
Recent Work in Homotopy Type Theory

Steve Awodey
Carnegie Mellon University

AMS Baltimore
January 2014

Introduction

I Homotopy Type Theory is a newly discovered connection
between logic and topology, based on an interpretation of
constructive type theory into homotopy theory.

I Univalent Foundations is a program for comprehensive
foundations of mathematics based on HoTT.

I A large amount of mathematics has already been developed in
this new foundational system, including some basic results in
homotopy theory.

I Proofs are formalized and verified in an extension of the Coq
proof assistant, suitably modified for UF.

Type theory

Martin-Löf constructive type theory consists of:

I Types: X ,Y , . . . ,A× B, A→ B, . . .

I Terms: x : A, b : B, 〈a, b〉, λx .b(x), . . .
I Dependent Types: x : A ` B(x)

I
∑

x :A B(x)
I
∏

x :A B(x)

I Equations s = t : A

Intended as a foundation for constructive mathematics, but now
also used extensively in programming languages.

Propositions as Types

The system has a dual interpretation:

I once as mathematical objects: types are “sets” and their
terms are “elements”, which are being constructed,

I once as logical objects: types are “propositions” and their
terms are “proofs”, which are being derived.

This is also known as the Curry-Howard correspondence:

0 1 A + B A× B A→ B
∑

x :A B(x)
∏

x :A B(x)

⊥ T A ∨ B A ∧ B A⇒ B ∃x :AB(x) ∀x :AB(x)

Gives the system its constructive character.

Identity types
It’s natural to add a primitive relation of identity between terms:

x , y : A ` IdA(x , y)

This type represents the logical proposition “x is identical to y”.

Question: What is the mathematical interpretation of IdA(x , y)?

The introduction rule says that a : A is always identical to itself:

r(a) : IdA(a, a)

The elimination rule is a form of Lawvere’s law:

c : IdA(a, b) x : A ` d(x) : R
(
x , x , r(x)

)
Jd(a, b, c) : R(a, b, c)

Schematically:

“ a = b & R(x , x) ⇒ R(a, b) ”

The homotopy interpretation (Awodey-Warren)
Suppose we have terms of ascending identity types:

a, b : A

p, q : IdA(a, b)

α, β : IdIdA(a,b)(p, q)

. . . : IdIdId... (. . .)

Consider the following interpretation:

Types Spaces

Terms Maps

a : A Points a : 1→ A

p : IdA(a, b) Paths p : a⇒ b

α : IdIdA(a,b)(p, q) Homotopies α : p V q

...

The homotopy interpretation (Awodey-Warren)

This extends the topological interpretation of the (simply-typed)
λ-calculus:

types spaces

terms continuous functions

to (dependently-typed) λ-calculus with Id-types via the new
idea:

p : IdX (a, b) ⇔
p is a path from point a to point b in the space X

This forces:

I dependent types to be fibrations,

I Id-types to be path spaces,

I general terms of Id-types to be homotopies.

The fundamental groupoid of a type (Hofmann-Streicher)

Like path spaces in topology, identity types give each type the
structure of a (higher-) groupoid:

•
a

•
a

•
b
//

p
•
a

•
b

p

##

q

;;��
α

�!

α

}�

β*4
ϑ

•
a

•
b

p

��

q

EE

The laws of identity are the groupoid operations:

r : Id(a, a) reflexivity a→ a

s : Id(a, b)→ Id(b, a) symmetry a� b

t : Id(a, b)× Id(b, c)→ Id(a, c) transitivity a→ b → c

The groupoid equations only hold “up to homotopy”.

Fundamental ∞-groupoids

The entire system of identity terms of all orders forms an
infinite-dimensional graph, or globular set:

A⇔ IdA ⇔ IdIdA ⇔ IdIdIdA ⇔ . . .

It has the structure of a (weak), infinite-dimensional, groupoid, as
occurring homotopy theory:

Theorem (Lumsdaine, Garner & van den Berg, 2009)

The system of identity terms of all orders over any fixed type is a
weak ∞-groupoid.

Every type has a fundamental weak ∞-groupoid.

Homotopy n-types (Voevodsky)

The universe of all types is stratified by homotopical truncation,
which is logically definable.

A type X is called:

contractible iff
∑

x :X

∏
y :X IdX (x , y) is inhabited,

A type X is called a:

proposition iff IdX (x , y) is contractible for all x , y : X ,

set iff IdX (x , y) is a proposition for all x , y : X ,

1-type iff IdX (x , y) is a set for all x , y : X ,

(n+1)-type iff IdX (x , y) is an n-type for all x , y : X .

We then let set = 0-type, and proposition = (−1)-type.
This corresponds to the homotopical notion of truncation,
the level at which the fundamental groupoid becomes trivial.

Homotopy type theory: Summary

I Constructive type theory has an interpretation into homotopy
theory.

I Logical methods capture some homotopical concepts: e.g. the
fundamental ∞-groupoid of a space and the notion of a
homotopy n-type are logically definable.

I Many basic results have already been formalized: Homotopy
groups of spheres πk(Sn), Hopf fibration, Freudenthal
suspension theorem, Eilenberg–Mac Lane spaces, ...

I Other areas are being developed:

I Foundations: quotient types, inductive types, cumulative
hierarchy of sets, ...

I Elementary mathematics: basic algebra, real numbers, cardinal
arithmetic, ...

I Some new logical ideas are suggested by the homotopy
interpretation: Higher inductive types, Univalence axiom.

Higher inductive types (Lumsdaine-Shulman)

The natural numbers N are implemented as an (ordinary) inductive
type:

N :=

{
0 : N
s : N→ N

The recursion property is captured by an elimination rule:

a : X f : X → X
rec(a, f) : N→ X

with computation rules:

rec(a, f)(0) = a

rec(a, f)(sn) = f (rec(a, f)(n))

Higher inductive types (Lumsdaine-Shulman)

In other words, (N, 0, s) is the free structure of this type:

1
0

��

a

��
Ns 88 rec

// X fff

The map rec(a, f) : N→ X is unique.

Higher inductive types: The circle S1

The homotopical circle S = S1 can be given as an inductive type
involving a “higher-dimensional” generator:

S :=

{
base : S
loop : base base

where we write “base base” for “IdS(base, base)”.

Higher inductive types: The circle S1

S :=

{
base : S
loop : base base

The recursion property of S is given by its elimination rule:

a : X p : a a

rec(a, p) : S→ X

with computation rules:

rec(a, p)(base) = a

rec(a, p)(loop) = p

(The map rec(a, p) acts on loop via the Id-elimination rule.)

Higher inductive types: The circle S1

In other words, (S, base, loop) is the free structure of this type:

1
base

��

a

��
baseloop 88 S rec

// X a pdd

The map rec(a, p) : S→ X is unique up to homotopy.

Higher inductive types: The circle S1

Here is a sanity check:

Theorem (Shulman 2011)

The type-theoretic circle S has the correct homotopy groups:

πn(S) =

{
Z, if n = 1,

0, if n 6= 1.

The proof has been formalized in Coq. It combines classical
homotopy theory with methods from constructive type theory, and
uses Voevodsky’s Univalence Axiom.

Higher inductive types: The interval I

The unit interval I = [0, 1] is also an inductive type, on the data:

I :=

{
0, 1 : I
p : 0 1

again writing 0 1 for the type IdI(0, 1).

Slogan:

In classical topology we start with the interval and use it to define
the notion of a path.

In HoTT we start with the notion of a path, and use it to define
the interval.

Higher inductive types: Conclusion

Many basic spaces and constructions can be introduced as HITs:

I higher spheres Sn, cylinders, tori, cell complexes, . . . ,

I suspensions ΣA,

I homotopy pullbacks, pushouts, etc.,

I truncations, such as connected components π0(A) and
“bracket” types [A],

I quotients by equivalence relations, and more general quotients

I higher homotopy groups, Eilenberg-Mac Lane spaces,
Postnikov systems

I Quillen model structure.

These are mostly ad hoc — the general theory is still a work in
progress.

Univalence

Voevodsky has proposed a new foundational axiom to be added to
HoTT: the Univalence Axiom.

I It captures the informal practice of identifying isomorphic
objects.

I It is formally incompatible with set theoretic foundations.

I It is formally consistent with homotopy type theory.

I It has powerful consequences, especially together with HITs.

Isomorphism and Equivalence

The notion of type isomorphism A ∼= B is definable as usual:

A ∼= B ⇔ there are f : A→ B and g : B → A
such that gfx = x and fgy = y.

Formally, there is a type of isomorphisms:

Iso(A,B) :=
∑

f :A→B

∑
g :B→A

(∏
x :A

IdA(gfx , x)×
∏
y :B

IdB(fgy , y)
)

We say that A ∼= B if this type is inhabited by a closed term,
which is then an isomorphism between A and B.

Isomorphism and Equivalence

I There is also a more refined notion of equivalence of types,

A ' B

which adds a further “coherence” condition relating the proofs
of gfx = x and fgy = y .

I Under the homotopy interpretation, this is the type of
homotopy equivalences between the spaces A and B.

I Depending on the n-type of A and B, this also subsumes:
I categorical equivalence (n = 1),
I isomorphism of sets (n = 0),
I logical equivalence (n = −1).

Univalence

Question: How is equivalence related to identity of types?

To reason about identity of types, we need a type universe U , with
an identity type:

IdU (A,B)

Since identity implies equivalence, there is a comparison map:

IdU (A,B)→ (A ' B).

The Univalence Axiom asserts that this map is an equivalence:

IdU (A,B) ' (A ' B) (UA)

It can thus be stated: “Identity is equivalent to equivalence.”

The Univalence Axiom: Remarks

I Since UA is an equivalence, there is a map coming back:

IdU (A,B)←− (A ' B)

So equivalent objects are identical.
(In particular, isomorphic sets, groups, etc., get identified.)

I UA is equivalent to the following invariance property:

A ' B and P(A) implies P(B),

for all definable properties P(−) of types.

I UA is incompatible with the assumption that everything is a
set (0-type), but it is consistent with general HoTT.

I The computational character of UA is an open question.

The Univalence Axiom: How it works

To compute the fundamental group of the circle S, we first
construct the universal cover:

R

S

cov

base

0

1

2

This will be a dependent type over S, i.e. a type family

cov : S // U .

The Univalence Axiom: How it works

To define a type family

cov : S −→ U ,

by the recursion property of the circle, we just need the following
data:

I a point A : U
I a loop p : A A

We have:

I For the point A we take the integers Z.

I By UA, to give a loop p : Z Z in U , it suffices to give an
equivalence Z ' Z.

I Since Z is a set, equivalences are just isomorphisms, so we
can take the successor function succ : Z ∼= Z.

The Univalence Axiom: How it works

R

S

cov

base

0

1

2

Definition (Universal Cover of S1)

The dependent type cov : S // U is given by circle-recursion, with:

cov(base) := Z
cov(loop) := ua(succ).

The Univalence Axiom: How it works

R

S

cov

base

0

1

2

Then, as usual, we can define the “winding number” of a path
p : base base to give a map

wind : (base base) // Z,

which is inverse to the map z 7→ loopz .

The formal proof

(** * Theorems about the circle S^1. *)

Require Import Overture PathGroupoids Equivalences Trunc HSet.

Require Import Paths Forall Arrow Universe Empty Unit.

Local Open Scope path_scope.

Local Open Scope equiv_scope.

Generalizable Variables X A B f g n.

(* *** Definition of the circle. *)

Module Export Circle.

Local Inductive S1 : Type :=

| base : S1.

Axiom loop : base = base.

Definition S1_rect (P : S1 -> Type) (b : P base) (l : loop # b = b)

: forall (x:S1), P x

:= fun x => match x with base => b end.

Axiom S1_rect_beta_loop

: forall (P : S1 -> Type) (b : P base) (l : loop # b = b),

apD (S1_rect P b l) loop = l.

End Circle.

(* *** The non-dependent eliminator *)

Definition S1_rectnd (P : Type) (b : P) (l : b = b)

: S1 -> P

:= S1_rect (fun _ => P) b (transport_const _ _ @ l).

Definition S1_rectnd_beta_loop (P : Type) (b : P) (l : b = b)

: ap (S1_rectnd P b l) loop = l.

Proof.

unfold S1_rectnd.

refine (cancelL (transport_const loop b) _ _ _).

refine ((apD_const (S1_rect (fun _ => P) b _) loop)^ @ _).

refine (S1_rect_beta_loop (fun _ => P) _ _).

Defined.

(* *** The loop space of the circle is the Integers. *)

(* First we define the appropriate integers. *)

Inductive Pos : Type :=

| one : Pos

| succ_pos : Pos -> Pos.

Definition one_neq_succ_pos (z : Pos) : ~ (one = succ_pos z)

:= fun p => transport (fun s => match s with one => Unit | succ_pos t => Empty end) p tt.

Definition succ_pos_injective {z w : Pos} (p : succ_pos z = succ_pos w) : z = w

:= transport (fun s => z = (match s with one => w | succ_pos a => a end)) p (idpath z).

Inductive Int : Type :=

| neg : Pos -> Int

| zero : Int

| pos : Pos -> Int.

Definition neg_injective {z w : Pos} (p : neg z = neg w) : z = w

:= transport (fun s => z = (match s with neg a => a | zero => w | pos a => w end)) p (idpath z).

Definition pos_injective {z w : Pos} (p : pos z = pos w) : z = w

:= transport (fun s => z = (match s with neg a => w | zero => w | pos a => a end)) p (idpath z).

Definition neg_neq_zero {z : Pos} : ~ (neg z = zero)

:= fun p => transport (fun s => match s with neg a => z = a | zero => Empty

| pos _ => Empty end) p (idpath z).

Definition pos_neq_zero {z : Pos} : ~ (pos z = zero)

:= fun p => transport (fun s => match s with pos a => z = a

| zero => Empty | neg _ => Empty end) p (idpath z).

Definition neg_neq_pos {z w : Pos} : ~ (neg z = pos w)

:= fun p => transport (fun s => match s with neg a => z = a

| zero => Empty | pos _ => Empty end) p (idpath z).

(* And prove that they are a set. *)

Instance hset_int : IsHSet Int.

Proof.

apply hset_decidable.

intros [n | | n] [m | | m].

revert m; induction n as [|n IHn]; intros m; induction m as [|m IHm].

exact (inl 1).

exact (inr (fun p => one_neq_succ_pos _ (neg_injective p))).

exact (inr (fun p => one_neq_succ_pos _ (symmetry _ _ (neg_injective p)))).

destruct (IHn m) as [p | np].

exact (inl (ap neg (ap succ_pos (neg_injective p)))).

exact (inr (fun p => np (ap neg (succ_pos_injective (neg_injective p))))).

exact (inr neg_neq_zero).

exact (inr neg_neq_pos).

exact (inr (neg_neq_zero o symmetry _ _)).

exact (inl 1).

exact (inr (pos_neq_zero o symmetry _ _)).

exact (inr (neg_neq_pos o symmetry _ _)).

exact (inr pos_neq_zero).

revert m; induction n as [|n IHn]; intros m; induction m as [|m IHm].

exact (inl 1).

exact (inr (fun p => one_neq_succ_pos _ (pos_injective p))).

exact (inr (fun p => one_neq_succ_pos _ (symmetry _ _ (pos_injective p)))).

destruct (IHn m) as [p | np].

exact (inl (ap pos (ap succ_pos (pos_injective p)))).

exact (inr (fun p => np (ap pos (succ_pos_injective (pos_injective p))))).

Defined.

(* Successor is an autoequivalence of [Int]. *)

Definition succ_int (z : Int) : Int

:= match z with

| neg (succ_pos n) => neg n

| neg one => zero

| zero => pos one

| pos n => pos (succ_pos n)

end.

Definition pred_int (z : Int) : Int

:= match z with

| neg n => neg (succ_pos n)

| zero => neg one

| pos one => zero

| pos (succ_pos n) => pos n

end.

Instance isequiv_succ_int : IsEquiv succ_int

:= isequiv_adjointify succ_int pred_int _ _.

Proof.

intros [[|n] | | [|n]]; reflexivity.

intros [[|n] | | [|n]]; reflexivity.

Defined.

(* Now we do the encode/decode. *)

Section AssumeUnivalence.

Context ‘{Univalence} ‘{Funext}.

Definition S1_code : S1 -> Type

:= S1_rectnd Type Int (path_universe succ_int).

(* Transporting in the codes fibration is the successor autoequivalence. *)

Definition transport_S1_code_loop (z : Int)

: transport S1_code loop z = succ_int z.

Proof.

refine (transport_compose idmap S1_code loop z @ _).

unfold S1_code; rewrite S1_rectnd_beta_loop.

apply transport_path_universe.

Defined.

Definition transport_S1_code_loopV (z : Int)

: transport S1_code loop^ z = pred_int z.

Proof.

refine (transport_compose idmap S1_code loop^ z @ _).

rewrite ap_V.

unfold S1_code; rewrite S1_rectnd_beta_loop.

rewrite <- path_universe_V.

apply transport_path_universe.

Defined.

(* Encode by transporting *)

Definition S1_encode (x:S1) : (base = x) -> S1_code x

:= fun p => p # zero.

(* Decode by iterating loop. *)

Fixpoint loopexp {A : Type} {x : A} (p : x = x) (n : Pos) : (x = x)

:= match n with

| one => p

| succ_pos n => loopexp p n @ p

end.

Definition looptothe (z : Int) : (base = base)

:= match z with

| neg n => loopexp (loop^) n

| zero => 1

| pos n => loopexp (loop) n

end.

Definition S1_decode (x:S1) : S1_code x -> (base = x).

Proof.

revert x; refine (S1_rect (fun x => S1_code x -> base = x) looptothe _).

apply path_forall; intros z; simpl in z.

refine (transport_arrow _ _ _ @ _).

refine (transport_paths_r loop _ @ _).

rewrite transport_S1_code_loopV.

destruct z as [[|n] | | [|n]]; simpl.

by apply concat_pV_p.

by apply concat_pV_p.

by apply concat_Vp.

by apply concat_1p.

reflexivity.

Defined.

(* The nontrivial part of the proof that decode and encode are equivalences is showing that decoding

followed by encoding is the identity on the fibers over [base]. *)

Definition S1_encode_looptothe (z:Int)

: S1_encode base (looptothe z) = z.

Proof.

destruct z as [n | | n]; unfold S1_encode.

induction n; simpl in *.

refine (moveR_transport_V _ loop _ _ _).

by apply symmetry, transport_S1_code_loop.

rewrite transport_pp.

refine (moveR_transport_V _ loop _ _ _).

refine (_ @ (transport_S1_code_loop _)^).

assumption.

reflexivity.

induction n; simpl in *.

by apply transport_S1_code_loop.

rewrite transport_pp.

refine (moveR_transport_p _ loop _ _ _).

refine (_ @ (transport_S1_code_loopV _)^).

assumption.

Defined.

(* Now we put it together. *)

Definition S1_encode_isequiv (x:S1) : IsEquiv (S1_encode x).

Proof.

refine (isequiv_adjointify (S1_encode x) (S1_decode x) _ _).

(* Here we induct on [x:S1]. We just did the case when [x] is [base]. *)

refine (S1_rect (fun x => Sect (S1_decode x) (S1_encode x))

S1_encode_looptothe _ _).

(* What remains is easy since [Int] is known to be a set. *)

by apply path_forall; intros z; apply set_path2.

(* The other side is trivial by path induction. *)

intros []; reflexivity.

Defined.

Definition equiv_loopS1_int : (base = base) <~> Int

:= BuildEquiv _ _ (S1_encode base) (S1_encode_isequiv base).

End AssumeUnivalence.

Univalent Foundations: Summary

I Explicit logical foundations are now feasible, because
computers can take over what was once too tedious or
complicated to be done by hand.

I Formalization can provide a practical tool for working
mathematicians: increased certainty and precision, supports
collaborative work, cumulativity of results, searchable library
of code, ... Mathematics could eventually be fully formalized.

I UF uses a “synthetic” method involving high-level axiomatics
and direct, structural descriptions; allows shorter, more
abstract proofs; closer to mathematical practice than the
“analytic” method of ZFC.

I Use of UA is very powerful.

References and Further Information

General information:

www.HomotopyTypeTheory.org

Current state of the Univalent Foundations Program:

uf-ias-2012.wikispaces.com

The Book:

Homotopy Type Theory:
Univalent Foundations of Mathematics

Homotopy
Type Theory
Univalent Foundations of Mathematics

THE UNIVALENT FOUNDATIONS PROGRAM

INSTITUTE FOR ADVANCED STUDY

