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objects, that is that ‘@F”, if true of an object, is true of it regardless of the
way in which it is referred to, then one should better not quantify into
causal contexts; one should avoid contrary-to-fact conditionals, scientific
law-statements, confirmation statements, and many types of probability
statements and disposition terms——if one wants to make sense.
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SEMANTICAL CONSIDERATIONS ON
MODAL LOGIC

Sauvr A. KRIPKE

TH1s paper gives an exposition of some features of a semantical theory
of modal logics.* For a certain quantified extension of S5, this theory was
presented in ‘A Completeness Theorem in Modal Logic’,? and it has been
summarized in ‘Semantical Analysis of Modal Logic’.® The present
paper will concentrate. on one aspect of the theory—the introduction of
quantifiers—and it will restrict itself in the main to one method of achieving
this end. The emphasis of the paper will be purely semantical, and hence
it will omit the use of semantic tableaux, which is essential to a full pre-
sentation of the theory.* Proofs, also, will largely be suppressed.

We consider four modal systems. Formulae 4, B, C, . . . are built
out of atomic formulae P, Q, R, . . ., using the connectives A, ~,
and [J. The system M has the following axiom schemes and rules:

AQ. Truth-functional tautologies
Al.D4=> 4

A2. [J(4=B)>.04> OB
RI. 4, 4> BB

R2. 4/(14

If we add the following axiom scheme, we get S4:

04 = 0Oo4

From Acta Philosophica Fennica, 16 (1963), 83-94. Reprinted by permission of the
author and the publishers, Societas Philosophica Fennica, Helsinki.

* The theory given here has points of contact with many authors: For lists of
these, see S. Kripke, ‘Semantical Analysis of Modal Logic’, Zeitschrift fiir Mathe-
matische Logik und Grundlagen der Mathematik, 9 (1963), 67-96, and J. Hintikka,
‘Modality and Quantification’ Theoria, 27 (1961) 119-28. The authors closest to the
present theory appear to be Hintikka and Kanger. The present treatment of quanti-
fication, however, is unique as far as I know, although it derives some inspiration from
acquaintance with the very different methods of Prior and Hintikka.

2 Journal of Symbolic Logic, 24 (1959), 1-15.

8 Ibid., pp. 323-4 (Abstract).

“ For these see ‘A Completeness Theorem in Modal Logic’, Journal of Symbolic
Logic, 24 (1959), 1-15 and ‘Semantical Analysis of Modal Logic’, Zeitschrift fiir
Mathematische Logik und Grundlagen der Mathematik, 9, 67-96.
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We get the Brouwersche system if we add to M:

A> 004
S5, if we add:
4= 004

Modal systems whose theorems are closed under the rules R1 and R2,
and include all theorems of M, are called ‘normal’. Although we have
developed a theory which applies to such non-normal systems as Lewis’s

" 82 and S3, we will restrict ourselves here to normal systems.

To get a semantics for modal logic, we introduce the notion of a (normal)
model structure. A model structure (m.s.) is an ordered triple (G, K, R)
where K is a set, R is a reflexive relation on K, and G ¢ K. Intuitively, we
look at matters thus: K is the set of all “possible worlds’; G is the ‘real
world’, If H; and H, are two worlds, HyR H, means intuitively that Hj is
‘possible relative to” Hy; i.e., that every proposition true in Hy is possible in
H,. Clearly, then, the relation R should indeed be reflexive; evety world
H is possible relative to itself, since every proposition #rue in H is, a
fortiori, possible in H. Reflexivity is thus an intuitively natural require-
ment. We may impose additional requirements, corresponding to various
‘reduction axioms’ of modal logic: If R is transitive, we call (G, K, R)
an S4-m.s.; if R is symmetric, (G, K, R) is a Brouwersche m.s.; and if R
is an equivalence relation, we call (G, K, R) an S5-m.s. A model structure
without restriction is also called an M-model structure.

To complete the picture, we need the notion of model. Given a model -

structure (G, K, R), a model assigns to each atomic formula (propositional
variable) P a truth-value T or F in each world H ¢ K. Formally, a model
@ on a ms. (G, K, R) is a binary function ¢(P, H), where P varies over
 atomic formulae and H varies over elements of K, whose range is the set
{T, F}. Given a model, we can define the assignments of truth-values to
non-atomic formulae by induction. Assume ¢(4, H) and ¢(B, H) have
already been defined for all H £ K. Then if o(4, H) =¢(B, H) =T,
define (4 A B, H) = T; otherwise,p(4 A B, H) = F. p(~A,H)is defined
to be F iff ¢(4, H) = T; otherwise, p(~4, H) = T. Finally, we define
(004, H) = T iff p(4, H') = T for every H’ £ K such that H R H'; other-
wise, p([J4, H) = F. Intuitively, this says that A is necessary in H iff 4
is true in all worlds H’ possible relative to H.
Completeness theorem. FA in M (S4, S5, the Brouwersche system)
if and only if ¢(4, G) = T for every model ¢ on an M~(S4-, S5-, Brou-
wersche) model structure (G, K, R).5

5 For a proof, see ‘Semantical Analysis. . .,” Zeitschrift. . ., 9.
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This completeness theorem equates the syntactical notion of provability
in a modal system with a semantical notion of validity.

The rest of this paper concerns, with the exception of some concluding
remarks, the introduction of quantifiers. To do this, we must associate
with each world a domain of individuals, the individuals that exist in
that world. Formally, we define a quantificational model structure (g.m.s.)
as a model structure (G, K, R), together with a function v which assigns
to each H e K a set y(H), called the domain of H. Intuitively w(H) is the
set of all individuals existing in.H. Notice, of course, that »(H) need not

- be the same set for different arguments H, just as, intuitively, in worlds

other than the real one, some actually existing individuals may be absent,
while new individuals, like Pegasus, may appear.

We may then add, to the symbols of modal logic, an infinite list of
individual variables x, y, z, . . ., and, for each nonnegative integer n,
a list of np-adic predicate letters P*, Q", . . ., where the superscripts will
sometimes be understood from the context. We count propositional vari-
ables (atomic formulae) as ‘0-adic’ predicate letters. We then build up
well-formed formulae in the usual manner, and can now prepare our-
selves to define a quantificational model.

To define a quantificational model, we must extend the original notion,
which assigned a truth-value to each atomic formula in each world.
Analogously, we must suppose that in each world a given n-adic predicate
letter determines a certain set of ordered n-tuples, its extension in that world.
Consider, for example, the case of a monadic predicate letter P(x). We
would like to say that, in the world H, the predicate P(x) is true of some
individuals in (M) and false of others; formally, we would say that,
relative to certain assignments of elements of »(H) to x, p(P(x), H) = T
and relative to others ¢(P(x), H) = F. The set of all individuals of which P
is true is called the extension of P in H. But there is a problem: should
@(P(x), H) be given a truth-value when x is assigned a value in the domain
of some ozher world H' and not in the domain of H? Intuitively, suppose
P(x) means ‘x is bald—are we to assign a truth-value to the substitution
instance ‘Sherlock Holmes is bald’? Holmes does not exist, but in other
states of affairs, he would have existed. Should we assign a definite truth-
value to the statement that he is bald, or not? Frege® and Strawson”

8 G. Frege ‘Uber Sinn und Bedeutung’, Zeitschrift fiir Philosophie und philoso-
Phische Kritik, 100 (1892), 25-50, English translations in Geach and Black, Transia- -
tions from the Philosophical Writings of Gottlob Frege, (Oxford: Blackwell, 1952),
and in Peigl and Sellars (eds.), Readings in Philosophical Analysis (New York: Appleton
Century Crofts, 1949).

7 P. F. Strawson, ‘On referring’, Mind, n.s., 59 (1950), 320-44.
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would not assign the statement a truth-value; Russell would.® For the
purposes of modal logic we hold that different answers to this question
represent alternative conventions. All are tenable. The only existing dis-
cussions of this problem I have seen—those of Hintikka® and Prior!®—
adopt the Frege-Strawson view. This view necessarily must lead to some
modification of the usual modal logic. The reason is that the semantics for
modal propositional logic, which we have already given, assumed that
every formula must take a truth-value in each world; and now, for a
formula A(x) containing a free variable x, the Frege-Strawson view re-
quires that it not be given a truth-value in a world H when the variable x
is assigned an individual not in the domain of that world. We thus can no
longer expect that the original laws of modal propositional logic hold for
statements containing free variables, and are faced with an option: either
revise modal propositional logic or restrict the rule of substitution. Prior
does the former, Hintikka the latter. There are further alternatives the
Frege-Strawson choice involves: Should we take (14 (in H) to mean that 4
s true in all possible worlds (relative to H), or just nof false in any such
world? The second alternative merely demands that 4 be either true or
lack a truth-value in each world. Prior, in his system Q, in effect admits
both types of necessity, one as ‘L’ and the other as ‘NMN’. A similar
question arises for conjunction: if 4 is falseand B hasno truth-value, should
we take 4 A B to be false or truth-valueless?

In a full statement of the semantical theory, we would explore all
these variants of the Frege-Strawson view. Here we will take the other
option, and assume that a statement containing free variables has a
truth-value in each world for every assignment to its free variables.**

Formally, we state the matter as follows: Let U= U (). U* is
HeK

the nth Cartesian product of U with itself. We define a quantificational
model on a q.m.s. (G, K, R) as a binary function ¢(P", H), where the first
variable ranges over n-adic predicate letters, for arbitrary », and H ranges

8 Bertrand Russell, ‘On denoting’, Mind, n.s., 14 (1905), 479-93.

9 ‘Modality and Quantification’.

10 A. N. Prior, Time and Modality (Oxford: Clarendon Press, 1957, vur--148 pp.)

11 1t is patural to assume that an aromic predicate should be false in a world H
of all those individuals not existing in that world; that is, that the extension of a predi-
cate letter must consist of actually existing individuals. We can do this by requiring
semantically that @(P", H) be a subset of [(H)]*; the semantical treatment below
would otherwise suffice without change. We would have to add to the axiom system
below all closures of formulae of the form P™(xy, . . ., x,) A (WA .2 . A{xy)
(1 < i < n). We have chosen not to do this because the rule of substitution would no
longer hold; theorems would hold for atomic formulae which would not hold when the
atomic formulae are replaced by arbitrary formulae. (This answers a question of
Putnam and Kalmar.)
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over elemenis of K. If n =0, (P, H) =T or F; if n > 1, (P, H)is a
subset of U, We now define, inductively, for every formula Aand He K, a
truth-value @(4, H), relative to a given assignment of elements of U
to the free variables of 4. The case of a propositional variable is obvious.
For an atomic formula P"(xy, . . ., x,), where P* is an n-adic predicate
letter and # = 1, given an assignment of elements a;, . . ., a, of U to
X15 « « o Xp, We define o(P™(xy, . . ., x,), H) = T if the r-tuple (ay, . . .,
@,) is a member of p(P*, H); otherwise, p(P™(xy, . . . X2), H)=F,
relative to the given assignment. Given these assignments for atomic
formulae, we can build up the assignments for complex formulae by
induction. The induction steps for the propositional connectives A, ~,
O, have already been given. Assume we have a formula A, Y1, - o o Yo,
where x and the y, are the only free variables present, and that a truth-
value p(A(x, y1, . . ., ya), H) has been defined for each assignment to
the free variables of A(x, y1, . . ., ). Then we define P(X)A, y, .« .
ya), H) =T relative to an assignment of by, . .
(where the b, are elements of U), if ¢((4(x, Vi, . .
assignmentofa, by, . . ,bptox,ys, . . ., Yn, Tespectively, where a ¢ w(H);
otherwise, p((x)A(x, y1, . . ., yu), H) = F relative to the given assign-
ment. Notice that the restriction a ¢ w(H) means that, in H, we quantify
only over the objects actually existing in H.

To illustrate the semantics, we give counterexamples to two familiar
proposals for laws of modal quantification theory—the ‘Barcan formula’
(N)OAR) = O)A(x) and its converse [J(x)A(x) = (x)[J4(x). For
each we consider a model structure (G, K, R), where K = {G, H}, G #H,
and R is simply the Cartesian product K2. Clearly R is reflexive, transitive,
and symmetric, so our considerations apply even to S5.

For the Barcan formula, we extend (G, K, R) to a quantificational
model structure by defining »(G) = {a}, v(H) = {q, b}, where a and &
are distinct. We then define, for a monadic predicate letter P, a model ¢
in which ¢(P, G) = {a}, ¢(P, H) = {a}. Then clearly [JP(x) is true in G
when x is assigned a; and since a is the only object in the domain of G,
so is ()OP(x). But, (x)P(x) is clearly false in H (for ¢(P(x), H) = F
when x is assigned b), and hence [1(x)P(x) is false in G. So we have a
counterexample to the Barean formula. Notice that this counterexample
is quite independent of whether P(x) is assigned a truth-value in G or not
when x is assigned 6, so also it applies to the systems of Hintikka and Prior.
Such counterexamples can be disaliowed, and the Barcan formula re-
instated, only if we require a model structure to satisfy the condition that
y(H)<S »(H) whenever HRH' (H, H' ¢ K).

For the converse of the Barcan formula, set w(G) = {a, b}, p(H) = {a},

. b, to Vis o v o y,:,
-» Yn)s H) = T for every
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where again a # b. Define ¢(P, G) = {a, b}, (P, H) = {a}, where P is a
given monadic predicate letter. Then clearly (x)P(x) holds in both G and
H, so that o(OX)P(x), G) = T. But g(P(x), H) = F when x is assigned
b, so that, when x is assigned b, e(CP(x), G) = F. Hence P((x)IP(x), G)
= F, and we have the desired counterexample to the converse of the Barcan
formula. This counterexample, however, depends on asserting that, in H,
P(x) is actually false when x is assigned b; it might thus disappear if, for
this assignment, P(x) were declared to lack truth-value in H. In this case,
we will still have a counterexample if we require a necessary statement to
be true in all possible worlds (Prior’s ‘L’), but not if we merely require
that it never be false (Prior’s ‘NMN "). On our present convention, we can
eliminate the counteréxample only by requiring, for each q.m.s., that
w(H) < »(H") whenever HRH'.

These counterexamples lead to a peculiar difficulty: We have given
countermodels, in quantiﬁed S5, to both the Barcan formula and its con-
verse. Yet Prior appears to have shown!? that the Barcan formula is
~ derivable in quantified S5; and the converse seems derivable even in

quantified M by the following argument:

(A) (0A(x) = A(y) (by quantification theory)

®B) [HAR) = A(y)) (by necessitation)

(©) DA = A@) = 04X = [14(y) (Axiom A2)
(D) O(A) = OA(y) (from (B) and (C)

(B) ()(O®AR) = DA() (generalizing on D))

F) DA 2 (N DAy (by quantification theory, and (E))

We seem to have derived the conclusion using principles that should all
be valid in the model-theory. Actually, the flaw lies in the application of
necessitation to (A). In a formula like (A), we give the free variables the

12 See ‘Modality and Quantification in §5°, Journal of Symbolic Logic, 21 (1956),
60-2.

13 Jt is not asserted that the generality interpretation of theorems with free variables
is the only possible one. One might wish a formula A to be provable iff, for each model
@ 94, G =T for every assignment to the free variables of 4. But then (x)4(x)
> A(y) will not bea theorem; in fact, in the countermodel above to the Barcan formula,
P((DP(x) = P(»),G)=Fifyis assigned b. Thus quantification theory would have to
be revised along the lines proposed by Hintikka (in ‘Existential Presuppositions and
Existential Commitments’, Journal of Philosophy, 56 (1959), 125-37) and by H.
Leblanc and T. Hailperin (in ‘Nondesignating Singular Terms’, Philosophical Review,
68 (1959), 239-43). This procedure has much to recommend it, but we have not adopted
it since we wished to show that the difficulty can be solved without revising quantifica-

tion theory or modal propositional logic.
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generality interpretation:*® When (A) i
\ : : : is asserted as a theor i
viates assertion of its ordinary universal closure e, 1 abbre-

%4') (yg((X)A(X) > Ay

ow if we applied necessitation to (A’

gg’) E(y)((x)A(x) 25 ion to (A”), we would get
n the other hand, (B) itself is i i

B () OoAe) A(Iy ;)e is interpreted as asserting

"l;o(lr)lférc(B”) fro.m (B’),' we would need a law of the form OmCcy)
o I{z t (), which is just the converse Barcan formula that we a{e
m}(f) " eg1 ; \}:erove; In f?ct, 1t is readily checked that (B") fails in the counter
n above for th i )
by POt e converse Barcan formula, if we replace A(x)
qurr];igiz;voﬁ this sort of difficulty if, following Quine'* we formulate
r on theory so that only closed formul
of formulae containing free vari i omventone, sssmton o
. ables is at best a convenience; a i
A(;cf) ;’;Ii.ih free x can always be replaced by assertion of (x)A(’x) ertionof
ot III; ?Ofomiula .c;)lntaining free variables, we define a clc;sw‘e of 4
rmula without free varjables obtained by ¢ i i
. . - reﬁx
g;l'antlﬁers and necessity signs, in any order, to A.y\ﬂl;)e thelggdzgilveertshal
ioms of quantified M to be the closures of the following schematae‘:

(0) Truth-functional tautologies
(1) O4d=4,
2 0UA4>B).>.04> OB
(3) 4 > (x)4, where x is not free in A
@ ()4 >B).>.(x)4> (OB
(3 ONDA4x) = A(y))
The rule of infe i ial i
o e of Inf nr:(rixfs 1: ((ilzi?sz(rlnre;te ‘for material implication. Necessita-

To obtain quantified extensions of S4, S5, the Brouwersche system

Slnlply add to the axiom Sc:henlata all CIOSuIeS Of the a—PpI OPI 1ate ICduCtIOH

The systems we have obtained have the following properties: They

:1}:: a;;égggghtforward ext.ension of the modal propositional logics, without
restrictio; cizﬁiz cI)_If‘ I:Fllé)(r s Q; the rule of substitution holds, without
, intikka’s presentation; and neverth i
: . ; eless neithe
Barcan formula nor its converse is derivable. Further, all the Iavisﬁ:f:‘

quantification theory—modified to admit the empty domain—hold

™ 'W. Quine, Mathematical Log|

20d oo 1 ematice bl ic (Cambridge, Mass.: Harvard Unijv. Press, 1940;
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The semantical completeness theorem we gave for modal propositional
logic can be extended to the new systems.

We can introduce existence as a predicate in the present system if we

like. Semantically, existence is a monadic predicate E(x) satisfying, for
each model ¢ on a m.s. (G, K, R), the identity ¢(E, H) = »(H) for every
H ¢ K. Axiomatically, we can introduce it through the postulation of
closures of formulae of the form: (x)A(x) A E(p). = . A(y), and (x)E(x).
The predicate P used above in the counter-example to the converse Barcan
formula can now be recognized as simply existence. This fact shows how
existence differs from the tautological predicate A(x)v ~ A(x) even though
C(x)E(x) is provable. For although COOA(x)v ~ A(x)) is valid,
(x) 0 E(x) is not; although it is necessary that every thing exists, it does not
follow that everything has the property of necessary existence.
' We can introduce identity semantically in the model theory by defining
x'= y to be true in'a world H when x and y are assigned the same value
and otherwise false; existence could then be defined in terms of identity,
by stipulating that E(x) means (3y)(x = ). For reasons not given here, a
broader theory of identity could be obtained if we complicated the notion
of quantificational model structure.

We conclude with some brief and sketchy remarks on the ‘provability’
interpretations of modal logics, which we give in each case for proposi-
tional calculus only. The reader will have obtained the main point of this

- paper if he omits this section. Provability interpretations are based on a
desire to adjoin a necessity operator to a formal system, say Peano
arithmetic, in such a way that, for any formula 4 of the system, [JA4
will be interpreted as true iff 4 is provable in the system. It has been argued
that such ‘provability’ interpretations of a model operator are dispensable
in favour of a provability predicate, attaching to the G6del number of 4;
but Professor Montague’s contribution to the present volume casts at
least some doubt on this viewpoint.

Let us consider the formal system PA of Peano arithmetic, as formalized
in Kleene.!® We adjoin to the formation rules operators N, ~,and (J
(the conjunction and negation adjoined are to be distinct from those of the
original system), operating on closed formulae only. In the model theory
we gave above, we took atomic formulae to be propositional variables,
or predicate letters followed by parenthesized individual variables; here
we take them to be simply the closed well-formed formulae of PA (not
just the atomic formulae of PA). We define a model structure (G, K, R),
where K is the set of all distinct (non-isomorphic) countable models of

15 §. C. Kleene, Introduction to Metamathematics (New York: D. Van Nostrand,
1952, x-+550 pp.).
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PA, G is the standard model in the natural numbers, and R is the Cartesian
product K. We define a model ¢ by requiring that, for any atomic formula
Pand HeK, (P, H) = T(®) iff Pis true (false) in the model H. (Remem-
ber, P is a wif of PA, and H is a countable model of PA.) We then build
up the evaluation for compound formulae as before.!® To say that A is
true i§ to say it is true in the real world G; and, for any atomic P, p((JP, G)
= T iff P is provable in PA. (Notice that ¢(P, G) = T iff P is true in the
intuitive sense). Since (G, K, R) is an S5-m.s., all the laws of S5 will be
valid on this interpretation; and we can show that only the laws of S5 are
generally valid. (For example, if P is Godel’s undecidable formula,
tp([j};v[] ~P, G)=F, which is a counterexample to the ‘law’ [J4v[]

Another provability interpretation is the following: Again we take the
atomic formulae to be the closed wifs of PA, and then build up new formu-
lae using the adjoined connectives A, ~, and [J. Let K be the set of all
ordered pairs (E, o), where E is a consistent extension of PA, and « is a
(countable) model of the system E. Let G = (PA, o), where ¢, is the
standard model of PA. We say (E, «) R (B, o), where (E, «) and (E', «’)
are in K, iff B’ is an extension of E. For atomic P, define o(P, (B, o)
= T(¥) iff P is true (false) in «. Then we can show, for atomic P, that
fp(DP, (E, o)) = T iff P is provable in E; in particular, (OP, G) =T
iff P is provable in PA. Since (G, K, R) is an S4-m.s., all the laws of S4 hold.
But not all the laws of S5 hold; if P is Godel’s undecidable formula,
¢((~ OP > [J~ OP), G) = F. But some laws are valid which are not
provable in 84; in particular, we can prove for any 4, ¢(J ~ 0O(O4
N O~ 4), G) =T, which yields the theorems of McKinsey’s $4.1.27
By suitable modifications this difficulty could be removed; but we do not
go into the matter here.

Similar interpretations of M and the Brouwersche system could be
stated; but, in the present writer’s opinion, they have less interest than
those given above. We mention one more class of provability interpreta-
tions, the ‘reflexive’ extensions of PA. Let E be a formal system containing

] 16 ft may be protested that PA already contain symbols for conjunction and nega-
tion, say ‘&’ and ‘—’; so why do we adjoin new symbols ‘A’ and ‘~’? The answe; is
that lf P' and Q are atomic formulae, then P & Q is also atomic in the present sense
since it is well-fqrmed in PA; but P A Q is not. In order to be able to apply thc’
Pre’vmus theory, in which the conjunction of atomic formulae is not atomic, we need

AL Neverthe}ess, for any He K and atomic P and O, PP&Q, H) =P A Q, H)
s0 that qonfuswn of ‘&’ with ‘/\” causes no harm in practice. Similar remarks éppl}:
tolxgegatlon, and to the .provability interpretation of s4 in the next paragraph.

] §ee J. C. C. McKinsey, ‘On the Syntactical Construction of Systems of Modal
Logic’, Journal of Symbolic Logic, 10 (1945), 83-94.
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PA, and whose well-formed formulae are formed out of th? c}oseg ‘for:
.mulae of PA by use of the connectives &,'-—l, a'nd O d say & an P—A
to indicate that I am using the same conjunction and negation as 13 PA
itself, not introducing new ones. See footn'ote 16, p- 71.) Th«'?n E 1; ;aA f's o
reflexive extension of PA iff: (1) Itis an messegtlal extensxc?n oh 1’ 2
14 is provable in E iff 4 is; (3) there is a valua}t1on & mapping thec ols)
formulae of E into the set {T, F}, such that conjunction and nega‘uor; o ;y
the usual truth tables, all the true closed formulae of PA get the ;/la ue:1 ;
a([14) = T iff 4 is provable in E, and all the thfaorems of E get the vat‘;le
T. It can be shown that there are reflexive egt_ensxg?s of PA containing
i 4 or even S4.1, but none contaimung 55. S
ax?i?:ll;f Swe remark that, using the usual rna;.)pmg. of' 1r.1tu1txo§15ti;:
logic into S4; we can get a model theory for the 1n?u1t10mst1.c pre ;c.:an
calculus. We will not give this model theory here, bu.t instead W.IH mefn‘ 1(;;
for propositional calculus only, a particular useful interpretation o 'Htle,nt
itionistic logic that results from the model tl_xeory: Let. E be.: any consis oot
extension of PA. We say a formula P of PA is ugrzﬁed in E. iffitis prlova ;
in E. We take the closed wifs P of PA as‘batomlc, and build fo;msv aet t(1)un
of them using the intuitionistic connect}ves A, vV, —, and . A \;3 Beis
stipulate inductively: 4 A\ B is verified in E iff A and B are; A s
verified in E iff 4 or Bis; -— A is verified in E lff. there. isno cons1ste1.1 ext
tension of E verifying 4; 4 = B is ﬁverigxed in E iff every consisten
i * of E verifying A also verifies B. . '
ex?‘lrll:fzv]zryognstanceyof ga law of intuitionistic‘ logic is verified n; ];’A;
but, e.g., 4v— Aisnot, if A is the Gdel undecidable formula. I'n u ure
work, we will extend this interpretation further, and show that using 111t we
can find an interpretation for Kreisel’s system FC of absolutel.y frlfe c oxcci,
sequences.*® It is clear, incidentaily, that PA can be replfc.).ced in the pr?v:
bility interpretations of S4 and S5 by any truth funct1ona.l1 systextn ;.0.;
by any system whose models determme.e'ac}} closed i:ormu a as ;u > o
false); while the interpretation of intuitionism applies to any for
system whatsoever.

18 G. Kreisel, ‘A. Remark on Free Choice Sequences and the Topological Com-
pleteneés’ Proofs, Journal of Symbolic Logic, 23 (1958), 369-88.

VI

ESSENTIALISM AND QUANTIFIED
MODAIL LOGIC!

TERENCE PARSONS

PROBLEMS involving essentialism are now receiving a great deal of attention
from modal logicians and philosophers. Even a cursory glance at work
in this field, however, soon reveals that there are many doctrines which
go by this title. I will isolate and discuss one such doctrine. In particular,
after isolating one version of essentialism (Sections 1 and ), Iwill argue that
work in quantified modal logic can be and is independent of the acceptance
of the truth of this doctrine (Sections m-v). In the last section (Section
vD) I will attempt to show, on the basis of facts established in Sections
m-v, just why this particular form of essentialism is a philosophically
suspect doctrine. I will also argue that work in quantified modal logic
need not even presuppose the meaningfulness of essentialist claims in any
objectionable sense.

My arguments aim at (a) a clarification of one sort of essentialism,
and (b) a partial vindication of quantified modal logic.

I. PRELIMINARY CLARIFICATION

To begin, let us dichotomize essentialist doctrines into two kinds.
One kind has to do with what I shall call individual essences and the other
with what I shall call general essences. The former doctrine makes some
claim to the effect that some or all objects have characteristics (or pro-
perties) which are so intimately associated with the object that nothing
else could (with emphasis on the ‘could’) have precisely those characteris-
tics without being that object. This is meant to be a stronger thesis than
the Identity of Indiscernibles, which holds merely that no two objects can
simultaneously exist while sharing all properties. It is stronger in two
ways: (1) it prohibits the simultaneous existence of two objects which share
the same individual essence (even when they could differ in other of their
properties), and (2) it makes a claim about what might have been: had

From The Philosophical Review, LXXVIIL 1 (January 1969), 35-52. Reprinted by
permission of the author and The Philosophical Review.

! In addition to the authors cited in the paper, I am particularly indebted to John
Vickers and to Kathryn Pyne Parsons for comments on earlier drafts, and to the
referee of The Philosophical Review for help in improving the final draft.




