
A proposition is the (homotopy) type of its
proofs

Steve Awodey∗

January 8, 2016

There are, at first blush, two kinds
of construction involved:
constructions of proofs of some
proposition and constructions of
objects of some type. But I will
argue that, from the point of view
of foundations of mathematics,
there is no difference between the
two notions. A proposition may be
regarded as a type of object,
namely, the type of its proofs.
Conversely, a type Amay be
regarded as a proposition, namely,
the proposition whose proofs are
the objects of type A. So a
proposition A is true just in case
there is an object of type A.

W.W. Tait [21]

∗Thanks to Ulrik Buchholtz and Michael Shulman for comments on an earlier draft. This re-
search was partially supported by the U.S. Air Force Office of Scientific Research through MURI
grant FA9550-15-1-0053. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the AFOSR.

1



Overview

Homotopy type theory is a new field devoted to a recently discovered connection be-
tween Logic and Topology — more specifically, between constructive type theory,
which was originally invented as a constructive foundation for mathematics and
now has many applications in the theory of programming languages and formal
proof verification, and homotopy theory, a branch of algebraic topology devoted
to the study of continuous deformations of geometric spaces and mappings. The
basis of homotopy type theory is an interpretation of the system of intensional
type theory into abstract homotopy theory. As a result of this interpretation, one
can construct new kinds of models of constructive logic and study that system se-
mantically, e.g. proving consistency and independence results. Conversely, con-
structive type theory can also be used as a formal calculus to reason about abstract
homotopy. This is particularly interesting in light of the fact that the type theory
used underlies several computational proof assistants, such as Coq and Agda; this
allows one to use those systems to reason formally about homotopy theory and
fully verify the correctness of definitions and proofs using these computer proof
systems. Potentially, this could provide a useful tool for mathematicians working
in fields like homotopy theory and higher category theory. Finally, new logical
principles and constructions based on homotopical and higher categorical intu-
itions can be added to the system, providing a way to formalize many classical
spaces and sophisticated mathematical constructions. Examples include the so-
called higher inductive types and the univalence axiom of Voevodsky.

More broadly, univalent foundations is an ambitious new program for founda-
tions of mathematics, proposed by Voevodsky, which is based roughly on homo-
topy type theory and intended to capture a very broad range of mathematics (I
am reluctant to use the phrase “All of Mathematics”, but there is nothing in par-
ticular that could not, in principle, be done). The new univalence axiom, which
roughly speaking implies that isomorphic structures can be identified, and the
general point of view that it promotes sharpen the expressiveness of the system
and make it more powerful, so that new concepts can be isolated and new con-
structions can be carried out, and others that were previously ill-behaved (such
as quotients) can be better controlled. The system is not only more expressive
and powerful than previous type- and set-theoretic systems of foundations; it also
has two further, distinct novelties: it is still amenable to computer formalizations,
and it captures a conception of mathematics that is distinctly “structural”. These

2



two seemingly unrelated aspects, one practical, the other philosophical, are in fact
connected in a rather subtle way. The structural character of the system, which
the univalence axiom requires and indeed strengthens, permits the use of a new
“synthetic” style of foundational axiomatics which is quite different from conven-
tional axiomatic foundations. One might call the conventional, set-theoretic style
of foundations an “analytic” (or perhaps “bottom-up”) approach, which “anal-
yses” mathematical objects into constituent material (e.g. sets or numbers), or at
least constructs appropriate “surrogate objects” from such material — think of
real numbers as Dedekind cuts of rationals. By contrast, the “synthetic” (or “top-
down”) approach permitted by univalent foundations is based on describing the
fundamental structure of mathematical objects in terms of their universal prop-
erties, which in type theory are given by rules of inference determining directly
how the new objects map to and from all other ones. This fundamental shift in
foundational methodology has the practical effect of simplifying and shortening
many proofs by taking advantage of a more axiomatic approach, as opposed to the
more laborious analytic constructions.1 Indeed, in a relatively short time, a large
amount of classical mathematics has already been developed in this new system:
basic homotopy theory, category theory, real analysis, the cumulative hierarchy of
set theory, and many other topics. The proofs of some very sophisticated, high-
level theorems have now been fully formalized and verified by computer proof
assistants — a foundational achievement that would be very difficult to match
using conventional, “analytic” style foundational methods.

Indeed, this combination of a synthetic foundational methodology and a pow-
erful computational implementation has the potential to give new life, and a new
twist, to the old idea of reducing mathematics to a purely formal calculus. Explicit
formalizations that were once too tedious or complicated to be done by hand can
now be accomplished in practice with a combination of synthetic methods and
computer assistance. This new formal reduction of mathematics raises again the
epistemological question of whether, and in what sense, the type-theoretic basis
of the formal system is purely “logical”, and what this means about mathematics
and the nature of a priori knowledge. That is a question of significant philosophi-
cal interest, but it is perhaps better pursued independently, once the mathematical
issues related to the formalization itself are more settled.

1In a related context, it has been said that such an approach has “all the advantages of theft
over honest toil”, but the issue of how to justify the rules for new constructions can be separated
from that of their expedience.

3



1 Type theory

In its current form, constructive type theory is the result of contributions made by
several different people, working both independently and in collaboration. With-
out wanting to give an exhaustive history (for one such, see [12]), it may be said
that essential early contributions were made by H. Curry, W. Howard, F.W. Law-
vere, P. Martin-Löf, D.S. Scott, and W.W. Tait.

Informally, the basic system consists of the following ingredients:

• Types: X, Y, . . . , A×B, A→ B, . . ., including both primitive types and type-
forming operations, which construct new types from given ones, such as the
product type A× B and the function type A→ B.

• Terms: a : A, b : B, . . ., including variables x : A for all types, primitive
terms b : B, and term-forming operations like 〈a, b〉 : A × B and λx.b(x) :

A→ B associated to the type-forming operations.

One essential novelty is the use of so-called dependent types, which are regarded as
“parametrized” types or type families indexed over a type.

• Dependent Types: x : A ` B(x) means that B(x) is a type for each x : A, and
thus it can be thought of as a function from A to types. Moreover, one can
have iterated dependencies, such as:

x : A ` B(x)
x : A, y : B(x) ` C(x, y)
x : A, y : B(x), z : C(x, y) ` D(x, y, z)

etc.

• Dependent Type Constructors: There are special type constructors for de-
pendent types, such as the sum

∑
x:A B(x) and product

∏
x:A B(x) opera-

tions. Associated to these are term constructors that act on dependent terms
x : A ` b(x) : B(x), such as λx.b(x) :

∏
x:A B(x).

• Equations: As in an algebraic theory, there are then equations s = t : A

between terms of the same type, such as
(
λx.b(x)

)
(a) = b(a) : B(a).

4



The entire system of constructive type theory is a formal calculus of such typed
terms and equations, usually presented as a deductive system by formal rules of
inference. For one modern presentation, see the appendix to [22]. This style of
type theory is somewhat different from the Frege-Russell style systems of which
it is a descendant. It was originally intended as a foundation for constructive
mathematics, and it has a distinctly “predicative” character — for instance, it is
usually regarded as open-ended with respect to the addition of new type- and
term-forming operations, such as universes, so that one does not make use of the
notion of “all types” in the way that set-theory admits statements about “all sets”
via its first-order logical formulation. Type theory is now used widely in the the-
ory of programming languages and as the basis of computerized proof systems,
in virtue of its good computational properties.

Propositions as types

The system of type theory has a curious dual interpretation:

• On the one hand, there is the interpretation as mathematical objects: the
types are some sort of constructive “sets”, and the terms are the “elements”
of these sets, which are being built up according to the stated rules of con-
struction.

• But there is also a second, logical interpretation: the types are “propositions”
about mathematical objects, and their terms are “proofs” of the correspond-
ing propositions, which are being derived in a deductive system.

This is known as the Curry-Howard correspondence, and it can be displayed as fol-
lows:

0 1 A+ B A× B A→ B
∑

x:A B(x)
∏

x:A B(x)

⊥ T A∨ B A∧ B A⇒ B ∃x:AB(x) ∀x:AB(x)

For instance, regarded as propositions, A and B have a conjunction A ∧ B,
a proof of which corresponds to a pair of proofs a of A and b of B (via the ∧-
introduction and elimination rules), and so the terms ofA∧B, regarded as a type,
are just pairs 〈a, b〉 : A × B where a : A and b : B. Similarly, a proof of the impli-
cation A ⇒ B is a function f that, when applied to a proof a : A returns a proof

5



f(a) : B (modus ponens), and so f : A → B. The interpretation of the existential
quantifer ∃x:AB(x) mixes the two points of view: a proof of ∃x:AB(x) consists of
a term a : A and a proof b : B(a); so in particular, when it can be proved, one
always has an instance a of an existential statement. In classical logic, by contrast,
one can use “proof by contradiction” to establish an existential statement with-
out knowing an instance of it, but this is not possible here. This gives the system
has a distinctly constructive character (which can be specified in terms of certain
good proof-theoretic properties). This is one reason it is useful for computational
applications.

Identity types

Under the logical interpretation above we now have:

• propositional logic: 0, 1, A+ B, A× B, A→ B,

• predicate logic: B(x), C(x, y), with the quantifiers
∏

and
∑

.

It would therefore be natural to add a primitive relation representing equality of
terms x = y as a type. On the logical side, this would represent the proposition “x
is identical to y”. But what would it be mathematically? How are we to continue
the above table:

0 1 A+ B A× B A→ B
∑

x:A B(x)
∏

x:A B(x) ?

⊥ T A∨ B A∧ B A⇒ B ∃x:AB(x) ∀x:AB(x) x = y

We shall add to the system a new, primitive type of identity between any terms
a, b : A of the same type A:

IdA(a, b) .

The mathematical interpretation of this identity type is what leads to the homotopi-
cal interpretation of type theory. Before we can explain that, however, we must
first consider the rules for the identity types.

The introduction rule says that a : A is always identical to itself:

r(a) : IdA(a, a)

6



The elimination rule is a form of what may be called “Lawvere’s Law”:2

c : IdA(a, b) x : A ` d(x) : R
(
x, x, r(x)

)
J(a, b, c, d) : R(a, b, c)

That may look a bit forbidding when seen for the first time. Schematically, it is
saying something like:

a = b & R(x, x) ⇒ R(a, b) .

Omitting the proof terms, this characterizes identity by saying that it is the least
(or better: initial) reflexive relation.

The rules for identity types are such that if a and b are syntactically equal as
terms, a = b : A, then they are also identical in the sense that there is a term
p : IdA(a, b). But the converse is not true: distinct terms a 6= b may still be propo-
sitionally identical p : IdA(a, b). This is a kind of intensionality in the system, in
that terms that are identified by the propositions of the system may nonetheless
remain distinct syntactically, e.g. different polynomial expressions may determine
the same function. Allowing such syntactic distinctions to remain (rather than in-
cluding a “reflection rule” of the form p : IdA(a, b)⇒ a = b, as is done in “exten-
sional type theory”), gives the system its good computational and proof-theoretic
properties. It also gives rise to a structure of great combinatorial complexity.

Although only the syntactically equal terms a = b : A are fully interchangeable
everywhere, propositionally identical ones p : IdA(a, b) are still interchangeable
salva veritate in the following sense: assume we are given a type family x : A ` B(x)
(regarded, if you like, as a “predicate” on A), an identity p : IdA(a, b) in A, and a
term u : B(a) (a “proof of B(a)”). Then consider the following derivation, using
the identity rules.

u : B(a)

p : IdA(a, b)

x : A ` B(x)
x : A,y : B(x) ` y : B(x)

x : A ` λy.y : B(x)→ B(x)

p∗ : B(a)→ B(b)

p∗u : B(b)

2See [14] for a closely related principle.

7



Here p∗ = J(a, b, p, λy.y). The resulting term p∗u : B(b) (which is a derived
“proof of B(b)”) is called the transport of u along p. Logically, this just says

a = b & B(a)⇒ B(b) ,

i.e. that a type family over A must respect the identity relation on A. As we shall
see below, the homotopy interpretation provides a different view of transport;
namely, it corresponds to the familiar lifting property used in the definition of a
“fibration of spaces”:

B

��

u // p∗u

A a p
// b

(1)

2 The homotopy interpretation

Given any terms a, b : A, we can form the identity type IdA(a, b) and then consider
its terms, if any, say p, q : IdA(a, b). Logically, p and q are “proofs” that a and b
are identical, or more abstractly, “reasons” or “evidence” that this is so. Can p and
q be different? It was once thought that such identity proofs might themselves al-
ways be identical, in the sense that there should always be some α : IdIdA(a,b)(p, q);
however, as it turns out, this need not be so. Indeed, there may be many distinct
(i.e. non-identical) terms of an identity type, or none at all. Understanding the
structure of such iterated identity types is one result of the homotopical interpre-
tation.

Suppose we have terms of ascending identity types:

a, b : A

p, q : IdA(a, b)

α, β : IdIdA(a,b)(p, q)

. . . : IdIdId...
(. . .)

8



Then we can consider the following informal interpretation:

Types ; Topological spaces
Terms ; Continuous maps
a : A ; Points a ∈ A

p : IdA(a, b) ; Paths p from a to b
α : IdIdA(a,b)(p, q) ; Homotopies α from p to q

...

So for instance A may be a space with points a and b, and then an identity term
p : IdA(a, b) is interpreted as a path in A from a to b, i.e. a continuous function
p : [0, 1] → A with p0 = a and p1 = b. If q : IdA(a, b) is another such path from
a to b, a higher identity term α : IdIdA(a,b)(p, q) is then interpreted as a homotopy
from p to q, i.e. a “continuous deformation” of p into q, described formally as
a continuous function α : [0, 1] × [0, 1] → A with the expected behavior on the
boundary of the square [0, 1]×[0, 1]. Higher identity terms are likewise interpreted
as higher homotopies.

Note that, depending on the choice of space A and points a, b ∈ A and paths
p, q, it may be that there are no homotopies from p to q because, for example,
those paths may go around a hole in A in two different ways, so that there is
no continuous way to deform one into the other. Or there may be many differ-
ent homotopies between them, for instance wrapping different numbers of times
around the surface of a ball. Depending on the space, this can become quite a
complicated structure of paths, deformations, higher-dimensional deformations,
etc. — indeed, the investigation of this structure is what homotopy theory is all
about.

One could say that the basic idea of the homotopy interpretation is just to
extend the well-known topological interpretation of the simply-typed λ-calculus
[3, 6] (which interprets types as spaces and terms as continuous functions) to the
dependently typed λ-calculus with Id-types. The essential new idea is then simply
this:

An identity term p : IdA(a, b) is a path in the space A from the point a to the
point b.

Everything else essentially follows from this one idea: the dependent types x : A `
B(x) are then forced by the rules of the type theory to be interpreted as fibrations,

9



in the topological sense, since one can show from the rules for identity types that
the associated map B → A of spaces must have the lifting property indicated in
diagram (1) above (a slightly more intricate example shows that one can “lift”
not only the endpoint, but also the entire path, and even a homotopy). The total
Id-types

∑
x,y:A IdA(x, y) are naturally interpreted as path spaces AI, and the maps

f, g : A → B that are identical as terms of function type A → B are just those that
are homotopic f ∼ g.

The homotopy interpretation was first proposed by the present author and
worked out formally (with a student) in terms of Quillen model categories—a
modern, axiomatic setting for abstract homotopy theory that encompasses not
only the classical homotopy theory of spaces and their combinatorial models like
simplicial sets, but also other, more exotic notions of homotopy (see [8]). The in-
terpretation was shown to be complete in the logical sense by Gambino and Garner
[10].3 These results show that intensional type theory can in a certain sense be re-
garded as a “logic of homotopy”, in that the system can be faithfully represented
homotopically, and then used to reason formally about spaces, continuous maps,
homotopies, and so on. The next thing one might ask is, how much general homo-
topy theory can be expressed in this way? It turns out that a surprising amount
can be captured under this interpretation, as we shall now proceed to indicate.

The fundamental groupoid of a type

Like path spaces in topology, identity types endow each type with the structure
of a groupoid: a category in which every arrow has an inverse.

a1a 88 p
//

q·p

��

b

p−1

xx

q

��

c

The familiar laws of identity, namely reflexivity, symmetry, and transitivity are
provable in type theory, and their proof terms therefore act on identity terms,

3There is a technical question related to the selection of path objects and diagonal fillers as in-
terpretations of IdA-types and elimination J-terms in a “coherent” way, i.e. respecting substitution
of terms for variables; various solutions have been given, including [25, 23, 24, 19, 2].

10



providing the groupoid operations of unit, inverse, and composition:

r : Id(a, a) reflexivity a // a

s : Id(a, b)→ Id(b, a) symmetry a // b
uu

t : Id(a, b)× Id(b, c)→ Id(a, c) transitivity a //

��

b

��

c

The groupoid laws of units, inverses, and associativity also hold “up to homotopy”,
i.e. up to the existence of a higher identity term. This means that instead of e.g.
p−1 · p = 1a, we have a higher identity term:

α : IdId
(
p−1 · p, 1a

)
as indicated in:

a

b

c

p

77

p−1

��

1a

22��

α

Indeed, this is just the same situation that one encounters in defining the funda-
mental group of a space in classical homotopy theory, where one shows e.g. that
composition of paths is associative up to homotopy by reparametrization of the
composites. In fact, in virtue of the homotopy interpretation, the classical case is
really just an instance of the more general, type theoretic one.

Inspired by this occurence of type theoretic groupoids, Hofmann and Streicher
[11] discovered an interpretation of the entire system of type theory into the cat-
egory of all groupoids, which was a precursor of the homotopy interpretation. It
was used, for instance, to estable the above mentioned fact that identity types may
have elements that are not themselves identical.

The identity structure of a general type may actually be much richer than that
of just a groupoid; as in homotopy theory, there may be non-trivial higher identi-
ties, representing higher homotopies between homotopies, and this structure may
go on to higher and higher identities without ever becoming degenerate.

11



•
a

•
a

•
b
//

p
•
a

•
b

p

$$

q

::
��
α

�!

α

}�

β*4
ϑ•

a
•b

p

��

q

DD
. . .

The resulting structure is that of an ω-groupoid, which is something that has also
appeared elsewhere in mathematics — twice! As already mentioned, such “infinite-
dimensional groupoids” also occur in homotopy theory, where the fundamental
ω-groupoid of a space is an algebraic invariant that respects the homotopy type
(according to Grothendieck’s famous “homotopy hypothesis” these groupoids
contain all the essential information of the space up to homotopy); but also in cat-
egory theory, one has considered the idea of an ω-category, with not only objects
and arrows between them, but also 2-arrows between arrows, 3-arrows between
2-arrows, and so on. It is indeed remarkable that the same notion has now ap-
peared again in logic, as exactly the structure of iterated identity in type theory.4

Homotopy levels

One of the most useful new discoveries is that the system of all types is naturally
stratified into “homotopy levels” by a hierarchy of definable conditions.5

At the lowest level are those types that are contractible in the following sense.

X is contractible =def

∑
x:X

∏
y:X

IdX(x, y) .

Under the logical reading, this condition says that X is a “singleton”, in that there
is an element x : X such that everything y : X is identical to it. So roughly, these
are the types that have just one element, up to homotopy.

The next level consists of the propositions, defined as those types whose identity
types are always contractible,

X is a proposition =def

∏
x,y:X

Contr(IdX(x, y)) .

4See [17] and [9] for details.
5This concept is due to Voevodsky, cf. [24]. Also see [22], ch. 7.

12



It is not hard to see that such types are contractible if they are inhabited—thus
they are like “truth values”, either false (i.e. empty) or true (i.e. contractible), and
then essentially uniquely so. In other words, the elements of a proposition contain
no further information, other than the mere inhabitation of the proposition, which
we interpret to mean that it holds.

At the next level are the sets, which are types whose identity relation is always
a proposition:

X is a set =def

∏
x,y:X

Prop(IdX(x, y))

These types have the familiar, set-like behavior that the identity proofs, when they
exist, are unique (again “up to homotopy”).

Next come the types whose identity types are sets, which may be called groupoids,
because they are like the algebraic groupoids just discussed:

X is a groupoid =def

∏
x,y:X

Set(IdX(x, y))

These types may have distinct identity proofs between elements, but all higher
identity proofs are degenerate.

The general pattern is now clear:

X has homotopy level n+ 1 =def

∏
x,y:X

Hn(IdX(x, y))

Thus the types X of homotopy level n + 1 (for which we write Hn+1(X)) are the
types whose identity relation is of homotopy leveln; these types correspond to the
higher-dimensional groupoids of category theory, when we think of identity terms
as higher-dimensional arrows. To start the numbering, we may set the contractible
types to be level 0.

The homotopy level of a type is the height at which the tower of iterated
identity types becomes degenerate; under the homotopy interpretation this cor-
responds (up to a shift in numbering) to the notion of a space being a homotopy
n-type, which is usually defined as the greatest n such that the n-th homotopy
group is non-trivial. In each case, it is a measure of the complexity of the type/s-
pace — in the former case in terms of higher identities, and in the latter in terms
of higher homotopies.

The recognition that types have these different degrees of complexity allows
for a more refined version of the propositions-as-types idea, according to which

13



prop.s sets groupoids ... n-groupoids

U0

U1

U2

U3

h-level

size

Figure 1: The 2D hierarchy of types

only those types that are “propositions” in the sense of the homotopy levels are
read as bare assertions, while others are regarded more discriminately as structured
objects of various kinds. Accordingly, a type family x : A ` B(x) such that all val-
ues B(x) are propositions can be regarded as a simple “predicate” (or a “relation”
depending on the arity), while a family of sets, groupoids, etc. is viewed more
accurately as a structure on A.

The stratification of types by homotopy levels gives us a new view of the
mathematical universe, which is now seen to be arranged not only into the fa-
miliar, one-dimensional hierarchy of size, determined by a system of universes
U0,U1,U2, . . . , but also into a hierarchy of homotopy levels, which form a second
dimension independent of the first (see Fig. 1).

3 Higher inductive types

The recognition and use of the notion of homotopy level of a type has made the
entire system of type theory more expressive and powerful, for example by allow-
ing greater control over the introduction of new type constructions. One such con-
struction that was formerly problematic but is now better behaved is the construc-

14



tion of the quotient typeA/∼ of a typeA by an equivalence relation x, y : A ` x ∼ y.
When x ∼ y is known to be a proposition for all x, y : A, then the quotientA/∼ will
be a set, and the introduction and elimination rules can be determined without
difficulty. Such “set quotients” can be constructed, roughly speaking, as equiv-
alence classes [24]; or they can be introduced axiomatically [22], essentially by
stating rules that say that the identity type of A/ ∼ is a relation (i.e. a family of
propositions) that is freely generated by the equivalence relation x ∼ y.

The latter, axiomatic approach is a special case of the very powerful construc-
tion method of higher inductive types, which are a systematic way of introducing
new types with stipulated points, paths, higher paths, etc.. In order to explain this
further, let us first recall how type theory deals with ordinary inductive types, like
the natural numbers. The natural numbers N can be implemented as an inductive
type via rules that may be represented schematically as:

N :=

{
0 : N
s : N→ N

The terms 0 and s are the introduction rules for this type. The recursion property of
N is captured by an elimination rule:

a : X f : X→ X
rec(a, f) : N→ X

which says that given any structure of the same kind as N, there is a map rec(a, f)
to it from N, which furthermore preserves the structure, as stated by the following
computation rules:

rec(a, f)(0) = a ,

rec(a, f)(sn) = f(rec(a, f)(n)) .

The map rec(a, f) : N → X is actually required to be the unique one satisfying
the computation rules, a condition that can be ensured either with a further com-
putation rule or by reformulating the elimination rule as a more general induction
principle rather than a recursion principle (cf. [7]).

In more algebraic terms, one would say that (N, 0, s) is the free structure of this
kind. We remark that it can be shown on the basis of these rules, and without
further assumptions, that N is a set in the sense of the hierarchy of homotopy
levels.

15



The circle

We now want to use the same method of specifying a new type by introduction
and elimination rules (which amount to specifying the mappings to and from
other types), but now with generating data that may include also elements of
identity types, in addition to elements of the type itself and operations on it. A
simple example is the following.

The homotopical circle S can be given as an inductive type involving one “base
point” and one “higher-dimensional” generator:

S :=

{
base : S
loop : IdS(base, base)

The element loop : IdS(base, base) can therefore be regarded as a “loop” at the
basepoint base : S, i.e. a path that starts and ends at base. The corresponding
recursion property of S is then given by the following elimination rule,

a : X p : IdX(a, a)
rec(a, p) : S→ X

with computation rules,

rec(a, p)(base) = a ,

rec(a, p)!(loop) = p .

There is an obvious analogy to the rules for N.6 The map rec(a, p) : S→ X is then
moreover required to be unique up to homotopy, which again is achieved either
with additional computation rules or a generalized elimination rule in the form of
“circle induction” rather than “circle recursion” (see [22],[20]).

Conceptually, these rules suffice to make the structure (S, base, loop) into the
“free type with a point and a loop”. To see that it actually behaves as it should to
be the homotopical circle, one can verify that it has the correct homotopy groups
(cf. [16]):

Theorem 1 (Shulman 2011). The type-theoretic circle S has the following homotopy
groups:

πn(S) =

{
Z, if n = 1,
0, if n 6= 1.

6A map f : A→ B induces a map on identities, taking each p : IdA(a, b) to a term in IdA(fa, fb)

which we here write f!p (see [22], ch. 2).

16



The homotopy groups πn(X, x) for any type X and basepoint x : X can be de-
fined as usual in terms of loops at x in X, i.e. identity elements IdX(x, x), “modulo
homotopy”, i.e. modulo higher identities. The proof of the above theorem can
be given entirely within the system of type theory, and it combines methods from
classical homotopy theory with ones from constructive type theory in a novel way,
using Voevodsky’s univalence axiom (a sketch is given in Section 5 below). The
entire development has been fully formalized [16].

The interval

The homotopical interval I is also a higher inductive type, this time generated by
the basic data:

I :=

{
0, 1 : I
path : IdI(0, 1)

Thus path : IdI(0, 1) represents a path from 0 to 1 in I. The elimination and compu-
tation rules are analogous to those for the circle, but now with separate endpoints
0 and 1. So given any path p : IdX(a, b) between points a and b in any type X,
there is a unique (up to homotopy) map I→ X taking 0 to a, 1 to b, and path to p.
This specification makes the structure (I, 0, 1, path) the “free type with a path”.

In terms of this example, we can plainly compare the methodology behind
the use of higher inductive types in homotopy type theory with the conventional
approach of classical topology:

In classical topology, we start with the interval and use it to define the
notion of a path.
In homotopy type theory, we start with the notion of a path, and use it
to define the interval.

The notion of a path, recall, is a primitive one in our system, namely a term of iden-
tity type. In terms of these, one can then determine the interval I via its mappings,
rather than the other way around.

Constructing higher inductive types

The higher inductive types mentioned so far were introduced axiomatically, by
stating their basic rules. Can we instead construct them, similarly to the way that
quotients can also be constructed from equivalence classes? One possible way to

17



do this is by what is sometimes called an “impredicative encoding”, which is a
construction that involves a quantification over “all types”.

Consider first some related examples that are not higher inductive types, but
which can be determined by such impredicative encodings. First let p and q be
propositions and consider:

p∨ q =def ∀x
[
(p⇒ x)∧ (q⇒ x)⇒ x

]
where the quantifier ∀x is over all propositions x (in a given universe). Among
propositions, this type has the correct behavior to be the disjunction of p and q.

Next let A and B be sets, and consider:

A+ B =def

∏
X

[
(A→ X)× (B→ X)→ X

]
where the product

∏
X is over all sets X (again, in a given universe). In order

for this to actually be the coproduct among all sets, this specification requires an
additional coherence condition saying that the transformations

αX :
(
(A→ X)× (B→ X)

)
// X

are natural in X, in a straightforward sense that we will not spell out here.
The same general idea can be used for the interval and the circle: for a type X,

define the path space I(X) and the (free) loop space L(X) by:

I(X) =def

∑
x,y:X

IdX(x, y)

L(X) =def

∑
x:X

IdX(x, x)

Morally, we expect that I(X) = I→ X and L(X) = S→ X, so as a first approxima-
tion we set:

I =def

∏
X

[
I(X)→ X

]
S =def

∏
X

[
L(X)→ X

]
where the product

∏
X is now over all groupoids X (types of homotopy level 3, in

a given universe). In order to get the correct elimination rules for these types,

18



we again add a further coherence condition, now involving higher-order naturality,
which again we will not spell out here.7

The possibility of a “logical construction of the circle” and similar construc-
tions of some other higher inductive types are current work in progress. At present
they require either a general assumption of “impredicativity”, or more specialized
“resizing rules”, or some other device to handle the shift in universes involved in
the quantification over “all types”.

Many basic spaces and constructions can be introduced directly as higher in-
ductive types. These include, for example:

• higher spheres Sn, mapping cylinders, tori, cell complexes,

• suspensions ΣA, homotopy pushouts,

• truncations, such as connected components π0(A) and “bracket” types [A]

(cf. [5]),

• (higher) homotopy groups πn, Eilenberg-MacLane spacesK(G,n), Postnikov
systems,

• a Quillen model structure on the system of all types,

• quotients by equivalence relations and more general quotients,

• free algebras, algebras presented by generators an relations,

• the real numbers, the surreal numbers,

• the cumulative hierarchy of Zermel-Fraenkel sets.

The use of higher inductive types is a topic that is curently under very active
investigation (see e.g. [18]).

7See [4]. The displayed formula for the circle was first considered by M. Shulman.

19



4 Univalence

Voevodsky has proposed a new foundational axiom to be added to type theory:
the univalence axiom. It is motivated by the homotopy interpretation and makes
precise the informal mathematical practice of “identifying” isomorphic objects.
Especially when combined with higher inductive types, this new axiom is a pow-
erful addition to the system. Although it is formally incompatible with the naive
interpretation of type theory according to which all types are sets, it is provably
consistent with the homotopical interpretation [13]. Its status as a constructive
principle is still unsettled, however, and that question is the focus of much cur-
rent research.

Isomorphism, equivalence, and invariance

In type theory, the notion of a type isomorphismA ∼= B is definable as usual; namely,
the statement

there are f : A→ B and g : B→ Awith gf(x) = x and fg(y) = y

is formalized by the type of isomorphisms,

Iso(A,B) =def

∑
f:A→B

∑
g:B→A

(∏
x:A

IdA(gf(x), x)×
∏
y:B

IdB(fg(y), y)
)
.

Under the logical reading, this type expresses exactly the preceding informal state-
ment. The types A and B are isomorphic just if this type is inhabited by a term,
which is then exactly an isomorphism betweenA andB. Here we see the propositions-
as-types idea at work: a proof of the propositionA ∼= B is the same thing as a term
of the type Iso(A,B), namely, an isomorphism.

There is also a more refined notion of equivalence of types A ' B which adds
a further “coherence” condition relating the identity terms of IdA(gf(x), x) and
IdB(fg(y), y) via f and g (see [22], chapter 4). Since every isomorphism can be
“promoted” to an equivalence, the latter condition is no “stronger” logically; nonethe-
less, it is worth the extra trouble to consider, because being an equivalence f : A '
B is always a propositional condition, whereas being an isomorphism f : Iso(A,B)
need not be one. Under the homotopy interpretation, the type A ' B consists of
the homotopy equivalences of spaces. The notion of type equivalence also subsumes

20



categorical equivalence (for groupoids), isomorphism (for sets), and logical equivalence
(for propositions).

Now, it is an important fact about type theory that all “definable properties”
P(X) of types X (formally, any type expression with a type variable X) can be
shown to respect type equivalence, in the sense that A ' B and P(A) imply P(B);
indeed, if A ' B then P(A) ' P(B). Briefly, we may say that all type-theoretic
properties and concepts are invariant.8 It therefore follows that equivalent types
A ' B are indiscernable within the system. Thus it is natural to ask how equiva-
lence is related to the identity of the types A and B.

The univalence axiom

To reason internally about identity of types A and B, we need to add to the basic
system a type universe U , with an identity type,

IdU(A,B)

expressing the relation of identity of types. The usual rules for identity then imply
that identity of types implies their equivalence (because equivalence is reflexive),
and so there is a comparison map,

IdU(A,B)→ (A ' B).

The univalence axiom asserts that this map is itself an equivalence:

IdU(A,B) ' (A ' B) (UA)

So UA can be read: identity is equivalent to equivalence. It internally identifies those
types that are equivalent, and therefore indiscernable. Indeed, since UA is an
equivalence, there is a map coming back:

IdU(A,B)←− (A ' B) .

Regarded as a map of types, we write this as ua : (A ' B) → IdU(A,B), which
maps equivalences of types to identities between them. Read logically, ua is a
proof of the statement that equivalent types are identical; thus in particular, isomor-
phic sets, groups, etc., are also identified.

8This of course does not hold in set theory. For example, consider the sets {∅} and {{∅}}, which
are isomorphic but are distinguished by the property P(X) = (∃x, y) x ∈ y ∈ X.

21



Note that in the extended system with a universe U , the univalence axiom is
just what is needed to maintain the above-mentioned invariance of all “proper-
ties” P(X):

A ' B implies P(A) ' P(B) ,

for we can take P(X) = IdU(A,X) to see that equivalent types must be identified.
Note also that UA implies that U , in particular, is not a set: for there are two

distinct isomorphisms 2 ∼= 2, and these therefore correspond by UA to two distinct
identity terms in IdU(2, 2).

Finally, we mention that the computational character of UA is still an open
question. The system of type theory without it has some desirable properties,
like the so-called “strong normalization” of terms, which implies the decidability
of the syntactic equality relation of terms a = b : A. Adding a new axiom like
univalence is likely to disrupt this property, but does it completely destroy the
constructive character of the system? This is one of the open questions currently
under active investigation.

5 Synthetic reasoning

In homotopy type theory, what is called the “synthetic” style of reasoning involves
making use of the primitive geometric element introduced by taking the notion of a
path as basic, rather than reducing it to maps from the real interval [0, 1]. This
method is especially powerful in combination with the univalence axiom. By way
of example, let us sketch the proof of the above-mentioned theorem that the fun-
damental group of the circle S is the integers Z.

Computing π1S
To compute the fundamental group of the circle S, just as in the classical proof,
we shall make use of the “universal cover” (see Fig. 2). As a covering space and
therefore a fibration, the universal cover will be a dependent type over S, which,
in the presence of a universe U , is simply a map

cov : S // U .

We can define such a type family using the recursion property of the circle; indeed,
we just need the following data:

22



R

S

cov

base

0

1

2

Figure 2: The winding map in classical topology

• a point A : U

• a loop p : IdU(A,A)

For the point A we shall take the integers Z. By univalence, to give a loop p :

IdU(A,A) in U , it suffices to give an equivalence q : Z ' Z. But since Z is a set,
equivalences are just isomorphisms; so for q we can take the successor function
succ : Z ∼= Z.

Definition (Universal cover of S). The type family cov : S // U is given by circle
recursion with

cov(base) = Z ,
cov(loop) = ua(succ) .

As in classical homotopy theory, we then use the universal cover to define the
“winding number” of any path p : IdS(base, base) by wind(p) = p∗(0), where p∗ is
the transport operation along p. This gives a map from the type Ω(S) of (based)
loops in S to the integers,

wind : Ω(S) // Z,

which can be shown to be inverse to the map Z // Ω(S) defined by composing
loop with itself a given number of times i,

i 7→ loopi.

This proof can be formalized in a very efficient way, and the result is no longer
than a conventional, “unformal” mathematical proof (see [16]). This is a real

23



advance over the traditional “analytic” style of formalization, which would re-
quire defining the circle as a subspace of the Euclidean plane R2, defining homo-
topies via continuous maps from the unit interval [0, 1], using reparametrizations
of paths to define their composition, defining the real numbers R and the wind-
ing map via trigonometric functions, and so on. To be sure, those are worthwhile
mathematical objects and constructions in their own right! But by avoiding the
need for them in this case, the synthetic approach seems to be somehow closer to
the real “essence” of the homotopical fact being proved.

The cumulative hierarchy of sets

As a final example of synthetic reasoning in the full system of homotopy type
theory with higher inductive types and univalence, we consider a somewhat “ex-
perimental” construction which gives the cumulative hierarchy of sets; see [22]
for the details.

Given a universe U , we make the cumulative hierarchy V of sets in U as a higher
inductive type with the following generating constructors (we shall write x =V y

for IdV(x, y) for easier comparison with more familiar treatments):

1. For any type A : U and any map f : A→ V , there is a “set”,

set(A, f) : V .

We think of set(A, f) as the image of A under f, i.e. the classical set

{f(a) | a ∈ A}.

2. For all A : U and f : A→ V and B : U and g : B→ V such that(
∀a : A∃b : B f(a) =V g(b)

)
∧
(
∀b : B∃a : A f(a) =V g(b)

)
,

we put in a path in V from set(A, f) to set(B, g).

3. The “set-truncation” constructor: for all x, y : V and all p, q : x =V y, we add
a (higher) path from p to q.

In (2) we used the “logical” notation ∃ and ∀, etc., to indicate that we are working
with the “propositional truncations” of the corresponding type theoretical opera-
tions Σ and Π (cf. [22] ch. 3).

24



Next, the membership relation x ∈ y is defined for elements of V by

(x ∈ set(A, f)) =def (∃a : A. x =V f(a)) .

One can then show entirely within the system that the resulting structure (V,∈)
satisfies almost all of the axioms of Aczel’s constructive set theory CZF [1] (e.g.
Strong Collection is missing).

Finally, assuming the usual axiom of choice just for those types that are sets
in the sense of the homotopy levels, it then follows that (V,∈) is a model of the
full system of ZFC set theory (cf. [22], ch. 10.5). The proofs of these results make
essential use of the univalence axiom and have been fully formalized in the Coq
proof assistant (cf. [15]).

The system just mentioned is an interesting hybrid of classical set theory and
constructive type theory that not only contains a model of ZFC but also many
types of higher homotopy level that do not behave like classical sets. This pro-
vides a new, more refined view of one possible relationship between classical and
constructive foundations. Whereas constructive foundations are usually regarded
as incompatible with classical logic, in this system the classical sets form a subsys-
tem of constructive type theory consisting of certain objects distinguished by a
natural, intrinsic, structural property—namely that their identity relation is al-
ways a proposition.

References

[1] Peter Aczel. The type theoretic interpretation of constructive set theory. In
A. MacIntyre, L. Pacholski, and J. Paris, editors, Logic Colloquium ’77, vol-
ume 96 of Studies in Logic and the Foundations of Mathematics, pages 55–66.
North-Holland, Amsterdam, 1978.

[2] S. Awodey. Natural models of homotopy type theory. arXiv:1406.3219.

[3] S. Awodey. Topological representation of the lambda-calculus. Mathematical
Structures in Computer Science, 1(10):81–96, 2000.

[4] S. Awodey. Impredicative encodings of higher inductive types, 2015. In
preparation.

[5] S. Awodey and A. Bauer. Propositions as [types]. Journal of Logic and Compu-
tation, 14(4):447–471, 2004.

25



[6] S. Awodey and C. Butz. Topological completeness for higher-order logic.
Journal of Symbolic Logic, 3(65):1168–1182, 2000.

[7] S. Awodey, N. Gambino, and K. Sojakova. Inductive types in Homotopy
Type Theory. In Logic in Computer Science (LICS 2012), pages 95–104. IEEE
Computer Society, 2012.

[8] S. Awodey and M. Warren. Homotopy-theoretic models of identity types.
Mathematical Proceedings of the Cambridge Philosophical Society, 146(1):45–55,
2009.

[9] B. van den Berg and R. Garner. Types are weak ω-groupoids. Journal of the
London Mathematical Society, 102(2):370–394, 2011.

[10] N. Gambino and R. Garner. The identity type weak factorisation system.
Theoretical Computer Science, 409(3):94—109, 2008.

[11] M. Hofmann and T. Streicher. The groupoid interpretation of type theory.
In Twenty-five years of constructive type theory 1995, volume 36 of Oxford Logic
Guides, pages 83–111. Oxford Univ. Press, 1998.

[12] F. D. Kamareddine, T. Laan, and R. P. Nederpelt. A modern perspective on type
theory: from its origins until today. Springer, 2004.

[13] C. Kapulkin, P. Lumsdaine, and V. Voevodsky. The simplicial model of uni-
valent foundations. arXiv:1211.2851v1, 2012.

[14] F.W. Lawvere. Equality in hyperdoctrines and comprehension schema as an
adjoint functor. In A. Heller, editor, Proceedings of the AMS Symposium on Pure
Mathematics, volume XVII, pages 1–14, 1970.

[15] J. Ledent. The cumulative hierarchy of sets, 2014. Post on the Homotopy
Type Theory blog.

[16] D. Licata and M. Shulman. Calculating the fundamental group of the circle
in Homotopy Type Theory. In Logic in Computer Science (LICS 2013), pages
223–232. IEEE Computer Society, 2013.

[17] P. Lumsdaine. Weakω-categories from intensional type theory. Logical Meth-
ods in Computer Science, 6:1–19, 2010.

26



[18] P. Lumsdaine. Higher inductive types: a tour of the menagerie, 2011. Post on
the Homotopy Type Theory blog.

[19] P. Lumsdaine and M. Warren. The local universes model: An overlooked
coherence theorem. ACM Transactions on Computational Logic, 2015.

[20] K. Sojakova. Higher inductive types as homotopy-initial algebras. Techni-
cal Report CMU-CS-14-101, Carnegie Mellon University, 2014. Available at
http://reports-archive.adm.cs.cmu.edu/.

[21] W.W. Tait. The law of excluded middle and the axiom of choice. In A. George,
editor, Mathematics and Mind, pages 45–70. Oxford University Press, 1994.

[22] The Univalent Foundations Program, Institute for Advanced Study. Homo-
topy Type Theory - Univalent Foundations of Mathematics. Univalent Founda-
tions Project, 2013.

[23] B. van den Berg and R. Garner. Topological and simplicial models of identity
types. ACM Transactions on Computational Logic, 13(1), 2012.

[24] V. Voevodsky. Notes on type systems, 2009. Available from the author’s web
page.

[25] M. Warren. Homotopy-theoretic aspects of constructive type theory. PhD thesis,
Carnegie Mellon University, 2008.

27


