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Abstract

The recent discovery of an interpretation of constructive type the-
ory into abstract homotopy theory suggests a new approach to the
foundations of mathematics with intrinsic geometric content and a
computational implementation. Voevodsky has proposed such a pro-
gram, including a new axiom with both geometric and logical sig-
nificance: the Univalence Axiom. It captures the familiar aspect of
informal mathematical practice according to which one can identify
isomorphic objects. While it is incompatible with conventional foun-
dations, it is a powerful addition to homotopy type theory. It also
gives the new system of foundations a distinctly structural character.

Recent advances in foundations of mathematics have led to some develop-
ments that are significant for the philosophy of mathematics, particularly
structuralism. Specifically, the discovery of an interpretation of Martin-Löf’s
constructive type theory into abstract homotopy theory [3] suggests a new
approach to the foundations of mathematics, one with both intrinsic geo-
metric content and a computational implementation [5]. Leading homotopy
theorist Vladimir Voevodsky has proposed an ambitious new program of
foundations on this basis, including a new axiom with both geometric and
logical significance: the Univalence Axiom [4]. It captures the familiar as-
pect of informal mathematical practice according to which one can identify
isomorphic objects. While it is incompatible with conventional foundations,
it is a powerful addition to the framework of homotopical type theory.

∗Thanks to Peter Aczel for many discussions on the subject of this paper, and to the
Munich Center for Mathematical Philosophy, where this work was done and presented.
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1 The Principle of Structuralism

The following statement may be called the Principle of Structuralism:

Isomorphic objects are identical. (PS)

From one perspective, this captures a principle of reasoning embodied in
everyday mathematical practice:

• the fundamental group of the circle π1(S
1) is isomorphic to the group

Z of integers, so for the purposes of group theory, these are the same
group, namely the free group on one generator, F (1).

• The Cauchy reals are isomorphic to the Dedekind reals, so as far as
analysis is concerned, these are the same number field, R.

• the unit interval [0, 1] is homeomorphic to the closed interval [0, 2], so
topologically, these are the same space, say I.

Within a mathematical theory, theorem, or proof, it makes no practical
difference which of two “isomorphic copies” are used, and so they can be
treated as the same mathematical object for all practical purposes. This
common practice is even sometimes referred to light-heartedly as “abuse of
notation,” and mathematicians have developed a sort of systematic sloppiness
to help them implement this principle, which is quite useful in practice,
despite being literally false. It is, namely, incompatible with conventional
foundations of mathematics in set theory.

Indeed, from a more literal point view, it is just false that isomorphic
objects are identical. The fundamental group consists of (equivalence classes
of) paths, not numbers. The Cauchy reals are sequences of rationals, i.e.
functions N→ Q, and the Dedekind reals are subsets of rationals, etc.

Mathematical objects are often constructed out of other ones, and thus
also have some residual structure resulting from that construction, in addi-
tion to whatever structure they may have as objects of interest, i.e. the real
number field actually consisting of functions or of subsets. So there is a clear
sense in which (PS) is simply false.

What if we try to be generous and read “identity” in a weaker way:

“A is identical to B” means “A and B have all the same properties”.
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Here we may want to restrict the properties that can occur on the right,
in order for this to really be a weaker the condition. So we now have the
reformulation:

A ∼= B ⇒ for all relevant properties P , P (A)⇒ P (B) (PS′)

The relevant properties will be the ones pertaining to the subject matter:
group-theoretic, topological, etc. However, consider for example perfectly
reasonable set-theoretic properties like:

∩X ∈ X, or ∅ ∈ X.

Such mundane properties of sets (and so of any structures built from sets)
do not “respect isomorphism” in the sense stated in (PS′). So the task of
precisely determining the “relevant” properties is evidently no simple matter.

Our leading question may now be formulated as follows:

Is there a sense in which (PS) can be held true?

Such a reading would legitimize much mathematical practice and support a
structuralist point of view. Let us consider the terms of (PS) in turn.

2 Isomorphism

What does it mean to say that two things are isomorphic? Some might be
tempted to say:

A ∼= B ⇔ A and B have the same structure. (1)

And that would be true.
But it is not the definition of isomorphism, because it presumes the notion

of structure and an identity criterion for it, and that is putting the cart before
the horse. Structure is like color or the direction of a line or number : it is
an abstract concept. And as Frege wisely taught us, it is determined by an
abstraction principle, in this case:

str(A) = str(B) ⇔ A ∼= B. (DS)

The structure of A is the same as the structure of B just in case A and B
are isomorphic. So (1) is indeed true, but it’s the definition of “structure”
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in terms of isomorphism, not the other way around. (Of course, such an
informal “definition” of the notion of structure would require a more explicit
formal setting to actually be of use; we shall take a different course to arrive
at the same result.)

So what is the definition of “isomorphism”? Two things A and B are
isomorphic, written A ∼= B, if there are structure-preserving maps

f : A→ B and g : B → A

such that
g ◦ f = 1A and f ◦ g = 1B.

This standard definition of isomorphism makes reference to “structure-
preserving maps”, “composition” ◦, and “identity” maps 1A, but these are
primitive concepts in category theory, and so need not be further defined.
Note that “isomorphism” is always relative to a given category, which de-
termines a kind of structure via a primitive notion of “structure-preserving
maps”, and not the other way around.

Sometimes structures are built up from other ones, like groups, graphs,
spaces. These are sets equipped with operations, relations, etc. The notion
of a structure-preserving map, or morphism, is then defined in terms of maps
in the underlying category of sets (i.e. functions) that preserve the opera-
tions, relations, etc. — i.e. “homomorphisms,” in the usual sense. But there
are lots of other examples where the notion of morphism is given directly,
and that then determines the corresponding notion of “structure” — e.g.
“differentiable structure” or “smooth structure”.1

1This view of the concept of mathematical structure as determined via category theory
— a category determines a species of structure, rather than the other way around — was
already presented in [1]. It results in a notion of structure that differs radically from
that presumed in some of the philosophical literature, e.g. [9, 10]. Here a structure is
determined externally, as it were, by its mappings to and from other objects of the same
kind, rather than internally, in terms of relations and operations on elements. This solves
Benaceraff-style problems directly by rejecting the idea that “mathematical objects” are
the elements of structured sets (e.g. particular numbers) in favor of the view that they are
structures (e.g. the system of all numbers, together with 0 and the operation of successor).
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3 Objects

If two objects are isomorphic, they stay that way if we forget some of the
structure. For example, isomorphic groups are also isomorphic as sets,

G ∼= H ⇒ |G| ∼= |H|.

Therefore, one can distinguish different structures by taking them to non-
isomorphic underlying sets.

More generally, any functor (not just a forgetful one) preserves isomor-
phisms, so we can distinguish non-isomorphic structures by taking them to
non-isomorphic objects by some functor. For example, consider the two sim-
ple partial orders:

• • •

A •

-
�

•

6

B

•

6

Are they isomorphic? Without even thinking about what order-preserving
maps back and forth there may be, we can simply count the number of such
maps from the simple partial order I = (· → ·), and we see immediately that
A has 5, and B has 6. Since taking the set Hom(I,X) of maps from any
fixed object, here I, is always a functor of X, it follows immediately that A
and B cannot be isomorphic.

A property P (X) like this is called an invariant :

A ∼= B & P (A) ⇒ P (B)

It is a property that respects isomorphism, i.e. a “structural property”. If in
our (restricted) Principle of Structuralism (PS′) we were to restrict attention
to only structural properties P in this sense, we would get the statement:

A ∼= B ⇒ for all structural properties P , P (A)⇒ P (B).
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That is, “isomorphic objects have all the same structural properties”. Now,
this statement is trivially true, because of the way we’ve set up the definitions,
but it does indeed capture the way in which (PS) is actually used in practice.
Namely:

If A ∼= B and P (X) is any structural property such that P (A),
then also P (B).

But in order for this to actually be useful in practice, we obviously need
to be able to recognize that P (X) is structural, without going through the
trouble of proving in general that it respects isomorphisms! Let us consider
one common way of doing just that.

Suppose that we have one or more functors from the category S of struc-
tures of a given kind to the category of sets,

F : S → Sets.

Then the identity of structures – i.e. isomorphism in S – can be tested via
the functors F in terms of the identity of the structure of the underlying
“sets”, i.e. set isomorphisms. This was the situation in our example above
of counting the number of homomorphisms from a fixed object: there our F
was the functor Hom(I,−). A typical kind of problem asks whether there are
enough such “invariants” F of a certain kind to determine any given structure
in S: e.g. is the homotopy type of a space determined by its homotopy
groups? is a formula provable if it’s true in all models? etc.

Now that we have reduced identity of structures in general to the question
of isomorphism of some “base category”, like Sets, we just need to know: what
are the invariant properties of Sets? We already know that many sentences
of conventional set theory express properties of sets that are not invariant,
like ∅ ∈ X. One way to obtain invariant properties is by restricting the
methods used to specify them to only combinations of ones that are already
known to be structural. As we have seen, category-theoretic methods are
always structural; but another large and useful class of structural properties
are those that can be defined in a foundational system of type theory, rather
than set theory.2

2These two different kinds of invariants are actually closely related, as explained by
categorical logic.
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The basic operations of what is called constructive type theory [7], starting
with a basic object or “type of individuals” X, are as follows:

0, 1, A+B, A×B, A→ B, Σx:AB(x), Πx:AB(x), IdA(x, y).

and these correspond to the logical propositions:

⊥, >, A ∨B, A ∧B, A⇒ B, ∃x : A. B(x), ∀x : A. B(x), x =A y.

The correspondence – called “Curry-Howard” or “Propositions-as-Types” –
is given by:

proof : Proposition ≈ term : Type

That is, the proofs of a proposition are the terms of the corresponding type.
We shall return to this idea below.

The system of type theory has the important property that any definable
property of objects is invariant. Thus if P (X) is any type that is definable
in the system over a basic type X, then the following inference is derivable:

A ∼= B P (A)

P (B)

The proof is a straightforward induction on the construction of P (X). Let
us record this as the following Principle of Invariance for type theory:3

All definable properties are isomorphism invariant. (PI)

4 Identity

What is meant by “the objects A and B are identical”? In set theory it
means ∀x. x ∈ A ⇔ x ∈ B, but we have already opted out of set theory,
for good reasons. In impredicative type theory, one can define identity by
Leibniz’s Law as:

A = B := ∀P. P (A)⇒ P (B),

But this is identity between terms A,B : X of some common type X, and
the universal quantifier ∀P is over the type P(X) of all properties on (or, if
you prefer, subsets of) X. So, more explicitly:

A =X B := ∀P : P(X). P (A)⇒ P (B),

3The importance of this principle has also been emphasized by Makkai [8].
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which is not the relation we are looking for, i.e. the one between types X
and Y .

In constructive type theory there is a primitive identity relation IdX(x, y)
on the terms of each type X, and its rules do allow the expected inference,

IdX(a, b) P (a)

P (b)

for any predicate P (x) on X, giving (half of) the effect of the Leibnizian
definition.

In order to be able to reason about identity of types, one can add a
universe U of all (small) types; this then has its identity relation satisfying:

IdU(A,B) P (A)

P (B)

for any definable property P (X) of types.
Now that we have found a way to reason about identity of types, we

can ask how it is related to isomorphism. We can start by asking whether
this extension by a universe is still compatible with the Principle of Invari-
ance. Before we added U , we observed that all definable properties P (X)
are invariant, in the sense that:

A ∼= B P (A)

P (B)

If this inference also held for properties P involving U , we could set

P (X) := IdU(A,X),

and infer from IdU(A,A) that:

A ∼= B ⇒ IdU(A,B)

i.e. the Principle of Structuralism.
Thus in the full system of type theory, the Principle of Invariance implies

the Principle of Structuralism. To put it more simply, if in the extended
system of type theory with a universe it is still the case that all definable
properties are isomorphism invariant, then in particular isomorphic objects
are identical.

Is that really possible?
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5 What does “are” mean?

In type theory, every proposition determines a type (namely, the type of
proofs of the proposition), and every type can be regarded as a proposition
(namely, the proposition that the type has terms). For instance, correspond-
ing to the proposition A ∼= B we have the type of isomorphisms between A
and B:

“A ∼= B” ≈ Iso(A,B)

In order to prove that A ∼= B, one constructs a term of type Iso(A,B), which
is exactly an isomorphism between A and B.

Similarly, associated to the identity type IdU(A,B) there is the proposi-
tion A =U B that A and B are identical (small) types,

“A =U B” ≈ IdU(A,B).

The object IdU(A,B) can be regarded as the type of “proofs that A is iden-
tical B”, or the type of “identifications of A and B”. (There is a neat
geometric interpretation of this type, that we unfortunately cannot go into
here; see [5]). For the remainder of this essay, we shall follow the usual type-
theoretic practice of simply identifying propositions and types, and use the
more familiar notation A ∼= B and A =U B exclusively.

Now, it is easily shown that there is always a map,

(A =U B)→ (A ∼= B),

since the relation of isomorphism is reflexive. The Univalence Axiom implies
that if A and B are sets, then this map is itself an isomorphism,

(A =U B) ∼= (A ∼= B).

Thus in particular, there is a map coming back,

(A ∼= B)→ (A =U B),

which may reasonably be read “isomorphic objects are identical” – that is to
say, the Principle of Structuralism. Indeed, this is the inference that we just
doubted was even possible.

Let us immediately say that Voevodsky’s Univalence Axiom itself actually
has a more general form, namely that identity of objects is equivalent to
equivalence,

(A =U B) ' (A ' B), (UA)
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where the notion of “equivalence” is a broad generalization of isomorphism
that subsumes homotopy equivalence of spaces, categorical equivalence of
(higher-) groupoids, isomorphism of sets and set-based structures like groups
and rings, and logical equivalence of propositions.

Since the rules of identity permit substitution of identicals, one conse-
quence of (UA) is the schema that we called the Principle of Invariance,

A ' B P (A)

P (B)

but now this holds for all objects A and B and all properties P (X). Thus
even in this extended system with a universe and the Univalence Axiom, it
still holds that all definable properties are structural. Indeed, preserving the
Principle of Invariance requires that we also add the Univalence Axiom when
we add a universe. In this sense, (UA) is a very natural assumption, since
it determines the (otherwise underdetermined) identity relation on the uni-
verse in a way that preserves the character of the system without a universe.
Rather than viewing it as identifying equivalent objects, and thus collapsing
distinct objects, it is more useful to regard it as expanding the notion of iden-
tity to that of equivalence. For mathematical purposes, this is the sharpest
notion of identity available; the question whether two equivalent mathemat-
ical objects are “really” identical in some stronger, non-logical sense, is thus
outside of mathematics.

As fascinating as this result may be from a philosophical perspective, it
should be said that it is not the only motivation for the Univalence Axiom,
or even the primary one. Univalence is not a philosophical claim but rather
a working axiom, with many important mathematical consequences and ap-
plications, in a new system of foundations of mathematics [4]. For example,
it is used heavily in the recently-discovered “logical” calculations of some of
the homotopy groups of spheres (see [5]).

In sum, the Univalence Axiom is a new axiom of logic that not only makes
sense of, but actually implies, the Principle of Structuralism with which we
began:

Isomorphic objects are identical. (PS)

This seems quite radical from a conventional foundational point of view, and
it is indeed incompatible with classical foundations in set theory. It is, how-
ever, fully compatible and even natural within a type-theoretic foundation,
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and that is part of this remarkable new insight.4

6 Background

From a foundational perspective, the Univalence Axiom is certainly radical
and unexpected, but it is not entirely without precedent.

The first edition of Principia Mathematica used an intensional type the-
ory, but the axiom of reducibility implied that every function has an ex-
tensionally equivalent predicative replacement. This also had the effect of
spoiling the interpretation of functions as expressions – open sentences – and
the substitutional interpretation of quantification, what may be called the
“syntactic interpretation”, as favored by Russell on the days when he was
a constructivist. In the second edition, Russell states a new principle that
he attributes to Wittgenstein: “a function can only occur in a proposition
through its values”, and he says that this justifies an axiom of extensionality,
thus doing at least some of the work of the axiom of reducibility. What is
going on here is that Wittgenstein has noticed that all functions that actu-
ally occur, i.e. that can be explicitly defined, are in fact extensional, and so
one can consistently add the axiom of extensionality without destroying the
syntactic interpretation.

We have here a somewhat similar move: the Univalence Axiom is in some
sense a very general extensionality principle. Indeed, it even implies the usual
extensionality laws for propositions and propositional functions:

p↔ q → p = q

∀x(fx↔ gx) → f = g

Since nothing in syntax violates UA, we can add it to the system and still
maintain the good properties of syntax, like invariance under isomorphism.

Rudolf Carnap was one of the first people to observe that the properties
definable in the theory of types are invariant under isomorphisms (he did
so in pursuit of his ill-fated Gabelbarkeitssatz ). Tarski later proposed this
condition as a sort of explication of the concept of a “logical notion”. The
idea was to generalize Felix Klein’s program from geometric to “arbitrary”
transformations, in order achieve the most general notion of an “invariant”,
which would then be a logical notion.

4For further information on the Univalent Foundations of Mathematics, see [6, 11, 4, 2].
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The consistency of the Univalence Axiom shows that the entire system
of type theory is in fact invariant under the even more general notion of
homotopy equivalence — i.e. “same shape” — which is a much larger class
of maps than Tarski’s bijections of sets. The Univalence Axiom takes this
basic insight,

A ' B & P (A) ⇒ P (B),

i.e. “all logical properties are invariant”, and turns it into a logical axiom,

(A ' B) ' (A = B).

i.e. “logical identity is equivalent to equivalence”.
Finally, observe that, as an informal consequence of (UA), together with

the very definition of “structure” (DS), we have that two mathematical ob-
jects are identical if and only if they have the same structure:

str(A) = str(B) ⇔ A = B.

In other words, mathematical objects simply are structures. Could there be
a stronger formulation of structuralism?
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