Axiom of Choice and Excluded Middle
in Categorical Logic

Steven Awodey
The University of Chicago

Spring 1995

Abstract

The axiom of choice is shown to hold in the predicative logic of any lo-
cally cartesian closed category. A predicative form of excluded middle
is then shown to be equivalent to the usual form of choice in topoi.

The logic of topoi is a version of higher-order, intuitionistic logic (see [3]).
In this setting, Diaconescu [2] has shown that the axiom of choice (AC)
entails the law of excluded middle (EM). This result sits well with a certain
conception of logical truth, according to which AC is neither a principle of
logic, nor even compatible with reasoning that eschews EM.

According to some other conceptions, however, AC is a logical principle
and EM is not. Notable examples are the type theories of Tait [7], [8] and
Martin-Lof [5], as is—informally—the logic underlying Bishop’s construc-
tive analysis [1] (as noted in [5]). Such systems of logic evidently cannot be
modeled in topoi in the standard way. However, Seely [6] has shown how
to model a range of such type theories in locally cartesian closed (LCC)
categories (the source of this idea is Lawvere [4]). The type theories con-
sidered by Seely, which are closely related to those of Tait and Martin-Lof,
will here be called predicative. In addition to elementary logic, they in-
clude higher-order quantification over functions between types, functions of
functions, etc., but not over propositional functions (there is no type of
propositions). They also have more liberal type-forming operations than
conventional higher-order logic; e.g. such expressions as Elye(vmex¢(z))'¢(y)
may be well-formed. Details of the syntax of predicative type theories can
be found in the literature just cited. The equivalence between predicative
type theories and LCC categories established in [6] allows us to derive re-
sults concerning the former by working with the latter. Below (Theorem 1)



a purely category theoretical proof of AC is given for LCC categories. Thus
AC is a theorem in any predicative type theory. Theorem 2 also applies this
method.

As an aside, Theorem 1 supports the view—advanced by Tait in [8]—
that AC follows from a constructive interpretation of the logical constants,
for predicative type theories have such a constructive character. For exam-
ple, a sentence of the form J,cx¢(z) is provable only if there is a closed
term « of type X such that ¢(a) is provable. Such proof-theoretic con-
siderations underlie the “propositions-as-types” interpretation of these type
theories (also known as the Curry-Howard isomorphism), according to which
a proposition is the type of its proofs. For details, see Tait [7], [8].

We recall in outline the interpretation of predicative logic in LCC cat-
egories, assuming familiarity with basic category theory; details are in [6].
Let 7 be an LCC category. Thus 7 has a terminal object 1, and for every
arrow f: X — Y in 7 the functor ¥; : 7/X — T /Y given by composition
with f has a right adjoint f* : 7/Y — T7/X (pullback along f), which
itself has a right adjoint Il : 7/X — T/Y. Here T /Z denotes the “slice”
(or “comma”) category over the object Z of T; the objects of 7/Z are the
arrows D — Z in T with codomain Z (for all objects D), and the arrows of
T /Z are commutative triangles in 7T,

D — D
N
Z.

From the logical point of view, the objects of 7 are regarded simultaneously
as propositions and as types. An arrow f: X — Y of 7 is regarded both
as a proof of Y from the premise X, and as a term of type Y with a single
free variable of type X. Qua proposition, an object Y is true in 7 iff it
has a proof, i.e. an arrow 1 — Y, from the terminal object 1, which itself
is regarded as a true proposition. A propositional function on Y qua type
is then a proposition-valued function on Y, hence a Y-indexed family of
objects of T, hence an object of the slice category 7/Y. If ¢(y) is such
a propositional function on Y and a : 1 — Y is a closed term, then the
substitution ¥ (a) of a for y in ¥(y) is given by ¥(a) = a*(¢¥(y)) (the
pullback of ¥(y) along «), which is an object of 7/1 =2 T and hence a
“proposition”. More generally, if 7 : X — Y is any term of type Y, then
P(r) = (¥ (y)) is an object of 7 /X, thus a propositional function on X.
Let ¢(z,y) be a propositional function on X X Y and 7 : X xY — Y the
second projection; the quantifiers are interpreted by setting J,ex¢(z,y) =
Y (¢p(z,y)) and Voexo(z,y) = l:(é(z,y)). The adjointness conditions for
Yoo, %, and Il then become the two-way rules of inference:



Toexo(z,y) = ¥(y) T Y(y) = oz, y)

Pz, y) = T YP(y) Y(y) = Veexo(z,y)

where the propositional function 7*%(y) = ¢ (7) on X x Y is just ¢ (y) with
a dummy variable over X. Finally, for any object Z of T, the slice 7/Z
has products and exponentials; then for any objects ¢ and ¢ in T/Z, let
dAYp =¢xand ¢ = ¢ = ®. The product/exponential adjunction
becomes the two-way rule, for any objects ¢, ¥, ¥ in T /Z:

OANY — 0

¢ — =17
Now consider

(AC) VeexIyey (2, Y) = FyeyxVoex é(z, f(2))

in the logic of an LCC category 7. Here ¢ is a propositional function on
X x Y, for objects X and Y of 7. Thus the schema AC holds in T iff, for
any objects X, Y in 7 and ¢ in 7/X x Y, there exists in 7 an arrow

11— [vxEleyEYqb(x? y) = EleYXVrEng(‘r? f('r)) ]7

hence iff there exists at least one arrow

vxeXayEY(b(mv y) — EleYXVIEX¢($7 f(m))
In fact, something much stronger is true:

Theorem 1 For any LCC category T, and any objects X, Y in T and
o(z,y) in T/X XY, there is an isomorphism:

Voex Jyev ¢(2,y) = FpeyxVeex o(z, f(2)).

Proof: Given ¢ = ¢(z,y) in T/X x Y, ¢(z, f(z)) in T/X is the pullback
of ¢ along the (variable) graph g :=< p,ev >: Y¥ x X — X x Y, where p
is the second projection and ev : YX x X — Y is the canonical evaluation
arrow. So (with obvious notation) we’re showing

VonlygzlnyVXOg*:T/XXY—}T,

i.e. that the following diagram commutes up to isomorphism.



*

g
T/(X xY) — T/(Y¥xX)

Iy | 1 Vx (1)
T/X T/YX
Vx N\ v dyx
T

Take ¢ : D — X xY in the upper left-hand corner of (1) . Then 3y .¢p = go¢
where ¢ : X X Y — X is the first projection. So Vx3y.¢ can be calculated
as the outer pullback in the following diagram,

VXay.gﬁ — DX

vl L o*
Z —  (XxY)X (2)
PR
1 — XX7
Ax.lx

where 1, h, and Z make the two squares pullbacks. But then
Z2V¥x.(q: X xY = X) =YX,

so Vx3dy.¢ = Iy x.¢. Furthermore, h = Ax.g, i.e. the X-transpose of g. So
P =2 (Ax.9)*.¢*, and we just need (Ax.g)*.¢* = Vx o g*.¢. Taking any
€:D' - Y¥Xin T/Y?X, there are successive adjunctions:

£ — (Ax.9)"¢" T/Y*

E(/\X.g).f — ¢X T/(Y X X)X

by transposition

Y, (¢x1x) — ¢ T/(Y x X)

Ex1x — g*¢ T/(YX x X)

m:YX¥x X =YX projection
& — g% T/(YX x X)
& — Vxg .0 T/YX

So the proof is complete by the Yoneda lemma.



Since topoi are LCC categories, it may be asked how Theorem 1 relates
to Diaconescu’s result that choice entails excluded middle in topoi. We shall
show that the usual form of choice for topoi, viz. epis split, is equivalent to
a predicative form of excluded middle. To this end, we consider predicative
type theories with negation and disjunction, such as [5] and [8]. Observe
that for any LCC category 7, the Yoneda embedding 7 — Set”"" preserves
all of the LCC structure, and Set” " is a topos. Since the Yoneda embedding
is full and faithful, one may restrict attention to models of predicative type
theories in topoi and still obtain the complete semantics of [6] . Colimits in
topoi can then be used to interpret negation and disjunction as follows.

Let 7 be a topos and X an object of 7. The slice 7 /X is then also a
topos, so it has an initial object 0 and coproducts. For any objects ¢,
in T7/X, put 7¢ = ¢ = 0and ¢V ) = ¢+ ¢ (coproduct). For any ¥ in
T /X, there is a unique arrow 0 — 9; so =9 is true in 7 /X iff 9 = 0. For
disjunction one has, for any ¢, ¥, 9 in 7 /X, the two-way rule:

o=, pb— 9

oV — I

Like any contravariant exponential functor, = : 7/X — T/X is self-
adjoint on the right; so ¢ = ——¢ is always true. In general, =—¢ = ¢
is not, but “three nots is one” by adjointness. Now —¢ is always open in
T/X, i.e. there is at most one arrow to —¢ from any ¢ in 7/X; so = is
always a monomorphism into X. Since 7 is a topos, every ¢ in 7 /X has a
support 0.¢ = image(¢) in T /X, and on such subobjects the above defined
negation agrees with the usual, topos-theoretic negation. Applying — to the

commutative triangle
¢ — ¢

NS
o.¢

in 7/X then shows —¢ = —0.¢. So =—¢ is the ——-closure of the support of
¢. Using this fact and the result of Diaconescu mentioned above, the proof
of the following is by direct verification.
Theorem 2 For any topos T, the following are equivalent:

(i) For any object ¢ in any slice T/X, ¢V ¢ is true.

(i) For any object ¢ in any slice T/X, =—¢ = ¢ is true.

(ili) T has choice, i.e. every epimorphism in T splits.



In a predicative type theory with negation and disjunction rules that

can be modeled in topoi as indicated above, the laws of excluded middle
and duplex negatio affirmat are thus equivalent to the usual, topos theoretic
version of the axiom of choice.

References

(1]

[2]

Bishop, E.: 1967, Foundations of Constructive Analysis, McGraw-Hill,
New York.

Diaconescu, R.: 1975, “Axiom of Choice and Complementation,” Proc.
A.M.S. 51, 175-8.

Lambek, J. & Scott, P.: 1986, Introduction to Higher-order Categorical
Logic, Cambridge University Press, Cambridge.

Lawvere, I'. W.: 1969, “Adjointness in Foundations,” Dialectica 23, 281—
96.

Martin-Lof, P.: 1973, “An Intuitionistic Theory of Types: Predicative
Part,” Logic Colloguium 73, Bristol, ed. H. E. Rose & J. C. Sheperdson,
North-Holland, Amsterdam, 73-118.

Seely, R.A.G.: 1984, “Locally Cartesian Closed Categories and Type
Theory,” Math. Proc. Camb. Phil. Soc. 95, 33-48.

Tait, W. W.: 1986, “Truth and Proof: The Platonism of Mathematics,”
Synthese 69, 341-70.

Tait, W. W.: 1994, “The Law of Excluded Middle and the Axiom of
Choice,” Mathematics and Mind, ed. A. George, Oxford University Press,
Oxford, 45-70.



