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Abstract The fundamental duality theories relating algebra and geometry
that were discovered in the mid-20th century can also be applied to logic via
its algebraization under categorical logic. They thereby result in known and
new completeness theorems. This idea can be taken even further via what
is sometimes called “categorification” to establish a new connection between
logic and geometry, a glimpse of which can also be had in topos theory.

Preface

Shortly after finishing my PhD thesis, I received a friendly letter from Profes-
sor Lambek in which he expressed interest in a result of mine that extended
his work with Moerdijk [14]. He later cited my result in some papers on
the philosophy of mathematics (including [12, 13]), in which he developed a
congenial position that attempted to reconcile the various competing ones
in foundations on the basis of results concerning the free topos, the sheaf
representations considered here, and related considerations from categorical
logic.

The particular result in question, discussed in section 4 below, extends
prior results by Lambek and Moerdijk [14] and Lambek [13], and was later
extended further in joint work with my PhD students, first Henrik Forssell
[2, 3], and then Spencer Breiner [4, 5]. This line of thought is, however,
connected to a deeper one in modern mathematics, as I originally learned
from the papers of Lambek. That insight inspired my original contribution
and also the later joint work with my students, and it continues to fascinate
and inspire me. The purpose of this survey is to sketch that line of thought,
which owes more to Lambek than to anyone else.
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Carnegie Mellon University, Pittsburgh, PA, USA, e-mail: awodey@cmu.edu
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The main idea, in a nutshell, is that the ground-breaking duality theories
developed in the mid-20th century can also be applied to logic, via its al-
gebraization under categorical logic, and they thereby result in known and
new completeness theorems. This insight, which is already quite remarkable,
can as it turns out be taken even further—via what is sometimes called
“categorification”—to establish an even deeper relation between logic and
geometry, a glimpse of which can also be had in topos theory, and elsewhere.

1 Gelfand duality

Perhaps the ur-example of the sort of duality theory that we have in mind
is the relation between topological spaces and commutative rings given by
Gelfand duality (see [9] Ch. 4). To give a brief (and ahistorical) sketch, let X
be a space and consider the ring of real-valued continuous functions on X,
with pointwise algebraic operations,

C(X) = Top(X,R).
This construction is a (contravariant) functor from “geometry” to “algebra”,
C : Top®® — CRng.

The functor C can be shown to be full and faithful if we restrict to compact
Hausdorff spaces X and (necessarily bounded) continuous functions C*(X),

C* : KHaus®® — CRng.

It then requires some further work to determine exactly which rings are of
the form C*(X) for some space X. These are called C*-algebras, and they can
be characterized as commutative rings A satisfying the following conditions

([9], §4.4):

1. the additive group of A is divisible and torsion free,

2. A has a partial order compatible with the ring structure and such that
a?>0forallac A,

3. A is Archemedian, i.e. for every a € A there is an integer n such that
n-la 2> a,

4. if 14 > n - a for all positive integers n, then a < 0,

5. A is complete in the norm

lla]| =inf{g € Q" | ¢-14a >aand g-14 > —a}.

There are many equivalent specifications (most using complex numbers in
place of reals).
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Theorem 1 (Gelfand duality) The category KHaus of compact Hausdor(f
spaces is dual to the category C*Alg of C*-algebras and their homomorphisms,

via the functor C*:
KHaus®® ~ C*Alg.

How can we recover the space X from its ring of functions C*(X)?

e The points € X determine maximal ideals in the ring C*(X),
My ={f:X—R| f(z)=0},

and every maximal ideal in C*(X) is of this form for a unique z € X.
e For any ring A, the (Zariski) topology on the set Max(A4) of maximal ideals
has a basis of open sets of the form:

Bo={MecX|a¢ M}, acdA.

o If Aisa C*-algebra, then this specification determines a compact Hausdorf
space X = Max(A) such that A = C*(X).

A key step in the proof is the following:

Proposition 1 Let A be a C*-algebra. For any mazximal ideal M in A, the
quotient field A/M is isomorphic to R.

It follows that there is an injection of rings,

A— [ 4a/mM

MeMax(A)

1%

RMax(A) )

The image of this map can be shown to consist of the Zariski continuous
functions, i.e. it is C*(Max(A)).

2 Grothendieck duality for commutative rings

Grothendieck extended the Gelfand duality from C*-algebras to all commu-
tative rings by generalizing on the “geometric” side from compact Hausdorff
spaces to the new notion of (affine) schemes,

Scheme)f ~ CRng.

The essential difference is to generalize the “ring of values” from the constant
ring R to a ring R that “varies continuously over the space X7, i.e. a sheaf
of rings. The various rings R, that are the stalks of R generalize the local
rings of real-valued functions that vanish at the points x € X. This change
allows every commutative ring A to be seen as a ring of continuous functions
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on a suitable space X4 (the prime spectrum of A), where the values of the
functions are in a suitable sheaf of (local) rings R on X4 (see [9] Ch. 5).

Definition 1 A ring is called local if it has a unique maximal ideal.
Equivalently, if 0 # 1, and

z +yis a unit implies 2z is a unit or y is a unit. (1)
Theorem 2 (Grothendieck sheaf representation) Let A be a ring.
There is a space X o4 with a sheaf of rings R such that:

1. for every p € X4, the stalk R, is a local ring,
2. there is an isomorphism,
A=I(R),

where I'(R) is the ring of global sections.
Thus every ring is isomorphic to the ring of global sections of a sheaf of local
TiNgs.

The space X 4 in the theorem is the prime spectrum Spec(A) of the ring A:
e points p € Spec(A) are prime ideals p C A,
e the (Zariski) topology has basic opens of the form:

By ={p € Spec(A) | f €p}, feA

Note the similarity to the space Max(A) of maximal ideals from the Gelfand
case. Unlike that case, however, the functor

Spec : CRng®® — Top

is not full, and so we need to equip the spaces Spec(A) with an additional
structure.

The structure sheaf R is determined at a basic open set By by “localizing”
Aat f,
R(By) = [f]'A

where A — [f] 1A freely inverts all of the elements f, f2, f3,....
The stalk R, of this sheaf at a point p € Spec(A) is then seen to be the
localization of A at S, = A\ p,
Rp,=25,"A.
The affine scheme (Spec(A), R) presents A as a “ring of continuous func-
tions” in the following sense:

e cach element f € A determines a “continuous function”,

f :Spec(4) —TR,
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except that the ring R is itself “varying continuously over the space
Spec(A)” — ie. it is a sheaf — and the function f is then a global sec-
tion of the sheaf R.

e Fach stalk R, is a local ring, with a unique maximal ideal, corersponding
to “those functions f : Spec(A) —=R that vanish at p”.

e (Spec(A),R) is a “representation” of A in the sense that f — fis an
isomorphism of rings

A2T(R).

There is always an injective homomorphism from the global sections of a
sheaf into the product of all the stalks,

rR)—[[Ry-

Thus we have the following:

Corollary 1 (“Subdirect-product representation”) FEvery ring A is
isomorphic to a subring of a “direct product” of local rings. I.e. there is an
injective ring homomorphism

A= TRy,
p

where the R, are all local rings.

3 Lambek-Moerdijk sheaf representation for toposes

Definition 2 Call a (small, elementary) topos € sublocal® if its subterminal
lattice Subg(1) has a unique maximal ideal. Equivalently, 0 2 1 and for
x,y € Subg(1):

rVy=1 implies x=1ory=1.

Note the formal analogy to the concept of local ring. In [14] the following
analogue of the Grothendieck sheaf representatation for rings is given for
toposes (henceforth, topos unqualified will mean small, elementary topos):

Theorem 3 (Lambek-Moerdijk sheaf representation) Let £ be a topos.
There is a space Xg with a sheaf of toposes £ such that:

1. for every p € Xg, the stalk gp is a sublocal topos,

1 In the original work [14], and elsewhere, the term local was used for the concept here
called sublocal, and another term was then required for the stronger conditional that we
call local in Definition 3 below.
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2. for the topos I'(E) of global sections, there is an isomorphism,

£=T1(E).

Thus every topos is isomorphic to the topos of global sections of a sheaf of
sublocal toposes.

The space X mentioned in the theorem is what may be called the sub-
spectrum of the topos, X = sSpec(€); it is the prime ideal spectrum of the
distributive lattice Sub(1):

e the points P € sSpec(€) are prime ideals P C Sub(1),
e the topology has basic opens of the form:

B, ={P eSpec(f) | ¢¢ P}, qeSub(l).

Note the close analogy to the space Spec(A) for a commutative ring A.
The lattice of all open sets of sSpec(€) is then (isomorphic to) the ideal
completion of the lattice Sub(1),

O(Spec(&)) = IdI(Sub(1)) .

Next, let us define a structure sheaf & on sSpec(€) by “slicing” £ at g €
Sub(1),
E(Bg) =&/q.

This takes the place of the localization of a ring A at a basic open By:
Ra(By) = [f]'A.

Note that £/q “inverts” all those elements p € Sub(1) with ¢ < p, in the
sense that the canonical map ¢* : € — & /q takes every p»— 1 to ¢ Ap — g,
and so if g <pthen g*'p=14:q¢— ¢.

The fact that € is indeed a sheaf on sSpec(&) comes down to showing that,
for any p,q € Sub(1), there is a canonical equalizer of toposes (and logical
morphisms),

Epvag — E/pxE/q = E/pNg.

This in turn says that in a diagram of the form:
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£
P >Y
DA G
/ v
P pVyq

with a pushout-pullback of monos in the base, and the two vertical squares
involving X given as pullbacks, one can complete the cube as indicating by
first forming the pushout Y on the top face, and then obtaining the front
vertical map from Y, and the resulting new vertical faces will then also be
pullbacks. This is a rather special “descent condition” for the presheaf £/—.

The stalk Ep of this sheaf at a point P € sSpec(€) is computed as the
filter-quotient of £ over the complement of the prime ideal P C Subg(1), i.e.
the prime filter P¢ = Sub(1)\ P. Thus for the stalk we have the (filtered)
colimit (taken in Cat, but again a topos):

Ep = lim /.
qg¢ P

For this stalk topos, one then has the subterminal lattice:
Subg_ (1) = Sube(1)/P°,

where Subg(1)/P¢ is the quotient Heyting algebra by the prime filter Pc.
Since for the prime filter P¢ we have p V ¢ € P¢ implies p € P¢ or ¢ € P, it
thus follows that the stalk topos £p is indeed sublocal.

Finally, for the global sections of £ we have simply:

IE)=EBr)=E/1=€.

Thus the topos of global sections of & is indeed isomorphic to the original
topos £. In this way, £ is isomorphic to the global sections of a sheaf of
sublocal toposes.

Again, there is always an injection from the global sections into the product
of the stalks, which in this case gives a conservative logical morphism of the
form B B

ex=r@E — [[ ér.

PesSpec(€)

Corollary 2 Fvery topos has a conservative logical morphism into a product
of sublocal toposes.
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3.1 Lambek’s modified sheaf representation for toposes

Now consider the following logical interpretation of the sheaf representation
theorem for toposes and its corollary.

e A topos &£ can be regarded as the syntactic category &t of a theory T in
Intuitionistic Higher-Order Logic (IHOL). Thus for any sentence ¢ in the
language of the theory T,

Er=¢  iff Thé.

e A sublocal topos S is one that is consistent S ¥ 1 and has the disjunction
property
SEovy i Sko or SEv,

for all sentences ¢, 1. Such sublocal toposes are more Set-like than a gen-
eral one, and can thus be regarded as suitable semantics for logical theories.

e The “subdirect-product representation” given by Corollary 2 is a logical
completeness theorem with respect to interpretations & — S of T into
sublocal toposes S. It says that, for any theory T in THOL, a sentence ¢
is provable, T F ¢, iff it is true in every interpretation of T in a sublocal
topos S. Thus IHOL is complete with respect to models in sublocal toposes.

e The sheaf representation is a Kripke-style completeness theorem for IHOL,
with £ as a “sheaf of possible worlds” (see [12]).

Under this interpretation, however, the present sheaf representation is not
entirely satisfactory, because we would really like the “semantic toposes” S
to be even more Set-like, in addition to being sublocal, by also having the
existence property:

SE (3z: Ap(x) iff S E ¢(a), for some closed a: A.

Definition 3 A topos S will be called local if the terminal object 1 is both
indecomposable and projective, i.e. the global sections functor

I' =Homg(1,—) : S —Set

preserves all finite coproducts and epimorphisms. Note that a local topos is
exactly one that is consistent and has both the disjunction and existence
properties.

In the paper [12], Lambek gave the following improvement over the sublo-
cal sheaf representation:

Theorem 4 (Lambek sheaf representation) Let £ be a topos. There is a
faithful logical functor € — F and a space X with a sheaf of toposes F such
that:

1. for every p € X, the stalk fp is a local topos,



Sheaf Representations and Duality in Logic 9

2. for the global sections of]? there is an isomorphism F = F(]—z)

Thus every topos is a subtopos of one that is isomorphic to the global sections
of a sheaf of local toposes.

The proof was inspired by the Henkin completeness theorem for higher-order
logic [8], and first performs a sort of “Henkinization” of £ to get a bigger topos
& — F with witnesses for all existential quantifiers, in a suitable sense. This
result then suffices for a subdirect-product embedding of any topos £ into a
product of local toposes, and therefore gives the desired logical completeness
of IHOL with respect to such toposes, which are much more Set-like.

4 Local sheaf representation for toposes

The result from [1] mentioned above was this:

Theorem 5 (Local topos sheaf representation)
Let & be a topos. There is a space Xg with a sheaf of toposes & such that:

1. for every p € Xg¢, the stalk gp is a local topos,
2. for the global sections of € there is an equivalence £ ~ I'(E).

Thus every topos is equivalent to the global sections of a sheaf of local toposes.

As before, this gives a subdirect-product representation of &,

e~ IS,

peX

into a product of local toposes S, = gp, and therefore implies the desired
logical completeness of IHOL with respect to local toposes. This stronger
result also gives better “Kripke semantics” for IHOL, since the “sheaf of
possible worlds” (in the sense of [12]) now has local stalks.

For classical higher-order logic, something more can be said:

Lemma 1 Every Boolean, local topos S is well-pointed, i.e. the global sections
functor,

I' = Homg(1,—) : S —Set
1s faithful.

Corollary 3 Every Boolean topos is isomorphic to the global sections of a
sheaf of well-pointed toposes.
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For Boolean toposes B, we therefore have an embedding,

B— ] s»

peX

as a subdirect-product of well-pointed toposes S, (this is [7], Thm 3.22). The
logical counterpart now says:

Corollary 4 Classical HOL is complete with respect to models in well-pointed
toposes.

A well-pointed topos is essentially a model of classical Zermelo set theory
([16], §VI.10). Indeed, it is worth emphasizing that the models of HOL here
are standard models of classical HOL (i.e. with full function and power sets),
taken in varying models S of set theory.

Finally, taking the global sections I" : S, »— Set of each well-pointed topos
Sp, we get a faithful functor from any Boolean topos B into a power of Set:

B — H8p>—> HSet%SetX.

peX peX

However, the various composites B — S, — Set are now not logical functors,
because they need not preserve exponentials; they do, however, preserve the
first-order logical structure (they are also exact; thus we have another proof
of [7] theorem 3.24). These composites are exactly what the logician calls a
“Henkin” or “non-standard” model of HOL in Set. In this way, we recover
the familiar “Henkin completeness theorem for HOL” [8]:

Corollary 5 Classical HOL is complete with respect to Henkin models in Set.

For the proof of the local topos sheaf representation theorem, these
“Henkin models” will be taken as the points of the space Xg, which we
call the space of models (following [6]). In the sublocal case, the points were
the prime ideals P C Sub(1). These correspond exactly to the lattice homo-
morphisms

p: Subg(l) —2.

For the local case, we instead take coherent functors
P:&—=Set,

which correspond to (Henkin) models of the “theory” £.2

The topology on Xg¢ can be described roughly as follows (see [1] for more
details, but the idea for this topology originates with [10, 6]; it was also used
in [2, 5]). To simplify things, let us regard £ as a classifying topos for a theory

2 Of course, the collection of all such functors may be too big to form a set. The remedy,
as explained in the paper [1], is to choose a suitable cardinal bound x on the size of the
models P.
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T, and say that a model P : £ —Set “satisfies” a sentence ¢, which we may
identify with its interpretation ¢ — 1g, if [¢]F = P(¢) = 1. Then we could
mimic the subspectrum by taking as a basic open set all those models P that
satisfy some fixed ¢:
V,={PeXe | Pl o}

However, it turns out that there are too few such basic opens; thus we will
also use formulas ¢(z) with free variables . In order to say when P | ¢(x)
we therefore equip each model P with a “labelling” « : kK — |P| by elements
of some fixed, large set x, and we then define the notion of satisfaction of a
formula by such a labelled model (P, «) = ¢(x), which we write suggestively
as P = ¢(a). Thus the points of Xg are actually pairs (P, «), and the basic
open sets then have the form

Vi) = {(P,a) € Xe | P = ¢(a)}

for all formulas ¢(x). (This description is not entirely accurate, but it gives
the idea for present purposes; see [1, 2, 5] for details.)

The structure sheaf £ on X¢ is again defined by “slicing” &,
E(A) = £/A  for Ac€,

but now it is first shown to be a stack on & itself (with respect to the coherent
topology). What this means is:

1. for any A, B € &, the canonical map is an equivalence,
E/JA+B ~ E/AXE/B,
2. for any epimorphism e : B—> A, the canonical map is an equivalence,
EJ/A ~ des(é/B,e),

where des(E/B, e) is the category of objects of £/B equipped with descent
data with respect to e : B— A.

The stack is then strictified to a sheaf of categories (see [1]), and then
finally transferred from £ to the space X¢ of models using a topos-theoretic
covering theorem due to Butz and Moerdijk [6]. Call the resulting sheaf of
categories on X¢ again £

The stalk € p,q) of the (transferred) sheaf at a point (P, «) can be calcu-
lated as the colimit, _

S(P,a) = ]ﬂ 5/A7
AefP
where the (filtered!) category of elements [, P of the model P : £ — Set takes
the place of the prime filter. As a key step, one shows that these stalks are
indeed local toposes whenever P : £ — Set is a coherent functor.
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Finally, for the global sections functor I" : Sh(X¢) — Set, we still have:
IE) ~ &1 = &,

In this way, £ is indeed equivalent to the topos of global sections of a sheaf
of local toposes on a space.

5 Stone duality for Boolean algebras

The foregoing sheaf representations for toposes suggest an analogous treat-
ment for pretoposes, which would actually be somewhat better, because the
Set-valued models used for the points (and coming from the global sections
of the stalks) would then all be standard models, rather than Henkin style,
non-standard models. This suggests the possibility of a duality theory for
first-order logic, analogous to that for affine schemes and commutative rings,
with pretoposes playing the role of rings, the space of models playing the role
of the prime spectrum, and the sheaf representation providing a structure
sheaf.

This is more than just an analogy: it is a generalization of the classical
Stone duality for Boolean algebras (= Boolean rings). From a logical point
of view, the classical duality theory for Boolean algebras is the propositional
case of the first-order one that we are proposing for pretoposes. (There is
also a generalization from classical to intuitionistic logic, which is less of a
stretch.) Thus let us briefly review the “propositional case” of classical Stone
duality for Boolean algebras, before proceeding to the “first-order” case of
pretoposes.

Recall (e.g. from [9], Ch. 5) that for a Boolean algebra B we have the
Stone space Stone(B), which is defined exactly was the subterminal lattice
Subg(1) of a topos &, i.e. Stone(B) = Spec(B) is the prime spectrum of B
(prime ideals in a Boolean algebra are always maximal, thus are exactly the
complements of the ultrafilters, which are the usual points of Stone(B)). We
can represent the points p € Spec(B) as Boolean homomorphisms,

p:B—2.

And we can recover the Boolean algebra B from the space Spec(B) as the
clopen subsets, which are represented by continuous maps,

f:Spec(B)—2,

where (the underlying set of) 2 is given the discrete topology. Note that
this is also a sheaf representation — but a constant one! The stalks are local
Boolean algebras, which are always just 2.
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Stone’s representation theorem for Boolean algebras then says that there
is always an injective homomorphism,

B 2% = P(X),

for a set X, which we can take to be the set of points of Spec(B), i.e. the
ultrafilters. This is therefore the usual subdirect-product embedding resulting
from the sheaf representation.

There is, moreover, a contravariant equivalence of categories,

Spec
Bool ~ Stone®P .

Clop

Both of the functors Spec and Clop are given by homming into 2, albeit in
two different categories.

Logically, a Boolean algebra B is always the “Lindenbaum-Tarski algebra”
of a theory T in propositional logic, and a Boolean homomorphism B—2 is
then the same thing as a T-model, i.e. a “truth-valuation”. Thus the points
of Spec(B) are models of the propositional theory T. We are going to gener-
alize this situation by replacing Boolean algebras with (Boolean) pretoposes,
representing first-order logical theories, and replacing 2-valued models with
Set-valued models.

6 Stone duality for Boolean pretoposes

M. Makkai [15] has discovered a Stone duality for Boolean pretoposes with re-
spect to what he terms ultragroupoids on the geometric/semantic side. These
are groupoids (of models and isomorphisms) equipped with a primitive struc-
ture of ultraproducts of models, together with groupoid homomorphisms that
preserve ultraproducts. The result is an equivalence of categories:

——
BoolPreTop ~ UltraGpd°®?
\—/

which, as in the propositional case, is mediated by homming into a special
object, now Set in place of 2. This replacement, and the remarkable duality
theory that results, is an instance of what is sometime called “categorifica-
tion”, an idea that plays a guiding role throughout categorical logic. It follows
in particular that every Boolean pretopos B has a pretopos embedding into
a power of Set.

B — Set™ |

where X is a set of “models”, i.e. pretopos functors M : B— Set.
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We will show below that this last fact—which is essentially Godel’s com-
pleteness theorem for first-order logic—is also a “subdirect-product represen-
tation” resulting from a sheaf representation of 5. But first we need to make
a suitable “space of models”.

In joint work with H. Forssell [2, 3] Makkai’s ultragroupoids of models
were replaced by topological groupoids of models, equipped with a Stone-
Zariski type logical topology similar to the one used above for the local sheaf
representation for toposes. In overview, our (topological) generalization of
Stone duality from Boolean algebras to Boolean pretoposes works like this:

Boolean algebra B | Boolean pretopos BB
propositional theory| first-order theory

homomorphism pretopos functor
B—2 B —Set
truth-valuation elementary model

topological space | topological groupoid
Spec(B) Spec(B)
of all valuations |of all models and isos

continuous function| continuous functor
Spec(B) — 2 Spec(B) — Set
clopen set coherent sheaf

To give a bit more detail of a few of the steps:

e The spectrum Spec(B) of a Boolean pretopos B is not just a space, but a
topological groupoid, consisting of a space of (labelled) models (M, ) and
a space of isos i : M = N. These are topologized by a logical topology of
the same kind already considered, where the basic opens (of the space of
models) are determined by satisfaction of formulas,

Vo) = {(M. ) € Spec(B) | M = ¢(a)} .

e Morphisms f : Spec(BB) — Spec(B’) are just continuous groupoid homo-
morphisms. Every pretopos functor F' : B’ — B gives rise to such a ho-
momorphism, essentially by precomposition, since

Spec : BoolPreTop — StoneTopGpd®°P

is representable,
Spec(B) ~ BoolPreTop(B, Set) .



Sheaf Representations and Duality in Logic 15

Thinking of such a pretopos functor F' : B’ — B as a “translation of the-
ories”, the semantic functor Spec(F') acts on models in the corresponding
way.

e Recovering B from Spec(B) amounts to recovering an elementary theory
(up to pretopos completion) from its models. This is done using hard
results from topos theory due mainly to Joyal-Tierney and Joyal-Moerdijk
[11, 10, 6]. Specifically, one shows that the category of equivariant sheaves
on the topological groupoid Spec(B) is equivalent to the (Grothendieck)
topos of sheaves on B for the coherent topology,

Sheq(Spec(B)) =~ Sh(B).

Logically, this gives two different presentations of the (Grothendieck) clas-
sifying topos of a first-order theory T, such that B = Br is the preto-
pos completion of (the syntactic category of) T, and Spec(B) is then the
groupoid of T-models.

It follows that B is equivalent to the subcategory of coherent objects of this
topos; thus B is equivalent to the category of coherent, equivariant sheaves
on the topological groupoid Spec(B). These can be shown to correspond
to certain continuous homomorphisms Spec(B) — Set, where the latter
is the topological groupoid of sets, equipped with a suitable topology. In
this sense, the coherent, equivariant sheaves generalize the clopen sets in
a Stone space.

Unlike in the case of Boolean algebras, however, and unlike in Makkai’s
theorem using ultragroupoids, we do not have an equivalence of categories,
but only an adjunction [2, 3]:

Theorem 6 (Awodey-Forssell) There is a contravariant adjunction,

Spec
T
BoolPreTop StoneTopGpd®?,
-~ -
Coh

in which both functors are given by homming into Set.
In particular, the “semantic” functor,
Spec : BPreTop — StoneTopGpd®?

is not full: there are continuous functors between the groupoids of models
that do not come from a “translation of theories”. Compare the case of com-
mutative rings A, B, where an arbitrary continuous function

f : Spec(B) —Spec(A)

need not come from a ring homomorphism h : A— B.
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We can of course characterize the “semantic functors” arising from a pre-
topos morphism as those that pull coherent sheaves back to coherent sheaves.
Such “coherent” maps f : Spec(B) — Spec(B’) will then correspond to pre-
topos maps F : B’ — B, simply by f(M) = Mo F.

7 Sheaf representation for pretoposes

We now want to cut down the morphisms between the semantic groupoids
Spec(B) to just the coherent ones that come from pretopos functors. We will
do this by endowing Spec(B) with additional structure that is preserved by
all such “syntactic” maps. Specifically, as for rings and affine schemes, we
can equip the spectrum Spec(B) of the pretopos B with a “structure sheaf”
g, defined just as in the sheaf representation for toposes:

e Start with the pseudofunctor B : B°P — Cat with,
B(X)~B/X, XebB.

The prestack Bis actually a stack for the coherent topology, because B is
a pretopos. _

e Strictify B to get a sheaf of categories (also called B) on B. The “stalk” of
B at a “point” M : &€ —Set (a pretopos functor) is then

AefM

which is a local Boolean pretopos (1 is indecomposable and projective).
e There is an equivalence of Grothendieck toposes,

Sh(B) =~ Sheq(Spec(B)),

between sheaves on the pretopos B, for the coherent Grothendieck topol-
ogy, and equivariant sheaves on the topological groupoid Spec(B) of (la-
belled) models.

e Move B across this equivalence in order to get an equivariant sheaf on

Spec(B). The result (also called B) is thus a sheaf of local, Boolean preto-
poses on Spec(B).

And from a logical point of view:

e 3 = Br is the Boolean pretopos completion of (the syntactic category of) a
theory T in (classical) FOL, and Spec(B) is then the groupoid of T-models.
e B is a sheaf of “local theories”. The stalk EM at a T-model M is a well-
pointed pretopos representing the complete theory of M, with parameters
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for all the elements of M added; it is what the logician calls the “elementary
diagram” of the model M. B

e As before, B has global sections I'(B) ~ B. So the original pretopos By
turns out to be the “theory of all the T-models”.

e Since each stalk By, is local, and well-pointed, the global sections functor
Iy 2 By — Set is a faithful pretopos morphism, i.e. a model in Set. In
fact, the model M : B—= Set is naturally isomorphic to the composite:

. ~ T
M :B~T(B)—= By —> Set.
In sum, we have the following (see [4, 5]):

Theorem 7 (Awodey-Breiner) Let B be a Boolean pretopos. There is a
topological groupoid G with an equivariant sheaf of pretoposes B such that:

1. for every g € G, the stalk gg s a well-pointed pretopos,

2. for the global sections of B there is an equivalence B ~ I'(B).
Thus every Boolean pretopos is equivalent to the global sections of a sheaf of

well-pointed pretoposes.

There is again an analogous result for the general (i.e. non-Boolean) case,
with local pretoposes in place of well-pointed ones in the stalks. The associ-
ated subdirect-product representation is then the following:

Corollary 6 For any pretopos &, there is a pretopos embedding,
e— 1] &
geXe

with each £; a local pretopos and Xg the set of points of the topological
groupoid Spec(E). If moreover B is Boolean, then the local pretoposes By are
all well-pointed, and B therefore embeds (as a pretopos!) into a power of Set:

B— H By — H Set ~ Set™5 .
gEXB geXp

In logical terms, the last statement is essentially the Gddel completeness
theorem for first-order logic, repackaged. Of course, the proof made use of
the equivalent fact that B has enough pretopos functors M : B — Set.

8 Logical schemes

For a Boolean pretopos B, call the pair

(Spec(B), B)
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just constructed an affine logical scheme. A morphism of affine logical schemes

(£, £) + (Spec(A), A) — (Spec(B), B)
consists of a continuous groupoid homomorphism
f : Spec(A) — Spec(B),
together with a pretopos functor over Spec(5)

Theorem 8 (Awodey-Breiner) Fuvery pretopos functor B— A induces
a morphism of the associated affine logical schemes Spec(A) —= Spec(B).
Moreover, the functor

Spec : BoolPreTop — LogScheme

s full and faithful: every map of schemes comes from an essentially unique
map of pretoposes.

Corollary 7 (First-order logical duality) There is an equivalence,
BoolPreTop ~ LogSchemejf .

The category of Boolean pretoposes is thus dual to the category of affine
logical schemes. We can now start to “patch together” affine pieces of the
form (Spec(B), B), in order to make a general notion of a “logical scheme”,
consisting of a topological groupoid of structures not tied to any one theory,
equipped with a sheaf of local theories, and locally equivalent to an affine
scheme. The first few steps in this direction are explored in [5].
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