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Abstract
Postulating an impredicative universe in dependent type theory al-
lows System F style encodings of finitary inductive types, but these
fail to satisfy the relevant η-equalities and consequently do not ad-
mit dependent eliminators. To recover η and dependent elimination,
we present a method to construct refinements of these impredicative
encodings, using ideas from homotopy type theory. We then extend
our method to construct impredicative encodings of some higher
inductive types, such as 1-truncation and the unit circle S1.
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1 Introduction
System F, also known as the ‘Girard-Reynolds polymorphic λ-
calculus’, goes back to [17] and [30] (see [18, Chapter 11] for a
textbook account). It extends the simply typed λ-calculus with
universal quantification ∀ over types. Under the Curry-Howard
correspondence [21], it is the type-theoretic analog of second-order
propositional logic.

One of the remarkable things about System F is that it allows for
the encoding of types such as products, sums, natural numbers, and,
more generally, finitary inductive types. These encodings are called
impredicative, since in defining a specific type they quantify over
the totality of all types, which in particular contains type which
is being defined. For example, the type N of natural numbers is
encoded in System F as

NF ≡ ∀X . (X → X ) → X → X .

A well-known defect of such encodings, however, is that they
do not satisfy the appropriate ‘η-rules’, which are uniqueness prin-
ciples stating that for every recursive definition there is only one
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function realizing it. One way to think about this failure of η is that
e.g. the type described by the formula NF is ‘too large’, in that cer-
tain models [33] may contain non-standard elements which are not
generated from the constructors. On the other hand, one can show
using parametricity arguments [31] that all the ‘named’ elements
are standard. This discrepancy has led to attempts to refine the
models by imposing parametricity, dinaturality [8], or realizability
[9] conditions.

System F-style, impredicative encodings can also be given in
dependent type theory with an impredicative universe (such as
the calculus of constructions [10]); a further consequence of the
failure of the η-rules, however, is then that the encoded types do
not admit dependent elimination rules, which are necessary for
proofs by induction, and thus indispensable for the development of
mathematics in type theory.

In this article we present a new technique to restore η-rules
by refining impredicative encodings in a way that is related to
the parametricity and dinaturality techniques mentioned above,
but in contrast to them, takes place inside the type theory, so that
the η-equalities on the refined types become provable, rather than
just admissible w.r.t. a model. To be more specific, for our refined
encodings we can prove propositional versions of the required η-
equalities, which – as shown in [6, 7] – are sufficient to derive the
existence of the corresponding dependent eliminators.

The system of type theory that we use is similar to the calculus
of constructions with a hierarchy of predicative universes (like in
older versions of the Coq proof assistant), but in contrast to the
calculus of constructions we assume that the lowest, impredicative
universe is closed under small sigmas and identity types.

Some of our arguments make use of the ‘uniqueness of identity
proofs’ principle, but instead of postulating it globally we exploit the
notion of 0-types from homotopy type theory to state the relevant
results for that level of the definable hierarchy of h-levels. This also
allows us to explore the applicability of our techniques to higher
inductive types in Section 5.

We emphasize that ourmain contribution is to give impredicative
encodings of inductive types in dependent type theory that satisfy
the relevant dependent elimination rules (along with the other
rules). This seems to solve a long-standing problem, considered
in [16], of giving “2nd-order encodings” satisfying induction. We
do this by “refining” the impredicative encodings inside the type
theory using identity types. This is in contrast to interpreting the
system into a model and having the universal properties hold there,
which is the spirit of the “parametric polymorphism” approach set
out in [31], where the universal quantification of System F is “cut
down” on interpretation.

Overview Section 2 specifies the system of type theory in which
our work takes place, recalls the definition of n-types in homo-
topy type theory, and introduces the (pre-)category Set of small
0-types. We also include a brief description of how System F can
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be translated into our setting. In Section 3 we show how to refine
the System F encodings of some non-recursive, inductive sets such
as the binary sum A + B of two sets to recover appropriate η-rules,
using an argument based on a type-theoretic version of the Yoneda
lemma. Section 4 gives a related technique involving impredicative
encodings of initial algebras in order to achieve the same result for
genuinely inductive sets such as the type N of natural numbers.
In Section 5 we show how these techniques generalize from sets
(0-types) to 1-types, giving impredicative encodings of some of
the recently introduced higher inductive types [40, Ch. 6]. Specif-
ically, we give encodings for the 1-truncation and the unit circle.
We believe that these encodings also illuminate the ones for con-
ventional inductive types. Indeed, our general methodology is very
much informed by the HoTT point of view. Finally, Section 6 ad-
dresses issues such as limitations of our techniques, open questions,
consistency and the existence of models, and future work.

2 The System of Type Theory
Although our results are not all “higher dimensional” in nature,
our work is best understood in the context of homotopy type theory
(HoTT); we refer to [40] as our standard reference for conventions
and terminology. We thus work in a system of dependent type the-
ory with products∏x :A B (x ), strong sums∑x :A B (x ), (intensional)
identity types IdX (x ,y), and function extensionality, as in [40].
However, we make no use of the univalence axiom. We usually
write simply x = y for IdX (x ,y), as is now common. We then
distinguish notationally between propositional equality x = y and
definitional equality x ≡ y.

Universes We augment the hierarchy of predicative universes
U0 : U1 : U2 : . . . assumed in [40] by adding a single impredicative
universeU at the bottom,

U : U0 : U1 : U2 : . . .

This new universe U is also closed under dependent sums and
identity types, like the Ui , but instead of the usual (predicative)
product formation rule

Γ ⊢ A : Ui Γ,x : A ⊢ B : Ui

Γ ⊢
∏

(x :A)B : Ui

it satisfies the impredicative product formation rule

Γ,x : A ⊢ B : U
Γ ⊢
∏

(x :A)B : U

which is stronger since there is no size restriction on the A.
Note that in the following, when writingU , we always mean

the impredicative universe – in this respect we deviate from [40],
in that we do not useU as a placeholder for an unspecifiedUi .

n-Types Recall from [40, 7.1] the hierarchy of n-types (Voevod-
sky: “h-levels”): X is called a (-1)-type, or proposition, if it satisfies∏

(x,y :X ) x = y; it is a 0-type, or set, if its identity types are always
propositions; and generally, it is an (n+1)-type if its identity types
are always n-types. Formally,

isProp(X ) :≡∏(x,y :X ) x = y

isSet(X ) :≡∏(x,y :X ) isProp(x = y)

isType(n+1) (X ) :≡∏(x,y :X ) isTypen (x = y) ,

and
Prop :≡ ∑(X :U ) isProp(X )

Set :≡ ∑(X :U ) isSet(X )

Typen :≡ ∑(X :U ) isTypen (X ) .

Note that the types isProp(X ), isSet(X ), etc., are themselves
propositions [40, Theorem 7.1.10], so that Prop, Set, etc., are sub-
types ofU , in the sense that the first projection from the respective
Σ-type is an embedding.

We normally suppress the coercion pr1 : Typen →U and treat
expressions of type Typen as if they were themselves types. Thus,
in particular if X : U ⊢ A(X ) is aU-indexed family of types then
the expression∏(X :Typen ) A(X ) is a shorthand for∏

(X :Typen ) A(pr1 X ),

which in turn is equivalent to∏
(X :U ) isTypen (X ) → A(X ).

Moreover, since the n-types are closed under arbitrary prod-
ucts [40, Theorem 7.1.9] (and suppressing the unpacking and repack-
ing of dependent pairs), the rule

Γ,x : A ⊢ B : Typen
Γ ⊢
∏

(x :A)B : Typen
is admissible for all n. Thus, in sum, we can view the types Typen
as impredicative subuniverses ofU .

We exploit the convenience of having an impredicative universe
that is closed under most constructions, by working mostly inside
U – as opposed to the usual methodology of predicative systems,
where a hierarchy of universes are used “parametrically”. Accord-
ingly, we adopt the convention that the terms “proposition”, “set”,
“n-type”, etc., refer only to types inU .

The precategory Set of sets inU The subtype Set of 0-types in
U gives rise to a precategory Set where

Set0 = Set and hom(A,B) = (A→ B)

for A,B : Set ([40, Example 9.1.5]).
As pointed out in [40, Section 10.1.1], this precategory is (small)

complete in that it admits equalizers (defined using Σ- and identity-
types) and small products (given by type-theoretic products). Since
in our setting U is an impredicative universe, Set even admits
‘large’ products – i.e. products indexed by arbitrary types – which
we make use of in what follows.

Translation of System F There is an evident syntactic transla-
tion t from System F to our system of dependent type theory. Types
of the formA→ B in System F are translated toAt → Bt , and types
of the form ∀X .B are translated to∏X :U Bt , where At and Bt are
the translations of the System F types A and B. The translation of
terms is equally obvious.

Similarly, we can restrict the translation by replacingU above
with any of the impredicative subuniverses Typen of n-types. For
example, we may define the translation t0 with:

(∀X .B)t0 :≡
∏
X :Set

Bt0 .

In this sense, we can speak of System F encodings of inductive
types in our system of dependent type theory.

Generally, if x :A ⊢ P (x ) is a (family of) propositions, then as
above ∑x :A P (x ) is a subtype of A via the first projection. Our
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impredicative encodings of inductive types will be subtypes of the
usual System F encodings in this sense; we say that they “sharpen”
or “refine” the usual encodings.

3 Basic Set Encodings
As stated in the foregoing section, the impredicative universeU
allows us to give ‘System F style’ encodings of certain inductive
types. In this section we explain how these encodings fall short
of the usual inductive types assumed in dependent type theory.
We then indicate a way to remedy these shortcomings to a certain
extent.

We start with the sum of two types A and B, whose System
F encoding we translate into type theory, as explained above, by
replacing the quantification over types by a dependent product
overU :

A +F B :≡
∏
X :U

(A→ X ) → (B → X ) → X . (3.1)

It is easy to see that this encoding admits injections1

inlF :≡ λAB aX f д. f a : ∏{A,B:U } A→ (A +F B)

inrF :≡ λAB b X f д.дb : ∏{A,B:U } B → (A +F B)
(3.2)

and a recursor
recF+ :≡ λABC f д ϕ .ϕC f д

:∏{A,B,C :U } (A→ C ) → (B → C ) → (A +F B) → C
(3.3)

satisfying the definitional β-equalities

recF+ f д (inlF a) ≡ f a and recF+ f д (inrF b) ≡ дb

for all A,B,C : U , f : A→ C , д : B → C , a : A and b : B.
However there are several problems:
(i) the recursor only allows us to define functions into types

inU ,
(ii) the η-rule

f = recF+ ( f ◦ inl
F ) ( f ◦ inrF ), (3.4)

where f : A +F B → C , doesn’t hold, even propositionally,
(iii) the encoding does not admit a dependent eliminator, which

would have to have the type

indF+ : ∏{A,B : U}∏
{C : A +F B →U}∏
( f :∏(a:A) C (inl

F a))∏
(д :∏(b :B ) C (inr

F b))∏
(x : A +F B), C x .

and satisfy the propositional equalities

indF+ f д (inlFa) = f a and indF+ f д (inrFb) = дb

for all appropriately typed f , д, a, and b.
We defer discussion of issue (i) in general to section 6 below.

Issues (ii) and (iii) are related by the general theory developed in
[6, 7]: briefly, in the present setting the dependent elimination rule
is equivalent to the η-rule. In the following we give a way to restore
the propositional η-rule for sums of sets by restricting the product
in (3.1) to Set and taking a suitable subtype.
1We adopt the convention that arguments in braces {−} in types denote implicit
arguments, meaning that we may write e.g. inlF a instead of inlFAB a.

3.1 Refining the encoding
Restricting the dependent product in (3.1) to the subuniverse of
propositions, we obtain a well-known encoding of logical disjunc-
tion:
A ∨ B ≃

∏
X :Prop

(A→ X ) → (B → X ) → X for A,B : Prop

Observe that A ∨ B is a proposition, because Prop is closed under
Π-types.

In a similar vein it seems natural to define a sum operation

A+∗ B :≡
∏
X : Set

(A→ X ) → (B → X ) → X for A,B ∈ Set (3.5)

of setsA, B by restricting the impredicative product to typesX : Set.
This type also admits injections and a recursor

inl∗ :≡ λAB aX f д. f a : ∏{A,B:Set} A→ (A +∗ B)

inr∗ :≡ λAB b X f д.дb : ∏{A,B:Set} B → (A +∗ B)

rec∗+ :≡ λABC f д ϕ .ϕC f д

:∏{A,B,C :Set} (A→ C ) → (B → C ) → (A +∗ B) → C

(3.6)

analogous to those for A +F B. The η-rule still fails for A +∗ B, but
as we shall see, it is now possible to carve out a subtype for which
it is satisfied.

As a warm-up exercise, consider first the unary case. For A : Set
there is an embedding-retraction pair

A
e //

=

))

∏
(X :Set) (A→ X ) → X

r

��

A ,

(3.7)

where e (a) ≡ λX f . f (a) and r (α ) ≡ αA (idA ).
Now, a term α : ∏X :Set (A → X ) → X is a family of maps

(switching notation for emphasis),

αX : XA → X , X : Set .
We can cut down the type∏X :Set (A→ X ) → X to (one equivalent
to) the image of e in (3.7) by requiring that the family of maps
αX be natural in X in the sense that for all sets X ,Y and all maps
f : X → Y , the following square commutes.

XA αX //

f A
��

X

f
��

YA
αY
// Y

(3.8)

Here, f A ≡ λд. f ◦ д is the action of the functor (−)A : Set → Set
on f : X → Y .

The sharper encoding A+ of A is now:

A+ :≡
∑
α :A∗

N (α ) (3.9)

where A∗ :≡
∏
X :Set

(A→ X ) → X (3.10)

and N (α ) :≡
∏

X ,Y :Set

∏
f :X→Y

αY ◦ f
A = f ◦ αX (3.11)

Note that pr1 : A+ ↪→ A∗ is an embedding since N (α ) is a proposi-
tion for all α .

Theorem 3.1 (Basic Lemma). For any set A, we have A ≃ A+.
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Proof. First, we show that e : A ↪→ A∗ factors through A+ ↪→ A∗.
For a : A, the family e (a) : A∗ consists of the evaluations e (a)X :
AX → X , where д 7→ д(a). If f : X → Y , then indeed

(e (a)Y ◦ f
A ) (д) = e (a)Y ( f

A ) (д)) = e (a)Y ( f ◦ д)

= f (д(a)) = f (e (a)X (д)) = ( f ◦ αX ) (д) .

Now let α : A∗ be natural in the sense expressed in (3.9), and define
a0 :≡ r (α ) ≡ αA (1A ) : A .We claim that α = e (a0), which suffices
since A∗ is a set. Indeed, take any X and д : X → A, then we have

e (a0)X (д) = д(a0) = д(αA (1A )) = αX (дA (1A )) = αX (д) ,

using the naturality of α in the third step. □

Remark 3.2. The categorically minded reader will recognize that
the previous theorem is an instance of the Yoneda lemma. Indeed,
(3.9) is the type of all natural transformations from the (covariant)
representable functor (−)A to the identity functor I : Set → Set ,
so by Yoneda we indeed have

Nat
(
(−)A, I

)
≃ I (A) ≃ A .

But since we do not require this level of generality here, we will
not develop the required details. ♢

Taking inspiration from the previous theorem, we return to the
preliminary encoding A+∗ B from (3.5), and in order to recover the
η-rule define a subtype A + B ↪→ A +∗ B by imposing a suitable
naturality condition.

We start with the observation that if we already had such a type
A + B, then (A + B)∗ would be equivalent to (A +∗ B):

(A + B)∗ ≡
∏
X :Set

((A + B) → X ) → X

≃
∏
X :Set

(A→ X ) × (B → X ) → X

≃
∏
X :Set

(A→ X ) → (B → X ) → X ≡ A +∗ B

(3.12)

Now by transporting the naturality condition of the lemma along
the equivalence, we can define A + B as a subtype of A +∗ B, where
the defining condition can again be read as a naturality property,
but now one that does not assume the existence ofA+B. Specifically,
we define

A + B :≡
∑

α :A+∗B
N (α ) where

N (α ) :≡
∏

X ,Y :Set

∏
f :X→Y

∏
h:A→X
k :B→X

f (αXhk ) = αY ( f ◦h) ( f ◦k ).

(3.13)
If we substitute (inl∗ a) or (inr∗ b) for α in N (α ), the two sides of
the identity type become definitionally equal, whence we can refine
the injections defined in (3.2) to get the following.
inl : ∏{A,B:Set} A→ A + B inr : ∏{A,B:Set} B → A + B
inla :≡ (inl∗ a, λXY f hk . refl) inrb :≡ (inr∗ b, λXY f hk . refl)

The recursor (3.3) gets replaced by
rec+ :∏{A,B,C :Set} (A→ C ) → (B → C ) → A + B → C

rec+ :≡ λABC f д ξ . (pr1 ξ )C f д

With these definitions we can now prove the following.

Theorem 3.3. For all sets A and B, the encoding (3.13) of the sum
A+ B, along with the structure inl , inr, and rec+ just defined, satisfy

(i) the definitional β-rules

rec+ f д (inla) ≡ f a and rec+ f д (inrb) ≡ дb

for all C : Set, f : A→ C , д : B → C , a : A, b : B ,
(ii) the propositional η-rule

rec+ ( f ◦ inl) ( f ◦ inr) = f

for all C : Set and f : A + B → C .

Proof. The β rules follow mechanically by unfolding definitions.
For the η rule, we first prove a special case, namely

rec+ inl inr = idA+B : A + B → A + B . (3.14)

By function extensionality and Σ-induction it is sufficient to show
that αA+B inl inr = (α ,p) for all α : A +∗ B and p : N (α ). Since
A+B ↪→ A+∗B is an embedding, this reduces to pr1 (αA+B inl inr) =
α , and again by function extensionality this follows from

pr1 (αA+B inl inr)X f д = αX f д

for X : Set, f : A→ X and д : B → X . This is shown by

pr1 (αA+B inl inr)X f д ≡ rec+ f д(αA+B inl inr)

= αX (rec+ f д ◦ inl) (rec+ f д ◦ inr)

= αX f д ,

where the second equality is given by p (rec+ f д) inl inr and the
third one follows from β and function extensionality.

For the general case, let again α : A +∗ B and p : N (α ). We have:

rec+ ( f ◦ inl) ( f ◦ inr) (α ,p) ≡ αC ( f ◦ inl) ( f ◦ inr)

= f (αC (inl) (inr)) (by p)
≡ f (rec+ inl inr (α ,p))

= f (α ,p) (by (3.14)) ,

which proves the claim. □

We emphasize that it is crucial to the proof that the encoding
(3.13) of A + B is itself a set, so that A + B is in the range of the
variable X : Set – and of course, so that the sum of two sets is again
a 0-type. This is ensured by the fact that the n-types are closed
under Σ-, Π-, and identity-types, and of course, the impredicativity
of U . In more detail, in (3.5), the X ranges over sets, and thus
the type (A → X ) → (B → X ) → X is a 0-types. But then by
impredicativity of Set, the entire type A +∗ B is a set. In N (α ), the
identity type is a proposition, since it is over the type of functions
(A→ X ) → (B → X ) → Y , which is a 0-type. Thus N (α ) is itself a
proposition, whence A + B is a set.

Finally, as mentioned in Section 3, the induction principle below
follows from recursion together with the uniqueness of the recursor
(the η-rule) [6, 7]:

ind+ : ∏{A,B : Set}∏
{C : A + B → Set}∏
( f :∏(a:A) C (inla))∏
(д :∏(b :B ) C (inrb))∏
(x : A + B), C x ,

with propositional equalities

ind+ f д (inla) = f a and ind+ f д (inrb) = дb

for all appropriately typed f , д, a, and b.
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Having done the unary and binary case of sums of sets, we might
as well do the nullary one, too. The System F style encoding of the
empty type 0 inU , given by

0 :≡ ∏(X :U )X ,

admits a recursor
rec0 :≡ λXc . cX : ∏{X :U } 0→ X ,

and it turns out that in this case we don’t need any refinement,
since we can already derive that 0 is a proposition and that rec0
satisfies an η equality – indeed, we have

λcd . c (c = d ) :
∏
c,d :0

(c = d ) ≡ isProp(0) ,

and the eliminator rec0 is unique, by
funext(λc . c (cX = f c )) : rec0X = f

for any X : U and f : 0→ X .

Other non-recursive 0-types Unlike 0, the terminal set 1 does
not have the System F form 1F :≡ ∏X :U X → X (uniqueness of
the maps X → 1F fails), but instead can be encoded as a (-1)-type
via the familiar

1 :≡
∏

p :Prop
p → p . (3.15)

Indeed, this is easily seen to be terminal for all X : U . (Another
possibility would be to define 1 by quantifying over Set and adding
a naturality condition, but in this case it is sufficient to quantify
over Prop since 1 itself is a proposition).

The method of adding a naturality condition can be used to
encode the set-truncation ||A||0 of an arbitrary type A. Indeed, we
can simply take

||A||0 :≡
∑
α :A∗

∏
X ,Y :Set

∏
f :X→Y

αY ◦ f
A = f ◦ αX ,

where A∗ :≡
∏
X :Set

(A→ X ) → X ,
(3.16)

as in the Basic Lemma 3.1, since A∗ is a set even when A is not one.
Observe how this generalizes the well-known [4, 19] [40, Exer-

cise 3.15] propositional truncation of a type A,

||A|| =
∏

X :Prop
(A→ X ) → X .

We only mention that it is also possible to give correct impred-
icative encodings of set-quotients [40, 6.10], as well as general
coequalizers of sets, by related methods.

4 General inductive sets
While sums and truncations are viewed as inductive types in mod-
ern terminology, the classical idea of an inductive type involves
generation from constants by repeated application of constructors.
A well understood class of inductive types in type theory and cate-
gory theory areW-types [26, pg. 43], which are generated from a
family of constructors of specified – possibly infinite – arities.

Inductive types of this kind with only finitely many constructors,
each of finite arity, can be encoded in System F [18, Section 11.5],
and translating these encodings into type theory by quantifying
over the impredicative universe Set leads again to types which
admit the correct constructors and recursors but fail to satisfy the
appropriate η-rules.

On the other hand, it is known from category theory that W-
types can be understood as initial algebras of so called polynomial
functors [15, 27]. In the following we show how a categorical con-
struction of initial algebras relying on the impredicativity of Set
gives rise to subtypes of the System F style encodings satisfying η.
We elaborate this idea using as running example the inductive type
of natural numbers, but the method is easily seen to generalize.

4.1 Initial algebras of endofunctors
As pointed out in Section 2, the precategory Set is complete in
the very strong sense that it has all equalizers (constructed using
Σ- and identity-types) as well as products of families of objects
indexed by arbitrary types. It is an old observation by Hyland [22,
Section 3.1] that this implies the existence of initial algebras for
arbitrary endofunctors, at least in the related semantical setting
of certain kinds of internal categories. In the following we give
explicit type-theoretic descriptions of the required limits and initial
algebras by unwinding the categorical definitions.

First, observe that limits over arbitrary (pre)category-indexed
diagrams can be expressed using products and equalizers, as usual.
Specifically, let J be a precategory: an arbitrary type of objects J0
and a family of sets of arrows hom : J0 × J0 → Set, equipped with
the usual composition and unit structure, and satisfying the usual
equations on these, which are propositional, because the hom(i, j )
are sets for all i, j : J0. A J-indexed ‘diagram’ is just a functor
D : J→ Set , which can also be defined as usual, since the values
Di are all sets. The limit of D is the equalizer of the two maps

p,q :
∏
i :J0

Di ⇒
∏

(i, j :J0 )

∏
(u :hom(i, j ))

D j

p ϕ i j u :≡ D (u) (ϕi )

q ϕ i j u :≡ ϕ j ,

which is given explicitly by the type

lim
←−−
i
Di :≡

∑
(ϕ :D∗ )

∏
(i, j :J0 )

∏
(u :hom(i, j ))

Du (ϕi ) = ϕ j ,

where D∗ :≡
∏
i :J0

Di ,
(4.1)

together with projections

πj :≡ λξ . (pr1ξ )j : lim
←−−
i
Di → D j for j : J0.

Crucially for proving the η rule in Section 4.2, observe that lim
←−−i

Di

is a set, since all the Di are sets, Set is impredicative, and lim
←−−i

Di is
therefore a sum of a family of propositions over a set.

Now recall that, given an endofunctor F : Set → Set , the
category F -Alg of F -algebras has as objects pairs (X : Set,α :
FX → X ), and as morphisms from (X ,α ) to (Y , β ) the functions
f : X → Y satisfying f ◦ α = β ◦ F f . Thus, type-theoretically, we
have the precategory:

(F -Alg)0 :≡
∑
X :Set

FX → X ,

hom
(
(X ,α ), (Y , β )

)
:≡

∑
f :X→Y

f ◦ α = β ◦ F f .
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The forgetful functorU : F -Alg→ Set is just the first projection,
that is:

U (X ,α ) :≡ X for (X ,α ) : (F -Alg)0 ,

U ( f ,p) :≡ f for ( f ,p) : hom
(
(X ,α ), (Y , β )

)
.

It is well-known, and easy to prove, that the precategory F -Alg
inherits arbitrary limits from Set , and these can be computed point-
wise. Thus F -Alg has an initial object, which is just the limit of
the identity functor. Since limits in F -Alg are computed point-
wise, they are preserved byU , which means that the initial algebra
(I , i : FI → I ) has as its underlying set I the limit of the functor
U : F -Alg→ Set , which using (4.1) we can write explicitly as

I :≡
∑
ϕ :U ∗

Lim(ϕ) (4.2)

where U ∗ :≡
∏

A:F -Alg
UA ,

and Lim(ϕ) :≡
∏

(A,B:F -Alg)

∏
(f ,p ):hom(A,B )

f (ϕA ) = ϕB .

Summarizing the foregoing discussion, we have the following.

Theorem 4.1. For any functor F : Set → Set , the category F -Alg
of F -algebras has an initial object

i : FI → I ,

where:

(i) the set I is given by the type (4.2) and is the limit of the forgetful
functor U : F -Alg→ Set , and

(ii) the map i : FI → I is given by

i (x ) :≡ (λA. (pr2A) (F (πA )x ), q(x )) ,

where q : Lim(λA. (pr2A) (F (πA )) is constructed from functo-
riality of F and naturality of the limit cone. □

We emphasize that the foregoing theorem is not merely seman-
tically true in a certain model, but is provable in our system of type
theory. In the following we use this construction of initial algebras
to obtain an encoding of the type of natural numbers which refines
the System F encoding.

4.2 Natural numbers
The inductive type N of natural numbers is generated by the con-
structors

0 : N succ : N→ N.
From this specification we can derive the set-level System F style
encoding

N∗ :≡ ∏(X :Set) (X → X ) → X → X (4.3)
admitting constructors

0∗ :≡ λX h x . x : N∗

succ∗ :≡ λ nX h x . h (nX h x ) : N∗ → N∗

and a recursor

rec∗N :≡ λX h x n.nXhx : ∏(X :Set) (X → X ) → X → N∗ → X .

These satisfy the β-rules

rec∗N h x 0
∗ ≡ x and rec∗N h x (succ∗ n) ≡ h(rec∗N h x )

for X : Set, h : X → X and x : X , but not the η-rule, which states
that rec∗N h x is uniquely determined in the sense that(

f (0∗) = x ∧ f ◦ succ∗ = h ◦ f
)
→
(
f = rec∗N h x

)
for all f : N∗ → X (and writing ∧ in place of × for propositions).

On the other hand, N can be categorically characterized as the
initial algebra of the functor functor T : Set → Set given by

T (X ) :≡ X + 1 ,

T ( f ) :≡ rec+ (inl ◦ f ) inr for f : X → Y .
(4.4)

Here 1 is the unit type from (3.15).
Instantiating the type in Theorem 4.1 we get the type∑

(ϕ :∏(A:∑(X :Set) X+1→X ) pr1A) Lim(ϕ)

for the underlying set of the initial algebra, and it turns out that
the index type of the sum is equivalent to N∗:∏

A:∑X :Set X+1→X

pr1A ≃
∏
X :Set

(X + 1→ X ) → X

≃
∏
X :Set

(X → X ) × X → X

≃ N∗

We compose the predicate Lim with this equivalence to get a de-
scription of the initial algebra directly as a subtype Lim′ of the
System F encoding:

N :≡∑(ν :N∗ ) Lim
′(ν ) with

Lim′(ν ) :≡
∏
X :Set
Y :Set

∏
x :X
y :Y

∏
h:X→X
k :Y→Y
f :X→Y

( f (x ) = y ∧ f ◦ h = k ◦ f )
→ f (νXh x ) = νYk y

(4.5)

Observe that the triples (X ,h,x ) and (Y ,k,y) in the definition
of Lim′(ν ) can be coerced into T -algebras (X , rec+h (λz. x )) and
(Y , rec+k (λz.y)). Leaving this coercion implicit (as we shall do
from now on), Lim′(v ) can be read as saying that we have

f (νXh x ) = νYk y

for every T -algebra morphism

f : (X ,h,x ) → (Y ,k,y).

It is easy to see that the predicate Lim′ satisfies

Lim′(0∗) and ∏
(ν :N∗ ) Lim

′(ν ) → Lim′(succ∗ν ),

whence the System F constructors 0∗ and succ∗ can be restricted
to operations

0 : N and succ : N→ N
about which it is sufficient to know that they behave like 0∗ and
succ∗ on the first components of dependent pairs. The recursor
rec∗N also restricts to N in a straightforward manner

recN :≡ λX h x n. pr1 (n)X h x

: ∏{X :Set} (X → X ) → X → N→ X ,

and we have the following theorem.

Theorem 4.2. The encodings of N, 0, and succ given above satisfy
(i) definitional β-rules saying that

recN h x 0 ≡ x and recN h x (succn) ≡ h (recN h x )

for all X : Set, x : X , h : X → X and n : N, and
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(ii) a propositional η-rule which states that(
f (0) = x ∧ f ◦succ = h ◦ f

)
→ f = recN h x

for all X : Set, x : X , h : X → X and f : N→ X .

Proof. The first claim is straightforward.
For the second claim we first show that

recN succ 0 = idN. (4.6)

By function extensionality and Σ-induction it is enough to show
that nN succ 0 = (n,p) for all n ∈ N∗ and p ∈ Lim′(n). Since
N∗ ↪→ N is an embedding this reduces to pr1 (nNsucc 0) = n, and
by function extensionality again it suffices to show that

pr1 (nN succ 0)X f x = nX f x

for all X : Set, f : X → X and x : X . Since recN f x : N → X
is a morphism of T -algebras (N , succ, 0) → (X , f ,x ), p gives an
equality between the right hand side and recN f x (nN succ 0) (see
remark after (4.5)), which in turn is definitionally equal to the left
hand side.

Now let X : Set, x : X , h : X → X and f : N → X such that
f (0) = x and f ◦ succ = h ◦ f . Given n : N we argue

f n = f (recN succ 0n) (by (4.6))
≡ f (pr1 (n)Nsucc 0)

= pr1 (n)Xh x
(since f is a T -algebra morphism
from (N , succ, 0) to (X ,h,x ))

≡ recN h x n,

which by function extensionality proves the claim. □

Apart from the distinction of definitional and propositional
equality, the preceding theorem says precisely that the F -algebra
(N, succ, 0) is initial inT -Alg, where for anyT -algebra (C, f , c ) the
function underlying unique mediating morphism

(N, succ, 0) → (C, f , c )

is given by recN f c . We reiterate that this assertion is to be un-
derstood as a statement in type theory (as in [6, 7]), in particular
the uniqueness of the mediating morphism is up to propositional
equality.

As before, the induction principle for N follows from recursion
together with the η-rule (by ibid.).

4.3 Consequences of the existence of initial algebras
We note that the sets in this impredicative system are necessarily
quite non-classical – as has been observed in related systems by
several previous authors [17, 22, 29, 32].

Corollary 4.3. The initial algebra theorem 4.1 implies the following
facts about the category Set :

(i) Every endofunctor F : Set → Set has a (least) fixed point,

F (X ) � X .

(By Lambek’s lemma.)
(ii) There is no (covariant) powerset functor P : Set → Set .

(Otherwise we would have P (X ) � X for some set X .)
(iii) The law of excluded middle fails for sets.

(Otherwise we would have P (X ) = 2X .)

Other 0-types We also remark that, using Theorem 4.1, one can
encode initial algebras for other polynomial endofunctors on Set in
just the same way, and thus obtain all (set-level) W-types (see [6, 7]).
It follows that the internal category Set of sets is a (complete!)
predicative topos in roughly the sense of [41], i.e. an LCC pretopos
with W-types.

5 Some 1-Types
The foregoing development of impredicative encodings of inductive
sets is satisfactory as such, but in the full system of HoTT one also
has higher n-types, and for these there are corresponding notions
of inductive type, known as higher inductive types (HITs). Exam-
ples include some basic spaces such as the spheres Sn , homotopy
colimits, n-truncations ∥X ∥n , and many others; see [40, ch. 6].2

In this section, we give an example of an impredicative encoding
of a basic “1-HIT”, namely the 1-sphere S1 [24]. We give fewer
details of the (more intricate) proofs, but provide enough specifics
to hopefully give the reader a sense of what is involved in such
higher encodings.

The 1-sphere S1 is defined as a HIT by the constructors

base : S1

loop : base = base .
(5.1)

Its dependent eliminator, given in [40, 6.4], can be derived from its
recursor

recS1 :
∏

X :Type1

∏
x :X

(x = x ) → S1 → X , (5.2)

together with the β-rules

recS1base ≡ x ,

recS1 (loop) = p ,
(5.3)

forX : Type1, x : X and p : x = x , and a propositional η-rule stating
the uniqueness of the recursor (see [35]).

We begin with the following encoding (originally proposed
by Mike Shulman [34]), which is suggested by the previous ‘Sys-
tem F style’ ones.

S1F =
∏
X :U

∏
x :X

(x = x ) → X . (5.4)

This has the same problem as the System F encoding ofN (4.3), how-
ever: no uniqueness for the recursor, and so no induction principle.
We will remedy this in the same way as before, now restricting the∏

X to 1-types, and then adding naturality and a higher “coherence
condition”, reflecting the fact that S1 is a 1-type rather than a set.

First, to see where (5.4) came from, the universal property of the
circle [40, Lemma 6.2.9] is given by the equivalence,

(S1 → X ) ≃
∑
x :X

x = x . (5.5)

That is to say, maps S1 → X correspond to “loops” x = x in X , with
various basepoints x : X .

2Strictly speaking, some Set-level inductive types, such as quotients, are also HITs, in
that they involve primitive identity paths. Even the propositional truncation is a HIT
in this sense.
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Thus by the same reasoning as in the Basic Lemma, if we had
S1, there would be an embedding,

S1 ↪→
∏

X :Type1

(S1 → X ) → X

≃
∏

X :Type1

(
∑
x :X

x = x ) → X (by (5.5))

≃
∏

X :Type1

∏
x :X

(x = x ) → X .

This gives us (5.4) as a starting point, but we again need to refine
the encoding to a suitable subtype.

Let us write
Ω(X ) :≡

∑
x :X

x = x

for the (unbased) “loopspace functor”, so that (5.4) is essentially
the type of “families of maps ΩX → X ”. Let α :∏X :Type1 ΩX → X
be such a family, and consider the following naturality square,
corresponding to (3.8)

ΩX

αX
��

Ωf
// ΩY

αY
��

X
f
// Y ,

(5.6)

where Ω f is defined in the usual way as the action of f on identity
paths in X [40, 2.2]. Since we now have a 1-type Y in the target, the
naturality condition

f ◦ αX = αY ◦ Ω f (5.7)
is not a proposition, but a set. We will add a “coherence condition”
in order to cut it down further. Indeed, consider a naturality term

ϑ :
∏

X ,Y :Type1

∏
f :X→Y

f ◦ αX = αY ◦ Ω f .

Then for any f : X → Y and д : Y → Z , we have identifications
ϑf : f ◦ αX = αY ◦ Ω f ,

ϑд : д ◦ αY = αZ ◦ Ωд ,

depicted

ΩX

αX
��

Ωf
//

ϑf

ΩY

αY
��

Ωд
//

ϑд

ΩZ

αZ
��

X
f
// Y д

// Z ,

as well as one
ϑ(д◦f ) : (д ◦ f ) ◦ αX = αZ ◦ Ω(д ◦ f ) .

Informally, the coherence condition we seek is then
“ ϑ(д◦f ) = ϑд · ϑf ”

but of course, this does not type-check. Instead, we have the fol-
lowing “pasting scheme”

ΩX

αX
��

Ωf
//

ϑf

Ω(д◦f )

��
φf ,д

ΩY

αY
��

Ωд
//

ϑд

ΩZ

αZ
��

X
f
//

д◦f

??
Y д

// Z ,

where φf ,д : Ωд ◦ Ω f = Ω(д ◦ f ) is the provable composition
law of the (pseudo-) functor Ω. This gives rise to the well-typed
coherence condition,

ϑ(д◦f ) = (αZ ∗ φf ,д ) · (ϑд ∗ Ω f ) · (д ∗ ϑf ) , (5.8)

where q · p is composition of the paths p,q, and f ∗ p (resp. p ∗ f )
is the “whiskering” of a map f and a path p (see [40, 2.1]).

Note that (5.8) is indeed a proposition, because it is an identity
between identities (д ◦ f ) ◦ αX = αZ ◦ Ω(д ◦ f ) in the 1-type
ΩX → Z .

There is also a unit coherence condition, which has the simple
form

ϑ(1X ) = reflαX
in the 1-type ΩX → X (taking into account the fact that “Ω pre-
serves refl”).

Now for α :∏X :Type1 ΩX → X , let us write

Nat(α ) :≡
∏

X ,Y :Type1

∏
f :X→Y

f ◦ αX = αY ◦ Ω f

for the type of “naturality structures” on the family of maps α , and
for ϑ : Nat(α ), let us write

Coh(ϑ ) :≡
∏

X ,Y ,Z :Type1

∏
f :X→Y

∏
д:Y→Z

(
ϑ(1X ) = reflαX

)
×
(
ϑ(д◦f ) = (αZ ∗ φf ,д ) · (ϑд ∗ Ω f ) · (д ∗ ϑf )

)
for the type of “coherence conditions” on the natural transforma-
tion ϑ .

The sharper encoding of S1 that we seek is then

S1 :≡
∑

α :(S1 )∗

∑
ϑ :Nat(α )

Coh(ϑ ) (5.9)

where, as before,

(S1)∗ :≡
∏

X :Type1

∏
x :X

(x = x ) → X

≃
∏

X :Type1

(
∑
x :X

x = x ) → X

≡
∏

X :Type1

ΩX → X .

The type (5.9) can thus be understood as consisting of those natural
transformations ΩX → X that are coherent (also called pseudo-
natural transformations).

The constructors base and loop can then be defined:

base∗ :≡ λXx p. x

:
∏

X :Type1

∏
x :X

(x = x ) → X

base :≡
(
base∗, ( λXY f . refl, λXYZ f д. ( refl, refl ) )

)
:
∑

α :(S1 )∗

∑
ϑ :Nat(α )

Coh(ϑ )

loop∗ :≡ funext(λX x p. p)

: base∗ = base∗

loop :≡
(
loop∗, (a, (b, c ))

)
: base = base .

(5.10)
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where the subterms a,b, c in loop are certain canonical higher co-
herences, such as inv : ϑ · ϑ−1 = refl, the details of which we omit.
Finally, the recursor recS1 is given by:

recS1 :≡ λCz p σ . (pr1 pr1 σ )C z p

:
∏

C :Type1

∏
z :C

(z = z) → S1 → C (5.11)

Theorem 5.1. The encoding (5.9) of S1, with the structure base
and loop just given, satifies the rules for the corresponding higher
inductive type, including the dependent elimination rule, with respect
to (families of) 1-types.

For the proof, as in previous cases one shows first that the encod-
ing implies the recursion rules for S1, including the η-rule. Then,
by the results in [35, 36], it also admits dependent elimination.

Observe that our encoding can be motivated informally by a
version of the Basic Lemma 3.1 for 1-types (i.e. the Yoneda lemma
for bicategories) as follows, where wewrite I for the identity functor
on the (bi)category of 1-types, and pNat for the groupoid of pseudo-
natural transformations between pseudo-functors,

S1 ≡ I (S1) ≃ pNat( (−)S
1
, I ) by Yoneda

≃ pNat( Ω , I ) by (5.5)

≡
∑

α :(S1 )∗

∑
ϑ :Nat(α )

Coh(ϑ ) .

Other 1-types Similarmethods can be used to give the 1-truncation
||A||1 of a general type A, in the analogous form

∥A∥1 :≡
∑
α :A∗

∑
ϑ :Nat(α )

Coh(ϑ ) (5.12)

where, as in (3.16),

A∗ :≡
∏

X :Type1

(A→ X ) → X .

By analogy to the encoding of set quotients, we expect that one
can also use the foregoing method to encode the groupoid quotient
([1]: “Rezk completion”) BG of a (pre)groupoid G (cf. [35] for a
type theoretic description). In principle, one should also be able to
encode some “higher W-types”, specified by families x : A ⊢ B (x ) of
1-types B (x ), such as occur in the theory of combinatorial species
[23]. But we have not investigated these possibilities.

6 Conclusion
Limitations The methods used here have certain limitations
which we can now address. The first is the familiar (in type the-
ory) issue of “large versus small elimination”, i.e. elimination into
types in higher universes. The encodings given here have elimi-
nation rules only with respect to types in the impredicative uni-
verse U . That said, we made little use of the higher universes
U0 : U1 : U2 : ... and could simply have omitted them (with some
corresponding adjustments). The resulting system would be similar
to the original Calculus of Constructions [10], but with the addition
of primitive identity-types. The issue of eliminating intoU itself
of course remains, as it does for the CoC.

Restricting the system to the subuniverse Set of 0-types – either
by definitions aswas done here, or by the addition of “extensionality”
principles such as the uniqueness of identity proofs as in [2] or
even the reflection rule as in [14] – seems to give a very satisfactory

type theory for sets, with quotient types, W-types, etc., within a
framework with very few primitive operations.

In an intensional system admitting higher n-types, there is the
interesting, and apparently new, question of whether encoded n-
types can eliminate into (n + k)-types (note that the truncation
levels are cumulative, so the converse is immediate). It seems that
this is possible in some cases, but more work needs to be done
to understand which ones. To give a brief indication, we have
already seen the encodings 0 :≡ ∏X :U X and 1 :≡ ∏p :Prop p →
p , but why does the first one require a product over all of U ,
while Prop suffices for the second? The issue seems to be related to
the preservation of certain (co)limits by the inclusions Typen ↪→
Typen+1 (of course, the truncations are left adjoints to these). It
seems that some encodings are “stable” in the sense that they also
eliminate into higher n-types; for example, our encoding of N as
a set should be stable, as can be seen by considering the fact that
it is a W-type [7], constructed in Set, and the truncation levels are
closed under W-types [12]. Similar considerations apply to other
inductive 0-types encoded by the method in Section 4. Indeed, we
could also encode the natural numbersN as a 1-type, but then show
that the result is actually a 0-type and thus equivalent to the original
encoding, which therefore now eliminates into all 1-types. In this
way, it seems possible to establish that some n-types can indeed
eliminate into (n+k)-types. A similar argument would seem to apply
to the encoding of S1 given in Section 5, which should therefore
also be stable. An encoding that is apparently not stable would be
a coequalizer constructed in Set; constructing it in a higher Typen
should give a homotopy colimit, which need not be a set.

The previous considerations are particularly tentative, however,
because of the combinatorial difficulty of specifying the relevant
coherence conditions for higher n-types. Indeed, the current meth-
ods are restricted to encodings of n-types only for very low n. More
work, and perhaps some new insight, is needed to specify the co-
herence conditions for higher n-types, and for untruncated types,
such as the 2-sphere S2.

We also recognize that, as experience has shown, reasoning
effectively about (higher) inductive types often involves large elim-
inations into a (univalent) universe. For conventional inductive
types, the lack of such large elimination means that we can not
compute initial algebras by iterating functors (since this would
require elimination from N toU ), but fortunately we don’t need
this kind of iteration in the impredicative setting, since we can
compute initial algebras differently, namely as in Theorem 4.1.

For higher inductive types the situation may be different, how-
ever; large elimination (plus univalence) seems to be essential in
the proof that π1 (S1) = Z (see [25]). Thus, ultimately, the utility of
such encodings of HITs may be that they serve to justify adding the
associated rules globally, as was done for conventional inductive
types in passing from the Calculus of Constructions to the Calculus
of Inductive Constructions [11, 13, 28].

Semantics A realizability model of the calculus of constructions
with a proof-relevant impredicative universe is described in [38,
Chapter 2]. The impredicative universe in this model is closed
under small sums and identity types, and the model can be ex-
tended to include a hierarchy of predicative universes using tech-
niques akin to those discussed in [39] (assuming sufficiently many
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set-theoretic Grothendieck universes). This establishes the consis-
tency of our system and provides a semantic framework for impred-
icative encodings of 0-types. Non-trivial 1-types can be modeled
in a groupoidal realizability model, obtained by internalizing the
Hofmann-Streicher groupoid model [20] in a realizability topos. A
model of a type theory with an impredicative universe of types of
arbitrary truncation level, based on cubical assemblies, is work in
progress [3].

Related work Most of the results presented here are treated in
more detail in the third-named author’s M.S. thesis [37].

A formalization of the main results of this paper (including
the encoding of the unit circle) has been carried out using (an
impredicative branch of) the Lean proof assistant. The files are
publicly available here [5].
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