var(L) → 2

(where rx̄ : (w, α) 7→ (w, α↾x̄) and rx̄\ȳ : (w, α) 7→ (w, α↾(x̄ \ ȳ))), that is, that makes the following

diagram commute.

P(W × |M|var(L))n

f x̄

��

P(W × |M|x̄)noo
− ◦ rx̄oo

f x̄
x̄

��

=

P(W × |M|var(L)) P(W × |M|x̄\ȳ)oo
− ◦ rx̄\ȳ

oo

We also say a family of operations f x̄ : P(W × |M|var(L))n → P(W × |M|var(L)) (for a fixed n)

preserves local determination for a sentential operator ⊗ of L if ⊗ is n-ary and if the family pre-

serves local determination with the binding of the variables that ⊗ binds. Moreover, we say a

counterpart-theory-type interpretation for L preserves local determination if it interprets every

sentential operator ⊗ of L with a family of operations that preserves local determination for ⊗.

Definition 63. Let L be a quantified modal language and M be a counterpart structure with a set

W of worlds. Then, for any finite sets x̄ and ȳ of variables of L, we say an operation

f : P(W × |M|x̄)n → P(W × |M|ȳ)m

is DoQ-restrictable if it is restrictable to the sets
∑
w∈W

Dw
x̄ and

∑
w∈W

Dw
ȳ of DoQ-pairs, where Dw is

the domain of quantification for w; in other words, if there is fDoQ that makes the diagram below

191

Draft of November 14, 2010

commute.

P(W × |M|x̄)n
f

//

− ◦ i ���� =

P(W × |M|ȳ)m

− ◦ i����

P
∑
w∈W

Dw
x̄

n fDoQ

// P
∑
w∈W

Dw
ȳ

m

Definition 64. Let L be a quantified modal language and M be a counterpart structure with a set

W of worlds. Then we say a family of operations f x̄ : P(W × |M|var(L))n → P(W × |M|var(L)) is

DoQ-restrictable with the binding of variables ȳ if

• the family f x̄ preserves local determination with the binding of ȳ, and, moreover,

• for each finite set x̄ of variables, the operator f x̄
x̄ that makes

P(W × |M|var(L))n

f x̄

��

P(W × |M|x̄)noo
− ◦ rx̄oo

f x̄
x̄

��

=

P(W × |M|var(L)) P(W × |M|x̄\ȳ)oo
− ◦ rx̄\ȳ

oo

commute (which uniquely exists since the family f x̄ preserves local determination with

the binding of ȳ) is DoQ-restrictable.

We also say a family of operations f x̄ : P(W × |M|var(L))n → P(W × |M|var(L)) is DoQ-restrictable

for a sentential operator ⊗ of L if ⊗ is n-ary and the family f x̄ is DoQ-restrictable with the binding

of the variables that ⊗ binds. Moreover, we say a counterpart-theory-type interpretation (M, ⟦−⟧)
for L is DoQ-restrictable if it interprets each sentential operator ⊗ of L with a family of operators

that is DoQ-restrictable for ⊗.

Now let us rewrite the satisfaction-relation formulation of Lewis’s semantics into an operational

form. Whereas (59) for atomic sentences does not need rewriting (since it is part of Definition 61),

it is obvious how to rewrite (50)–(53), (56), (57) for the classical first-order operators; that is, we

simply extend the same conditions as we adopted for Kripke’s semantics, since Lewis shares the

same semantic ideas with Kripke regarding these operators. (135) and (136) for the modal opera-

tors can be rewritten with the help of the following notation. For any assignment α : var(L)→ |M|

192

Draft of November 14, 2010

and any tuple x̄ of variables of L, let us write

C x̄(α) = { (w, [an/xn] · · · [a1/x1]α) ∈ W × |M|var(L) | ai ∈ Dw and Cα(xi)ai for each i ⩽ n };

that is, for every (w, β) ∈ W × |M|var(L),

(w, β) ∈ C x̄(α) ⇐⇒ β = [an/xn] · · · [a1/x1]α for some ā ∈ Dw
n such that Cα(xi)ai for each i ⩽ n.

So, in particular, for x̄ = ∅ and n = 0, we set

C∅(α) = W × {α}.

Then it is easy to see that, using this notation, we can rewrite (135) and (136) as

(w, α) ∈ ⟦□⟧x̄(A) ⇐⇒ C x̄(α) ⊆ A,(138)

(w, α) ∈ ⟦^⟧x̄(A) ⇐⇒ C x̄(α) ∩ A , ∅.(139)

So, to sum up, we enter:

Definition 65. Given a quantified modal language L, a counterpart-theory-type interpretation for

L is said to be counterpart-theoretic, and called simply a counterpart-theoretic interpretation for

L, if it interprets ¬, ∧, ∨,→, ∀x, ∃x uniformly with the constant families of operations

⟦¬⟧ = ¬2 ◦ −,(76)

⟦∧⟧ = ∧2 ◦ −,(77)

⟦∨⟧ = ∨2 ◦ −,(78)

⟦→⟧ =→2 ◦ −,(79)

⟦∀x⟧ =
∏
w∈W
⟦∀x⟧w, where ⟦∀x⟧w(A) = {α ∈ |M|var(L) | [a/x]α ∈ A for every a ∈ Dw },(82)

⟦∃x⟧ =
∏
w∈W
⟦∃x⟧w, where ⟦∃x⟧w(A) = {α ∈ |M|var(L) | [a/x]α ∈ A for some a ∈ Dw },(83)

respectively, and if it interprets □ and ^ with the families of operations ⟦□⟧x̄ and ⟦^⟧x̄ satisfying

(138) and (139), respectively.

By our assumption that the classical and modal operators are the only sentential operators of a

quantified modal language L, counterpart-theoretic interpretations for L correspond one-to-one to

counterpart-theoretic models for L and then to counterpart-theoretic satisfaction relations for L.

193

Draft of November 14, 2010

Hence the class of counterpart-theoretic interpretations for L can also be called the counterpart-

theoretic semantics for L. Then the counterpart-theoretic semantics preserves local determination

and is DoQ-restrictable.

Fact 48. Given a quantified modal languageL, every counterpart-theoretic interpretation (M, ⟦−⟧)
preserves local determination.

Proof. A proof that the families ⟦¬⟧x̄, ⟦∧⟧x̄, ⟦∨⟧x̄, ⟦→⟧x̄, ⟦∀x⟧x̄, ⟦∃y⟧x̄ preserve local deter-

mination for ¬, ∧, ∨, →, ∀x, ∃x, respectively, is similar to the proof of Fact 39. A proof that the

family ⟦□⟧x̄ preserves local determination for □ consists of fixing any x̄ and showing that some

⟦ x̄ | □ ⟧x̄ makes the following diagrams commute.

P(W × |M|var(L))

⟦□⟧x̄

��

P(W × |M|x̄)oo
− ◦ rx̄oo

⟦ x̄ | □ ⟧x̄

��

=

P(W × |M|var(L)) P(W × |M|x̄)oo
− ◦ rx̄

oo

To show it, let us write, for β : x̄→ |M|,

C x̄
x̄(β) = { (w, β′) ∈ W × |M|x̄ | β′(xi) ∈ Dw and Cβ(xi)β′(xi) for each i ⩽ n }

with C∅∅(∅) = W, and define ⟦ x̄ | □ ⟧x̄ so that, for every (w, β) ∈ W × |M|x̄ and B ⊆ W × |M|x̄,

(w, β) ∈ ⟦ x̄ | □ ⟧x̄(B) ⇐⇒ C x̄
x̄(β) ⊆ B.(140)

Then the diagram above commutes because, for every (w, α) ∈ W × |M|var(L) and B ⊆ W × |M|x̄,

(w, α) ∈ ⟦ x̄ | □ ⟧x̄(B) ◦ rx̄ ⇐⇒ (w, α↾x̄) ∈ ⟦ x̄ | □ ⟧x̄(B)

⇐⇒ C x̄
x̄(α↾x̄) ⊆ B

⇐⇒ (u, β) ∈ B for every (u, β) ∈ W × |M|x̄

such that β(xi) ∈ Du and Cα(xi)β(xi) for each i ⩽ n

⇐⇒ (u, [an/xn] · · · [a1/x1]α) ∈ B ◦ rx̄ for every u ∈ W

and ā ∈ Du
nsuch that Cα(xi)ai for each i ⩽ n

⇐⇒ C x̄(α) ⊆ B ◦ rx̄

⇐⇒ (w, α) ∈ ⟦□⟧x̄(B ◦ rx̄).

194

Draft of November 14, 2010

We can similarly prove that the family ⟦^⟧x̄ preserves local determination for ^ by defining

(w, β) ∈ ⟦ x̄ | ^⟧x̄(B) ⇐⇒ C x̄
x̄(β) ∩ B , ∅(141)

(and replacing “every” above with “some”). □

Our proof for DoQ-restrictability goes in a manner similar to our proof in Subsection IV.3.3

for the DoQ-restrictability of DoQ-autonomous Kripkean semantics.

Fact 49. Given a quantified modal language L, a counterpart-theoretic interpretation (M, ⟦−⟧),
and any finite set x̄ of variables, the operations ⟦ x̄ | □ ⟧x̄ satisfying (140) and ⟦ x̄ | ^⟧x̄ satisfying

(141), as in the proof for Fact 48 above, are DoQ-restrictable.

Proof. A proof that ⟦ x̄ | □ ⟧x̄ is DoQ-restrictable amounts to showing that there is ⟦ x̄ | □ ⟧x̄
DoQ

making

P(W × |M|x̄)
⟦ x̄ | □ ⟧x̄

//

− ◦ i ���� =

P(W × |M|x̄)

− ◦ i����

P
∑
w∈W

Dw
x̄


⟦ x̄ | □ ⟧x̄

DoQ

// P
∑
w∈W

Dw
x̄


commute. So let us define ⟦ x̄ | □ ⟧x̄

DoQ so that, for every (u, β) ∈
∑
w∈W

Dw
x̄ and B ⊆

∑
w∈W

Dw
x̄,

(u, β) ∈ ⟦ x̄ | □ ⟧x̄
DoQ(B) ⇐⇒ C x̄

x̄(β) ⊆ B.(142)

Observe that, by definition, C x̄
x̄(β) ⊆

∑
w∈W

Dw
x̄ for any β : x̄ → |M|, which implies the equivalence

marked with ∗ below: For every (u, β) ∈
∑
w∈W

Dw
x̄ and B ⊆ W × Dx̄, we have

(u, β) ∈ ⟦ x̄ | □ ⟧x̄(B) ∩
∑
w∈W

Dw
x̄ ⇐⇒ (u, β) ∈ ⟦ x̄ | □ ⟧x̄(B)

(140)
⇐⇒ C x̄

x̄(β) ⊆ B
∗⇐⇒ C x̄

x̄(β) ⊆ B ∩
∑
w∈W

Dw
x̄

(142)
⇐⇒ (u, β) ∈ ⟦ x̄ | □ ⟧x̄

DoQ

B ∩∑
w∈W

Dw
x̄

 ;

195

Draft of November 14, 2010

thus ⟦ x̄ | □ ⟧x̄(B) ◦ i = ⟦ x̄ | □ ⟧x̄
DoQ(B ◦ i), making the diagram above commute. Hence ⟦ x̄ | □ ⟧x̄

is DoQ-restrictable. Similarly, ⟦^⟧x̄ is DoQ-restrictable, with ⟦ x̄ | ^⟧x̄
DoQ such that

(u, β) ∈ ⟦ x̄ | ^⟧x̄
DoQ(B) ⇐⇒ C x̄

x̄(β) ∩ B , ∅(143)

for every (u, β) ∈
∑
w∈W

Dw
x̄ and B ⊆

∑
w∈W

Dw
x̄. □

Fact 50. Given a quantified modal languageL, every counterpart-theoretic interpretation (M, ⟦−⟧)
is DoQ-restrictable.

Proof. The families ⟦□⟧x̄ and ⟦^⟧x̄ are DoQ-restrictable for □ and ^ by Fact 49. On the other

hand, a proof that the families ⟦¬⟧x̄, ⟦∧⟧x̄, ⟦∨⟧x̄, ⟦→⟧x̄, ⟦∀x⟧x̄, ⟦∃y⟧x̄ are DoQ-restrictable for ¬,

∧, ∨,→, ∀x, ∃x, respectively, is similar to the proof of Corollary 7 (on 161). □

In this way, the counterpart-theoretic semantics is DoQ-restrictable. Before closing this subsec-

tion, let us observe that, not only is it restrictable to the domains of quantifications, the semantics

is also restrictable to the domain of possible individuals in Kripke’s sense, that is,

D =
∪
w∈W

Dw ⊆ |M|.

The semantics is, indeed, restrictable to any set E such that D ⊆ E ⊆ |M|. This follows from the

following fact.

Fact 51. Let L be a given quantified modal language, (M, ⟦−⟧) be any counterpart-theoretic inter-

pretation, and E be any set such that
∪
w∈W

Dw ⊆ E ⊆ |M|. Then, for every n-ary sentential operator

⊗ of L and any finite set x̄ of variables of L, there is an operation ⟦⊗⟧x̄
E such that

P(W × |M|var(L))n
⟦⊗⟧x̄

//

− ◦ i ����
=

P(W × |M|var(L))

− ◦ i����

P(W × Evar(L))n

⟦⊗⟧x̄
E

// P(W × Evar(L))

commutes, where i : W × Evar(L) ↪→ W × |M|var(L) is the inclusion map.

Proof. When ⟦⊗⟧x̄ is a postcomposition f ◦ − with f : 2n → 2, and in particular when ⊗ is ¬,

∧, ∨, or→, the same postcomposition f ◦− yields such ⟦⊗⟧x̄
E as above. While ⟦∀y⟧x̄ =

∏
w∈W
⟦∀y⟧w,

196

Draft of November 14, 2010

each ⟦∀y⟧w is restrictable to E by ?? (on p. ??) since Dw ⊆ E; therefore
∏
w∈W

(⟦∀y⟧w)E serves as

⟦∀y⟧x̄
E for ⊗ = ∀y. Similarly for ⊗ = ∃y.

Let ⊗ = □ and observe that, because Dw ⊆ E for all w ∈ W, we have C x̄(α) ⊆ W×Evar(L) for any

α : var(L)→ E, which implies the equivalence marked with ∗ below: For every A ⊆ W × |M|var(L)

and (w, α) ∈ W × Evar(L),

(w, α) ∈ ⟦□⟧x̄(A) ∩ (W × Evar(L))
†
⇐⇒ (w, α) ∈ ⟦□⟧x̄(A)

(138)
⇐⇒ C x̄(α) ⊆ A
∗⇐⇒ C x̄(α) ⊆ A ∩ (W × Evar(L))

(138)
⇐⇒ (w, α) ∈ ⟦□⟧x̄(A ∩ (W × Evar(L)))

†
⇐⇒ (w, α) ∈ ⟦□⟧x̄(A ∩ (W × Evar(L))) ∩ (W × Evar(L)),

where the equivalences with † hold since (w, α) ∈ W × Evar(L). This means that, writing

P(W × Evar(L))
� �

i∗ // P(W × |M|var(L))
i∗ = − ◦ i
oooo ,

we have i∗ ◦ ⟦□⟧x̄ = i∗ ◦ ⟦□⟧x̄ ◦ i∗ ◦ i∗, and so i∗ ◦ ⟦□⟧x̄ ◦ i∗ serves as ⟦□⟧x̄
E. Similarly for ⊗ = ^. □

Corollary 8. The counterpart-theoretic semantics for a given quantified language L is restrictable

to the domain of possible individuals, that is, to the set

D =
∪
w∈W

Dw

for a given counterpart-theoretic model M = (|M|,W, I,C, A,@), with each Dw being the domain

of quantification for w ∈ W.

This result shows that, even though we have been taking |M| as the range of assignments, we

can safely restrict the range to the domain D of possible individuals, as we did when dealing with

Kripkean semantics in Chapter IV. Therefore, for the rest of this chapter, we take D rather than

|M| as the range of assignments. (We omit the obvious series of redefinitions.)

V.2.3. Bundle Formulation of Counterpart Theory. In this subsection, we introduce a series

of notations that will be helpful in our analysis of agreement and disagreement between Kripke’s

and Lewis’s semantic ideas.

197

Draft of November 14, 2010

It should be obvious from the exposition above in Subsection V.1.1 of the postulates P1–P8 of

counterpart theory (for example, that the counterpart relation is a relation among things in worlds)

that the notion of things in worlds plays a crucial conceptual role in counterpart theory. So let us

introduce notation for the set of them. Recall the notation

Dw = { a ∈ |M| | Iaw },

which we introduced in Subsection V.2, so that Lewis’s truth conditions for quantifiers coincided

with Kripke’s; so, for both Lewis and Kripke, Dw is the domain of quantification for the world

w ∈ W. Recall also that every Kripke model assigns to each world w ∈ W the set Dw of individuals

that exist in w, and moreover that Kripke defines D, the domain of all possible individuals, as the

set of individuals that exist in some world or other, that is,

D =
∪
w∈W

Dw.

This suggests that we should write D, in the framework of counterpart theory as well, for the set

of things that live in some world or other; so we set

D =
∪
w∈W

Dw = { a ∈ |M| | ∃w. Iaw }.

The disjointness of ontology, which is expressed by the postulate

∀x ∀y ∀z (Ixy ∧ Ixz→ y = z),(P2)

namely that everything lives in at most one world, means that D is partitioned by the family of Dw

for all w ∈ W; so, using
∑

to signify disjoint union, we can write

D =
∑
w∈W

Dw

to express the disjointness of ontology.

There is another notation useful in expressing the disjointness of ontology, namely P2, as well

as other postulates. Note that the definition D = { a ∈ |M| | ∃w. Iaw }means that D is the domain of

the relation I. Then the postulate P2 above amounts to the statement that the relation I is a function

with domain D; let us refer to this function by π, so π(a) = w means Iaw. On the other hand,

∀a∀w (Iaw→ Ww)(P1)

198

Draft of November 14, 2010

amounts to the statement that the range of the relation I is contained in W. Therefore P1 and P2

together mean

π : D→ W,

which in turn entails both P1 and P2; thus π : D → W rewrites I (with P1 and P2) in functional

terms. We call π a residence map, because it assigns to each x ∈ D the world π(x) in which x lives.

Dw is then the set of residents of the world w. It is also helpful to note that, when w ∈ W, we can

define Dw as

Dw = { a ∈ D | Iaw } = π−1[{w}]

in terms of D and π.

Given the rewrite of counterpart theory so far, let us carry on to observe how we can rewrite

the other postulates in terms of D and π. Recall that

∀x ∀y (Cxy→ ∃w. Iyw),(P3)

∀x ∀y (Cxy→ ∃w. Ixw)(P4)

together state that the counterpart relation C is a relation among things in worlds; therefore they

amount to the statement that C is a relation on D, or, in notation, C ⊆ D × D. It is also easy to see

that C ⊆ D × D entails both P3 and P4.

In rewriting P5 and P6—and, as we will see in Subsection ??, in rewriting the semantics—it is

useful to take the right transpose of the relation C. That is, because C ⊆ D × D, we can take the

map γ : D→ PD such that, when a ∈ D,

γ(a) = { b ∈ D | Cab };

that is, γ(a) is the set of counterparts of a. Note that γ(a) ⊆ D implies P3, while P4 follows from

our stipulation that the domain of γ is D. Then recall that

∀a∀b∀w (Iaw ∧ Ibw ∧Cab→ a = b),(P5)

∀a∀w (Iaw→ Caa)(P6)

together mean that anything a, if it lives in any world, is the one and only counterpart of itself in

its world π(a). So, in terms of γ and π, P5 and P6 mean that, for every a ∈ D, γ(a) restricted to

199

Draft of November 14, 2010

π(a) consists of a and only of a; or, in notation,

γ(a) ∩ Dπ(a) = {a}.

It is easy to see that this entails P5 and P6.

We turn now to the postulates on the notion of actuality, which are

∃w (Ww ∧ ∀a (Iaw ≡ Aa)),(P7)

∃a Aa.(P8)

Recall that P2, P7, and P8 imply that there uniquely exists a world @ such that Aa iff Ia@, that is,

such that anything is actual if and only if it lives in @. Assuming P2, therefore, P7 and P8 entail

@ ∈ W and A = D@ , ∅, or, equivalently, that @ is in the range of π. On the other hand, P7 and

P8 follow from @ ∈ W and A = D@ , ∅; so we regard these as our rewrite of P7 and P8.

To sum up, whereas Lewis’s own formulation of counterpart theory is given in Definition 54,

we can formulate it alternatively as follows.

Definition 66. We say (W, π, γ,@) is a counterpart structure if

• W is a set;

• π is a function to W, that is, π : D→ W for some set D;

• γ is a map of the type γ : D→ PD, that is, it assigns γ(a) ⊆ D to each a ∈ D, while γ(a)

is defined only if a ∈ D;

• γ(a) ∩ π−1[{π(a)}] = {a} for each a ∈ D;

• @ is in the range of π, that is, @ ∈ W and π−1[{@}] , ∅.

Though it seems obvious enough that the two formulations are equivalent, let us describe the

equivalence more formally with the following notation, because it will be useful shortly in showing

that the equivalence extends to the level of semantics.

Notation 1. Given a tuple M = (X,W, I,C, A,@) of the type as in Definition 54—namely, X is a

set; W, A ⊆ X; I,C ⊆ X × X; and @ ∈ X—that satisfies P2, we write

r(M) = (W, πI ,
−→
C ,@),

where πI is the relation I regarded as a function (we can regard it so due to P2) and
−→
C is the right

transpose of C. Also, given a tuple M = (W, π, γ,@) of the type as in Definition 66—namely, W

200

Draft of November 14, 2010

is a set; π : D→ W for some set D; γ : D→ PD; and @ ∈ W—we write

s(M) = (W ∪ D,W, Iπ, γ̃, π−1[{@}],@),

where Iπ is the function π regarded as a relation, and γ̃ is the relation to which γ gives rise by

(a, b) ∈ γ̃ ⇐⇒ b ∈ γ(a).

In terms of this notation, the arguments we gave above up to Definition 66 amount to:

Fact 52. A tuple M = (X,W, I,C, A,@) as in Notation 1 is a counterpart structure (in the sense

of Definition 54) iff r(M) is a counterpart structure (in the sense of Definition 66). Also, a tuple

M = (W, π, γ,@) as in Notation 1 is a counterpart structure (in the sense of Definition 66) iff s(M)

is a counterpart structure (in the sense of Definition 54).

Then the equivalence can be stated by the combination of Fact 52 and the following.

Fact 53. The operation r ◦ s restricted to the class of counterpart structures is the identity, in the

sense that r(s(M)) =M for every counterpart structure M in the sense of Definition 66. Moreover,

for every counterpart structure M = (X,W, I,C, A,@) in the sense of Definition 54, s(r(M)) is a

counterpart structure (in the sense of Definition 54) of the form

s(r(M)) = (W ∪ D,W, I,C, A,@)

for W ∪ D ⊆ X, where D is the domain of the relation I.

Unlike r◦ s, the operation s◦ r restricted to the counterpart structures is not strictly the identity,

because, under the formulation of Definition 54, X \ (W ∪ D) may not be empty; for example, the

set X of things in a counterpart structure M may contain a thing x < W ∪ D that neither is a world

nor lives in a world, whereas x is not in the set of things in s ◦ r(M), namely W ∪D. Nevertheless,

M and s(r(M)) are essentially the same, as long as we focus on things in W ∪ D and ignore every

x < W ∪D. So, the upshot of Fact 53 is that, whereas r ◦ s is strictly the identity, s ◦ r is essentially

the identity, thereby making r and s essentially inverse to each other, as long as we focus on worlds

and things in worlds. And this focus is justified by the fact that only worlds and things in worlds

are semantically significant, which will follow from Fact ?? below.

Let us then extend this equivalence to the level of semantics. It requires that we first formulate

counterpart-theoretic semantics as based on Definition 66; but it is straightforward once we recall

201

Draft of November 14, 2010

that, in Definition 57, we defined a counterpart-theoretic model for a given languageL of quantified

modal logic as a counterpart structure equipped with FM ⊆ |M|n for each n-ary primitive predicate

F of L,19 and that the only semantically significant part of FM is its subset FM ∩ Dn for

Dn = { ā ∈ |M|n | ā ∈ Dw
n for some w ∈ W },

where Dw = π
−1[{w}]. Hence we simply add FM to counterpart structures in the sense of Definition

66. It is helpful to note that the Dn as above satisfies

Dn =
∑
w∈W

Dw
n,

thereby extending D =
∑
w∈W

Dw. Then we straightforwardly have:

Definition 67. Given a language L of quantified modal logic, we say a tuple

M = (W, π, γ,@, FM)

is a counterpart-theoretic model for L if

• (W, π, γ,@) is a counterpart structure as in Definition 66; and moreover,

• M is equipped with FM ⊆
∑
w∈W

Dw
n for each n-ary primitive predicate F of L, where

Dw = π
−1[{w}].

Definition 68. Given a language L of quantified modal logic, a counterpart-theoretic semantics

for L is a relation (−,− ⊨− −), as in M, w ⊨α φ, among

• a counterpart-theoretic model M = (W, π, γ,@, FM) for L,

• an element w ∈ W,

• an assignment α : var(L)→ Dw, where Dw = π
−1[{w}],20 and

• a sentence φ of L

that satisfies

M, w ⊨α ¬φ ⇐⇒ M, w ⊭α φ,(50)

M, w ⊨α φ ∧ ψ ⇐⇒ M, w ⊨α φ and M, w ⊨α ψ,(51)

M, w ⊨α φ ∨ ψ ⇐⇒ M, w ⊨α φ or M, w ⊨α ψ,(52)

19Recall our assumption on p. ?? that L has no 0-ary primitive predicates.
20Note that this clause depends on the w mentioned in the previous clause.

202

Draft of November 14, 2010

M, w ⊨α φ→ ψ ⇐⇒ M, w ⊭α φ or M, w ⊨α ψ,(53)

M, w ⊨α ∀x .φ ⇐⇒ M, w ⊨[a/x]α φ for every a ∈ Dw,(56)

M, w ⊨α ∃x .φ ⇐⇒ M, w ⊨[a/x]α φ for some a ∈ Dw,(57)

If x̄ are all and only the free variables actually occurring in φ, then(135)

M, w ⊨α □φ ⇐⇒ M, u ⊨[ā/x̄]α φ for every u ∈ W and ā ∈ Du
n

such that each i has ai ∈ γ(α(xi)),

If x̄ are all and only the free variables actually occurring in φ, then(136)

M, w ⊨α ^φ ⇐⇒ M, u ⊨[ā/x̄]α φ for some u ∈ W and ā ∈ Du
n

such that each i has ai ∈ γ(α(xi)),

M, w ⊨α Fx̄ ⇐⇒ α(x̄) ∈ FM for an n-ary primitive predicate F.(??)

203

CHAPTER VI

Generalized Topological Semantics for First-Order Modal Logic

VI.1. Topological Semantics for First-Order Modal Logic

VI.1.1. Upshots from the Previous Chapters. In Chapters III through ??, we observed some

conditions that a semantics of first-order modal logic needs to satisfy in order to guarantee certain,

both philosophically and mathematically desirable properties of a logic. In this subsection we give

a technical summary of these logical properties and the semantic conditions they require.

In Chapter III, we extended the standard semantics for a classical first-order language to obtain

a classical semantics for a non-classical first-order language. Then we observed in Chapter ?? that,

in a possible-world semantics equipped with a domain of possible individuals, each world w ∈ W

constitutes a classical interpretation, in our extended sense, for a first-order modal language. Yet

we also observed that such a semantics may fail, as Kripke’s did, to equip modal logic with all the

rules and axioms of classical first-order logic; instead, Kripke ended up with free logic.

To analyze this failure, some notions introduced in Chapter III turned out helpful: We distin-

guished two notions of domains, a domain of individuals (the set of referents of free variables) and

a domain of quantification (the range of quantifiers), and introduced the notion of the autonomy

of the latter. Then, in Chapter ??, we observed that a possible-world semantics with a domain of

possible individuals needs to have autonomous domains of individuals, in order to provide seman-

tics for a simple union of classical first-order logic and modal logic. The autonomy, in the case of

a possible-world semantics with domains, is roughly characterized as follows: The semantics has

autonomous domains of quantification if, for each sentential operator ⊗ of the given language, an

operation

⟦⊗⟧ : ⟦ x̄, ȳ | φ ⟧ 7→ ⟦ x̄ | ⊗φ ⟧

that interprets ⊗ is (or is restrictable to, in the sense we rigorously defined in Chapters III and ??)

an operation of the type

P(
∑
w∈W

Dw
n+m)→ P(

∑
w∈W

Dw
n),

205

Draft of November 14, 2010

where we write Dw for the domain of quantification—the range of quantifiers—of a world w ∈ W;

hence the disjoint union
∑
w∈W

Dw is the domain of pairs of a world and an individual that exists in

that world.

In Chapters ?? and ??, we discussed the free-variable sensitivity (and insensitivity) of interpre-

tations of □. According to the semantic idea that we reviewed in these chapters and that is shared

by David Lewis, the truth condition for a sentence □φ is sensitive to the set of variables that occurs

freely in φ. Even though this idea makes domains of quantification autonomous, one disadvantage

of it is that, in general, it even fails to validate the rule

φ ⊢ ψ ψ ⊢ φ

□φ ⊢ □ψ
E

of E, the so-called minimal modal logic. This is because, under a free-variable-sensitive interpre-

tation, □ is interpreted non-uniformly, that is, with different operations

⟦ x̄ | φ ⟧ 7→ ⟦ x̄ | □φ ⟧,

⟦ x̄ | ψ ⟧ 7→ ⟦ x̄ | □ψ ⟧

when φ and ψ have different sets of free variables, and therefore ⟦ x̄ | φ ⟧ = ⟦ x̄ | ψ ⟧ fails to entail

⟦ x̄ | □φ ⟧ = ⟦ x̄ | □ψ ⟧. A free-variable-sensitive interpretation of □ gives rise to rules restricted by

a condition on free variables; for instance, Lewis’s truth condition for □ makes valid a version of

the rule M with a condition on variables, namely

φ ⊢ ψ
(every variable that occurs freely in φ occurs freely in ψ)

□φ ⊢ □ψ
,

but not full M without the restriction. To restore full M, we need to interpret □ uniformly, that is,

in a free-variable-insensitive manner. In other words, for each n we use a single operation

⟦□⟧n : ⟦ x̄ | φ ⟧ 7→ ⟦ x̄ | □φ ⟧

to interpret □ regardless of what subset of x̄ occurs freely in φ,1 so that

⟦ x̄ | φ ⟧ � ⟦□⟧n //
_

pn
−1

��
=

⟦ x̄ | □φ ⟧
_

pn
−1

��
⟦ x̄, y | φ ⟧ �

⟦□⟧n+1

// ⟦ x̄, y | □φ ⟧

1Recall that the notation ⟦ x̄ | φ ⟧ makes no sense if any variable other than x̄ occurs freely in φ.

206

Draft of November 14, 2010

commutes.

We also saw in Chapter ?? how the ontology of Lewis’s counterpart theory helps (at least tech-

nically) to model transworld identity of possible individuals in a more general way than Kripke’s

treatment does. As we showed, when we write D for a domain of possible individuals (that exist

in some world or other), Lewis’s ontology can be characterized by a “residence map” π : D→ W,

with which we read π(a) = w as “w is the unique world in which the individual a lives” (so, when

we write—as we did before—Dw for the domain of quantification for the world w, D amounts to∑
w∈W

Dw). Lewis moreover introduces a relation C on D, with which we read Cab as “b is a counter-

part (in π(b)) of a” and write
−→
C (a) = { b ∈ D | Cab } for the set of counterparts of a; then he gives

the transworld identity of a in terms of the counterparts of a, by setting

a ∈ ⟦ x | □φ ⟧ ⇐⇒ −→
C (a) ⊆ ⟦ x | φ ⟧

and more generally

ā ∈ ⟦ x̄ | □φ ⟧ ⇐⇒ −→
Cn(ā) ⊆ ⟦ x̄ | φ ⟧.

This enables us to provide a countermodel for

x , y ⊢ □(x , y),

which is not provable from the simple union of classical first-order logic and (propositional) modal

logic.

To interpret equality, however, there is one condition that semantics needs to satisfy in order to

validate the rules and axioms on equality. Note that, writing ∆ for the diagonal map ∆ : a 7→ (a, a),

the validity of the rules and axioms on equality requires that

⟦ x | φ(x, x) ⟧ = ∆−1[⟦ x, y | φ(x, y) ⟧]

hold for any sentence φ, even if it contains □. Therefore, to give rise to a union of modal logic and

classical, fully first-order logic with the rules and axioms on equality, the semantics is required to

make

⟦ x, y | φ(x, y) ⟧ � //
_

∆−1
��

=

⟦ x, y | □φ(x, y) ⟧
_

∆−1
��

⟦ x | φ(x, x) ⟧ � // ⟦ x | □φ(x, x) ⟧

207

Draft of November 14, 2010

commute.

To sum up, we have the following four conditions that a semantics for first-order modal logic

should satisfy.

(i) An interpretation is defined on a structure π : D → W so that, for each w ∈ W, π−1[{w}]
serves as the domain of quantification for the world w, with which we interpret classical

first-order logic.

(ii) □ is interpreted by a general notion of counterparts defined on D.

(iii) □ is interpreted uniformly by

⟦□⟧n : ⟦ x̄ | φ ⟧ 7→ ⟦ x̄ | □φ ⟧

such that the following commutes.

⟦ x̄ | φ ⟧ � ⟦□⟧n //
_

pn
−1

��
=

⟦ x̄ | □φ ⟧
_

pn
−1

��
⟦ x̄, y | φ ⟧ �

⟦□⟧n+1

// ⟦ x̄, y | □φ ⟧

(iv) The following commutes.

⟦ x, y | φ(x, y) ⟧ � //
_

∆−1
��

=

⟦ x, y | □φ(x, y) ⟧
_

∆−1
��

⟦ x | φ(x, x) ⟧ � // ⟦ x | □φ(x, x) ⟧

In terms of these, we can compare the two semantics for quantified modal logic reviewed in Chap-

ters ?? and ??, one by Kripke and the other according to Lewis’s semantic idea, as follows. On the

one hand, Kripke has (iii) and (iv) at the cost of (ii), which keeps his treatment of equality from

being general enough; also, he does not have (i), thereby failing to unify modal logic with classical

first-order logic. On the other hand, Lewis surely has (i) and (ii); but he lacks (iii), thereby ending

up with too restricted a modal logic, and lacks (iv), thereby failing to validate the rules and axioms

on equality.2

2From the viewpoint of the sheaf semantics we will lay out, we can put the comparison as follows. Kripke attains

the sheaf properties (iii) and (iv) by taking a constant sheaf; but a constant sheaf makes transworld identity not general

enough to serve the purpose of (ii). Also, he takes domains of quantification different from fibers of the constant sheaf,

thereby failing (i). By contrast, Lewis liberalizes his semantics too much to attain the sheaf properties (iii) and (iv).

208

Draft of November 14, 2010

Moreover, we have another desideratum; namely, as we argued in Subsection ??,

(v) We should generalize the relational notion of accessibility to the topological, neighbor-

hood notion.

For the rest of this section, we lay out a semantics for first-order modal logic that satisfies all these

five desiderata.

VI.1.2. Classical Semantics in a Category of Sets over a Set. For our purpose it is helpful

to first prepare an underlying, classical semantics on the underlying, set structure of π : D→ X as

in the desideratum (i) of Subsection VI.1.1. In this subsection, we briefly lay out a semantics of

classical first-order logic in Sets/X, the category of sets sliced over a fixed set X, for a non-classical

first-order language. We do this by categorically rewriting, and then “bundling up” over X, of the

classical semantics we laid out in Chapter III.3

Let us fix any set X. Then, by a set over X, we mean any pair (D, π) of a set D and a map π of

the type π : D → X; or we may simply mean a map π with codomain X, because, once π is given,

its domain D is determined. When we take a pair (D, π) as a set over X, we say π is its projection.

Moreover, given two sets (D, πD) and (E, πE) over X, by a map from (D, πD) to (E, πE) over X, we

mean any map f : D→ E such that πE ◦ f = πD, that is, that makes

D
f

//

πD
��2
22
22
22
2

=

E

πE
����
��
��
��

X

commute. These kinds of structures form a category Sets/X, the category Sets of sets sliced over

X. That is,

• the objects of Sets/X are the sets over X; and

• the arrows of Sets/X from (D, πD) to (E, πE) are the maps from (D, πD) to (E, πE) over X.

Among many properties Sets/X has, it is important to our purpose that it has finite products.

The 0-ary product is just (X, 1X). And, given sets (D, πD) and (E, πE) over X, their (binary) product

3We will not lay out basic definitions in category theory; see ??.

209

Draft of November 14, 2010

is just the pullback D ×X E of them in Sets. Take the pullback

D ×X E

pD
��

pE
// E

πE
��

D
πD

// X

in Sets, paired with the map πD ◦ pD = πE ◦ pE; let us write πD×X E for it. Then pD and pE are maps

over X by definition. It is moreover immediate that (D ×X E, πD×X E) with projections pD and pE is

the product in Sets/X of (D, πD) and (E, πE).

It is also important that, as we explained in Subsection I.3.1, sets over X, products over X, and

maps over X can be obtained by first taking sets, products, and maps over each w ∈ X and then

“bundling” them up over all w ∈ X.4 To recall more precisely what this means, any set (D, π) over

X can be written as the disjoint union of fibers Dw = π
−1[{w}], that is, as

D =
∑
w∈X

Dw.

A map f : D→ E is a map from (D, πD) to (E, πE) over X iff it is of the form

f =
∑
w∈X

(fw : Dw → Ew).

And, given any collection of sets (D1, π1), . . . , (Dn, πn) over X, their product in Sets/X is the fibered

product over X,

D1 ×X · · · ×X Dn =
∑
w∈W

((D1)w × · · · × (Dn)w)

= { (a1, . . . , an) ∈ D1 × · · · × Dn | π1(a1) = · · · = πn(an) },

paired with the map

π1 ×X · · · ×X πn : D1 ×X · · · ×X Dn → X :: (a1, . . . , an) 7→ π1(a1) = · · · = πn(an),

together with a family of projections pi such that, for each i,

pi : D1 ×X · · · ×X Dn → Di :: (a1, . . . , an) 7→ ai.

4We can state this most precisely with the fact (that is familiar to category theorists) that Sets/X is categorically

equivalent to the category SetsX of sets and maps indexed by w ∈ X.

210

Draft of November 14, 2010

We should note that, given any set (D, π) over X, the “diagonal map”

∆ : D→ D ×X D :: a 7→ (a, a)

is a map over X, from (D, π) to its two-fold product (D ×X D, πD×X D) in Sets/X.

Taking advantage of these structures over a fixed set X, we can define semantic structures and

semantics as follows. First, we enter:

Definition 69. Given a first-order (perhaps non-classical) language L, we say that a tuple M is an

L structure in Sets/X if it consists of the following:

• An object (D, π) of Sets/X—that is, a set over X—the projection π of which is surjective.5

• For each n-ary primitive predicate R of L, a subobject RM of (Dn, πn), the n-fold product

of (D, π) in Sets/X—that is, a subset RM ⊆ Dn that is naturally paired with the projection

π↾RM : RM → X;

• in particular, =M = ∆[D] if L has the equality predicate =.

• For each n-ary function symbol f of L, a map fM of Sets/X from (Dn, πn) to (D, π)—

that is, a map f M : Dn → D over X;

• in particular, with n = 0, that is, for each (individual) constant c ofL, a map cM of Sets/X

from (D0, π0) = (X, 1X) to (D, π)—that is, a map cM : X → D such that π ◦ cM = 1X.

Then we extend interpretations of primitive predicates and terms to all the sentences, using the

same operations of sets and maps (in Sets/X) as we use in classical semantics in Sets.

Definition 70. Given a first-order (perhaps non-classical) languageL, by a classical interpretation

for L in Sets/X, we mean a pair (M, ⟦−⟧) of an L structure M in Sets/X and and a map ⟦−⟧ (of

the suitable type) that satisfies:

⟦ x̄ | Rx̄ ⟧ = RM for n-ary primitive predicate R;(144)

⟦ x̄ | ⊤ ⟧ = Dn;(145)

⟦ x̄ | ¬φ ⟧ = Dn \ ⟦ x̄ | φ ⟧ (that is, ⟦¬⟧ = Dn \ −);(146)

⟦ x̄ | φ ∧ ψ ⟧ = ⟦ x̄ | φ ⟧ ∩ ⟦ x̄ | ψ ⟧ (that is, ⟦∧⟧ = ∩);(147)

⟦ x̄ | φ ∨ ψ ⟧ = ⟦ x̄ | φ ⟧ ∪ ⟦ x̄ | ψ ⟧ (that is, ⟦∨⟧ = ∪);(148)

5We need to require π to be surjective in order to have classical first-order logic, as opposed to free logic, sound.

211

Draft of November 14, 2010

⟦ x̄ | φ→ ψ ⟧ = ⟦ x̄ | φ ⟧→ ⟦ x̄ | ψ ⟧ (that is, ⟦→⟧ =→);(149)

⟦ x̄ | ∀y .φ ⟧ = ∀p(⟦ x̄, y | φ ⟧) (that is, ⟦∀y⟧ = ∀p);(150)

⟦ x̄ | ∃y .φ ⟧ = ∃p(⟦ x̄, y | φ ⟧) (that is, ⟦∃y⟧ = ∃p);(151)

⟦ x̄, y | φ ⟧ = p−1[⟦ x̄ | φ ⟧] if y is not free in φ;(152)

⟦ x̄, ȳ | [t/z]φ ⟧ = (1Dn × ⟦ ȳ | t ⟧)−1[⟦ x̄, z | φ ⟧];(153)

⟦ x̄, y | [y/z]φ ⟧ = (1Dn × ∆)−1[⟦ x̄, y, z | φ ⟧].(154)

We say that a binary sequent φ ⊢ ψ in L is valid in an interpretation (M, ⟦−⟧) for L, and also that

(M, ⟦−⟧) validates φ ⊢ ψ, if

⟦ x̄ | φ ⟧ ⊆ ⟦ x̄ | ψ ⟧

is the case (whenever it makes sense). We say that an inference is valid in (M, ⟦−⟧), and that the

latter validates the former, if the inference preserves validity in (M, ⟦−⟧). By classical semantics

for L in Sets/X, we mean the class of classical interpretations for L in Sets/X.

Note that, if L is classical (that is, if L only has classical sentential operators), (144)–(152)

uniquely determine a classical interpretation on M and moreover entail (153) and (154). On the

other hand, as we argued in Subsection ??, if L has non-classical sentential operators then we

need to require (153) and (154), for classical first-order logic in L to be sound with respect to the

semantics.

Let us close this subsection by revisiting an intuitive idea we mentioned in Subsection I.3.1.

Recall that each classical interpretation (M, ⟦−⟧) in Sets (as we reviewed in Section I.2) is just a

set |M| equipped with interpretations of predicates, terms, and sentences. And note that, when we

restrict an interpretation (M, ⟦−⟧) in Sets/X on (D, π) to fibers Dw, each

(Dw,RM
w, f Mw, c

M
w, ⟦−⟧w)

is a classical interpretation in Sets. In other words, we can obtain an interpretation (M, ⟦−⟧) in

Sets/X on the set (
∑
w∈X

Dw, π) over X by bundling up over X a collection of classical interpretations

(Dw, ⟦−⟧w) in Sets. Thus, we can obtain classical semantics in Sets/X by bundling up classical

semantics in Sets. This idea is not only conceptually illuminating, but also crucial in the complete-

ness proof in Section VI.3. The only fact we need to check in order to make sure that this intuitive

212

Draft of November 14, 2010

idea works formally is that all the operations and relations that interpret classical first-order logic

commute with
∑
w∈X

(we omit the proof):

Fact 54. Given a first-order (perhaps non-classical) language L and any L structure M in Sets/X,

a map ⟦−⟧ (of the suitable type) satisfies (144)–(154), respectively, iff for each w ∈ X the restriction

⟦−⟧w of ⟦−⟧ to w ∈ X satisfies (144)–(154), respectively. Also,

⟦ x̄ | φ ⟧ ⊆ ⟦ x̄ | ψ ⟧ ⇐⇒ ⟦ x̄ | φ ⟧w ⊆ ⟦ x̄ | ψ ⟧w for all w ∈ X.

By Fact 54, the soundness of classical first-order logic with respect to classical semantics in

Sets immediately entails

Theorem 4. For any set X, classical first-order logic is sound with respect to classical semantics

in Sets/X.

VI.1.3. Topological Spaces over a Space. In Subsection VI.1.2, we laid out how to interpret

classical first-order logic in the category Sets/X of sets over a fixed set X, regarding any surjection

π : D→ X as the underlying structure of π as required in the desideratum (i) of Subsection VI.1.1.

The goal of this subsection and the next, then, is to lay out structures needed to achieve the other

desiderata. In this subsection, we add topological structures to the structures in Sets/X, so that (ii)

and (v) are satisfied. Then, so that (iii) and (iv) hold, we will restrict our attention to the structures

called sheaves in Subsection VI.1.4. In this subsection and the next, we omit proofs for facts we

give, because they follow, as special, topological cases, from more general proofs we will give in

Subsection ??.

Let us first recall the basic definitions of topology. Given any set X, any family OX ⊆ PX of

subsets of X is called a topology on X if it is

• closed under arbitrary joins, including the empty one (that is, ∅), and

• closed under finite meets, including the empty one (that is, X).

A pair of a set and any topology on it is called a topological space. We will write X for a topological

space, and |X| for the underlying set of X when we want it explicit that |X| is without a topological

structure. Given a topological space X, any A ⊆ X is said to be open (in the space X) if A ∈ OX,

and closed (in X) if X \ A ∈ OX.

Given any topological spaces X and Y , we say that a map f : Y → X is continuous if f −1[U] ∈
OY for every U ∈ OX, that is, if f pulls open sets of X back to open sets of Y . Continuous maps are

213

Draft of November 14, 2010

clearly composable; hence we have the category Top of topological spaces and continuous maps.

An isomoprhism in Top is called a homeomorphism; that is, f : Y → X is a homeomorphism if

it is a continuous bijection with a continuous inverse, or, equivalently, if X and Y share the same

topological structure, with points renamed by f .

Now, instead of slicing Sets with a set |X| as we did in Subsection VI.1.2 to obtain the category

Sets/|X|, let us fix a topological space X and slice Top with X. Then we have the category Top/X

of topological spaces over X. Its objects are spaces over X, that is, pairs (D, π) of a space D and a

continuous map π : D→ X, called the projection of (D, π). Its arrows from a space (D, πD) over X

to another (E, πE) are continuous maps f : D→ E over X, that is, continuous maps f that make

D
f

//

πD
��2
22
22
22
2

=

E

πE
����
��
��
��

X

commute. We add topological structures in this way to Sets/|X| and obtain Top/X.

Recall that, in Subsection VI.1.2, we used n-fold products in Sets/|X| to interpret n-ary predi-

cates, terms and sentences. To extend such an interpretation by adding topological structures, we

should see in a detailed manner how Top/X has finite products. It is helpful to use the notion of a

basis. Given any set |D|, a family B ⊆ P(|D|) of subsets of |D| is called a basis for a topology on X

if

• B is closed under binary meets,6 and

• for every a ∈ |D|, there is B ∈ B such that a ∈ B.

Given any basis B for a topology on |D|, the family OD ⊆ P(|X|) defined by

A ∈ OD ⇐⇒ A =
∪
i∈I

Bi for some collection { Bi ∈ B | i ∈ I }

is a topology on |D|; we call such |D| the topology generated by B.

Then finite products in Top can be defined in the following manner. Given topological spaces

D1, . . . , Dn, their product D1 × · · · × Dn in Top is a pair of the cartesian product |D1| × · · · × |Dn|

6This can be weakened to the condition that, for every a ∈ |D|, if a ∈ B0, B1 then a ∈ B2 ⊆ B0 ∩ B1 for some

B2 ∈ B; but the definition above suffices for our purpose.

214

Draft of November 14, 2010

and the topology O(D1 × · · · × Dn), called the product topology, that is generated by the basis

B = {U1 × · · · × Un | U1 ∈ OD1, . . . , Un ∈ ODn },

together with the projections

pi : D1 × · · · × Dn → Di :: (a1, . . . , an) 7→ ai.

Note that, clearly, each projection pi is continuous.

Using product topologies, we can explicitly define pullbacks in Top. Given spaces (D, πD) and

(E, πE) over X, note that their fibered product |D| ×|X| |E| over |X| in Sets is a subset of the cartesian

product |D| × |E|; hence we write O(D×X E) for the subspace topology on |D| ×|X| |E| of the product

topology O(D × E), that is,

A ∈ O(D ×X E) ⇐⇒ A = U ∩ (|D| ×|X| |E|) for some U ∈ O(D × E).

Then the pair D ×X E = (|D| ×|X| |E|,O(D ×X E)) is the pullback in Top of (D, πD) and (E, πE) over

X.

D ×X E

pD
��

pE
// E

πE
��

D
πD

// X

Now we can simply define finite products in Top/X by saying that the 0-ary product in Top/X

is just (X, 1X), whereas, given spaces (D, πD) and (E, πE) over X, their (binary) product in Top/X

is just the pullback D ×X E of them in Top. Or, more explicitly, given spaces (D1, π1), . . . , (Dn, πn)

over X, their product in Top/X is the fibered product |D1| ×|X| · · · ×|X| |Dn| over |X| paired with the

topology O(D1 ×X · · · ×X Dn) generated by the basis

B = {U1 ×|X| · · · ×|X| Un | U1 ∈ OD1, . . . , Un ∈ ODn },

together with the projections

pi : D1 ×X · · · ×X Dn → Di :: (a1, . . . , an) 7→ ai.

It is crucial that each projection pi is continuous.

We have thus added topological structures to the structures in Sets/X and obtained the category

Top/X. These structures enable us to achieve the desiderata (ii) and (v) of Subsection VI.1.1 by

215

Draft of November 14, 2010

interpreting □with suitable topologies. To achieve (iii) and (iv), however, we need to use the notion

of sheaves over a space X, which we introduce in Subsection VI.1.4.

VI.1.4. Sheaves over a Topological Space. In Subsection VI.1.3, we introduced the category

Top/X of topological spaces over a fixed space X. Even though the structures in Top/X give us

the desiderata (ii) and (v) of Subsection VI.1.1, they are still too general to give us (iii) and (iv). In

this subsection, to achieve (iii) and (iv), we consider a subcategory of Top/X, namely the category

LH/X of sheaves over X. (LH is for “local homeomorphisms”, as we will explain.)

Recall that objects of the category Top/X for a fixed space X are spaces over X, or, equivalently,

continuous maps with codomain X. Let us define a certain subclass of such objects, as follows.

Definition 71. Given topological spaces X and D, a continuous map π : D → X is called a local

homeomorphism if every a ∈ D has some U ∈ OD such that a ∈ U, π[U] ∈ OD, and the restriction

π↾U : U → π[U] of π to U is a homeomorphism.

D

X
��

π

(

(U

π[U]

•a

)

)

When this is the case, we say that the pair (D, π) is a sheaf over the space X, and also that X, D,

and π are respectively the base space, total space, and projection of the sheaf.7

It is easy to check that local homeomorphisms are composable; so we have a category LH of

topological spaces and local homeomorphisms. An example of a local homeomorphism is the map

π : R→ S1 such that

π(a) = ei2πa = (cos 2πa, sin 2πa),

which is clearly a local homeomorphism from R (with its usual topology) to the circle S1 (with the

subspace topology in R2); that is, (R, π) is a sheaf over S1.

7The notion of a sheaf is usually defined as a certain functor, in which case the version used here is called an étale

space. The functorial notion is equivalent (in the category-theoretical sense) to the version here.

216

Draft of November 14, 2010

R

S 1
��

π

(

(

)

)U

π[U]

− 1
2

1
2

3
2

5
2

0
1
2

(1, 0)(−1, 0)
(0, 1)

Since sheaves over a space X are spaces over X, we define the category of sheaves over X as

the full subcategory of Top/X whose objects are sheaves over X. In other words, we set the arrows

in that category, called maps of sheaves over X, from a sheaf (D, πD) over X to another (E, πE) to

be just the continuous maps from D to E over X. Indeed, due to the following fact, this category is

just the slice category LH/X over X of the category LH of local homeomorphisms.

Fact 55. For any topological space X, maps of sheaves over X are local homeomorphisms.

This fact turns out crucial for the purpose of providing semantics for first-order modal logic.8

A few more facts are also crucial for logic. We say that a continuous map f : D → E is open if

f [U] ∈ OE for every U ∈ OD, that is, if (the direct-image operation under) f maps every open set

to an open set. Then we have:

Fact 56. Given any topological spaces X and D, any continuous map π : D → X is a local

homeomorphism, that is, (D, π) is a sheaf over X, if and only if both π and the diagonal map

∆ : D→ D2 are open.

Moreover,

Fact 57. In Top, open maps pull back local homeomorphisms to local homeomorphisms. That is,

in the pullback diagram in Top below, if πD is open continuous and πE is a local homeomorphism,

then pD is a local homeomorphism as well.

D ×X E

pD
��

pE
// E

πE
��

D
πD

// X

8Facts 55 and 56 are Exercise II.10 of [12].

217

Draft of November 14, 2010

Corollary 9. LH/X has the same products as Top/X does.

These structures of sheaves help us to achieve our desiderata (iii) and (iv) of Subsection VI.1.1;

to see how they help, it is helpful to summarize the facts above as follows. Let us first recall that

any topology is associated with a topological interior operation; that is, given any space X, there

is an operation intX : P(|X|)→ P(|X|) such that, for every A ⊆ X,

intX(A) =
∪

U∈OX,U⊆A

U = { x ∈ X | x ∈ U ⊆ A for some U ∈ OX };

in other words, intX(A) is the largest open set of X contained in A. Then let us make the following

observation.9

Observation 4. Given spaces X and Y , a map f : Y → X is continuous iff

f −1[intX(A)] ⊆ intY(f −1[A])

for every A ⊆ X, and, moreover, f is open iff we further have

intY(f −1[A]) ⊆ f −1[intX(A)]

for every A ⊆ X.

Thus we can characterize open continuous maps by the commutation of its inverse-image op-

eration with interior operations. Therefore the facts above can be summarized by saying both

• that the following Fact 58 holds, due to the “only if” part of Fact 56, along with Fact 55

and Corollary 9; and

• in order for Fact 58 to hold, we need sheaves, due to the “if” part of Fact 56.

Fact 58. In LH/X for any space X, the following diagram commutes for any map f : D → E of

sheaves over X (including the projection of a sheaf over X).

P(|E|)
intE //

f −1

��
=

P(|E|)

f −1

��
P(|D|)

intD

// P(|D|)

9In Section ??, we will not prove a more general fact that entails Observation 4, because we will define continuous

maps and open maps between general neighborhood frames by simply extending Observation 4. We nonetheless omit

a proof here for Observation 4, since it can be checked easily.

218

Draft of November 14, 2010

And this is what guarantees to us our desiderata (iii) and (iv), when we interpret □ with the

interior operations int of suitable spaces, as we will in Subsection VI.1.5.

VI.1.5. Topological-Sheaf Semantics for First-Order Modal Logic. In Subsections VI.1.3

and VI.1.4, we showed how to obtain the category LH/X of sheaves over a given topological space

X by adding topological structures to Sets/|X|. In this subsection, we extend this insight to the level

of semantics; that is, we give a topological semantics on the topological structures of LH/X, by

adding a topological interpretation of □ to classical semantics in Sets/|X|, which we reviewed in

Subsection VI.1.2.

Let us recall from Subsection VI.1.2 that, given a first-order modal language L and any set |X|,
an L structure in Sets/|X| is defined to be a tuple M = (π,Ri

M, f j
M, ck

M)i∈I, j∈J,k∈K that consists of

• a surjection π : |D|↠ |X| with some domain |D|;
• for each n-ary primitive predicate R, a subset RM ⊆ |D|n of the n-fold product of |D| over

|X|;
• for each n-ary function symbol f , a map fM : |D|n → |D| over |X|;
• for each constant c, a map cM : |D|0 → |D| over |X|, that is, a map cM : |X| → |D| such

that π ◦ cM = 1X.

Now, rather than just any surjection π, we take a surjective local homeomorphism to further inter-

pret modal operators. Then, to interpret a primitive predicate, we may take any arbitrary subset (of

the type above). By contrast, to interpret function symbols and constants, we need to take maps of

sheaves over X rather than just any maps over |X|; in short, we assume f M and cM to be continuous.

So, we enter:

Definition 72. Given a first-order modal language L, by a topological-sheaf model for L over a

given space X we mean an L structure M = (π,Ri
M, f j

M, ck
M)i∈I, j∈J,k∈K in Sets/|X| such that

• π : D→ X is a local homeomorphism;

• f M is a map of sheaves over X from (Dn, πn) to (D, π), for each n-ary function symbol f

of L;

• in particular, cM is a map of sheaves over X from (X, 1X) to (D, π), for each constant c of

L.

On such a structure, we interpret the non-modal part ofL as we did before in Subsection VI.1.2,

and moreover □,^with the interior operation of the corresponding space Dn. More precisely, recall

219

Draft of November 14, 2010

that, given a first-order modal language L and a set |X|, a classical interpretation for L in Sets/|X|
is a pair (M, ⟦−⟧) of an L structure M in Sets/|X| and and a map ⟦−⟧ that interprets sentences

classically by satisfying (144)–(154), in particular,

⟦ x̄, y | φ ⟧ = p−1[⟦ x̄ | φ ⟧] if y is not free in φ;(152)

⟦ x̄, ȳ | [t/z]φ ⟧ = (1Dn × ⟦ ȳ | t ⟧)−1[⟦ x̄, z | φ ⟧];(153)

⟦ x̄, y | [y/z]φ ⟧ = (1Dn × ∆)−1[⟦ x̄, y, z | φ ⟧].(154)

Then we enter:

Definition 73. Given a first-order modal language L, by a topological-sheaf interpretation for L
over a given space X we mean a classical interpretation (M, ⟦−⟧) for L in Sets/|X| such that

• M is a topological-sheaf model for L over X, and

• ⟦−⟧ satisfies

⟦ x̄ | □φ ⟧ = intDn(⟦ x̄ | φ ⟧) (that is, ⟦□⟧ = intDn);(155)

⟦ x̄ | ^φ ⟧ = clDn(⟦ x̄ | φ ⟧) (that is, ⟦^⟧ = clDn).(156)

We call the class of such interpretations topological-sheaf semantics over the given space X;

and by topological-sheaf semantics (simpliciter) we mean the class of topological-sheaf interpre-

tations over some space or other.

We should note that the conditions (161) and (162) declare that we interpret □ and^ uniformly.

Hence, by (152), the well-definedness of the semantics requires that

⟦ x̄ | φ ⟧ � intDn
//

_

pn
−1

��
=

⟦ x̄ | □φ ⟧
_

pn
−1

��
⟦ x̄, y | φ ⟧ �

intDn+1

// ⟦ x̄, y | □φ ⟧

should commute, but this is guaranteed by Fact 58. This is how we achieve the desideratum (iii)

of Subsection VI.1.1 in our semantics. Similarly, Fact 58 guarantees the commutation required by

(153), achieving the desideratum (iv). Fact 58 also guarantees the commutation required by (154).

We should note that topological-sheaf semantics over any given space X is a subclass of classi-

cal semantics in Sets/|X|. Therefore the soundness of classical first-order logic with respect to the

latter (Theorem 4) immediately implies the same thing with respect to the former, and hence

220

Draft of November 14, 2010

Theorem 5. Classical first-order logic is sound with respect to topological-sheaf semantics.

Moreover, due to (161), topological-sheaf semantics validates all the rules and axioms of modal

logic S4. Therefore the logic in the following definition is sound with respect to topological-sheaf

semantics.

Definition 74. First-order modal logic FOS4 consists of the following two sorts of axioms and

rules.

1. All axioms and rules of (classical) first-order logic.

2. The rules and axioms of propositional modal logic S4; that is, M, C, N, T, 4.

Theorem 6. FOS4 is sound with respect to topological-sheaf semantics.

It is moreover complete, in the following strong form, which says any consistent theory ex-

tending FOS4 has a “canonical” interpretation.

Theorem 7 (Awodey-Kishida [3]). For any consistent theory T of first-order modal logic extending

FOS4, there exists a topological-sheaf interpretation (π, ⟦−⟧) that validates all and only theorems

of T.

We will prove this theorem in Section VI.3, indeed as a correspondence result in a more general

framework of semantics for first-order modal logic, which we will lay out in Section VI.2.

VI.2. Neighborhood Semantics for First-Order Modal Logic

In Section VI.1, we laid out a semantics for first-order modal logic, taking advantage of topo-

logical structures and in particular sheaves over a space. In this section, we show that this semantics

can be naturally extended by generalizing topological structures with more general structures of

neighborhood frames.

VI.2.1. Basic Definitions for Neighborhood Frames. As we saw in Section VI.1, any topol-

ogy comes with interior and closure operations, and topological semantics uses them to interpret

the modal operators □ and ^. It gives rise to modal logic S4, since topological interior operations

satisfy the corresponding rules and axioms. In this section, we consider a framework of more gen-

eralized “interior” operations, so that it gives rise to more general modal logics; in this subsection,

we give a review of basic definitions in such a framework.

221

Draft of November 14, 2010

Let us first recall that any topological space X comes with an interior operation intX : P(|X|)→
P(|X|) such that, for every A ⊆ X,

intX(A) =
∪

U∈OX,U⊆A

U = { x ∈ X | x ∈ U ⊆ A for some U ∈ OX }.

We should also note that a topological space X comes naturally with the notion of neighborhoods

by the definition that, for every x ∈ X and A ⊆ X,

A is a neighborhood of x ⇐⇒ x ∈ U ⊆ A for some U ∈ OX.

To sum these up, let us write A ∈ NX(x) for “A is a neighborhood (in X) of x”, and we have

A ∈ NX(x) ⇐⇒ x ∈ U ⊆ A for some U ∈ OX ⇐⇒ x ∈ intX(A).

Our goal is to obtain a framework of interior operations without assuming rules or axioms assumed

on them. Even though the notion of open sets may not make sense any more once we drop some

rules and axioms, we can keep the equivalence between the left-most and right-most conditions,

and obtain the following definition.

Definition 75. A neighborhood frame is a pair X = (|X|,NX) that consists of

• a nonempty set |X|, called the underlying set of X, and

• an arbitrary map NX : |X| → PP(|X|), called a neighborhood function on |X| (and of X).

Given a point x ∈ X, each U ∈ NX(a) is called a neighborhood of x. Every neighborhood function

NX of X is associated with an operation intX : P(|X|)→ P(|X|), called the interior operation of X,

such that, for every A ⊆ X and x ∈ X,

A ∈ NX(x) ⇐⇒ x ∈ intX(A).

Now that we have dropped the notion of open sets, we cannot use it to define continuity and

openness of maps; nonetheless, the notion of interior operations is still with us, which is why we

can use Observation 4 as a definition, as follows.

Definition 76. Given neighborhood frames X and Y , a map f : X → Y is said to be continuous if

A ∈ NY(f (x)) =⇒ f −1[A] ∈ NX(x)

for every A ⊆ Y and x ∈ X, and open if

f −1[A] ∈ NX(x) =⇒ A ∈ NY(f (x))

222

Draft of November 14, 2010

for every A ⊆ Y and x ∈ X.10 Or, equivalently, f is continuous if

f −1[intY(A)] ⊆ intX(f −1[A])

for every A ⊆ Y , and open if

intX(f −1[A]) ⊆ f −1[intY(A)]

for every A ⊆ Y .

Both continuous maps and open maps are clearly composable. Therefore we have categories of

neighborhood frames and such maps. In particular, we write Nb for the category of neighborhood

frames and continuous maps.

Topological spaces and Kripke frames are familiar examples of neighborhood frames. Indeed,

the category Top of topological spaces and continuous maps (in the usual sense) is a full subcate-

gory of Nb, and so is the category of Kripke frames with certain maps. These subcategories can be

characterized by certain subsets of the following properties, as we will show in Subsection VI.2.3.

Definition 77. Given any neighborhood frame X = (|X|,NX), we say X is

• monotone, or M, if

A ⊆ B and A ∈ NX(x) =⇒ B ∈ NX(x);

• closed under binary meets, or C, if

A, B ∈ NX(x) =⇒ A ∩ B ∈ NX(x);

• normal, or N, if for every x ∈ X

X ∈ NX(x);

• reflexive, or T, if

A ∈ NX(x) =⇒ x ∈ A;

10The usual definition in topology of open maps may make it appear more natural to say f is open if

A ∈ NX(x) =⇒ f [A] ∈ NY (f (x)).

As we will show as Corollary 10, this definition agrees with Definition 76 if X and Y are monotone in the sense of

Definition 77 below.

223

Draft of November 14, 2010

• closed under interior, or 4, if

A ∈ NX(x) =⇒ intX(A) ∈ NX(x);

• nonempty if NX(x) , ∅ for every x ∈ X;

• consistent if ∅ < NX(x) for every x ∈ X;

• containing core if for every x ∈ X there is Cx ∈ NX(x) such that

A ∈ NX(x) =⇒ Cx ⊆ A;

• quasifiltered, or MC, if it is M and C (that is, if monotone and closed under binary meets);

• topological if it is M, C, N, T, and 4;

• Kripke if it is monotone and containing core.

It is worth noting that some of these properties can also be defined in terms of interior opera-

tions.

Remark 5. A neighborhood frame X is

(i) monotone iff its interior operation intX is monotone, that is, if it satisfies

A ⊆ B ⊆ X =⇒ intX(A) ⊆ intX(B);

(ii) closed under binary meets iff intX(A) ∩ intX(B) ⊆ intX(A ∩ B) for every A, B ⊆ X;

(iii) normal iff intX(X) = X;

(iv) reflexive iff intX(A) ⊆ A for every A ⊆ X;

(v) closed under interior iff intX(A) ⊆ intX(intX(A)) for every A ⊆ X;

(vi) consistent iff intX(∅) = ∅;

(vii) MC iff intX(A) ∩ intX(B) = intX(A ∩ B) for every A, B ⊆ X.

Among these properties of neighborhood frames, M—being monotone—and C—being closed

under binary meets—play the most significant roles in our generalization of topological-sheaf se-

mantics. Let us enter

Definition 78. We introduce the following names for full subcategories of Nb.

• MNb for the category of monotone neighborhood frames;

• CNb for the category of neighborhood frames that are closed under binary meets; and

• MCNb for the category of MC neighborhood frames.

224

Draft of November 14, 2010

In Subsection VI.2.2, we study these subcategories as well as Nb regarding, in particular, finite

products in them. For this purpose, it is helpful to observe that all the forgetful functors from them

to Sets are both left and right adjoints. To see this, let us first introduce

Definition 79. Given any set |X|, by the discrete and codiscrete neighborhood functions on |X| we

mean NP(|X|),N∅ : |X| → PP(|X|), respectively, such that

NP(|X|)(x) = P(|X|),

N∅(x) = ∅

for each x ∈ |X|. We also call disc(|X|) = (|X|,NP(|X|)) and codisc(|X|) = (|X|,N∅) respectively the

discrete and codiscrete neighborhood frames on |X|.

Observe that discrete neighborhood frames are monotone and closed under binary meets, and

so are codiscrete neighborhood frames. Moreover, observe

Remark 6. Any map f : |X| → |Y | is continuous from disc(|X|) to any neighborhood frame on |Y |,
and continuous from any neighborhood frame on |X| to codisc(|Y |).

When we write C for either Nb, MNb, CNb, or MCNb, these observations mean that disc and

codisc with the identity on arrows, that is,

disc(f : |X| → |Y |) = f : disc(|X|)→ disc(|Y |),

codisc(f : |X| → |Y |) = f : codisc(|X|)→ codisc(|Y |),

are functors from Sets to C. Remark 6 moreover implies disc ⊣ U ⊣ codisc, where U : C → Sets

is the forgetful functor, that is,

UX = |X|, U(f : X → Y) = f : |X| → |Y |.

It follows from these adjunctions that, if C = Nb,MNb,CNb,MCNb has finite products, they are

neighborhood frames on finite products in Sets, that is, (finite) cartesian products.

VI.2.2. Products of Neighborhood Frames. Recall from Section VI.1 that topological-sheaf

semantics interprets n-ary relations, terms, and sentences with n-fold products in Top/X. This is

why, to extend the semantics to sheaves over general neighborhood frames, we need finite products

of neighborhood frames. In this subsection, we show that the categories of neighborhood frames

225

Draft of November 14, 2010

we introduced in Subsection VI.2.1—Nb, MNb, CNb, and MCNb—all have arbitrary products,

by describing them explicitly.

Let us first consider

Definition 80. Given any set {Xi}i∈I of neighborhood frames, their subbasic product is the neigh-

borhood frame X = (|X|,NX) consisting of

• the cartesian product |X| =
∏
i∈I

|Xi|, along with the projections

pi : |X| → |Xi| :: x 7→ x(i),11

• the neighborhood function NX on |X| such that

NX(x) =
∪
i∈I

{ pi
−1[U] | U ∈ NXi(pi(x)) }.

For the 0-ary case, we take the 0-ary cartesian product {∗} paired with N∅(∗) = ∅.

It is immediate from the definition that each projection pi is continuous from X to Xi. Indeed,

every neighborhood inNX(x) is necessary for all pi to be continuous. That is,NX is the “coarsest”

neighborhood function on |X| that has all pi continuous, in the sense that NX(x) ⊆ N(x) for every

neighborhood function N on |X| that has all pi continuous from (|X|,N) to Xi. More generally,

Fact 59. Given any set {Xi}i∈I of neighborhood frames, their subbasic product X together with the

projections pi : X → Xi is a product of Xi in Nb.

Proof. For the case of I = ∅, X = codisc({∗}) is clearly terminal in Nb by Remark 6. For

I , ∅, let us write X = (|X|,NX). Each projection pi is continuous by definition. Now fix any

neighborhood frame Y together with a continuous map fi : Y → Xi for each i ∈ I. Then, since |X|
is a product of |Xi| in Sets, there is a unique map u : |Y | → |X| such that, for each i ∈ I,

|Y |
fi

##G
GG

GG
GG

GG
G

u
�� =
|X|

pi

// |Xi|

commutes. This u is indeed continuous from Y to X because for each y ∈ Y we have

A ∈ NX(u(y)) =⇒ A = pi
−1[U] for some i ∈ I and U ∈ NXi(pi(u(y)))

11Recall that the elements of the cartesian product X are the maps x of domain I such that x(i) ∈ |Xi| for all i ∈ I.

226

Draft of November 14, 2010

=⇒ u−1[A] = u−1[pi
−1[U]] = fi

−1[U] for some i ∈ I and U ∈ NXi(fi(y))

=⇒ u−1[A] ∈ NY(y),

where the first entailment is by the definition of NX, the second is by the commutation above, and

the third is by the continuity of fi. □

We should note, however, that subbasic products are not by themselves products in MNb, CNb,

or MCNb, since in general they are neither monotone nor closed under binary meets. Nevertheless,

they can still give rise to products in MNb, CNb, or MCNb, with the help of the following functors

M : Nb→MNb and C : Nb→ CNb.

Definition 81. Given any neighborhood frame X = (|X|,NX), we define X̂ = (|X|,NX̂) by

A ∈ NX̂(x) ⇐⇒ U ⊆ A for some U ∈ NX(x),

and call it the monotone neighborhood frame generated by a basis X.

Clearly, any X̂ is monotone. This operation of generating a monotone neighborhood frame can

be described in terms of interior operations as well:

Remark 7. When intX and intX̂ are the interior operations of a neighborhood frame (|X|,NX) and

the monotone neighborhood frame (|X|,NX̂) generated by (|X|,NX), for every A ⊆ |X| we have

intX̂(A) =
∪
U⊆A

intX(U).

Proof. If f is continuous from X to Y , then for every x ∈ |X| we have

x ∈ intX̂(A) ⇐⇒ A ∈ NX̂(x)

⇐⇒ U ⊆ A for some U ∈ NX(x)

⇐⇒ x ∈ intX(U) for some U ⊆ A

⇐⇒ x ∈
∪
U⊆A

intX(U) □

Indeed, this operation gives us a functor.

Remark 8. Given neighborhood frames X and Y , a map f : |X| → |Y | is continuous from X̂ to Ŷ if

it is continuous from X to Y .

227

Draft of November 14, 2010

Proof. For every A ⊆ Y and x ∈ X we have

A ∈ NŶ(f (x)) =⇒ U ⊆ A for some U ∈ NY(f (x))

=⇒ f −1[U] ⊆ f −1[A] with f −1[U] ∈ NX(x)

=⇒ f −1[A] ∈ NX̂(x). □

Due to this fact, we can introduce

Definition 82. We write M : Nb→MNb for the (faithful) functor such that

MX = X̂ M(f : X → Y) = f : X̂ → Ŷ .

We can also introduce a functor C from Nb to CNb as follows.

Definition 83. Given any neighborhood frame X = (|X|,NX), we define CX = (|X|,NCX) by

A ∈ NCX(x) ⇐⇒ A = U0 ∩ U1 for some U0,U1 ∈ NX(x).

Remark 9. Given neighborhood frames X and Y , a map f : |X| → |Y | is continuous from CX to

CY if it is continuous from X to Y .

Proof. For every A ⊆ Y and x ∈ X we have

A ∈ NCY(f (x)) =⇒ A = U0 ∩ U1 for some U0,U1 ∈ NY(f (x))

=⇒ f −1[A] = f −1[U0] ∩ f −1[U1] with f −1[U0], f −1[U1] ∈ NX(x)

=⇒ f −1[A] ∈ NCX(x). □

Definition 84. We write C : Nb → CNb for the (faithful) functor such that C(f : X → Y) = f :

CX → CY .

Obviously, X̂ = X if X is already monotone, and CX = X if X is already closed under binary

meets; in other words,

Remark 10. M ◦ i = 1MNb for the inclusion functor i : MNb ↪→ Nb.

Remark 11. C ◦ i = 1CNb for the inclusion functor i : CNb ↪→ Nb.

Observe moreover that NX(x) ⊆ NX̂(x) and NX(x) ⊆ NCX(x) by definition, and that intX(A) ⊆
intX̂(A) by Remark 7. These observations help to show that M and C are right adjoints.

228

Draft of November 14, 2010

Fact 60. i ⊣ M for the inclusion functor i : MNb ↪→ Nb.

Proof. Since M is identity on arrows, it is enough to check that, given neighborhood frames X

and Y such that X is monotone, a map f : |X| → |Y | is continuous from X to Y iff continuous from

X to Ŷ . The “only if” follows from Remark 8 because X̂ = X, whereas the “if” is immediate since

NY(y) ⊆ NŶ(y) for every y ∈ |Y |. □

Similarly,

Fact 61. i ⊣ C for the inclusion functor i : CNb ↪→ Nb.

Therefore, by Remark 10 and Fact 60, and by Remark 11 and Fact 61, products in MNb and in

CNb can be defined simply by first taking products taken in Nb and then applying to it M and C,

respectively. For instance, given objects X and Y of MNb, their product in MNb is given as

X ×MNb Y =M(iX ×Nb iY),

where the subscripts of × denote in which categories the products are taken. To moreover define

finite products in MCNb, it is enough to observe that M preserves the property C.

Remark 12. If a neighborhood frame X is C, then so is X̂.

Proof. If X is closed under binary meets, then for every x ∈ X we have

A, B ∈ NX̂(x) =⇒ U ⊆ A and V ⊆ B for some U,V ∈ NX(x)

=⇒ U ∩ V ⊆ A ∩ B with U ∩ V ∈ NX(x)

=⇒ A ∩ B ∈ NX̂(x),

that is, X̂ is also closed under binary meets. □

It immediately follows that the composition of M after C gives a functor MC : Nb→MCNb.

Then, since MC ◦ i = 1MCNb and i ⊣ MC for the inclusion i : MCNb ↪→ Nb, products in MCNb

are given simply by applying MC to products taken in Nb.12 To describe finite products in MCNb

more explicitly, we have

12The composition of C after M would also work, because C preserves the property M.

229

Draft of November 14, 2010

Remark 13. Given any MC neighborhood frames X1, . . . , Xn, the neighborhood frame

X1 × · · · × Xn = (|X1| × · · · × |Xn|,NX1×···×Xn)

with the neighborhood function NX1×···×Xn as follows is a product in MCNb of X1, . . . , Xn. Let NX

be the neighborhood function of the subbasic product of X1, . . . , Xn, so that A ∈ NCX(x) iff

• A = U1 × · · · × Un for some U1 ⊆ |X1|, . . . , Un ⊆ |Xn| such that

– for each i, either Ui ∈ NXi(pi(x)) or Ui = |Xi|, but

– Ui ∈ NXi(pi(x)) for at least one i.

where we write pi : |X1| × · · · × |Xn| → |Xi| for the projections. Then we set NX1×···×Xn = NĈX; that

is, A ∈ NX1×···×Xn(x) iff

• U1 × · · · × Un ⊆ A for some U1 ⊆ |X1|, . . . , Un ⊆ |Xn| such that

– for each i, either Ui ∈ NXi(pi(x)) or Ui = |Xi|, but

– Ui ∈ NXi(pi(x)) for at least one i.

It is worth noting that the definition of products in MCNb in terms of applying the functor MC

to subbasic products coincide with the usual definition of product spaces in case Xi are topological

spaces.

Let us close this subsection by observing a few more facts on M that will be useful later.

Remark 14. If a neighborhood frame X is T or 4, then X̂ is also T or 4, respectively.

Proof. If X is reflexive, that is, if intX(U) ⊆ U for each U ⊆ |X|, then

intX̂(A) =
∪
U⊆A

intX(U) ⊆
∪
U⊆A

U = A

by Remark 7, and hence X̂ is reflexive as well. If X is closed under interior, then for every x ∈ X

we have

A ∈ NX̂(x) =⇒ U ⊆ A for some U ∈ NX(x)

=⇒ intX(U) ⊆ intX̂(U) ⊆ intX̂(A) with intX(U) ∈ NX(x)

=⇒ intX̂(A) ∈ NX̂(x),

that is, X̂ is also closed under interior. □

230

Draft of November 14, 2010

Also, the following trivial fact implies that M preserves the property N, since any neighborhood

frame is nonempty if it is N.

Remark 15. If a neighborhood frame X is nonempty, then X̂ is N.

Although M preserves the continuity of maps (Remark 8), it does not in general preserve the

openness of maps; nonetheless, we still have

Remark 16. Given neighborhood frames X and Y and a map f : |X| → |Y |, let us say that X is

closed under f ∗ ◦ f! if

U ∈ NX(x) =⇒ f −1[f [U]] ∈ NX(x).

Then f is open from X̂ to Ŷ if it is open from X to Y and X is closed under f ∗ ◦ f!.

Proof. If f is open from X to Y and X is closed under f ∗ ◦ f!, then

U ∈ NX(x) =⇒ f −1[f [U]] ∈ NX(x) =⇒ f [U] ∈ NY(f (x)),

and therefore, for every U ⊆ Y and x ∈ X, we have

f −1[A] ∈ NX̂(x) =⇒ U ⊆ f −1[A] for some U ∈ NX(x)

=⇒ f [U] ⊆ A with f [U] ∈ NY(f (x))

=⇒ A ∈ NŶ(f (x)). □

Remark 17. Given neighborhood frames X and Y such that Y is monotone, a map f : |X| → |Y | is
open from X̂ to Y iff the following holds for every x ∈ |X|:

A ∈ NX(x) =⇒ f [A] ∈ NY(f (x)).(157)

Proof. If f is open from X̂ to Y , then A ⊆ f −1[f [A]] implies

A ∈ NX(x) =⇒ f −1[f [A]] ∈ NX̂(x) =⇒ f [A] ∈ NY(f (x)).

On the other hand, if (157) is the case, then for every x ∈ |X| and A ⊆ |Y | we have

f −1[A] ∈ NX̂(x) =⇒ U ⊆ f −1[A] for some U ∈ NX(x)

=⇒ f [U] ⊆ A with f [U] ∈ NY(f (x))

=⇒ A ∈ NY(f (x)). □

231

Draft of November 14, 2010

Corollary 10. Given monotone neighborhood frames X and Y , a map f : |X| → |Y | is open from

X to Y iff (157) holds for every x ∈ |X|:

VI.2.3. Some Subcategories of Neighborhood Frames. In this subsection, we review the

rather obvious fact that topological spaces and Kripke frames form full subcategories of MCNb.

Every topological space (|X|,OX) has the interior operation intX such that

x ∈ intX(A) ⇐⇒ x ∈ U ⊆ A for some U ∈ OX,

and therefore gives rise to a neighborhood frame (|X|,NX) by simply setting

A ∈ NX(x) ⇐⇒ x ∈ intX(A).

Due to Observation 4, the usual definitions of continuous maps and open maps between topological

spaces coincide with those in Definition 76. It follows that the category Top of topological spaces

and continuous maps is a full subcategory of Nb.

Indeed, the topological spaces are just the neighborhood frames that are topological in the sense

of Definition 77. To see this, it is useful to make the following two observations.

Remark 18. If a neighborhood frame X is monotone, reflexive, and closed under interior, then∪
i∈I

intX(Ai) = intX(
∪
i∈I

intX(Ai))

for any collection {Ai}i∈I of subsets of |X|.

Proof. The “⊇” part holds simply by (iv) of Remark 5, whereas “⊆” holds as follows. □

intX(A j) ⊆
∪
i∈I

intX(Ai) for each j ∈ I

by (i)
intX(intX(A j)) ⊆ intX(

∪
i∈I

intX(Ai)) for each j ∈ I

by (v)
intX(A j) ⊆ intX(

∪
i∈I

intX(Ai)) for each j ∈ I

∪
i∈I

intX(Ai) ⊆ intX(
∪
i∈I

intX(Ai))

Remark 19. If a neighborhood frame X is monotone, reflexive, and closed under interior, then

x ∈ intX(A) ⇐⇒ x ∈ intX(B) ⊆ A for some B ⊆ |X|

for every A ⊆ |X|.

232

Draft of November 14, 2010

Proof. If x ∈ intX(A) then x ∈ intX(A) ⊆ A by (iv) of Remark 5, whereas if x ∈ intX(B) ⊆ A

for some B ⊆ |X| then x ∈ intX(B) ⊆ intX(intX(B)) ⊆ intX(A) by (v) and (i). □

Therefore, given any neighborhood frame (|X|,NX) that is topological in the sense of satisfying

(i)–(v) of Remark 5, the family

OX = { intX(A) | A ⊆ X }

is a topology on |X|, since it is closed under finite meets by (ii) and (iii) and closed under arbitrary

joins by Remark 18. Moreover, by Remark 19, OX has the same interior operation intX as NX

does, that is,

x ∈ intX(A) ⇐⇒ x ∈ U ⊆ A for some U ∈ OX.

Thus Top is just the full subcategory of Nb of topological neighborhood frames with continuous

maps; it is worth noting moreover that Top is a full subcategory of MCNb, since every topological

neighborhood frame is MC by definition.

Recall that a Kripke frame is a pair of a set |X| and any binary relation R on |X|. Kripke frames

correspond one-to-one to neighborhood frames that are Kripke in the sense of Definition 77, in the

following way. Any Kripke frame (|X|,R) trivially gives rise to a neighborhood frame (|X|,NR) that

is containing core, by using
−→
R (x) = { y ∈ |X| | Rxy } as a “core” of NR(x), that is,

NR(x) = {−→R (x)}

for each x ∈ |X|. Then we generate a monotone neighborhood frame (|X|,NR̂) by using (|X|,NR) as

a basis; to write it explicitly,

A ∈ NR̂(x) ⇐⇒ −→
R (x) ⊆ A.

This neighborhood frame (|X|,NR̂) is clearly Kripke. On the other hand, given any Kripke neigh-

borhood frame (|X|,NX), each x ∈ |X| has a “core” Cx ∈ NX(x) such that

A ∈ NX(x) =⇒ Cx ⊆ A,

and therefore it gives rise to a Kripke frame (|X|,RX) with a binary relation RX on |X| such that

RX xy ⇐⇒ y ∈ Cx.

These operations (|X|,R) 7→ (|X|,NR̂) and (|X|,NX) 7→ (|X|,RX) clearly give a one-to-one corre-

spondence between Kripke frames and Kripke neighborhood frames; so let us say that they are

233

Draft of November 14, 2010

associated with each other along that correspondence. The correspondence extends to the level of

semantics—that is, (|X|,R) and (|X|,NR̂) interpret □ in the same way—because

x ∈ intR̂(A) ⇐⇒ A ∈ NR̂(x) ⇐⇒ −→
R (x) ⊆ A ⇐⇒ y ∈ A for all y such that Rxy.

Continuity and openness of maps between Kripke neighborhood frames correspond to kinds of

maps that are well known in the field of Kripke semantics.

Definition 85. Given any Kripke frames (|X|,RX) and (|Y |,RY), any map f : |X| → |Y | is said to be

monotone if it “preserves order”, that is, if

RX xy =⇒ RY f (x) f (y)

for every x, y ∈ |X|. Moreover, a monotone map f : X → Y is called a p-morphism if

RY f (x)y =⇒ RX xz and f (z) = y for some z ∈ X(158)

for every x ∈ X and y ∈ Y .13

Even though Definition 85 is more familiar, monotone maps and p-morphisms can be defined

by the following alternative version.

Remark 20. Given any Kripke frames (|X|,RX) and (|Y |,RY), a map f : |X| → |Y | is monotone

from (|X|,RX) to (|Y |,RY) iff

−→
RX(x) ⊆ f −1[

−→
RY(f (x))],

or equivalently iff

f [
−→
RX(x)] ⊆ −→RY(f (x)),

for every x ∈ |X|, and satisfies (158) for every x ∈ X and y ∈ Y iff

−→
RY(f (x)) ⊆ f [

−→
RX(x)]

for every x ∈ |X|. Hence f is a p-morphism from (|X|,RX) to (|Y |,RY) iff

f [
−→
RX(x)] =

−→
RY(f (x))

for every x ∈ |X|.

13The name “p-morphism” was originally short for “pseudo-epimorphism”.

234

Draft of November 14, 2010

These notions coincide with the neighborhood notions of continuity and openness of maps.

Fact 62. Given any Kripke frames (|X|,RX) and (|Y |,RY), consider the Kripke neighborhood frames

(|X|,NR̂X
) and (|Y |,NR̂Y

) associated with them, and any map f : |X| → |Y |. Then

• f is monotone from (|X|,RX) to (|Y |,RY) iff continuous from (|X|,NR̂X
) to (|Y |,NR̂Y

); and

• f satisfies (158) for every x ∈ X and y ∈ Y iff f is open from (|X|,NR̂X
) to (|Y |,NR̂Y

).

Proof. By Remark 20, we have

f is monotone ⇐⇒ −→
RX(x) ⊆ f −1[

−→
RY(f (x))] for every x ∈ |X|

⇐⇒ f −1[
−→
RY(f (x))] ∈ NR̂X

(x) for every x ∈ |X|

⇐⇒ f is continuous from (|X|,NR̂X
) to (|Y |,NRY)

⇐⇒ f is continuous from (|X|,NR̂X
) to (|Y |,NR̂Y

),

where the third equivalence is because NRY (f (x)) = {−→RY(f (x))}, and the last is by Fact 60. Also, by

Remark 20, we have

(158) ⇐⇒ −→
RY(f (x)) ⊆ f [

−→
RX(x)] for every x ∈ |X|

⇐⇒ f [
−→
RX(x)] ∈ NR̂Y

(f (x)) for every x ∈ |X|

⇐⇒ f is open from (|X|,NR̂X
) to (|Y |,NR̂Y

),

where the last equivalence holds by Remark 17, because NRX (x) = {−→RX(x)}. □

It follows that the category Kr of Kripke frames and monotone maps is the full subcategory of

Nb of Kripke neighborhood frames. The following fact is trivial but worth noting; it follows from

this that Kr is indeed a full subcategory of MCNb.

Remark 21. Any Kripke neighborhood frame is normal and closed under binary meets.

VI.2.4. Neighborhood Frames over a Frame. The goal of this subsection is to give a general

neighborhood version of Subsection VI.1.3, in which we reviewed the basic definitions of the cat-

egory Top of topological spaces, sliced it over an arbitrary space X to obtain Top/X, and explicitly

described finite products in Top and in Top/X. Since we already introduced categories Nb, MNb,

CNb, MCNb of neighborhood frames in Subsection VI.2.1 and described finite products in them

235

Draft of November 14, 2010

in Subsection VI.2.2, in this subsection we explicitly describe finite products in the slice categories

of these categories over a fixed neighborhood frame.

Slice categories are obtained in a manner straightforwardly extending what we did in Subsec-

tion VI.1.3. Let us pick one from Nb, MNb, CNb, MCNb, write C for it, and fix any object X of

C. Then, by the definition of slice categories, the category C/X consists of the following.

• Its objects are neighborhood frames over X, that is, pairs (D, π) of a neighborhood frame

D in C and a continuous map π : D→ X, called the projection of (D, π).

• Its arrows from a neighborhood frame (D, πD) over X to another (E, πE) are continuous

maps f : D→ E over X, that is, continuous maps f that make the following commute.

D
f

//

πD
��2
22
22
22
2

=

E

πE
����
��
��
��

X

We add neighborhood structures in this way to Sets/|X| and obtain C/X.

Recall that, in the topological case, pullbacks in Top give finite products in Top/X. Extending

this to the neighborhood case, pullbacks in C give finite products in C/X. Let us show that C has

pullbacks, whether C is Nb, MNb, CNb, or MCNb; because C has products, it is enough to show

that it has equalizers.

Definition 86. Given a neighborhood frame X and any subset |S| ⊆ |X|, by the subframe of X on |S|
we mean the neighborhood frame (|S|,NS) that consists of |S| and the neighborhood function on |S|
such that, for each x ∈ |S|,

NS(x) = { i−1[U] | U ∈ NX(i(x)) },

where we write i for the inclusion map i : |S| ↪→ |X|, so that i−1[U] = U ∩ |S|.

By definition, the inclusion map i is continuous from S to X. Moreover, we should note

Remark 22. If a neighborhood frame X is monotone, or closed under binary meets, then any

subframe S of it is also monotone, or closed under binary meets, respectively.

236

Draft of November 14, 2010

Proof. Fix any neighborhood frame X and any subframe S of it. If X is monotone, then A ⊆
B ⊆ |S| implies

A ∈ NS(x) =⇒ A = U ∩ |S| for some U ∈ NX(x)

=⇒ B = (B ∪ (|X| \ |S|)) ∩ |S| while U ⊆ B ∪ (|X| \ |S|) for U ∈ NX(x)

=⇒ B = V ∩ |S| for some V ∈ NX(x) =⇒ B ∈ NS(x).

If X is closed under binary meets, then

A, B ∈ NS(x) =⇒ A = U ∩ |S| and B = V ∩ |S| for some U,V ∈ NX(x)

=⇒ A ∩ B = (U ∩ V) ∩ |S| with U ∩ V ∈ NX(x)

=⇒ A ∩ B ∈ NS(x). □

Fact 63. Given neighborhood frames X, Y of C and any pair of continuous maps f , g : Y → X, let

E = (|E|,NE) be the subframe of Y on the set

|E| = { y ∈ |Y | | f (y) = g(y) } ⊆ |Y |.

Then E together with the inclusion map i : E → Y is a coequalizer in C of f and g.

Proof. First of all, E is an object of C by Remark 22. i is continuous by definition, and clearly

f ◦ i = g ◦ i. Now fix any neighborhood frame Z of C and a continuous map h : Z → Y such that

f ◦ h = g ◦ h. Then, because |E| together with i is an equalizer of f and g in Sets, there is a unique

map u : |Z| → |E| such that i ◦ u = h, as in:

E
i //

=
Y

f
//

g
// X

Z
h

;;xxxxxxxxxx
u

OO

Therefore we only need to show that u is continuous from Z to E; but it is so because, for every

z ∈ |Z|,

A ∈ NE(u(z)) =⇒ A = i−1[U] for some U ∈ NY(i(u(z)))

=⇒ u−1[A] = u−1[i−1[U]] = h−1[U] for U ∈ NY(h(z))

=⇒ u−1[A] ∈ NZ(z),

where the last entailment is by the continuity of z : Z → Y . □

237

Draft of November 14, 2010

Due to this fact, we can take pullbacks in C in exactly the same way as we do in Top. Given

neighborhood frames (D, πD) and (E, πE) over X in C, we take their product D× E in C along with

projections p0 : D × E → D and p1 : D × E → E, and then the pullback D ×X E in C of (D, πD)

and (E, πE) is just an equalizer of πD ◦ p0 and πE ◦ p1.

D ×X E

pD

��

pE
//

� u

iQ
QQ

((QQ
Q

E

πE

��

D × E
p0

llll

vvllll

p1

77pppppppp=

=

D
πD

// X

In other words, D×X E is the subframe of the product D× E on the fibered product |D| ×|X| |E| over

|X|. And we set pD = p0 ◦ i and pE = p1 ◦ i to be the projections from the pullback.

Then finite products in C/X is defined as follows. The 0-ary product in C/X is just (X, 1X). On

the other hand, given objects (D, πD) and (E, πE) of C/X, their (binary) product in C/X is just the

pullback D ×X E of them in C.

It will be useful later to observe that, in some nice cases, pullbacks in MCNb can be explicitly

described as follows. Given a fibered product |D| ×|X| |E| and any subsets A ⊆ |D| and B ⊆ |E|, let

us write A ×|X| B for the fibered product of A and B over |X|, that is,

A ×|X| B = { (a, b) ∈ |D| × |E| | a ∈ A, b ∈ B, and πD(a) = πE(b) } = i−1[A × B]

for the projections πD : |D| → |X| and πE : |E| → |X| and the inclusion i : |D| ×|X| |E| ↪→ |D| × |E|.
Then we have

Remark 23. Given MC neighborhood frames (D, πD) and (E, πE) over X, their pullback D ×X E

D ×X E

pD
��

pE
// E

πE
��

D
πD

// X

in MCNb satisfies the “⇐” direction of

A ∈ ND×X E(a, b) ⇐⇒ U0 ×|X| U1 ⊆ A for some U0 ∈ ND(a) and U1 ∈ NE(b)(159)

238

Draft of November 14, 2010

for every (a, b) ∈ |D| ×|X| |E| and A ⊆ |D| ×|X| |E|. Moreover, the “⇒” direction holds if (D, πD) and

(E, πE) satisfy the following for every (a, b) ∈ |D| ×|X| |E|:

ND(a) , ∅ ⇐⇒ NE(b) , ∅.(160)

Proof. For the “⇐” direction of (159), observe that for every (a, b) ∈ |D| ×|X| |E| we have

U0 ∈ ND(a) and U1 ∈ NE(b) =⇒ U0 × U1 ∈ ND×E(a, b)

=⇒ U0 ×|X| U1 = i−1[U0 × U1] ∈ ND×X E(a, b)

for the inclusion map i : D ×X E ↪→ D × E. Hence “⇐” follows, because D ×X E is monotone by

Remark 22.

For “⇒”, assume (160) and A ∈ ND×X E(a, b). By the definition of ND×X E, we have A = i−1[U]

for some U ∈ ND×E(a, b). This means, by Remark 13, that

(i) U0 × U1 ⊆ U for some U0 ∈ ND(a) ∪ {|D|} and U1 ∈ NE(b) ∪ {|E|},
(ii) but either U0 ∈ ND(a) or U1 ∈ NE(b).

(ii) implies by (a, b) ∈ |D| ×|X| |E| and (160) that both ND(a) , ∅ and NE(b) , ∅, from which it

follows that ND(a) ∪ {|D|} = ND(a) and NE(b) ∪ {|E|} = NE(b) because D and E are monotone.

Thus (i) and (ii) boil down to

• U0 × U1 ⊆ U for some U0 ∈ ND(a) and U1 ∈ NE(b),

while we have U0 ×|X| U1 = i−1[U0 × U1] ⊆ i−1[U] = A. □

Let us note that the “⇒” direction of (159) may fail if the nice condition (160) does not hold;

for instance, U0 ∈ ND(a) implies U0 ×|X| |E| = pD
−1[U0] ∈ ND×X E(a, b) even if NE(b) = ∅, which

can be the case when (160) fails. On the other hand, there are many ways to guarantee (160). For

instance, it trivially holds if D and E are nonempty, and hence, in particular, if they are topological

spaces. Moreover, it is significant for our purpose to note

Remark 24. Given MC neighborhood frames (D, πD) and (E, πE) over X, (160) of Remark 23

holds if πD and πE are both continuous and open.

Proof. Fix any (a, b) ∈ |D|×|X| |E| and A ∈ ND(a). Then A ⊆ πD
−1[πD[A]] implies πD

−1[πD[A]] ∈
ND(a) because D is monotone. It follows since πD is open that πD[A] ∈ NX(πD(a)) = NX(πE(b)),

239

Draft of November 14, 2010

because πD(a) = πE(b) for (a, b) ∈ |D| ×|X| |E|. Therefore πE
−1[πD[A]] ∈ NE(b) since πE is continu-

ous. To sum up, we have the following for every (a, b) ∈ |D| ×|X| |E|.

ND(a) , ∅ ⇐⇒ NX(πD(a)) = NX(πD(b)) , ∅ ⇐⇒ NE(b) , ∅. □

Let us close this subsection by observing

Remark 25. Given any neighborhood frame (D, π) over X of C = Nb, MNb, CNb or MCNb, its

diagonal map

∆ : D→ D ×X D :: a 7→ (a, a)

is continuous from D to the product D ×X D in C/X.

Proof. We first show ∆ to be continuous from D to the pullback D ×X D taken in Nb.

D ×X D

��

//
� v

iR
RR

((RR
R

D

π

��

∆
ss

D × D
p0

llll

vvllll

p1

77pppppppp=

=

D
π

//

∆

GG

X

Let us write D×D for the product in Nb of D, and p0, p1, i for the projections and the inclusion as

above (note that p0, p1 are projections from the product D × D rather than the pullback D ×X D).

Then observe that

p0 ◦ i ◦ ∆ = p1 ◦ i ◦ ∆ = 1D,

since for every a ∈ D we have pk ◦ i ◦∆(a) = pk ◦ i(a, a) = pk(a) = a for k = 0, 1. This observation

implies the third line below: For each a ∈ D, we have

A ∈ ND×X D(∆(a)) =⇒ A = i−1[U] for some U ∈ ND×D(i ◦ ∆(a))

=⇒ A = i−1[U], U = pk
−1[V] for some i = 0, 1 and V ∈ ND(pk ◦ i ◦ ∆(a))

=⇒ ∆−1[A] = ∆−1[i−1[pk
−1[V]]] = V for some i = 0, 1 and V ∈ ND(a)

=⇒ ∆−1[A] ∈ ND(a).

240

Draft of November 14, 2010

Thus ∆ is continuous from D to the pullback D ×X D in Nb, establishing the case of C = Nb. This

entails the other cases as follows. For C =MNb, ∆ is continuous from MD = D to M(D ×X D) by

Remarks 8 and 10; similarly for C = CNb and MCNb. □

VI.2.5. Sheaves over a Neighborhood Frame.

Definition 87. Given neighborhood frames X and D, a map π : D → X is called a local isomor-

phism if

(i) π is continuous and open, and

(ii) every a ∈ D with ND(a) , ∅ has some U ∈ ND(a) such that π↾U is injective.

D

X
��

π

(

(U

π[U]

•a

)

)

When this is the case, we say that the pair (D, π) is a sheaf over the neighborhood frame X, and

also that X, D, and π are respectively the base frame, total frame, and projection of the sheaf.

While identity maps are clearly local isomorphisms, local isomorphisms are composable under

a certain condition, as follows.

Fact 64. Given local isomorphisms f : D → E and g : E → X, their composition g ◦ f : D → X

is also a local isomorphism if D is MC.

Proof. Fixing such f , g as above, suppose D is MC. Since open continuous maps are compos-

able, we only need to show (ii) of Definition 87 for g ◦ f ; so let us fix any a ∈ D with ND(a) , ∅.

By (ii) for f , f↾U is injective for some U ∈ ND(a); this implies, because U ⊆ f −1[f [U]] and D is

M, that f −1[f [U]] ∈ ND(a). Hence f [U] ∈ NE(f (a)) because f is open. Therefore, by (ii) for g,

g↾V is injective for some V ∈ NE(f (a)); this implies f −1[V] ∈ ND(a) since f is continuous. Now,

U ∩ f −1[V] ∈ ND(a) since D is C. Moreover (g ◦ f)↾(U ∩ f −1[V]) is injective. Thus g ◦ f is a local

isomorphism. □

Due to this fact, we will restrict our attention to MC neighborhood frames and take the category

LI of MC neighborhood frames and local isomorphisms, so that LI is a subcategory of MCNb.

241

Draft of November 14, 2010

Recall that, in Subsection VI.1.4, we listed some facts about local homeomorphisms—namely,

Facts 55, 56, 57 and Corollary 9—that were essential for a sheaf semantics as we desired. For the

rest of this subsection, we prove the local-isomorphism versions of those facts, as Theorems 10, 8,

9 and Corollary 12, respectively.

Remark 26. Given any neighborhood frame X and a neighborhood frame D closed under binary

meets, any map π : |D| → |X| satisfies (ii) of Definition 87 if

(ii′) for each a ∈ D, for every V ∈ ND(a) there is some U ∈ ND(a) such that U ⊆ A and π↾U

is injective.

Theorem 8. Given any MC neighborhood frames X, D and any open continuous map π : D→ X,

(ii) of Definition 87 (or, equivalently, (ii′) of Remark 26) holds iff

(iii) the diagonal map ∆ : D→ D ×X D is open.

Proof. Let us first note that, since π is continuous and open, Remark 24 implies that Remark 23

applies to ND×X D. Now, assume (ii). Then (iii) follows, because we have the following.

∆−1[A] ∈ ND(a) =⇒ there is U ∈ ND(a) such that U ⊆ ∆−1[A] and π↾U is injective

=⇒ U ×|X| U ∈ ND×X D(∆(a)) with U ×|X| U ⊆ A

=⇒ A ∈ ND×X D(∆(a)),

where the first entailment is by (ii′), and the last is because D is monotone; for the second entail-

ment, U ×|X|U ∈ ND×X D(∆(a)) is by Remark 23, and we can show U ×|X|U ⊆ A as follows. Fix any

(a, b) ∈ U ×|X| U; this means a, b ∈ U and π(a) = π(b), which together imply a = b because π↾U is

injective. Therefore a ∈ U ⊆ ∆−1[A] implies (a, b) = ∆(a) ∈ A.

Assume (iii). To show (ii), suppose ND(a) , ∅; this implies ∆−1[∆[D]] = D ∈ ND(a) since D

is monotone. Therefore ∆[D] ∈ ND×X D(∆(a)) by (iii). Then, by Remark 23, U0 ×|X| U1 ⊆ ∆[D] for

some U0,U1 ∈ ND(a). Writing U = U0 ∩ U1, we have U ∈ ND(a) since D is closed under binary

meets; moreover, π↾U is injective, because π(y) = π(z) for y, z ∈ U means (y, z) ∈ U ×|X| U ⊆ ∆[D]

and hence y = z. Therefore (ii). □

Lemma 5. Given MC neighborhood frames (D, πD) and (E, πE) over X, if πD and πE are open and

continuous, then the projections pD and pE of the pullback D ×X E in MCNb, as below, are open

242

Draft of November 14, 2010

as well.

D ×X E

pD
��

pE
// E

πE
��

D
πD

// X

Proof. Suppose πD and πE are continuous and open; Remark 24 implies that Remark 23 applies

to ND×X E. To show pD to be open, fix pD
−1[A] ∈ ND×X E(a, b). This means, by Remark 23, that

U0 ×|X| U1 ⊆ pD
−1[A]

pD[U0 ×|X| U1] ⊆ A

for some U0 ∈ ND(a) and U1 ∈ NE(b). Indeed, pD[U0 ×|X| U1] = U0 ∩ πD
−1[πE[U1]], because

a′ ∈ pD[U0 ×|X| U1] ⇐⇒ (a′, b′) ∈ U0 ×|X| U1 for some b′ ∈ E

⇐⇒ a′ ∈ U0 and πD(a′) = πE(b′) for some b′ ∈ U1

⇐⇒ a′ ∈ U0 and πD(a′) ∈ πE[U1]

⇐⇒ a′ ∈ U0 and a′ ∈ πD
−1[πE[U1]].

Now, since E is monotone, U1 ⊆ πE
−1[πE[U1]] and U1 ∈ NE(b) entails the first line below, and

then the second and third follow because πE is open and πD continuous (we have πE(b) = πD(a) on

the second line by the assumption that (a, b) ∈ |D| ×|X| |E|):

πE
−1[πE[U1]] ∈ NE(b),

πE[U1] ∈ NX(πE(b)) = NX(πD(a)),

πD
−1[πE[U1]] ∈ ND(a).

Therefore U0 ∈ ND(a) implies pD[U0 ×|X| U1] = U0 ∩ πD
−1[πE[U1]] ∈ ND(a) because D is closed

under binary meets. Hence pD[U0×|X|U1] ⊆ A implies A ∈ ND(a). Thus pD is open; the symmetric

argument proves pE is open. □

Lemma 6. In MCNb, if π : D → X is a local isomorphism, then any continuous map s : X → D

such that π ◦ s = 1X is open.

Proof. Fix any x ∈ X and s−1[A] ∈ NX(x) = NX(π ◦ s(x)). Then π−1[s−1[A]] ∈ ND(s(x)) since

π is continuous. Therefore, by (ii′) of Remark 26, there is U ∈ ND(s(x)) such that U ⊆ π−1[s−1[A]]

243

Draft of November 14, 2010

and π↾U is injective. Because s and π are continuous and because D is closed under binary meets,

U ∈ ND(s(x)) implies

s−1[U] ∈ NX(x) = NX(π ◦ s(x)),

π−1[s−1[U]] ∈ ND(s(x)),

U ∩ π−1[s−1[U]] ∈ ND(s(x)).

Now we claim U ∩ π−1[s−1[U]] ⊆ A. Fix any a ∈ U ∩ π−1[s−1[U]]. Since U ⊆ π−1[s−1[A]], we

have a ∈ U, π−1[s−1[U]], π−1[s−1[A]]. It follows that s ◦ π(a) ∈ U, A. Note that π ◦ s = 1X entails

π(a) = π ◦ s ◦ π(a); this implies, because a, s ◦ π(a) ∈ U and π↾U injective, that a = s ◦ π(a) ∈ A.

Therefore U ∩ π−1[s−1[U]] ∈ ND(s(x)) implies A ∈ ND(s(x)) since D is monotone. Thus s is

open. □

Corollary 11. In MCNb, if π : D→ X is a local isomorphism, then any continuous map s : X →
D such that π ◦ s = 1X is a local isomorphism as well.

Proof. s is continuous by assumption, and open by Lemma 6; that is, (i) of Definition 87 holds

of s. To show (ii), note that s is injective since π ◦ s = 1X; therefore (ii) holds of s because s↾U is

trivially injective for any U ∈ NX(x). □

Theorem 9. In MCNb, open maps pull back local isomorphisms to local isomorphisms. That is,

in the pullback diagram in MCNb below, if πD is open continuous and πE is a local isomorphism,

then pD is a local isomorphism as well.

D ×X E

pD
��

pE
// E

πE
��

D
πD

// X

Proof. Suppose πD is open continuous and πE is a local isomorphism; then Remark 24 implies

that Remark 23 applies to ND×X E. By Lemma 5, pD is open as well as continuous. Hence we only

need to show (ii) of Definition 87 for pD.

Fix any (a, b) ∈ D×X E such thatND×X E(a, b) , ∅. Then Remark 23 impliesNE(b) , ∅; hence

(ii) for πE implies that there is U ∈ NE(b) such that πE↾U is injective. Then pE
−1[U] ∈ ND×X E(a, b)

244

Draft of November 14, 2010

because pE is continuous. We moreover claim pD↾(pE
−1[U]) is injective. Fix any (a0, b0), (a1, b1) ∈

pE
−1[U] such that pD(a0, b0) = pD(a1, b1); this means a0 = a1, and also that

πE(b0) = πE ◦ pE(a0, b0) = πD ◦ pD(a0, b0) = πD ◦ pD(a1, b1) = πE ◦ pE(a1, b1) = πE(b1).

From this it follows that b0 = b1, because (a0, b0), (a1, b1) ∈ pE
−1[U] implies b0 = pE(a0, b0) ∈ U

and b1 = pE(a1, b1) ∈ U, while πE↾U is injective. In this way, any (a0, b0), (a1, b1) ∈ pE
−1[U] such

that pD(a0, b0) = pD(a1, b1) are identical; that is, pD↾(pE
−1[U]) is injective. Thus (ii) is true of pD,

making it a local isomorphism. □

Corollary 12. LI/X has the same products as MCNb/X does.

Theorem 10. Maps of sheaves over any given neighborhood frame X are local isomorphisms.

That is, if πD : D → X and πE : E → X are local isomorphisms, then any continuous f : D → E

such that πE ◦ f = πD is a local isomorphism, too.

Proof. Given such πD, πE, and f , take the pullback D ×X E in MCNb and define

s : |D| → |D| ×|X| |E| :: x 7→ (x, f (x)),

as in the following diagram:

D ×X E

pD
��

pE
// E

πE
��

D
πD

//

fsssssss

99ssssssss
FF

X

We claim s is continuous. To show this, observe that, for every U0 ⊆ |D| and U1 ⊆ |E|, we have

s−1[U0 ×X U1] = { a ∈ D | s(a) ∈ U0 ×X U1 }

= { a ∈ D | a ∈ U0, f (a) ∈ U1, and πD(a) = πE(f (a)) }

= U0 ∩ f −1[U1],

where the last equality is due to πE ◦ f = πD. This implies the fifth entailment below, while the

second entailment is by Remark 23: For every a ∈ D,

A ∈ ND×X E(s(a)) =⇒ A ∈ ND×X E(a, f (a))

=⇒ U0 ×X U1 ⊆ A for some U0 ∈ ND(a) and U1 ∈ NE(f (a))

245

Draft of November 14, 2010

=⇒ U0 ×X U1 ⊆ A with U0, f −1[U1] ∈ ND(a)

=⇒ U0 ×X U1 ⊆ A with U0 ∩ f −1[U1] ∈ ND(a)

=⇒ U0 ∩ f −1[U1] = s−1[U0 ×X U1] ⊆ s−1[A] with U0 ∩ f −1[U1] ∈ ND(a)

=⇒ s−1[A] ∈ ND(a).

Thus s is continuous. Therefore pD ◦ s = 1D implies that s is a local isomorphism by Corollary 11,

while pE is a local isomorphism by Theorem 9, and hence f = pE ◦ s is a local isomorphism as

well by Fact 64. □

By virtue of Theorems 8, 9, 10 and Corollary 12, we have a neighborhood version of Fact 58,

the key fact that makes semantics work as we desire.

Fact 65. In LI/X for any neighborhood frame X, the following diagram commutes for any map

f : D→ E of sheaves over X (including the projection of a sheaf over X).

P(|E|)
intE //

f −1

��
=

P(|E|)

f −1

��
P(|D|)

intD

// P(|D|)

And we are finally ready for giving a sheaf semantics over neighborhood frames.

VI.2.6. Neighborhood-Sheaf Semantics for First-Order Modal Logic. Now that we have

laid out the category LI/X of sheaves over a neighborhood frame X and made sure that it shares

the same, essential property as LH/X has in order to give rise to a semantics for first-order modal

logic, we can finally define neighborhood-sheaf semantics for first-order modal logic.

Definition 88. Given a first-order modal language L, by a neighborhood-sheaf model for L over

a given MC neighborhood frame X we mean an L structure M = (π,Ri
M, f j

M, ck
M)i∈I, j∈J,k∈K in

Sets/|X| such that

• π : D→ X is a local isomorphism in LI;

• f M is a map of sheaves over X from (Dn, πn) to (D, π), for each n-ary function symbol f

of L;

• in particular, cM is a map of sheaves over X from (X, 1X) to (D, π), for each constant c of

L.

246

Draft of November 14, 2010

Definition 89. Given a first-order modal language L, by a neighborhood-sheaf interpretation for

L over a given MC neighborhood frame X we mean a classical interpretation (M, ⟦−⟧) for L in

Sets/|X| such that

• M is a neighborhood-sheaf model for L over X, and

• ⟦−⟧ satisfies

⟦ x̄ | □φ ⟧ = intDn(⟦ x̄ | φ ⟧) (that is, ⟦□⟧ = intDn);(161)

⟦ x̄ | ^φ ⟧ = clDn(⟦ x̄ | φ ⟧) (that is, ⟦^⟧ = clDn).(162)

We call the class of such interpretations neighborhood-sheaf semantics over the given neigh-

borhood frame X; and then, by neighborhood-sheaf semantics (simpliciter), we mean the class of

neighborhood-sheaf interpretations over some neighborhood frame or other.

Soundness obtains in exactly the similar way as it did before with FOS4. The only difference is

that we have MC in place of S4, because it is the logic corresponding to MC neighborhood frames.

Definition 90. First-order modal logic FOMC consists of the following two sorts of axioms and

rules.

1. All axioms and rules of (classical) first-order logic.

2. The rule and axiom of propositional modal logic MC; that is, M and C.

Theorem 11. FOMC is sound with respect to topological-sheaf semantics.

It is moreover complete, in the following strong form, which says any consistent theory ex-

tending FOMC has a “canonical” interpretation.

Theorem 12. For any consistent theory T of first-order modal logic extending FOMC, there exists

a neighborhood-sheaf interpretation (π, ⟦−⟧) that validates all and only theorems of T.

We prove this theorem in Section VI.3, the final section of this dissertation.

VI.3. Completeness

We say that a theory T is FOM if it satisfies all the rules and axioms of FOM, and FOMC if it

satisfies all the rules and axioms of FOMC.

247

Draft of November 14, 2010

Theorem 13. For any consistent FOMC theory T in a first-order modal language L, there exist a

neighborhood frame X, a sheaf (D, π : D → X) over X, and a neighborhood-sheaf interpretation

(π, ⟦−⟧) such that

T proves φ ⊢ ψ ⇐⇒ ⟦ x̄ | φ ⟧ ⊆ ⟦ x̄ | ψ ⟧

for every pair of formulas φ, ψ of L.

VI.3.1. Sufficient Set of Models with All Names. We prove Theorem 13 by, given any con-

sistent FOMC theory T, constructing a neighborhood interpretation (π, ⟦−⟧) as needed in the state-

ment of Theorem 13. In this subsection, we prepare the underlying set X of the base frame (X,NX)

of the sheaf (D, π : D→ X).

We achieve this preparation with two lemmas. One is the purification lemma (Lemma 1 on p.

79), which we already proved in Subsection III.1.3. And, using this lemma, we prove the other

lemma, which we call the “lazy Henkinization” lemma. Let us first restate the purification lemma,

in terms of ⟦−⟧ instead of ⊨ .

Lemma 1. For any first-order language L (that may have non-classical sentential operators, □

and ^ for instance),14 there exist

• a (purely) classical first-order language Lpc (obtained by perhaps adding new primitive

predicates to L);

• a surjection ∗ : sent(L)↠ sent(Lpc) such that

– for every theory T in L that respects alpha-equivalence,15 there is a theory Tpc in

Lpc such that, for every pair of sentences φ, ψ of L,

Tpc proves φ∗ ⊢ ψ∗ ⇐⇒ T proves φ ⊢ ψ;

14By a first-order language we mean a language with classical operators—by which we mean Boolean connectives

and quantifiers—but perhaps with more operators. We say a first-order language is (purely) classical if it only has

classical operators. Lemma 1 is trivial for classical L, with Lpc = L.
15Under the formulation of theories in terms of binary sequents, we say a theory T respects alpha-equivalence if

φ0 ∝ φ1 and ψ0 ∝ ψ1 =⇒ T proves φ0 ⊢ ψ0 iff it proves φ1 ⊢ ψ1,

where we write ∝ for alpha-equivalence.

248

Draft of November 14, 2010

• a (class-sized) bijective operation ∗ : (M, ⟦−⟧) 7→ (M∗, ⟦−⟧∗) from the class of classical

interpretations for L to the class of those for Lpc such that, for each classical interpre-

tation (M, ⟦−⟧) for L,

– M∗ is an expansion of L structure M to Lpc,

– (M∗, ⟦−⟧∗) is the unique classical interpretation for Lpc on M∗, and, moreover,

– for every sentence φ of L,

⟦ x̄ | φ∗ ⟧∗ = ⟦ x̄ | φ ⟧.

This lemma can be used to prove the following.

Lemma 7 (Lazy Henkinization lemma). Given a first-order language L and a consistent theory T

inL that respects alpha-equivalence and has all the rules and axioms of classical first-order logic,

there exist LHen, THen and M such that

(i) LHen is an extension of L obtained by perhaps adding new constants, the set of which is

written C = { ci | i < λ } for some cardinal λ (then LHen = L ∪C and L ∩C = ∅).

(ii) THen is a theory in LHen extending T so that, for any sentences φ, ψ of L, any variables

x1, . . . , xn of L, and any (new) constants c1, . . . , cn ∈ C,

THen proves [c̄/x̄]φ ⊢ [c̄/x̄]ψ ⇐⇒ T proves φ ⊢ ψ,

where we write [c̄/x̄] for [cn/xn] · · · [c1/x1].

(iii) M is a set of classical interpretations for LHen, and moreover a sufficient set of models

of THen, meaning, for any sentences φ, ψ of LHen,

THen proves φ ⊢ ψ ⇐⇒ ⟦ x̄ | φ ⟧ ⊆ ⟦ x̄ | ψ ⟧ for every (M, ⟦−⟧) ∈M.

(iv) M is “named totally” by LHen, in the sense that, for every a ∈ |M| in every M ∈M, there

is a constant c of LHen such that cM = a.

Proof. Suppose T is a consistent theory that respects alpha-equivalence and has all the rules

and axioms of classical first-order logic. Then, by Lemma 1, there is a theory Tpc in Lpc such that,

for every pair of sentences φ, ψ of L,

Tpc proves φ∗ ⊢ ψ∗ ⇐⇒ T proves φ ⊢ ψ.

249

Draft of November 14, 2010

Tpc is a consistent classical first-order theory in the classical first-order language Lpc, because T

is a consistent theory that has all the rules and axioms of classical first-order logic. Therefore, by

Gödel’s completeness theorem for classical first-order logic (as generalized by Henkin for Lpc of

any cardinality), there is a class M , ∅ of classical interpretations for Lpc such that

Tpc proves φ ⊢ ψ ⇐⇒ ⟦ x̄ | φ ⟧ ⊆ ⟦ x̄ | ψ ⟧ for every (M, ⟦−⟧) ∈M,

which means M satisfies (iii) above (for M, Lpc, Tpc in place of M, LHen, THen, respectively) if M

is a set. While M may well be too large to be a set, the Löwenheim-Skolem theorem implies that

there is a cardinal number λ such that the set M0 = { (M, ⟦−⟧) ∈M | ||M|| ⩽ λ } ⊆M satisfies

Tpc proves φ ⊢ ψ ⇐⇒ ⟦ x̄ | φ ⟧ ⊆ ⟦ x̄ | ψ ⟧ for every (M, ⟦−⟧) ∈M0

for every pair of sentences φ, ψ of Lpc. Then take the inverse-image M1 of M0 under the bijective

operation ∗ as in Lemma 1; that is, M1 is the set of classical interpretations for L such that

(M, ⟦−⟧) ∈M1 ⇐⇒ (M∗, ⟦−⟧∗) ∈M0.

Note that ||M|| ⩽ λ for every (M, ⟦−⟧) ∈M1, since M∗ is an expansion of M. Moreover, (iii) holds

for M1, L, T in place of M, LHen, THen because, for every sentences φ, ψ of L,

T proves φ ⊢ ψ ⇐⇒ T∗ proves φ∗ ⊢ ψ∗

⇐⇒ ⟦ x̄ | φ∗ ⟧∗ ⊆ ⟦ x̄ | ψ∗ ⟧∗ for every (M∗, ⟦−⟧∗) ∈M0

⇐⇒ ⟦ x̄ | φ ⟧ ⊆ ⟦ x̄ | ψ ⟧ for every (M, ⟦−⟧) ∈M1

by Lemma 1.

Thus (iii) holds, along with (i) and (ii) trivially, for M1, L, T in place of M, LHen, THen. Yet

(iv) does not necessarily hold. To ensure (iv), we invoke a technique which may be called “lazy

Henkinization”, which is to take

LHen := L ∪C, adding new constants C = { ci | i < λ } for λ as above, and

M := { (Me, ⟦−⟧e) | (M, ⟦−⟧) ∈M1 and e : λ↠ |M| is a surjection },

250

Draft of November 14, 2010

where we write (Me, ⟦−⟧e) for the expansion of (M, ⟦−⟧) to LHen with ci
Me = e(i) for every i < λ.16

Then obviously (i) and (iv) hold. Finally, define THen to be the theory of M; that is, we make (iii)

hold by definition.

To show (ii), it suffices to show (163) and (164) below to be equivalent, due to the (iii) we saw

for both M and M1; here we fix φ, ψ, x̄, c̄ as in the statement of (ii).

⟦ ȳ | [c̄/x̄]φ ⟧e ⊆ ⟦ ȳ | [c̄/x̄]ψ ⟧e for every (Me, ⟦−⟧e) ∈M.(163)

⟦ x̄, ȳ | φ ⟧ ⊆ ⟦ x̄, ȳ | ψ ⟧ for every (M, ⟦−⟧) ∈M1.(164)

We should note that, for every (M, ⟦−⟧) ∈M1 and e : λ ↠ |M|, we have ⟦ x̄, ȳ | φ ⟧ = ⟦ x̄, ȳ | φ ⟧e,

and similarly for ψ, since φ, ψ are sentences ofL and since (Me, ⟦−⟧e) is an expansion of (M, ⟦−⟧).
Now, if (164), then for every (Me, ⟦−⟧e) ∈M we have

b̄ ∈ ⟦ ȳ | [c̄/x̄]φ ⟧e =⇒ (c̄Me , b̄) ∈ ⟦ x̄, ȳ | φ ⟧e = ⟦ x̄, ȳ | φ ⟧ ⊆ ⟦ x̄, ȳ | ψ ⟧ = ⟦ x̄, ȳ | ψ ⟧e

=⇒ b̄ ∈ ⟦ ȳ | [c̄/x̄]ψ ⟧e,

and hence (163). On the other hand, assume (163) and fix any (M, ⟦−⟧) ∈M0. Note that, for every

ā ∈ |M|n, there is e : λ ↠ |M| such that each k (1 ⩽ k ⩽ n) has e(k) = ak, that is, ck
Me = ak; so,

write c̄Me = ā. Then, given any ā, b̄, we can take such e (for ā) to show

(ā, b̄) ∈ ⟦ x̄, ȳ | φ ⟧ =⇒ (c̄Me , b̄) ∈ ⟦ x̄, ȳ | φ ⟧e

=⇒ b̄ ∈ ⟦ ȳ | [c̄/x̄]φ ⟧e ⊆ ⟦ ȳ | [c̄/x̄]ψ ⟧e

=⇒ (ā, b̄) ∈ ⟦ x̄, ȳ | ψ ⟧e = ⟦ x̄, ȳ | ψ ⟧.

Thus (164). □

16The reader may wonder why we use “lazy Henkinization” rather than the usual method of adding Henkin

constants to attain (iv). That method does not serve our purpose for the following reason. Suppose we add to L

a constant cφ for each sentence φ of L, along with the corresponding Henkin axiom ∃x .φ ⊢ [cφ/x]φ added to the

extended theory THen. Then, if (ii) holds, it implies that THen proves

∃x .φ ⊢ [cφ/x]φ [cφ/x]φ ⊢ ∃x .φ
E

□∃x .φ ⊢ □[cφ/x]φ [cφ/x]□φ ⊢ ∃x□φ
(□[cφ/x]φ = [cφ/x]□φ)

□∃x .φ ⊢ ∃x□φ

Hence, for (ii) to be the case, □∃x .φ ⊢ ∃x□φ must be provable in T as well, although it is not valid in neighborhood-

sheaf semantics, as observed in Subsection ??.

251

Draft of November 14, 2010

We should note that any FOM or FOMC theory of first-order modal logic has all the rules and

axioms of classical first-order logic; it moreover respects alpha-equivalence, due to classical first-

order logic and the rule E of modal logic. That is, any consistent FOM or FOMC theory satisfies

the condition for T as in Lemma 7. Let us also note the following.

Remark 27. For any (new) constants c1, . . . , cn ∈ C, if T has an axiom

φ ⊢ ψ

in L then THen has the axiom

[c̄/x̄]φ ⊢ [c̄/x̄]ψ,

and if T has a rule

φ1 ⊢ ψ1 · · · φn ⊢ ψn

φ ⊢ ψ

in L then THen has the rule

[c̄/x̄]φ1 ⊢ [c̄/x̄]ψ1 · · · [c̄/x̄]φn ⊢ [c̄/x̄]ψn

[c̄/x̄]φ ⊢ [c̄/x̄]ψ
.

Proof. (ii) of Lemma 7 immediately implies the axiom part of Remark 27, and also implies the

following when T has the first rule. □

THen proves all [c̄/x̄]φi ⊢ [c̄/x̄]ψi
ks

(ii)
+3 T proves all φi ⊢ ψi

��

THen proves [c̄/x̄]φ ⊢ [c̄/x̄]ψ ks
(ii)

+3 T proves φ ⊢ ψ

This remark means that THen is FOM if T is, THen is FOMC if T is, and so on.

VI.3.2. Frames of Models with Logical Topology. Given a first-order modal languageL and

a consistent FOMC theory T in L, take LHen, THen, and M as given by Lemma 7. Then we use the

set M of classical interpretations forLHen as a base frame and construct a sheaf over it by bundling

up the domains of individuals of all (M, ⟦−⟧) ∈M. Neighborhood functions for the base and total

frames will be defined “logically”, that is, by using the interpretations of □ sentences.

Let us make a small notational remark. From this subsection on, we write |M| instead of M

for the set we constructed in Subsection VI.3.1, because it is just a set and without a neighborhood

252

Draft of November 14, 2010

function; we will reserve M for the neighborhood frame we will define on |M|. Also, for the sake

of simplicity, we write M for both an L structure and a classical interpretation for L.17

Now we define a set |D| over the set |M|; we will equip |M| and |D| with suitable neighbor-

hood functions at the end of this subsection, so that the obtained neighborhood frame D with the

projection forms a neighborhood-sheaf over the neighborhood frame M.

Definition 91. We define a set

|D| :=
∑

M∈|M|
|M| = { (M, a) | M ∈ |M| and a ∈ |M| }

over |M|, with the projection π : |D| → |M| :: (M, a) 7→ M.

It should be clear that each n-fold product of |D| in Sets/|M|, that is, over |M|, can be written

simply as a set of tuples of the form (M, ā) rather than ((M, a1), . . . , (M, an)), so that

|D|n :=
∑

M∈|M|
|M|n = { (M, ā) | M ∈ |M| and ā ∈ |M|n }

with the projection πn : |D|n → |M| :: (M, ā) 7→ M.

Since the structure M in each interpretation (M, ⟦−⟧M) ∈ |M| interprets the basic vocabulary

of LHen with RM, f M, cM, we can let the entire π : |D| → |M| interpret the same by bundling up all

RM, f M, cM.

Definition 92. We write M = (π,Ri
M, f j

M, ck
M)i∈I, j∈J,k∈K for the tuple that consists of π and

• for each n-ary primitive predicate R of L,

RM =
∑

M∈|M|
RM = { (M, ā) | M ∈ |M|, ā ∈ RM } ⊆ |D|n,

17In our terminology (see Chapter III), an L structure M consists of a domain |M| and interpretations of primitive

predicates and terms of L. Then a map ⟦−⟧ extends these interpretations to interpret all sentences of L, so that a pair

(M, ⟦−⟧) is an interpretation for L on M. So, in the abusive notation we introduce here, M refers to an interpretation

when we write M ∈ |M|, whereas M refers to a structure when we write |M| for the domain of that structure or cM for

the interpretation by that structure of a constant c, for instance. We should note that, whenL is not classical, there may

well be (and hence |M| may well contain) several interpretations on the same structure M, which is why we cannot

identify interpretations in |M| with structures.

253

Draft of November 14, 2010

• for each n-ary function symbol f of L,

f M =
∑

M∈|M|
f M : |D|n =

∑
M∈|M|

|M|n //
∑

M∈|M|
|M| = |D|

(M, ā) � // (M, f M(ā)),

• for each constant c of LHen,

cM =
∑

M∈|M|
cM : |M| = |D|0 // |D|

M � // (M, cM).

Indeed, the interpretations can be extended to all sentences and terms.

Definition 93. We define an interpretation ⟦−⟧M by setting, for each sentence φ of LHen,

⟦ x̄ | φ ⟧M :=
∑

M∈|M|
⟦ x̄ | φ ⟧M = { (M, ā) ∈ |D|n | ā ∈ ⟦ x̄ | φ ⟧M } ⊆ |D|n,

and, for each term t of LHen in the context of variables x̄,

⟦ x̄ | t ⟧M :=
∑

M∈|M|
⟦ x̄ | t ⟧M : |D|n =

∑
M∈|M|

|M|n //
∑

M∈|M|
|M| = |D|

(M, ā) � // (M, ⟦ x̄ | t ⟧M(ā)).

Our goal then is to show that, with appropriate neighborhood functionsNM on |M| andND on

|D| in hand, M and (M, ⟦−⟧M) form a neighborhood-sheaf model and interpretation as required in

Theorem 13. Once we have NM and ND, this roughly consists of the following eight claims.

(a) (|M|,NM) and (|D|,ND) are MC frames (which we will prove as Claim 5).

(b) π is a surjection (Claim 1).

(c) π is a local isomorphism from (|D|,ND) to (|M|,NM) (Claim 9).

(d) f M and cM are continuous (Claim 10).

(e) ⟦−⟧M extends RM, f M, cM (Claim 2).

(f) (M, ⟦−⟧M) interprets first-order operations of LHen with suitable operations (Claim 3).

(g) (M, ⟦−⟧M) interprets □ with interior operations of suitable types (Claim 11).

(h) For every sentences φ, ψ of L, we have the following (Corollary 13):

T proves φ ⊢ ψ ⇐⇒ ⟦ x̄ | φ ⟧M ⊆ ⟦ x̄ | ψ ⟧M.

(b) is immediate.

Claim 1. π is a surjection.

254

Draft of November 14, 2010

Proof. Because |M| , ∅ for all M ∈ |M|. □

(e) and (f) are immediate from Fact 54 because we obtained ⟦−⟧M by bundling up ⟦−⟧M. Let

us number (e) and (f) by entering:

Claim 2. (M, ⟦−⟧M) interprets first-order operations of LHen with suitable operations.

Claim 3. (M, ⟦−⟧M) interprets □ with interior operations of suitable types.

(h) also follows from Fact 54.

Claim 4. For every sentences φ, ψ of LHen,

THen proves φ ⊢ ψ ⇐⇒ ⟦ x̄ | φ ⟧M ⊆ ⟦ x̄ | ψ ⟧M.

Proof. By (iii) of Lemma 7 and Fact 54 for LHen,

THen proves φ ⊢ ψ
(iii)
⇐⇒ ⟦ x̄ | φ ⟧M ⊆ ⟦ x̄ | ψ ⟧M for all M ∈ |M|

⇐⇒ ⟦ x̄ | φ ⟧M ⊆ ⟦ x̄ | ψ ⟧M. □

Corollary 13. For every sentences φ, ψ of L,

T proves φ ⊢ ψ ⇐⇒ ⟦ x̄ | φ ⟧M ⊆ ⟦ x̄ | ψ ⟧M.

Proof. By (ii) of Lemma 7 as well as Claim 4, we have

T proves φ ⊢ ψ
(ii)
⇐⇒ THen proves φ ⊢ ψ

⇐⇒ ⟦ x̄ | φ ⟧M ⊆ ⟦ x̄ | ψ ⟧M. □

Let us close this subsection by defining neighborhood functions NM, ND on |M|, |D| and then

showing (a)—that (|M|,NM) and (|D|,ND) are MC. We will prove (c), (d), and (g) in Subsection

VI.3.4, and this will complete our proof for Theorem 13.

The key idea we use to define suitable neighborhood functions on |M| and |D| is to define them

“logically”, in the sense of using ⟦−⟧M to give what may be called the “topologies of necessity”.

Recall that, in a neighborhood-sheaf interpretation ⟦−⟧ on a given sheaf π : D→ X, we have

⟦ x̄ | φ ⟧ ∈ NDn(ā) ⇐⇒ ā ∈ ⟦ x̄ | □φ ⟧

255

Draft of November 14, 2010

for every ā ∈ Dn; in other words, NDn(ā) serves as the set of (n-ary) properties that the n-tuple ā

necessarily satisfies. We use this insight (in the other direction) to define “logical bases” N†0 , N†1
on |M|, |D|, and generate NM, ND, in the following way.

Definition 94. When THen is FOE, let N†n for each n be the neighborhood function on |D|n such

that

N†n (M, ā) = { ⟦ x̄ | φ ⟧M | (M, ā) ∈ ⟦ x̄ | □φ ⟧M }

for every (M, ā) ∈ |D|.

N†n is not in general monotone. But we obtain monotone neighborhood functions NM and ND
by generating them on the bases of N†0 and N†1 .

Definition 95. NM and ND are the monotone neighborhood functions generated by the bases N†0
and N†1 . Writing this definition explicitly, we set

U ∈ NM(M) ⇐⇒ ⟦φ⟧M ⊆ U and M ∈ ⟦□φ⟧M for some sentence φ of LHen,

U ∈ ND(M, a) ⇐⇒ ⟦ x | φ ⟧M ⊆ U and (M, a) ∈ ⟦ x | □φ ⟧M for some sentence φ of LHen

for every M ∈ |M| and (M, a) ∈ |D|.

Note that the axiom E of T implies

⟦ x̄ | φ ⟧M = ⟦ x̄ | ψ ⟧M

⟦ x̄ | □φ ⟧M = ⟦ x̄ | □ψ ⟧M

by Claims 3 and 4, and therefore

⟦ x̄ | φ ⟧M ∈ N†n (M, ā) ⇐⇒ (M, ā) ∈ ⟦ x̄ | □φ ⟧M

for every sentence φ of LHen; in other words, we have the first half of the following.

Remark 28. For the interior operation int†n associated with N†n ,18

int†n(⟦ x̄ | φ ⟧M) = ⟦ x̄ | □φ ⟧M,

int†n(A) = ∅ if A ⊆ |D|n is not of the form ⟦ x̄ | φ ⟧M.

18We must not confuse this with the interior operation intDn associated with the monotone neighborhood function

NDn generated byN†n . It is less trivial (and indeed false unless T is FOM) that ⟦ x̄ | □φ ⟧M = intDn (⟦ x̄ | φ ⟧M), which

we will prove for a FOM T as Claim 11.

256

Draft of November 14, 2010

Proof. The second half holds since, if A ⊆ |D|n is not of the form ⟦ x̄ | φ ⟧M, then A ∈ N†n (M, ā)

for no (M, ā) ∈ |D|n. □

NM and ND are monotone by definition. We moreover have:

Claim 5. NM and ND are MC if T is FOMC.

Remark 29. NM and ND are topological if T is FOS4.

These follow from the following fact, by Remark 12 and Remark 27.

Fact 66. Suppose T is an FOE theory. Then, for each n, N†n is C, N, T, 4, respectively, if THen has

the axiom C, rule N, axiom T, axiom 4, respectively.19

Proof. Suppose THen has the axiom C. Then we have the equalities marked with ∗ below by

Remark 28, those with † by Claim 3, and the inclusion with ! by C and Claim 4:

int†n(⟦ x̄ | φ ⟧M) ∩ int†n(⟦ x̄ | ψ ⟧M) ∗= ⟦ x̄ | □φ ⟧M ∩ ⟦ x̄ | □ψ ⟧M

†
= ⟦ x̄ | □φ ∧ □ψ ⟧M

!
⊆ ⟦ x̄ | □(φ ∧ ψ) ⟧M ∗

= int†n(⟦ x̄ | φ ∧ ψ ⟧M)

†
= int†n(⟦ x̄ | φ ⟧M ∩ ⟦ x̄ | ψ ⟧M).

This means that N†n is closed under binary intersection, because

int†n(A) ∩ int†n(B) ⊆ int†n(A ∩ B)

is trivially the case if either A or B is not of the form ⟦ x̄ | φ ⟧M (which implies by Remark 28 that

int†n(A) ∩ int†n(B) = ∅). For the rest of this proof we use Claims 3, 4 and Remark 28 in a similar

manner, but we omit the reference to it.

Suppose THen has the rule N. Then N†n is normal because N implies

|D|n = ⟦ x̄ | □⊤ ⟧M = int†n(⟦ x̄ | ⊤ ⟧M) = int†n(|D|n).

Suppose THen has the axiom T. Then T implies

int†n(⟦ x̄ | φ ⟧M) = ⟦ x̄ | □φ ⟧M ⊆ ⟦ x̄ | φ ⟧M,

19On the other hand, as is easy to see, N†n is not necessarily M even if THen has the rule M. This is why we need

to generate the monotone NM and ND.

257

Draft of November 14, 2010

whereas int†n(A) = ∅ ⊆ A for A ⊆ |D|n that is not of the form ⟦ x̄ | φ ⟧M. ThereforeN†n is reflexive.

Suppose THen has the axiom 4.

int†n(⟦ x̄ | φ ⟧M) = ⟦ x̄ | □φ ⟧M ⊆ ⟦ x̄ | □□φ ⟧M = int†n(int†n(⟦ x̄ | φ ⟧M)),

whereas int†n(A) = ∅ ⊆ int†n(int†n(A)) for A ⊆ |D|n that is not of the form ⟦ x̄ | φ ⟧M. Thus N†n is

closed under interior. □

VI.3.3. Products and Logical Topology. In Subsections VI.3.1 and VI.3.2, we constructed

sets |M|, |D| of models and individuals with a projection π, and equipped |M| and |D|, and moreover

products |D|n in general, with an interpretation ⟦−⟧; then we defined neighborhood functions on

|M| and |D| to obtain neighborhood frames M andD. In this subsection we discuss neighborhood

frames on |D|n.

Recall that we defined neighborhood frames M and D “logically”, with what may be called

the “topologies of necessity” of ⟦−⟧M. We should then note that, on the n-fold product |D|n of |D|
in Sets/|X|, that is, over |X|, we can think of two neighborhood functions:

• one is the “logical topology” given by ⟦−⟧M;

• the other is the topology of the n-fold product ofD in MCNb/X.

In neighborhood-sheaf semantics, n-ary sentences are interpreted by the n-fold product in MCNb/X

of a given sheaf; that is, with respect to the second neighborhood function above. Therefore it is

helpful, for the sake of Theorem 13, to show that these two neighborhood functions coincide.

Let us introduce a notation to distinguish the two neighborhood functions, though we will show

them identical immediately afterwards.

Definition 96. For each n, we write NDn for the monotone neighborhood function generated by

N†n , and (ND)n for the n-fold fibered product of ND. Written explicitly, they are the neighborhood

functions on |D|n such that, for every (M, ā) ∈ |D|n,

U ∈ NDn(M, ā) ⇐⇒ ⟦ x̄ | φ ⟧M ⊆ U and (M, ā) ∈ ⟦ x̄ | □φ ⟧M for some sentence φ of LHen,

U ∈ (ND)n(M, ā) ⇐⇒ U1 ×X · · · ×X Un ⊆ U for some U1 ∈ ND(M, a1), . . . ,Un ∈ ND(M, an).

And the following is the only fact we prove in this subsection.

Fact 67. When T is FOMC, NDn = (ND)n for each n.

258

Draft of November 14, 2010

Proof. Fix (M, ā) ∈ |D|n. To show that (ND)n(M, ā) ⊆ NDn(M, ā), suppose U ∈ (ND)n(M, ā).

This means that U1 ×X · · · ×X Un ⊆ U for some U1 ∈ ND(M, a1), . . . , Un ∈ ND(M, an). For each i,

then, there is some sentence φi of LHen such that ⟦ xi | φi ⟧ ⊆ Ui and (M, ai) ∈ ⟦ xi | □φi ⟧. Because

T is FOMC, THen is also FOMC by Remark 27 and proves

□φ1 ∧ · · · ∧ □φn ⊢ □(φ1 ∧ · · · ∧ φn).

Therefore (M, ā) ∈ ⟦ x1, . . . , xn | □(φ1 ∧ · · · ∧ φn) ⟧, whereas

⟦ x1, . . . , xn | φ1 ∧ · · · ∧ φn ⟧ = ⟦ x1 | φ1 ⟧ ×X · · · ×X ⟦ xn | φn ⟧ ⊆ U1 ×X · · · ×X Un ⊆ U.

Thus U ∈ NDn(M, ā).

On the other hand, suppose U ∈ NDn(M, ā). This means that there is a sentence φ of LHen such

that ⟦ x̄ | φ ⟧M ⊆ U and (M, ā) ∈ ⟦ x̄ | □φ ⟧M. Note that, by (iv) of Lemma 7, LHen has constants c1,

. . . , cn such that ci
M = ai for each i. Given such c̄, for each i let us write

φi for [c̄/x̄]φ ∧ xi = ci

and we have (M, ai) ∈ ⟦ xi | [c̄/x̄]□φ ⟧ ∩ ⟦ xi | xi = ci ⟧ ⊆ ⟦ xi | □φi ⟧, because FOMC THen proves

[c̄/x̄]□φ ∧ xi = ci ⊢ □([c̄/x̄]φ ∧ xi = ci);

hence ⟦ xi | φi ⟧ ∈ ND(M, ai). Moreover, since FOMC THen proves

[c̄/x̄]φ ∧ x1 = c1 ∧ · · · ∧ xn = cn ⊢ φ,

we have

⟦ x1 | φ1 ⟧ ×X · · · ×X ⟦ xn | φn ⟧ = ⟦ x̄ | [c̄/x̄]φ ∧ x1 = c1 ∧ · · · ∧ xn = cn ⟧ ⊆ ⟦ x̄ | φ ⟧ ⊆ U.

Thus U ∈ (ND)n(M, ā). Therefore NDn(M, ā) = (ND)n(M, ā) for every (M, ā) ∈ |D|n. □

VI.3.4. Completing the Completeness Proof. In this subsection, we finally complete our

proof of Theorem 13.

Claim 6. The projection π : |D| → |M| is an open continuous map from (|D|,N†1) to (|M|,N†0).

Proof. Claim 3 and Remark 28 imply

π−1[int†0(⟦φ⟧M)] = π−1[⟦□φ⟧M] = ⟦ x | □φ ⟧M = int†1(⟦ x | φ ⟧M) = int†1(π−1[⟦φ⟧M]).

259

Draft of November 14, 2010

On the other hand, fix any A ⊆ |M| that is not of the form ⟦φ⟧M. Then, if π−1[A] ⊆ D were of the

form ⟦ x | φ ⟧M, the surjectiveness of π (Claim 1) and Claim 3 would imply

A = π[π−1[A]] = π[⟦ x | φ ⟧M] = ⟦∃x .φ⟧;

thus π−1[A] is not of the form ⟦ x | φ ⟧M, either. Therefore Remark 28 implies

π−1[int†0(A)] = π−1[∅] = ∅ = int†1(π−1[A]).

Thus π is continuous and open from (|D|,N†1) to (|M|,N†0). □

Claim 7. If T is FOM, then N†1 is closed under π∗ ◦ π! for the projection π : |D| → |M|.

Proof. Suppose T is FOM. Then THen is FOM by Remark 27 and so proves

φ ⊢ ∃x .φ

□φ ⊢ □∃x .φ

Therefore Remark 28 implies

⟦ x | φ ⟧ ∈ N†1 (M, a) =⇒ (M, a) ∈ ⟦ x | □φ ⟧ ⊆ ⟦ x | □∃x .φ ⟧

=⇒ π−1[π[⟦ x | φ ⟧]] = ⟦ x | ∃x .φ ⟧ ∈ N†1 (M, a). □

Claim 8. The diagonal map ∆ : |D| → |D|2 is a continuous map from (|D|,N†1) to (|D|2,N†2).

Proof. Claim 3 and Remark 28, together with [x/y]□φ = □[x/y]φ, imply

∆−1[int†2(⟦ x, y | φ ⟧M)] = ∆−1[⟦ x, y | □φ ⟧M]

= ⟦ x | [x/y]□φ ⟧M

= ⟦ x | □[x/y]φ ⟧M

= int†1(⟦ x | [x/y]φ ⟧M)

= int†1(∆−1[⟦ x, y | φ ⟧M]),

whereas Remark 28 implies the following for any A ⊆ |D|2 that is not of the form ⟦ x, y | φ ⟧M:

∆−1[int†2(A)] = ∆−1[∅] = ∅ ⊆ int†1(∆−1[A]).

Thus ∆ is continuous from (|D|,N†1) to (|D|2,N†2). □

Claim 9. If T is FOM, then the projection π : D →M is a local isomorphism (with the diagonal

map ∆ : D → D2).

260

Draft of November 14, 2010

Proof. By Fact ??, it is enough to show that π is (iii) continuous and (??) open, and that (??)

∆ is open. To show (iii), it is enough by Remark 8 to show π is continuous from (|D|,N†1) to

(|M|,N†0); but Claim 3 and Remark 28 imply

π−1[int†0(⟦φ⟧M)] = π−1[⟦□φ⟧M] = ⟦ x | □φ ⟧M = int†1(⟦ x | φ ⟧M) = int†1(π−1[⟦φ⟧M]),

whereas Remark 28 implies

π−1[int†0(A)] = π−1[∅] = ∅ ⊆ int†1(π−1[A])

for A ⊆M that is not of the form ⟦φ⟧M. Thus π is continuous.

(??) Suppose π−1[U] ∈ ND(M, a) for U ⊆M; this means that ⟦ x | φ ⟧M ⊆ π−1[U] and (M, a) ∈
⟦ x | □φ ⟧M for a sentence φ of LHen. The former entails

⟦ x | φ ⟧M ⊆ π−1[U]

⟦∃x .φ⟧M = π[⟦ x | φ ⟧M] ⊆ U

by the adjunction π! ⊣ π∗, whereas the latter entails

π(M, a) ∈ π[⟦ x | □φ ⟧M] = ⟦∃x□φ⟧M ⊆ ⟦□∃x .φ⟧M

since FOM THen proves ∃x□φ ⊢ □∃x .φ; therefore U ∈ NM(π(M, a)). Thus π is open.

(??) Fixing any (M, a) ∈ D, suppose ∆−1[U] ∈ ND(M, a) for U ⊆ D2; this means that there is

a sentence φ of LHen such that ⟦ x | φ ⟧M ⊆ ∆−1[U] and (M, a) ∈ ⟦ x | □φ ⟧M. Then, by ∆! ⊣ ∆∗, the

former implies

⟦ x | φ ⟧M ⊆ ∆−1[U]

⟦ x, y | φ ∧ x = y ⟧M = ∆[⟦ x | φ ⟧M] ⊆ U
.

On the other hand, because FOE THen proves

φ ⊢ φ ∧ x = x φ ∧ x = x ⊢ φ

□φ ⊢ □(φ ∧ x = x)

□φ ∧ x = y ⊢ □(φ ∧ x = y)

,

(M, a) ∈ ⟦ x | □φ ⟧M entails

∆(M, a) ∈ ∆[⟦ x | □φ ⟧M] = ⟦ x, y | □φ ∧ x = y ⟧M ⊆ ⟦ x, y | □(φ ∧ x = y) ⟧M.

Therefore U ∈ ND2(∆(M, a)). Thus ∆ : D → D2 is open. □

Combining Claims 1, 5, and 9, we have

261

Draft of November 14, 2010

Corollary 14. If T is FOMC, then (D, π) is a surjective neighborhood sheaf over an MC neighbor-

hood frame M.

We then show that the structure M defined on this sheaf is a neighborhood-sheaf model.

Claim 10. For any n-ary function symbol f (or any constant c as a 0-ary function symbol) ofLHen,

f M : Dn → D is a continuous map over M.

Proof. fM is over M by definition. To show f M : Dn → D continuous, it is enough by

Remark 8 to show it continuous from (|D|n,N†n) to (|D|,N†1); but Claim 3 and Remark 28 imply

(fM)−1[int†1(⟦ z | □φ ⟧M)] = (f M)−1[⟦ z | □φ ⟧M]

= ⟦ ȳ | [f ȳ/z]□φ ⟧M

!
= ⟦ ȳ | □[f ȳ/z]φ ⟧M

= int†m(⟦ ȳ | [f ȳ/z]φ ⟧M)

= int†m((f M)−1[⟦ z | φ ⟧M])

(where the equality marked with ! is by [f ȳ/z]□φ = □[f ȳ/z]φ, due to the syntax of LHen), whereas

Remark 28 implies

(f M)−1[int†1(A)] = (f M)−1[∅] = ∅ ⊆ int†m((f M)−1[A])

for A ⊆M that is not of the form ⟦φ⟧M. Thus f M is continuous. □

Combined with Corollary 14, Claim 10 means:

Corollary 15. M is a neighborhood-sheaf model for LHen and hence, when restricted to L, is a

neighborhood-sheaf model for L.

As a last proof, we show that the interpretation (M, ⟦−⟧M) defined over the neighborhood-sheaf

model M is a neighborhood-sheaf interpretation.

Claim 11. If T is FOM, then ⟦ x̄ | □φ ⟧M = intDn(⟦ x̄ | φ ⟧M) for the interior operation intDn asso-

ciated with NDn .

Proof. By Claim 4, the rule M of THen means that

⟦ x̄ | ψ ⟧M ⊆ ⟦ x̄ | φ ⟧M

⟦ x̄ | □ψ ⟧M ⊆ ⟦ x̄ | □φ ⟧M
.

262

Draft of November 14, 2010

This entails the last equality below, while Remark 7 entails the first since Dn is generated by N†n ,

and Remark 28 entails the second:

intDn(⟦ x̄ | φ ⟧M) =
∪

U⊆⟦x̄ |φ⟧M
intDn(U) =

∪
⟦x̄ |ψ⟧M⊆⟦x̄ |φ⟧M

⟦ x̄ | □ψ ⟧M = ⟦ x̄ | □φ ⟧M. □

The combination of Corollary 15 and Claims 2, 3, 11 means:

Corollary 16. (M, ⟦−⟧) is a neighborhood-sheaf interpretation forLHen and hence, when restricted

to L, is a neighborhood-sheaf interpretation for L.

Finally, Corollary 13 means that (M, ⟦−⟧) is a neighborhood-sheaf interpretation as required

in Theorem 13. This completes our completeness proof for FOMC with respect to neighborhood-

sheaf semantics. Moreover, the combination of Theorem 13 with Remark 29 proves Theorem 7,

the completeness of FOS4 with respect to topological-sheaf semantics.

263

Bibliography

[1] Hazen, Allen, “Counterpart-Theoretic Semantics for Modal Logic”, Journal of Philosophy 76 (1979), 319–38.

[2] Awodey, Steve, Category Theory, New York: Oxford University Press, 2006.

[3] Awodey, Steve, and Kishida, Kohei, “Topology and Modality: The Topological Interpretation of First-Order

Modal Logic”, Review of Symbolic Logic 1 (2008), 146–166.

[4] Belnap, Nuel, Notes on the Science of Logic, manuscript, version of 2009.

[5] Kripke, Saul, “Semantical Considerations on Modal Logic”, Acta Philosophica Fennica 16 (1963), 83–94;

reprinted in [11], 63–72.

[6] Lambert, Karel, “Free Logics”, in Lou Goble, ed., The Blackwell Guide to Philosophical Logic, Malden, Mass.:

Blackwell, 2001, pp. 258–79.

[7] Lawvere, William F., “Adjointness in Foundations”, Dialectica 23 (1969), 281–295.

[8] ——, “Equality in Hyper doctrines and Comprehension Schema as an Adjoint Functor”, in A. Heller, ed., Appli-

cations of Categorical Algebra, Providence: American Mathematical Society, 1–14.

[9] Lewis, David, “Counterpart Theory and Quantified Modal Logic”, Journal of Philosophy 65 (1968), 113–126;

reprinted with postscripts in [10], 26–46.

[10] ——, Philosophical Papers, Volume I, New York and Oxford: Oxford University Press, 1983.

[11] Linsky, Leonard, ed., Reference and modality, London: Oxford University Press, 1971.

[12] Mac Lane, Saunders, and Moerdijk, Ieke, Sheaves in Geometry and Logic: A First Introduction to Topos Theory,

Berlin: Springer-Verlag, 1992.

[13] Mac Lane, Saunders, Categories for the Working Mathematician, Berlin: Springer-Verlag, second ed. 1998.

[14] McKinsey, J. C. C., and Tarski, Alfred, “The Algebra of Topology,” Annals of Mathematics 45 (1944), 141–91.

[15] Montague, Richard, “Universal Grammar,” Theoria 36 (1970), 373–98.

[16] Plantinga, Alvin, The Nature of Necessity, New York: Oxford University Press, 1974.

[17] Scott, Dana, “Advice on Modal Logic,” in K. Lambert, ed., Philosophical Problems in Logic, D. Reidel Pub.

Co., Dordrecht, 1970, pp. 143–73.

[18] —— “Higher-Order Modal Modeling,” paper read at E. W. Beth Centenary Conference, Amsterdam, The Nether-

lands, on Sept. 15, 2008.

[19] Segerberg, Krister, An Essay in Classical Modal Logic, No. 13 in Filosofiska Studier, Uppsala Universitet, 1971.

[20] V. Shehtman and D. Skvortsov, “Semantics of Non-Classical First-Order Predicate Logics,” in P. P. Petkov, ed.,

Mathematical Logic, Plenum Press, New York, 1990, pp. 105–16.

265

	Chapter I. Mathematical Introduction
	I.1. Neighborhood Semantics for Propositional Modal Logic
	I.1.1. Basic Definition
	I.1.2. Some Conditions on Neighborhood Frames

	I.2. Semantics for First-Order Logic
	I.2.1. Denotational Interpretation
	I.2.2. Interpretation and Images

	I.3. Topological Semantics for First-Order Modal Logic
	I.3.1. Domain of Possible Individuals
	I.3.2. Interpreting First-Order Logic
	I.3.3. Sheaves over a Topological Space
	I.3.4. Topological-Sheaf Semantics for First-Order Modal Logic
	I.3.5. First-Order Modal Logic FOS4
	I.3.6. An Example of Interpretation

	I.4. Neighborhood Semantics for First-Order Modal Logic
	I.4.1. Why Sheaves are Needed
	I.4.2. Sheaves over a Neighborhood Frame
	I.4.3. Neighborhood-Sheaf Semantics for First-Order Modal Logic

	Chapter II. Philosophical Introduction
	II.1. Questions that this Dissertation Tries to Answer
	II.1.1. Epistemic Logic and Topological Semantics

	Chapter III. Semantics for First-Order Logic Revisited
	III.1. More General Languages of First-Order Logic
	III.1.1. Standard Semantics for Classical First-Order Logic
	III.1.2. The Forgotten Trio
	III.1.3. What If the Language is not Pure

	III.2. Operational Semantics for First-Order Free Logic
	III.2.1. Existence and Two Notions of Domain
	III.2.2. Operational Semantics: A First Step
	III.2.3. A Bit Categorical Preliminary
	III.2.4. Autonomy of Domain of Quantification

	Chapter IV. Kripkean Semantics for Quantified Modal Logic
	IV.1. Kripke Semantics for Quantified Modal Logic
	IV.1.1. Kripke's Ontology and Semantics
	IV.1.2. Separation of Modal and Classical

	IV.2. Autonomous Domains of Quantification for the Kripkean Setting
	IV.2.1. Operational Form of Kripkean Semantics: A First Step
	IV.2.2. Kripke's Operations
	IV.2.3. Autonomy of Kripkean Domains of Quantification
	IV.2.4. Autonomy of Domains and Converse Barcan Formula

	IV.3. Operational Form of Kripkean Semantics: A Second Step
	IV.3.1. Free-Variable-Sensitive Interpretation of Operators
	IV.3.2. Preservation of Local Determination Generalized
	IV.3.3. DoQ-Restrictability Generalized

	Chapter V. Accessibility and Counterparts
	V.1. David Lewis's Counterpart Theory
	V.1.1. Disjoint Ontology of Possible Individuals and the Notion of Counterparts
	V.1.2. Counterpart Translation of a Modal Language

	V.2. Counterpart-Theoretic Semantics
	V.2.1. Semantically Rewriting Lewis's Semantic Ideas
	V.2.2. Operational Form of Counterpart-Theoretic Semantics
	V.2.3. Bundle Formulation of Counterpart Theory

	Chapter VI. Generalized Topological Semantics for First-Order Modal Logic
	VI.1. Topological Semantics for First-Order Modal Logic
	VI.1.1. Upshots from the Previous Chapters
	VI.1.2. Classical Semantics in a Category of Sets over a Set
	VI.1.3. Topological Spaces over a Space
	VI.1.4. Sheaves over a Topological Space
	VI.1.5. Topological-Sheaf Semantics for First-Order Modal Logic

	VI.2. Neighborhood Semantics for First-Order Modal Logic
	VI.2.1. Basic Definitions for Neighborhood Frames
	VI.2.2. Products of Neighborhood Frames
	VI.2.3. Some Subcategories of Neighborhood Frames
	VI.2.4. Neighborhood Frames over a Frame
	VI.2.5. Sheaves over a Neighborhood Frame
	VI.2.6. Neighborhood-Sheaf Semantics for First-Order Modal Logic

	VI.3. Completeness
	VI.3.1. Sufficient Set of Models with All Names
	VI.3.2. Frames of Models with Logical Topology
	VI.3.3. Products and Logical Topology
	VI.3.4. Completing the Completeness Proof

	Bibliography

