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8
CATEGORIES OF DIAGRAMS

In this chapter, we prove & very useful technical result called the Yoncds(lémma,
and then employ it in the study of the important categories of set-valued functors
or “diagrams.” The Yoneda Yemma is perhaps the single most used result in
category theory. Tt can be seen as a straightforward generalization of some simple
facts about monoids and posets, yet it has much more far-reaching applications.

8.1 Set-valued functor categories

We are going to focus on special funclor categories of the form
Sets®
where the category C is locally small. Thus, the objects are set-valued functors,
F,G:C — Sets
(sometimes called “diagrams on C”), and the arrows are natural transformations
a,f:F— G

Where C = P, a poset, we have already considered such functors as “variable
sets,” that is, sets F; depending on a parameter ¢ € P. The general caso of a non-
poset C similarly admits an interpretation as “variable sets”: such a functor F
gives a family of sets FC and transitions FC' — FC’ showing how the sots change
according to every ¢ — C'. For instance, C might be the category Setsg, of
all finite sets (of finite sets, ...) and functions between them. Then in Set
there is for examplef the inclusion functor U : Setsg, — Sets, which can be
regarded as a “gencric” or variable finite set, along with the functors U x U,
U + U, ete., which are “variable” structures of these kinds.

Given any such category Sets®, remember that we can evaluate any
commutative diagram,

etsp,

rP—2 g
Ba p
R

Le.
Le.

EL S
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at any object ¢ to get a commutative diagram in Sets,

PC 2%, gc

8.1
(Bole Be {8.1)

RC
Thus, for cach object C, there is an evaluation functor

eve ! Sets® — Sets.

Moreover, naturality means that if we have any arrow f 1 D — C, we get a
“eylinder” over the diagram (8.1) in Sets,

Anether way of thinking about such functor categories that bwereyalveady
considered in Section 7.7 is suggested by considering the case where C is the
category I pictured as

| —

Then a set-valued functor ¢ : I — Sets is just a graph, and a natural
transformation o : G — H is & graph homomorphism, Thus, for this case,

Setst = Graphs.

This suggests regarding an arbitrary category of the form Sets® as a generalized
“category of structured sets” and their “homemorphisms”; indeed, this is a very
useful way of thinking of such functors and their natural transformations.

Another basic example is the category Sets™”, where the index category A
is the category of finite ordinals that we already met in Chapter 7. The objects
of Sats®” are called simplicial sets, and are used in topelogy io compute the
homology, cohomology, and homotopy of spaces, Since A looks like

0 1 21 > 3

{satisfying the simplicial identities), a simplicial set 5 : A" — Sets looks like
this:

— "
- Sp 4 oS3

—

Sp Sy

{satisfying the eorresponding identities). For example, one can take 5, = S" =
S x...%x 8§ (n times) for a fixed set 5 to get a (rather trivial) simplicial set, with
the maps being the evident proeduct profections and generalized diagonals. More
interestingly, for a fixed poset I, one takes

Sy ={(p1,.- P} € P pr ... S paky

with the evident projections and inclusions; this is called the “simplicial nerve”
of the posget P

wWas
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8,2 The Yoneda embedding
Among the objects of Sets® are ceriain very special ones, namely the (covariant)
representable functors, .

Homg(C, ~): C — Sets.
Observe that for each h : € — D in C, we have a natural transformation

Home(h, —) : Homg{D, —) ~» Home{C, -}
(note the direction!) where the component at X is defined by precomposition:
(f:D—X)—{foh:CU—X)
Thus, we have a contravariant functor
k€ - Sets®

defined by &{C) = Homg(C, ). Of course, this functor & is just the exponential
transpose of the bifunctor

Homg : C°F x C - Sets

which was shown as an exercise to be functorial,
If we instead transpose Homg with respect to its other argument, we get a
covariant functor,
y:C— SetsC"
from C to a category of contraveriant set-valued functors, sometimes called
“presheaves.” {Or, what amounts to the same thing, we can put D = G and
apply the previous considerations to D in place of C.) More formally:

Dicfinition 8.1. The Yoneda embedding is the functor y: C — Sets®" taking
C € C to the contravariant representable functor,

yC = Homg(—,C) : CF — Sets
and taking f: € — D to the natural transformation,
yf = Homg(—, f} : Homg(—,G) — Homg{—, D).

A functor F: C — D is called an embedding if it is full, faithful, and injective
on objects. We soon show that y really is an embedding; this is a corollary of
the Yoneda Lemma.

One should thus think of the Yoneda embedding y as a “representation” of C
in a category of set-valued functors and natural transformations on seme index
category. Compared to the Cayley represeniation considered in Section 1.5, this

QS the virtue of being full: any map ¢ : yC — yD in Sets®” comes from
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a unique map h : € — D in C as yph = . Indeed, recall that the Cayley
representation of a group G was an injective group homomorphism

G - Aut(jch < |G)I°!

where each g € ¢ is represented as an automorphism § of the set [(7] of elements
{i.e.,, a “permutation”), by letting it “act on the left,”

glx)=g-2
and the group multiphcation is represented by composition of permutations,
ﬁ =fo R
We also showed & generalization of this representation to arbitrary categories.
Thus for any monoid A, there is an analogous represeniation

M — End{|M|) C a1

by left. action, representing the elements of M as endomorphisms of |M].

Similarly, any poset P can be represented as a poset of subsets and inclusions
by considering the poset Low{P) of “lower sets” A C P, that is, subsets that are
“closed down” in the sense that ¢ < a € A4 implies o' € A, ordered by inclusion.
Taking the “principal lower sot”

Lpy={a€P|q=<p}
of each element p € P determines a monotone injection
1: P Low{P) C P{|P]}

such that p < ¢ i | {p) € | {q).

The representation given by the Yoneda embedding is closely related to these,
but “better” im that it cuts down the arrows in the codomain category to just
those in the image of the representation functor y : C — SetsC" (since y is
full). Indeed, there may be many automorphisms a : G — G of a group & that
are not left actions by an element, but if we require a to commute with all right
actions a{x - g) = a(x) - g, then o must itself be a lelt action. This is what the
Yoneda embedding does in general; it adds enough “structure” to the objects yA
in the image of the representation that the only “homomorphisms” ¥ : yd — yB
hetween those objects are the representable ones ¥ = yh forsome i : A — B. In
this sense, the Yoneda embedding y represents the objects and arrows of C as
certain “structured sets” and {al! of) their “homomorphisms,”

8.3 The Yonecla/]’fmnma

Lemma 8.2 (Yoneda). Let C be locally small. For any object C & G and functor
F € 8ets,C™ ihere is an isomorphism

Hom(yC, ¥} &2 FC
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which, moreover, is natural in both F end C,
Here

{1} the Hom is Homgggcon,
{2) naturality in F means that, given any ¢: F — G, the following diagram
commutes:

Hom(yC, F) . FC
Hom{yC, ) de
Hom{yC,G} —+ GC

(3) naturality in C means that, given any h : ¢ — D, the following diagram
comnmtes:

Hom{yC, F} —— FC
Hom{yh, ) Fh

Hom(yD,F) —(~ I'D

Proof. To define the desired isomorphism,
neo,r : Hom(yC, F) =, FC
take & : yC — I and let
ne,r(¥) = de(le)
which we also write as
zg = efle) (8.2)

where ¥ 1 C(C,C) - FC and so d¢{lc) € FC.
Conversely, given any a € F'C, we define the natural transformation d, :
yC — F as follows. Given any C’, we define the component

(P)or : Hom{C',C) — F!
by setting
{(Fa)er () = F(h){a} (8.3)
for h: ' — C.
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To show that ¥, is natural, take any f: C" — ¢/, and consider the following
diagram:

Hom{C",C) -(aﬂ—)cuv FC"

Hom(f, C) F(f)

Hom(C',C
(¢, €} A

We then calculate, for any h € yC(C")

(d)n o Hom(f, C)(h) = (Ba)cn(ho f)
= F{ko f){a)
— F(f)o F(h)(a)
= F()(Baor (h).

So #, is indeed natural.

Now to show that ¥, and =y are mutually inverse, let us caleulate 9, for a
given & : yC — F. First, just from the definitions (8.2) and (8.3}, we have that
for any h: C' — C,

(Vizgy)or () = F(h)Ydc(le))-
But since @ is natural, the following commutes:
de
yC(C) — s FC
pC{h) Fh

yC{O" — FC
P

So, continuing,

(Hag)Jorlty = F(h)(dc(lc))
=g 0 yClh i)
= Ber(h).

Therefore, ¥,y = 7.




“08-Awodey-cli8” — 2000/12/18 — 17:02 — page 191 — #7

CATEGORIES OF DIAGRAMS 191

Going the other way around, for any a € FC, we have

39, = (Ja)o(lc)
= F(lgKa)
= lpela)
=ua.

Thus, Hom{yC, F) = FC, as required.

The naturality claims are also easy: given ¢ : F — [, taking ? €
Hom({yC, F), and chasing around the diagram

Hom(yC, F) =S, ro
Hom(yC, ¢) be

Hom{yC, F') — F'C
ne,Ft

we get

dc(ro) = delfolle))
= (¢Nec(le)
= T
= ne,r(Hom(yC, )(9)).

Tor naturality in C, take some f: ¢ — €. We then have

ne(y ) () = ner{d o yf)
= (Joyfic(le)
=der o (yfle(ler)
=O¢(folcr)
= Ve (f)
=be(lce f)
= g o (YCHH1c)
= IF(f) e dcllc)
= F(finc(¥).
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The penultimate equation Is by the naturality square:

yee) 22 rio)
¥C() ()

nel(ey S F(C")

Therefore, ¢ o (yf)* = F(fYone.

The Yoneda Lemma is used to prove our first “theorem.”
Theorem 8.3. The Yoneda embedding y: C — SetsC®” is full and faithful.
Proof. For any objects O, D € C, we have an isomorphism

Homg{(C, D} = yD(C} & Homg g0 (¥C, 4 D).

And this isomorphism is indeed induced by the functor y, since by (8.3) it takes
an element b : G — D of yD{C) to the natural transformation &), ; yC — yD
given hy

(In}e(f 1 € — C) = yD{f)(h)
= Homg{f, DY(h)
=hof
= (yher(f),
where yh : yC - y has component at C;
(yh)er : Hom(C', €Y — Hom({C", D)
frohof
So, ¥, = y(h). 3
Remark 8.4, Note the following:

+ If C is small, then SetsC” is locally small, and so Hom{yC, P} in SetsC”"
is a set.

¢ If C is locally small, then Sets®™ need not be locally small. In this case,
the Yoneda Lemma tells us that Hom{yC, P} is always a set.

o If C is not locally small, then y: C — Sets®” will not even be defined, so
the Yoneda Lemma does not apply.

Finally, cbserve that the Yoneda embedding y: C — Sets®™ is also injective
on objects. For, given objects A, B in C, if yd = yB then 1 € Hom{C,C) =
yC(CY = yD(C) = Hom(C, ) implies C = D,
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Proof. As in the previous proposition, we check that
Hom(A x (B + ), X) = Hom(B + C, x4
= Hom(B, X1} x Tom(C, X}
>~ [Tom{A x B, X) x Hom{A x C, X)
= Hom{(A x B) + (A x C), X).

Finaly, as in the foregoing example, one sees easily that these Isos are all natural
in X. O

We have already used a simple logical version of the Yoneda Lemma several
times: to show that in the propositional calculus one has ¢ - 3 for some
formulas 1,1, it suffices to show that for any formula &, one has ?F @ iff
I+ .

More generally, given any objects A, B in a locally sniall catego:v C, io find
an arrow h : A — B it suffices to give one 9 : yA — yB in SetsC, for then
there Is & unique h with 0 = yh. Why should it be easier lo give an arrow
yA — yB than one A — B? The key difference is that in general Sets®
has much more structure to work with than does C; as we seeg, it is complete,
cocomplele, cartesian closed, and more. So one can use various “higher-order”
tools, from limits to M-cateulus; and if the result is an arrow of the form yA— yB,
then it comes from a unique one A — B ){desplto the fact that C itself may
not admit the *higher-order” constructions. In that sense, the category Sets®"
is Hike an extension of C by “ideal elements” that permit calculations which
cannot be done in C. This is something like passing to the complex numbers
to solve equations in the reals, or adding higher types to an elementary logical
theory.

8.5 Limits in categories of diagrams

Recall that a category & is said to be complete if it has all small limits; that is,
for any small category J and functor F' 1 J — £, there is a limit L = §i_lgjej Fj

in £ and a “cone® 57 : AL — F in £/, universal among arrows from constant
functors AE. Here, the constant functor A ; £ — £7 is the transposed prejection
ExJ—= £

Pl'Opoogitioxl 8.7, For any locally smell category C, the functor category
SetsC" is complete. Moreover, for every object C' € C, the evaluation functor

' D1
eve : Sets® — Sets

preserves all limits,

RS
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8.4 Applications of the Yonedal/]femma

One [requent sort of application of the Yoneda Lemma is of the following forny:
given objects A, B in a category C, to show that A = B it suffices to show
that yA = yB in SetsC”". This “Yoneda principle” results from the foregoing
theorem and the fact that, if F: C — D is any full and faithful functor, then
FA 2 FB elearly implies A 2 B. We record this as the following.

Corollary 8.5 (Yoneda principle). Given objects A and B in any locally
smaell category C,

yA=yB implies AXB.
A typical such case is this. In any eartesian closed category C, we know there
is always an isomorphism,
(AB)C I~ A(BXC)‘
for any objects A, B,C. But recall how involved it was to prove this directly,

using the compound universal mapping property { or a lengthy caleulation
in A-calculus). Now, however, by the Yoneda principle, we just need to show that

y((AP)C) = (a9,
To that end, take any object X € C, then we have isomorphisms:
Hom(X,{A%)?) = Hom{X x C, A%)

2 Hont({X x C) x B, A)

= Hom{X x (B x C}), A)

=~ Hom({X, A(F*9),
Of course, H must be checked that these isomorphisms are natural in X, but that
is straightforward. For instance, for the first one suppose we have f: X' — X.

TFhen, the naturality of the first isomorphism means that for any g : X — (A7)%,
we have

gof:..go(f x 1):
which is clearly true by the uniqueness of transposition (the reader should draw

the diagram}.
Here is another sample application of the Yoneda principle.

Proposition 8.6. If the cartesian closed category C has coproducts, then C is
“distribuiive,” that is, there is alwoys a canonical isomorphism,

{(AxB)+{AxCy=Ax{(B+O).
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Proof. Suppose we have J small and F : J — Sets®". The limit of I, if it
- N . . op .
exists, is an object in Sets® , henee is a functor,

(im Fy) : C°F — Sets.

jed
By the Yoneda Lemma, if we had such a functor, then for each object C' € C we
would have a natural isomorphism, )

(lim F3)(C) = Hom(yC, lim F).

But then it would be the case that

Hom{yC, lim Fy) = lim Hom(yC, F;) in Sets
2 lim F5{C) in Sets

where the first isomorphism is because representable functors preserve limits,

and the second is Yoneda again. Thus, we are led to define the limil im___ F;
—jeJ
to be
(lim Fy}(C) = §m(F;C) (8.4)

i€l ied
that is, the pointwise limit of the functors ;. The reader can easily work out how
lim Fj acts en C-arrows, and what the universal cone is, and our hypothetical

argument then shows that it is indeed a limit in Sets®”.
Finally, the preservation of limits by evaluation lunctors is stated by (8.4). O

8.6 Colimits in categories of diagrams

The notion of cocompleteness is of conrse the dual of completeness: a category
is cocomplete if it has all (small) colimits. Like the foregoing proposition
about the completeness of SetsCup, its cocompleteness actually follows stmply
from the fact that Sets is cocomplete. We leave the proof of the following as an
exercise.

Proposition 8.8, Given any calegories C and D, if D is cocomplete, then so
is the funcior celegory DT, and the colimils in DC are “computed pointwise,”
in the sense that for every.C € C, the evaluation functor

eve : D% —-D
preserves colimits. Thus, for any small index category J and functor A J —
DS, for cach C' € C there is a canonical isomorphism,

(lim A;4C) &l (4,C).
JEF Jjed
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w Pk . Ph ]Sets

Figure 8.1 Category of elements
Proof. Exercise. a

Corollary 8.9, For any locally small C, the funclor calegory Sets®™" s
cocomplete, and colimits there are compuled pointwise.

Proposition 8“.‘,10. For any smell category C, cuvery object P in the funclor
category Sets® is a colimit of representable functors,

lim yC; = P
jed

More precisely, there is o canonical choice of an index category J and a functor
71 J — C such that there is ¢ natural isomorphism I_ig}J yow = P,

Proof. Given P : (% — Sets, the index category we need is the so-called
category of elements of P, written,
/ P
C

and defined as follows.

Objects: pairs {2,C) where '€ Cand x € PC@

Arrows; an h: (z',C") — (2,C) is an arrow h : ' — C in C such that

Ph)(z) =2 (8.5)

actually, the arrows are triples of the form (k, (&', C'),{x, C)) satisfying (8.5).

The reader can easily work out the obvious identities and composites. See
Figure 8.1.
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Note that fC P is a small category since C is small. There is a “projection”

functor,
7w / P—-C
e

defined by #{z,C) = C and w{h, (&', C"), (&, C)) = h.

To define the cocone of the form yow — P, take an object {2,C} & fc P and
observe that (by the Yoneda Lemma) there is a natural, bijective correspondence
between

x € P(C)
2:yC—P
which we simply identify notationally. Moreover, given any arrow A : (2/,C'} —
{x, 0} naturality in C implies that there is a commutative triangle
yC

Inceed, the category fo # is thus equivalent to the full subcategory of the
slice category over P on the objecls y¢ — P (i.e., arrows in Setsccp) with
representable domains,

We can therefore take the component of the desired cocone yw — P at (z,C)
to be simply = : y€ — P. To see that this is a colimiting cocone, take any
cocone yr — @ with components J, ¢y 1 yC — (¢ and we require a unique
natural transformation ¥ : P — @ as indicated in the following diagram:

yC

(8.6)
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We can define 0 : PC — QC by setting
fo(z) = Ve.0)
where we again identify,
be0) € Q(C)
Az yC — Q

This assigninent is clearly natural in € by the commutativity of the diagram
{8.6). For uniqueness, given any @ : P — @ such that g o 2 = 2, again by
Yoneda we must have woz = Ha,c) = dom. £l

We include the following because it fits naturally here, but defer the proof to
Chapter 9, where a neat proof can be given using adjoint functors. As an exercise,
the reader may wish to prove it at this point using the materials already at hand,
which is also quite doable.

Proposition 8,11. For any small category C, the Yoneda embedding
y:C— Sets®”

is the “free cocompletion” of C, in the following sense. Given any cocomplele
categor & and functor F 1 C -+ &, there is a colimit preserving functor Fy :
Sots® — &, unique up ta natural isomorphism with the property

Floy= 4

as indicated in the following diagran:
e

R R
Sets®” e £

C
Proof. (Sketch, see proposition $.16.} Given F': C — £, define F} as follows. For
any P ¢ Sots® ", let
lim yd; = P
jeJ
be the canonical presentation of P as a colimit of representables with J = fC P,
the category of elements of P. Then set,

F(P) =ty F(d;)
jed

which exists since £ is cocomplete, (|
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8.7 Exponentials in categories of diagrams

. . . N . . op
As an application, let us consider exponentials in categories of the form Sets®

for small C. We need the {ollowing lemma.

Lemma 8,12. Forugny small index category J, funcior A J — Sets®” and
diagram B € Sets®", ihere is a naturel isomorphism

tiny (4;  B) = (lim 4;) x B. (8.7)
J 7

Briefly, the functor — x B : SetsC” — SetsC” preserves colimits.

Proof. To specify the canonical natural transformation mentioned in (8.7), start
with the cocone,

ﬂ}':"li—’lil_;n‘éj’ ielJ
i
apply the fimctor — x /2 to get a cocone,
dyx B:Ajx B {lim Aj}x B, jeld
i

and so there is a unique “comparison arrow” from the colimit,

l?!ljgl(ﬂj xB)—»(]i_.}m Az} x B,

J i
which we claim is a natural isomorphism.
By Mrisyexereisg, it suffices to show that each component,
Ues (ljg}(Aj x BY{C} — ((m A;) % BY(C)
J i

is iso. But sinee the limits and colimits involved are all computed pointwise, it
therefore suffices to show (8.7) under the assumption that the A; and B are just
sets. To that end, take any set X and constder the following isomorphisms in
Sets,

HOIH(I_il:I_}l(Aj % B), X) 2 limHom{A; % B, X}

—

i J
lim Hom(4;, X #) {Sets is CCC)

iy

i
Hom(lim Ay, X5
j
= Hom((lim A4;) x B, X).
J

1R

12

Since these are natural in X, the ¢laim follows by Yoneda. M

eyevcise Fo
of thaptent,
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Now suppose we have functors P and @ and we want QF. The reader should
try to construct the exponential “pointwise,”

" 2
QP(C) = ()Y@
to see that it dees not work {it is not functorial in ', as the exponent is
contravariant in C).
Let us instead reason as follows: if we had such an exponential QF, we could
compute its value at any object € € C by Yoneda:
QF(C) = Hom(yC, Q7)
And if it is to be an exponential, then we must also have
Hom(yC, @7) =2 Hom{(yC x P, Q).
But this latter set does exist, and it is functorial in C. Thus, we are led to define
QP (C) = Hom(yC x P, Q) {8.8)
with the action on h: O’ — € being

QF(h) = Hom(yh x 1p, Q).
This is clearly & contravariant, set-vatued functor on C. Let us now checlk that
it indeed gives an exponential of P and Q.

Proposition 8.13. For any objects X, P, in Setscup, there is an
isomorphism, notural in X,
Tom(X, @7} = Hom{X x P, Q).
Proof. By proposition 8.10, for a suitable index calegory J, we can write X as
a colimit of representables, ‘ co
X &l yCj.
jed
Thus we have isomorphisms,
Hom{X, Q") = Hom(lim ¥C;, Q")
J

2 lim Hom{yC', QF)

j
o~ 1‘311_1 Qr(CH {by Yoneda)
J
lim Hom{yC; x P, Q) {by 8.8)
= HOI!](M(UC]‘ x Py, @)
i

= Hom{lim(yC;) x P, Q) {Lemma 8.12)
i

= Hom(X x P, Q).

IR

R
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And as usual these isos are clemly natural in X, M}

Theorem 8.14. For any small category C, the category of diagrams Sets®” is
cariesian closed. Moreover, the Yoneda embedding

y»:C— Sets®™
preserves all products and exponentials that exist in C,

Proof. Tn light of the foregoing proposition, it only remains to show that y
preserves products and exponentials. We leave this as an easy exercise. [l

8.8 Topoi

Since we are now so close to it, we might as well introduce the important notion of
a “topos”—even though this is not the place to develop that theory, as appealing
as it is. First we require the following generalization of characteristic functions
of subsets.

Definition 8.15. Let £ be a category with all finite limits. A subobject classifier
in £ consists of an object £ together with an arrow £ 1 1 — § that is a “universal
subobject,” in the following sense:

CGiven any object B and any subobject U — FE, there Is a unique arrow
u: I — §1 making the following diagram a puliback:

u i
: (3.9)
E 0

t

The arrow v is called the classifying arrow of the subobject U »— B it can
be thought of as taking exactly the part of & that is U/ to the “point” ¢ of Q.
The most familiar example of a subobject classifier is of course the set 2 = {0, 1}
with a selected olement as ¢ : 1 — 2. The fact that every subset U € & of any set
8 has a unique characteristic function u : S — 2 is then exactly the subobject
classifier condition.

1t is easy 1o show that a subobject classifier Is unique up to isomorphism: the
pullback cendition is clearly equivalent to requiring the contravariant subobject
functor,

Subg{—) : £°P —» Sets
{which acts by pullback} to be representable,

Subg(—} 2 Homg{—, Q).
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The required isomorphism ts just the pullback condition stated in the definition
of a subobject classifier. Now apply the Yoneda principle, corollary 8.5, for two
subobject classifiers 2 and ',

DefBnition 8.16. A topos is a category &€ such that

1. £ has all finite limits,
2. £ has a subobject classifier,
3. £ has all exponentials.

This compact definition proves te be amazingiy rich it consequences: it can
be shown for insiance that topoi also have all finite colimits, and that every slice
category of a topos is again a topos. We refer the reader to the books by Mac Lane
and Moerdijk (1992), Johnstone {2002}, and McLarty {1995) for information on
topoi, and here just give an example {albeit one that covers a very large number
of cases).

Proposition 8.17. For any small category C, the category of diagrams SetsC®™
is « fopos,

Proof. Since we alveady know that Sets®” has all limits, and we know that
it has exponentials by Section 8.7, we just need to find a subobject classifier,
To that end, we define a sieve on an object & of C to be a set S of arrows
f 1+ — C (with arbitrary domain) that is closed under precomposition; that is,
iff:D—Cisin Sthensois fog: E— D — Cfor every g: & — D (think
of a sieve as a common generalization of a “lower set” in a poset and an “ideal”
in a ring). Then let

QCy = {§C C; |8 isasieve on C}

and given h: D — C, let

RO - QD)
be defined by

(8)={g:-— D|hogeS}.
'This clearly defines a presheaf {3 : C° — Sets, with a distingnished point,
t:1—-80

namely, at each C, the “total sieve”

te={f:-—C}.

We claim that ¢ : 1 — {2 so defined is a subobject classifier for Sets®™. Indeed,
given any object E and subobject U »— E, define v 1 E — £ at any object
CeChby

ucle) = {f : D~ C | [*(e) € U(D) > E(D))
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for any e € E(CY. That is, uc(e) is the sieve of arrows into C that take e € E(C)
back inte the subobject U.
O

The notion of & topos fst arose in the Grothendieck school of algebraic
geometry as a generalization of that of a topological space. But one of the most
{ascinating aspects of topoi is their relation to logic. In virtue of the association
of subobjects U »» E with arrows u : F — §1, the subobject classifier {1 can
be regarded as an object of “propositions” or “truth-values,” with t = time.
An arrow @ : E — Q is then a “propositional function” of which U, — FE
is the “extension.” For, by the pullback condition (8.9), a generalized clement
z: X — Eis “in” Uy, (ie., factors through U, — B} just if pz = true,

zegly it e =true
so that, again in the notation of Section 5.1,
U, ={z € E | pa = true}.

This permits an interpretation of frst-order logic in any topos, since topoi also
have a way of modeling the logical quantifiers 3 and V as adjoints to pullbacks
(as deseribed in Section 9.5).

Since topol are also cartesian closed, they have an internal type theory
described by the A-caleulus (see Section 6.6}, Combining this with the first-order
logic and subobject classifier 2 provides a natural interpretation of higher-order
logic, employing the exponential OF as a “power object” P{E) of subobjects of
E. This logical aspect of topoi is also treated in the books already mentioned.

8.9 TExercises

1. If F: G — D is full and faithful, then C = C' iff FC = FC’.

2. T.et C be a small category. ng)ve that the representable functors generate
the diagram category SetsC ", in the following sense: given any objects
P,Q € Sets© ® and natural transformations p, ¥ : P — @, if for every
representable functor yC and natural transformation oﬂ; : yC' — P, one has
wod = Pod, then p = 1b. Thus, the arrows in Sets® are determined by
their effect on generalized elements based at representables.

3. Let C be a locally small, cartesian closed category, Use the Yoneda
embedding to show that for any objects 4, B,C in C

{Ax B¢ =A% x B®

{cf. problem 2 Chapter 6).
I C also has binary coproducts, show that also

ABHCY o gB 0 40,
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. Let A be the category of fAnite ordinal numbers 0,1,2,... and order-

preserving maps, and write [-] : A — Pos for the evident inclusion.
Tor each peset P, define the simplicial set S(P) by

S(P){n) = Hompes{[n}], P).

Show that this specification determines a functor §: Pos — Sets®™ into
simplieial sets, and that it coincides with the “simplicial nerve” of P as
specified in the text. Is § faithfu}? Show that 5 preserves all limits.

. Generalize the foregoing exercise from posets to (locally small} categories

to define the simplicial nerve of a category C.

. Let C be any category and D any complete category. Show that the functor

category D is also complete.
Use duality to show that the same is true for cocompleteness in place of
completeness,

. Let C be a locally small category with binary products, and show that the

Yoneda embedding
»C— Sets©”

preserves them, (Hint: this involves only a few lines of caleulation.)
If C also has exponentials, show that y also preserves them.

. Show that if P is a poset and A4 : PP — Sets a presheaf on P, then the

category of elements f}, A is also a poset and the projection = : fP A—P
is & monotone map.

Show, moreover, that the assignment A — (7 : fPA — P) determines a
functor,

/ : Sots®” s Pos/P.
P

. Let T be a theory in the A-calculus. For any type symbols & and 1, let

l[e = 7l={M:o— 7] M closed}

be the set of closed terms of type ¢ — 7. Suppose that for each type
symbol p, there is a function,

foilp—ol—=lp—7]
with the lollowing properties:

o for any closed terms M,N : p — o, if T + A = N (provable
equivalence from T}, then f,M = f,N,

o for any closed terms M :pp — v and N 1 v — o,

T fulhe o N(Ma))y = de o (fu (V) M)
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Use the Yoneda embedding of the cartesian closed category of types Cry
of T to show that there is a term F : ¢ — 7 such that f, is induced by
composition with F, in the sense that, for every closed term f1: p - o,

T+ folR) = Az : p.F(Rz)

Show that, moreover, F is unique up to T-provable equivalence.

10. Show that every slice category Sets/X is cariesian closed. Calculate the
exponential of two objects A — X and B — X by first determining the
Yoneda embedding y : X — Sets™, and then applying the formula for
exponentials of presheaves. Finally, observe that Sets/X is a topos, and
determine its subobject classifier.

11. (a) Explicitly deterniine the subobject classifiers for the topoi Sets® and

Sots¥, where as always 2 is the poset 0 < 1 and w is the poset of
natural numbers 0 <1 <2 < -+

{b) Show that (Setsg,)? is a topos.

12, Txplicitly determine the graph that is the subobject classifier in the topes
of graphs (i.e., what are its edges and vertices?). Ilow many points 1 — {}
does it have?

et
e

\“’\,%'QWL C@mb;@ Pmﬁ?&%‘y@zm Co .1 F w(‘“{’t\,
Hcevent %E‘% +o im@w “‘HA&}‘M
@\f&mbcﬁ&,i"ﬁalaumg Eg &ecl/&c#g@ﬂj
CMPI\?%—Q, we‘@\/\- N%ped‘ +o Ca‘f?ﬁar{@g
@s‘;’; &&QSV’&MS ‘ \Mde_\i%!&mbé&wmﬁcumg}




“08-Awodey-c08” — 2009/12/i8 — 17:02 — page 206 — 22




“09-Awodey-c09” — 2009/12/18 — 17:02 — page 207 — 1

9

ADJOINTS

This chapter represents the high point of this book, the goal toward which we
have been working steadily. The notion of adjoint functor, first discovered by
D. Kan in the 1950s, applies Meverything that we have learned wup to now
to unify and subsume all of the different universal mapping properties (-BHJPe')]
that we have encountered, from free groups to limits to exponentials. But more
importantly, it also captures an important mathematical phenomenon that is
invisible without the lens of category theory. Indeed, If\make the admittedly
prevacative claim that adjointness is a concept of fundamental logical and
mathematical importance that is not captured elsewhere in mathematics.

Many of the most striking applications of category theory involve adjoints,
and many important and fundamental mathematical rotions are instances of
adjoint functors. As such, they share the common behavior and formal properties
of all adjoints, and in many cases this fact alone accounts for all of their essential
features.

9.1 Preliminary definition

We begin by recalling theéM—P)of free moneids: every monoid A has an
underlying set {/{(M}, and every set X has a free monoid F(X), and there is
a function

iy: X o UFX)
with the following UMP:

For every monoid M and every function f: X — U(M}, there is a unique
homomorphism g : F(X) — M such that [ = U{g) o ix, all as indicated in
the following diagran:

o) Y9 v

ix (3

umined Mopping
r{)mw*‘ﬁ (M)
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Now consider the following map:
& : Homygon (F(X Y, M) — Homges (X, U{M))
defined by
g Ulg)oix.
The UMP given above says exactly that ¢ is an isomorphism,
Homngon{ F{X), A} & Homgero{X, U(M}). {9.1)
This bijection (9.1) can also be written schematically as a two-way rule:
F(X) M
X —— U(M)

"where one gets from an arrow g of the upper form to one ¢(g) of the lower form
by the recipe

dlg) = Ulg)oix.

We pattern our preliminary definition of adjunction on this situation, It is
preltminary because it really only gives half of the picture; in Section 9.2 an
equivalent definition emerges as both more convenient and conceptually clearer.

Definition 0.1 (preliminary). An adjunction between categories C and D
consists of functors

F:.C>—D:U
and a natural transformation
nilg— U o F
with the property:

{(*Y For any C € C, D € D, and f : C — U{D), there exists a unique
g: FC — D such that

F=Ulglenc

as indicated in

urey Y9 vy

e f
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Terminology and nolation:

¢ F is called the left adjoint, U is called the right adjoint, and 5 is called the
unil of the adjunction.

« One sometimes writes F - 7 for *F is left and U right adjeint.”
¢ The statement (*) is the UMP of the unit 5.

Note that the situation ¥ < U is a generalization of equivalence of categories,
in that a pseudo-inverse is an adjoint. In that case, however, it is the relation
between categories that one is interested in. lere, one is concerned with the
relation between specific functors. That is to say, it is not the relation on
categories “there exists an adjunction,” but rather “this functor has an adjoint”
that we are concernect with.

Suppose now that we have an adjunction,

u

C D.

F

Then, as in the example of monoids, take €' € C and D € D and consider the
operation

¢ : Homp(FC, D} — Homg{C, U D}

given by ¢(g) = U(g) o ne- Since, by the UMP of 1, every f: ' — UD is ¢(g)
for a unigue g, just as in our example we see that ¢ is an isomorphism

Homp{(F(C), D) = Home(C, U{D)) (9.2
which, again, can be displayed as the two-way rule:
F{C) D
C uiD)
Ezample 9.2. Consider the “diagonal” functor,

A:C—-OCxC

defined on objects by .

A(C) = (C,C)
and on arrows by

A(f:C—CY={1.1):(C.0) = (C,C).

What would it mean for this functor to have a right adjeint? We would need a
functor R : G x C — C such that for alt ¢ € C and {(X,Y} € Cx C, thereis a
bijection:

AC —— (X,Y)

¢ — R{X,Y)
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That is, we would have
Homg(C, R(X, ¥)) & Homexc{AC, (X, V1))
=~ Home(C, X) x Homc{C,Y).

We therefore must have R{X,Y) & X x ¥, suggesting that A has as a right
adjoint the product functor x : C x C — C,

A x,

The counit n would have the form 5 : € — € x C, so we propose the
“diagonal arrow” nc = {lg, 1}, and we need to check the UMP indicated in
the following diagram:

(C,C) o (fl'f2)> (X,Y)
OxC fl X f2 Y%V
ne f

¢

Indeed, given any [ : C' — X x ¥, we have unique fi and fo with f = {f1, f2),
for which, we then have

(fi ¥ fo)one = (fim, foma)ne
= {fimino, femznc)
= {f1, fa}
= f
Thus in sum, the functor A has a right adjeint if and only if C has binary

preducts.

Frample 9.3, For an example of a different sort, consider the category Pos of
posets and monotone maps and CPos of cocomplete posets and cocontinuous
maps. A poset € is cocomplete just if it has a join V,¢; for every family of
elements {c;)j¢; indexed by a set [, and a monotone map f : C — D is
cocontinuous if it preserves all such joins, f{V/, e;) =V, f{c;}. There is an obvious
forgetful functor

{7 : CPos — TPos.

What would a Ieft adjoint I - U be? There would have to be & monotone mayp
52 P — UF(P) with the property: given any cocomplete poset C and monotone
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F
f:

P — U(C), there exists a unique cocontinuous f: FP(P) — C such that
U(f) o np, as indicated in

o) YY)y
b f
P

Tn this precise sense, such a poset F{/} would be a “free cocompletion” of P,
and n: P — UF(P) a “best approximation” of P by a cocomplete poset,

We leave it to the reader to show that such a “cocompletion” always exists,
namely the poset of lower sets,

Low(Py={UCP|p <pel impliesp) € U}

9.2 Hom-set definition

The following proposition shows that the isomorphism (9.2) is in fact natural in
both € and D.

Proposition 9.4, Given categories and funclors,

U
Cr—+
I

D

the following conditions are equivalent:
1. F is left adjoint to U; that is, there is @ natural transformation
nric— Uk
that has the UMP of the unit:

For any C € C, D e D and f:C — U{D), there exists a unique
g1 FC — D such that

f=Ulglenc.
2. For any C € C aend D € D, there is an isomorphism,
¢ : Homp (FC, D} & Homc(C, U D}

that is natural in both C and D.
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Moreouver, the two conditions are related by the formulas
#lg) =Ulglonc
e = ¢{Lrc).

Proof. (1 implies 2) The recipe for ¢, given 5 is just the one stated and we
have already observed it to be an isomorphism, given the UMP of the unit. For
naturality in C, take h: €’ -—» € and consider the following diagram:

Homp (FC, D) ——g%i'}—r Homc{C, UD)

(Fh)* R

~

Homp (FC', 1) Homc(C', UD)

(o4

Then for any f: F'C — D, we have
R (peplf)) = {U{flonc)oh
=U{f)oUF{h} e ne:
=U{foF(h})enc
= ¢or, p{F ()" (f})-

For naturality in D, take g : D — D' and consider the diagram

Homp{FC, D) ¢2D Homg(C, U D)
[ U(g)*
Homp(FC, D'y —— Home(C, U D)
oD

Then for any f: FFC' — D we have
Ulg)e(de,p(f)) =Ulg} o (Uf} o nc)
=Ulgo f)onc
= ¢ plgo f)
= e, (g (f))-

So ¢ is indeed natural.
{2 implies 1) We are given a bijection ¢,

F(C)
c

D
U(D)

(9.3)
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for each C, D, that is natural in C and D. In detail, this means that given a
commmitative triangle

I p

F{C)

gof
DI
there are two ways to get an arrow of the form ¢ — UL, namely
L I
Ug
Hlgof)
iged

Naturality in D means that this diagram commutes,
Plgo f)=Ugog(f). (9.4

Dually, naturality in C means that given

¢ UD
f
and writing ¢ = ¢ %, the following commutes:
r!

ah
o Y{foh)

“mn

That is,
$(f o k) = 4(f) o Fh.
Now, given such a natural bijection ¢, we want a natural transformation

nilg—=Uol
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with the UMP of the unit. To find

ne:C — UFC
put FC for D and 1pg : FC — FC in the adjoint schema (9.3) to get
lre: FC FC
ne: ¢ Ure ?
That is, define
ne = ¢(lre).

We leave it as an exercise to show that 77 so defined really is natural in C. Finally,
to see that 7 has the required UMP of the unit, it clearly suffices to show that
for all g: F'C" — D, we have

Plg} = Ugone
since we are asswming that ¢ is iso. But, using (9.4},
Ugone =Ugod{lre)
=¢(golrc)
= (g).
O

Note that the second condition in the foregoing proposition is symmetric,
but the first condition is not. This implies that we also have the following dual
proposition.

Corollary 9.5. Given categories end functors
u

C D

F
the following conditions are equivalent:
1. For any C < C, D € D, there is an isomorphism
¢ : Homp(FC, D) = Homc{C,UD)

that is natural in C and D.

2, There is a natural transformation
e:Foll = 1p
with the following UMP:

Forany C € G, D € D and g : F(C) — D, there exists a unique
f:C = UD such that

g=¢€p o F(f}
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as indicated in the following diagram:

F(C) il FU(D)
€p

b
Moreover, the two conditions are related by the equations
¥(f) = ep o ()
ep = #(lup)
where ¥ = ¢~ 1.
Proof. Duality. ]

Ve take the symmetric “Hom-set” formulation as our “official” definition of an
adjunction.

Definition 9.6 “official.” An adjunction consists of functors
F:Cr—-D:U.
and a natural isomorphism
¢ : Homp{FC, D) = Homg(C, UD) : 4.

This definttion has the virtue of being symmetric in ° and U. The unit
:1g — UoF and the counit ¢ : Foll — dp of the adjunction are then
determined as

ne = #(lrc)
ep = ¥{lup) @

9.3 Examples of adjoints

FEzample 9.7. Suppose C has binary products. Take a fixed object A ¢ C, and
consider the product functor

-xA:C-C
defined on objects by

X+ XxA




“09-Awodey-c09” — 2008/12/18 — 17:02 - page 216 — #10

216 CATEGORY THEORY

and on arrows by
(h:X > ¥y lhxly: X xA— Y xA)

When does — x A have a right adjoint?
We would need a functor

U C-C
such that for all X, € C, there is a natural bijection

XxAd—Y
X — U{Y)

So let us try defining U by
Uyy=y*
on objects, and on arrows by
Ug:Y — =gt ¥+ — 24
Putting U{¥) for X in the adjunction schema given above then gives the counit:

YA w A _L__ \

YA '}/A

This is, therefore, an adjunction if there is always such a map ¢ with the following
UMP:
For any f: X x A — Y, there is a unique fi: X — ¥4 such that f =
eo(f x1a).

But this is exactly the UMP of the exponentiall Thus, we do indeed have an
adjunction:

() xA A

Erample 9.8. Here is 2 much more simple example. For any category C, consider
the unique functor to the terminal category 1,

1O =1,
Now we ask, when does | have a right adjoint? This would be an object 7 : 1 - C
such that for any C € C, there is a bijective correspondence,
I
«

*

Ul#)

Such a U7 would have to be a terminal object in C. So | has a right adjeint iif C
has a terminal object. What weuld a left adjoint be?
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This last example is a clear case of the following general fact.

Proposition 9.9. Adjoints are unigue up to isomorphism. Specifically, given a
Junctor F: C — D and right adjoints U,V : D — C,

FAU and FAV
we then have U 2V,
Proaf. Here is the easy way. For any D € D, and € € C, we have
Homg(C,UD) 2 Homp(FC, D} naturally, since F U
2 Homg(C,VD) naturally, since F 4V,
Thus, by Yoneda, UD = VD. But this isomorphism is natural in D, again by
adjointness. =

This proposition implies that one can use the condition of being right or left
adjoint to a given functor to define (uniguely characterize up to isomorphism}
a new functor. This sort of characterization, like a UMP, determines an object
or construction “structurally” or “intrinsically,” in terms of its relation to some
other given construction. Many important constructions turnh out to he adjoints
to particularly simple ones.

For example, what do you suppese would be a left adjeint to the diagonal
functor

A:C—-CxC
in the carlier example 9.2, where A{C) = {C,C) and we had & -1 x 7 It would
have to be functor L{X,Y) standing in the correspondence
LIX,Y)—— C
XYy —(C,C)
Thus, it could only be the coproduct L(X,Y} = X + Y. Therefore, A has a left
adjoint if and only if C has binary coproducts,
+ A,
Next, note that C x C = C? where 2 is the discrete two-object category
(i.e., any two-clement set). Then A{C) is the constant C-valued functar, for

each C' € C. Let us now replace 2 by any small index category J and consider
passible adjoints to the corresponding diagonal functor

Aj:C— !

with Ag{CYj) = C for all C € C and j € J. In this case, one has left and right
adjoints

Hm - Ap - lim
— [
J J
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if and only if C has colimits and limits, respectively, of type J. Thus, all
particular limits and colimits we met earlier, such as pulibacks and coequalizers
are instanees of adjoints. What are the units and counits of these adjunctions?

Example 9.10. Polynomial rings: Let R be a commutative ring (Z if you like) and
consider the ring R{z] of polynomials in one indeterminate = with coeffictents in
R. The elements of R[z] all look like this:

ro + i@ + row® 4o bt (9.5)

with the coefficients r; € R. Of course, there may be some identifications between
such expressions depending on the ring .

There is an evident homomorphism i : 2 — R[z], taking elements r to
constant polynomials r = ry, and this map has the following UMP:

Given any ring A, homomorphism a : R — A, and element a € 4, there is
a unique homomorphism

a1 Riz] — A

such that a*{z) = a and ¢’y = a.

ﬂ*

A

Rlx]

R
Namely, for a*, we take the “formal evaluation at a”
e*(r(z)) = alri{a/z)

given hy applying o to the coefficients 7y, substituting a for z, and cvaluating
the result in A,

a*{rg + r1@ + rox? 4+ -+ + rpa”} = alrp) + alr)a +a(ra)a’ 4+ - +alr e

To describe this in terms of adjoints, define Rings, to be the category of
“pointed” rings, with objects of the form (4,a), where A is a ring and a € 4,
and arrows i : (A,e) — (B, b) are homomorphisms h : A — B that preserve the
distingunished point, h(a)} = b. (Cf. pointed sets, example 7.27.)

The UMP just given says exactly that the functor

U : Rings, — Rings
that “forgets the point” U{4,q) = A has as left adjoint the functor

|z] : Rings — Rings,
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that “adjoins an indeterminate”
[z](R) = (Rz], 2}

and 5 : B — R[»] is the unit of the adjunction. The reader should have no
difficully working out the details of this example. This provides a characterization
of the polynomial ring Rx] by adjointness, one that does not depend on the
somewhat vague description in terms of “formal pelynomial expressions” lke
{9.5).

9.4 Order adjoints

Let P be a preordered set, that Is, & category in which there is at most one arrow
& — y between any two objects. A poset is a preorder that is skeletal. As usual,
we define an ordering relation on the objects of P by

z <y if there exists an arrow x — y.

Given another such preorder @, suppose we have adjoint functors:

P Q FHU

Then the correspondence Q(Fa,z) = Pla,Ux) comes down to the simple
condition Fa < z iff @ < Uz. Thus, an adjunction on preorders consists simply
of order-preserving maps F, I satisfying the two-way rule or “bicondition”:
Fa<y
a< Uz
For each p € P, the unit is therefore an element p < U Fp that is least antong all
@ with p < Uz. Dually, for each g € @ the counit is an element FUg < ¢ that is
greatest among all y with F'y < q.

Such a setup on preordered sets is sometimes called a Galois connection.
Example 9.11. A basic example is the interior operation on the subsets of a
topological space X. Let O{X) be the set of open subsets of X and consider the
operations of inclusion of the opens into the powerset P(X), and interior:

inc: O(X} - P(X)
int : P(X) — O(X)
Tor any subset A and open subset U, the valid bicondition
UcCAa
U C int{A)
means that the interior operation is right adjoint to the inclusion of the open
stibsels among all the subsets:

inc - int
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The counit here is the inclusion int{A) C A, valid for all subsets A. The case of
closed subsets and the closure operation is dual.

Example 9.12. A related example is the adjunction on powersets induced by any
fanction f : A — B, between the inverse image operation f71 and the direct
image im{f),
-1
P4y —— P{B)
im(f}

Here we have an adjunction im(f) - f~* as indicated by the bicondition

n(/)(U) C V.
Uug vy
which is plainly valid for all subsets U € A and V C B,
The inverse image operation f~1 : P(B) — P(A) also has a right adjoint,
sometimes called the dual image, given by

Uy ={beBl ) CU}

which we leave for the reader to verify.

Note that if A and B are topological spaces and f: A — B is continuous,
then f~' restricts to the open sets f~1 : O(B) — @{A). Now the left adjoint
im{f) need not exist {on opens), but the right adjoint f. still does.

-1
O4) f: O(R)

*

Example 9.13. Suppose we have a poset P. Then, as we know, P has meets ifi
for all p,q € P, theve is an element p A ¢ € P satisfying the bicondition
r<phg
r<pandr<g
Dually, P has joins if there is always an element pV g € P such that
pVYgsr
p<randg<r
The Heyting implication q = r is characterized as an exponential hy the
bicondition
pAgsY
psg=r
Finally, an initial ohject 0 and a terminal object 1 are determined by the
conditions

0<p
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and
p<1l

In this way, the netion of a Heyting algebra can be formulated entively in
terms of adjoints. Equivalently, the intuitionistic propositional calculus is neatly
axiomatized by the “adjoint rules of inference” just given (replace “<” by “").
Together with the reflexivity and transitivity of entallment p & g, these rules are
completely sufficient for the propositional logical operations. That is, they can
serve as the rules of inferonce for a logical calculus of “binary sequents” p - g,
which is equivalent to the usual intuitionistic propositional caleulus.
When we furthermore define negation by —p = p =+ L, we then get the
derived rule
g
phgsO

Finally, the classical propositional calculus {resp. the laws of Boolean algebra)
result from adding the rule

—p S

Let us now consider how this adjoint analysis of propositional can be extended
to all of first-order logic. .

9.5 Quantifiers as adjoints

‘Traditionally, the main obstacle to the further development of algebraic logic
has been the treatment of the quantifiers. Categorical logic solves this problem
beautifully with the recognition {due to F.W. Lawvere in the 1960s) that they,
too, are adjoint functors.

Let £ be a first-order language, For any list & = w@y,...,%, of distinet
variables let us denote the set of formulas with at most those variables free by

Form(z) == {&({Z) | ${2) has at most & frec}.
Then, Form{3)} is a preorder under the entailment relation of first-order logic
#{E) - ().

Now let y be a variable not in the kist 7, and note that we have a trivial
operation

= ; Form(z) — Form(Z, y}

taking each $(F) to itself; this is just a matter of observing that if (%) € Form(z)
then y cannot be free in ¢(Z). Of course,  is trivially a functor since,

HTI - v(E)  in Form(z)
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trivially implies
+@(2) F =0(F)  in Form{E, y).
Now since for any (%, y) € Form{z, y) there is, of course, no free y in the formula
Yuap{E, y), we have a map
Yy : Form(z, y} — Form(z).
We claim that this map is right adjoint to *,

* V.

Indead, the usual rules of universal introduction and elimination bmply that the
following two-way rule of inference holds:

() - (T, )y Porm(Z,y)
Mz} Vyd(E,y)  Form{@)
The inference downward is just the usual V-introduetion e, since y cannot

occur freely in ¢(Z). And the inference going up follows from the ¥-climination
axiom,

Vya(E, ) b H(E ). (9.6)

Observe that bhedreve-mentioned derived rule saying that the operation ¥y,
which binds the variable y, is right adjoint to the trivial operation * depends
essentially on the usual “hookkeeping” side condition on the quantifier rule.

Conversely, we could instead take this adjoint rule as basic and derive the
customary introduction and elimination rules from it. Indeed, the ¥-elimination
(9.6) is just the counit of the adjunction, and Y-introduction incliding the usual
side condition results directly from the adjunction.

It is now natural to wonder about the other quantifier existis of existence;
indeed, we have a further adjunction

A4V

since the following two-way rule also holds:

By, y) F plE)
W(E, y) - =p(Z)

Here the unit is the existential introduction “axiom”

P(z,y) b 3yab(E, v),

and the inference upward is the conventional rule of 3-elimination. It actuatly
follows from these rules that Jdy and Vy are in particular functors, that is, that
¥ F ¢ implies Sy.b F Jy.¢ and similarly for V.

The adjoint rules just given can thus be used in place of the eustomary
introduction and elimination rules, to give a complete system of deduction for
quantifieational logic. We emphasize that the somewhat tiresome bookkeeping
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side conditions typical of the usual logical formulation turn out to be of the
essence, since they express the “change of variable context” to which quantifiers
are adjoints.

Many typical laws of predicate logic are just simple formal manipulations of
adjoints, For example

Yeah(z, ) F bz, ) {counit of = 4 V)
(m, ) F Ayad{s, y) (unit of 3 -1 #)
Veaplz, y) F Jyabia, ) (transitivity of )
dVep(e,y) F padble,y)  3H#)
TyWab(z, y) EVedydls,y) (1Y)

‘The recognition of the quantifiers as adjoints also gives rise to the following
geometric interpretation. Take any £ structure M and consider a formula ¢{x)}
in at most ene variable z. 1t determines & subset,

[z = {me M| M = ¢(m)} C Af

of all elements satisfying the condition expressed by ¢. Similarly, & formula in
several variables determines a subsot of the cartesian product

oy, oy 2o N = {(my, . mp) | M | (g, mp)) © MY

For instance, [ = y}*f is the diagonal subset {(m,m)} | m € M} C M x M.
Let us take two variables 2,y and consider the effect of the * operation on these
subsets. ‘The assignment #[@(2)] = [*@(z)] determines a functor

w1 P(M) — P(M x M),
Explicitly, given [¢{z)] € P{M}, we have
(@) = {{m1,mz) € M x M | M | ¢(m1)} = n ({d()])
where 7 : M x M — M is the first praojection. Thus,
F=q,

the inverse image under projection. Shmilarly, the existential quantifier can be
regarded as an operation on subsets by A[W(x, y)] == By b (x, ¥)],

J:PM x M — PM).
Specifically, given [1{z, y}] C M x A, we have
A (e, 1)) = By-dlz, vl
= {m| for some y, M = ¥(m, y)}
— i), )]
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Figure 9.1 Quantifiers as adjoints

Therefore,
3 = im{w),

the divect image under projection. In this way, you can actually “seo” the logical
adjunction:
Sy p(z ) F é(z)
Wz, y) F olz)
Tt is essentially the adjunction already considered {example 9.12) between direct
and inverse images, applied to the case of a praduct projection 7 : M x Af — M,

im{m) 4L

See Figure 9.1.
Finally, the universal quantifier can alse be regarded as an operation of the
form

¥ P(M x M) — P(M)
by setting Y[w{z, )} = Vyplz, y)]. Then given iz, y)] C M x M, we have
Y[w(z, )] = Yy d(z, y)]
={m]| for all y, M = ¥(m, y}}
= {m | =" {m} € (2, )]}
= m{[{{z, y}]}.
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Therefore,
V=

so the universal quantifier is the “dual image," that is, the right adjoint to
pullback along the prajection . Again, in Figure 9.1, one can see the adjunction:

B(e) < Pla,y)
() < Vyp(z, v}
by considering the corresponding operations induced on subsets.

9.6 mgmmﬁmmﬁawnmﬁ?‘fﬁﬁ?“‘m K APL

I addition to the conceptual unification achieved by recognizing constructions
as different as existential quantifiers and free groups as instances of adjoints,
there is the practical benefit that one then knows that these operations behave
in certain ways that are common to alt adjoints. We next consider one of the
fundamental properties of adjoints: preservation of limits.

In Section 9.5, we had a string of three adjoints,

R

and it is easy to find other such strings. For example, there is a string of four
adjoints between Cat and Sets,

VAFHUAR
where I/ : Cat — Sets is the forgetful functor to the set of objects
7{C) = Cy.

An obvious question in this kind of situation is “are there more?” That is, given a
functor does it have an adjoint? A useful necessary condition which shows that,
for example, the strings above stop is the following proposition, which is also

important in its own right. ' {i, ¢
S ?s%);/\% X Jow&‘ﬁ

Proposition 9,14, #=4RE&, and left adjoints preserve colimits.

Proof. Here is the easy way: suppose we have an adjunction (PNS‘”@V L
F "o
C D FAU {1 ;' °>
U
and we are given a diagram 12 : J — D such that the limit ﬁﬁDj exists in D, (1@ ﬁ‘\ 'P L t,ﬁ 5

‘Then for any X € C, we have

Homc{X, U{lim D))

12

Homp (FX, fim D5}
lim Homp (FX, Dy}

£

lim Home{X, UD;)

—

Home(X, lim UD;)

i

il

4
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whence (hy Yoneda), we have the required isomorphism
Ulim D) = imUD;.
1t follows by duality that left adjoints preserve colimits. 0

Tt is illuminating to work out what the above argument “really means” in a
particular case, say binary products. Given a product A x B in D, constder the
foHowing diagram, in which the part on the lefi is in C and that on the right
in D:

FX

ARV

UA-!———U(AXB)-—*UB Ax B

Then given any f and g in C as indicated, we get the required unique arrow

{f, g} by adjointness as the transpose

(fig) =8
where we write f, ete., for transposition in both directions.

For an example, recall that in the proof that Sets®” has cxponentials we
needed the following distributivity law for sets:

(lim Xp) x A & Tnn(X; % A)
H )
We now see that this is a consequence of the fact that the functor {—) x A isa
lefe adjoint (namely to (—)1} and therefore preserves colimits,
It also follows immediately for the propositional calculus {and in any Heyting
algebra) that, for example,

p=(aeAadyd-(p= a)/\(p%b) ,
and
{avbiAap-t(anp)vibAp).
Similarly, for the quantifiers one has, for example,
Va(d(x) A d{z)) I+ Yad(z) A Vo).

Note that since this does not hold for 3=, it cannot be a right adjoint to some
other “gquantifier.” Similarly

Sa(dl(z) V ¥(x)) 4 Sad(z) v Fupla).
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And, as above, Vx cannot be a left adjoint, since it does not have this
property.

The proposition gives an extremely important and useful property of adjoints.
As in the foregoing examples, it can be used to show that a given functor does
not have an adjoini by showing that it does not preserve (co)limits. But also,
to show that a given funcior does preserve all (coflimits, sometimes the casiest
way to proceed is to show that it has an adjoint. For example, it is very easy to
recognize that the forgetful functor U : Pos -~ Sets from posets to sets has a
left adjoint (what is it7). Thus, we know that limits of posets are limits of the
underlying sets {snitably ordered}. Dually, you may have shown “by hand” as an
exercise that the coproduct of fres monoids is the free monoid on the coproduct
of their generating sets

F{A)+ F(B) = (A + B).
This now follows simply from the free - forgetful adjunetion.

Erample 9.15. Our final example of preservation of (co)limits by adjoints
involves the UMP of the categories of diagrams SetsC" studied in Chapter 8.
For a small category C, a contravariant functor &7 : C° — Sets is often called
a presheaf on C, and the functor category Setscfp is accordingly called the
category of presheaves on C, sometimes written as C. This cocomplete category
is the “free cocompletion” of C in the following sense.

Proposition 9,16, For any small category C, the Yoneda embedding
y:C— Sets©™"

has the following UMP: given any cocomplete category £
and functor F : C — £, there is a colimil preserving funclor F Sets®” - £
such that

Froy s F ©7)

as indicated in the following diagram:

Moreover, up to natural isomorphism, F| is the unique cocondinuous functor with
this property.
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Proof. We show that there are adjoint functors,

Al

SetsC £ J2 o
K
¥ fa
C

with oy & F. It then fo]lowsorghat F preserves all colimits. To define
B, take any presheaf P € Sets® and write it as a canonical colimit of
representables

g yC; = P
jed

with J = fC P the category of elements of P, as in proposition 8.10. Then,
set

R(P) = liyy FC;
jeJ

with the colimit taken in £, which is cocomplete. (We leave i to the reader to
determine how to define F} on arrows.) Clearly, if F} is to preserve all colimits
and satisfy (9.7), then up to isomorphism this must be its value for P. For I,
take any E € £ and ¢ € C and observe that by {Yoneda and) the intended
adjunction, for F*{E£}(C}, we must have

F*(E)(C) o HOlné(}’C, i (E)}
= Homg (M (¥C), £}
= Homg (FC, E).

Thus, we simply set
F*(EY(C)=Home(FC, E)

which is plainly a presheaf on C {we use here that £ is loeally small). Now let
us check that indeed I} -1 F*. For any 2 € £ and P ¢ ¢, wo have natural
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isomorphisms
Homg (7, F*(E8)) = Homg{limyC; , F*(E))
. ded
lim Homg (vC , F*(E))
jed
lim I (E)(C))
jed
lim Homg (F Oy, )
jed
Homg (liny F'C;, E)
jet
Homg(Fi{ P}, E).

ir

I

R

iR

R

Finally, for any ebject &' € C,

R{yC)=lm FC; = FC
et
since the category of elements J of a representable yC has a terminal object,
namely the element 1o € Homg{C,C). O

Corollary 9.17. Let f + C — D be g functor befween small categories. The
precomposition functor

ft: Sets?”" - Sets®”
given by
SHQNC) = Q(C)
has boih left and right adjoints
AEFEE

Moreover, there is a natural isomorphism

[o¥]

fieye ® ypof

as indicated in the following diagram:

P oe—— ap
SetsC" ——=" SetsP
fi
Yo hjis)
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The induced functors f; and f, are sometimes referred to in the literature as
{left and right) Kan extensions.

Proof. First, define
F=ypof:C— SetsP™.

Then, by the loregeing proposition, we have adjoints i amd F'* as indicated in

.
op op
Seis®" *—— Sets”

B

Yo Yo

C D

and we know that Floyec ® ypo f. We claim that F* = f*. Indeed, by the
definition of I*, we have

FH(Q)(C) = Homp (FC, Q) = Homp(y(fC), Q) = Q(fC) = fH{QNC).

This, therefore, gives the functors fi - f*. For f., apply the foregoing proposition
to the composite

Ffoyp:D — SetsP” — Sets©.
This gives an adjunction
{f*oyph4{f o¥p)
s¢ we just need to show that
(Jroypp= [

in order to get the required right adjoint as fi = (f* o yp)*. By the universal
property of Sets” p, it sﬂgfﬁces to show that f* preserves colimits. But for any
colimit ]iﬂj Q; in Sets®

(7 (m @)O) (L Q;)(7C)
2

J

= lim(Q;(FC))

1

= Hm((/*@;)(C))
j

~ (lig}(f*Qj)}(C)-
4
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This corolary says that, in a sense, every functor has en adjoint! For, given any
f: C— D, we indeed have the right adjoint

ftoyp:D - C

except that its values are in the “ideal elements” of the cocompletion C =
Sets®

9.7 Locally cartesian closed categories

A special case of the situation deseribed by corollary 9.17 is the change of basc
for indexed families of sets along a “reindexing” function o : J — L -Sa@k all
arbitrary such function between sets gives rise, by that comllaw toa tnp]e of
adjoint functors:

(£

e

o
Sets? «———— Sets’

o
—_—_—

o 1ot da,

Let us examine these functors more closely in this special case.
An object A of Sets’ is an F-indexed family of sets

(Aidier-

Then, a* (4} = Aoa is the reindexing of A along o to a J-indexed family of sets

a*{A) = (dagiyljes

Given a J-indexed family B, lst us caleulate ai{B) and o, {B).

Consider first the case T =1 and o = : J - 1, Then, {!;)* : Sets — Sets”
is the “constant family” or diagenal Functor A{A)(j) = A, for which we know
the adjoints:

Sets’ Sets

NHAAT
These are, namely, just the {disjoint} sum and cartesian product of the sets in

the family
Z B;, H B;.

jed jed

Aw: Please
confirm if the
change made
in the
sentence
“Such...
adjoint
functions” is
correct.

Mo
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Reeall that we have the adjunctions:
d;: B, — A d;j: A — By
wj)’Eij_’A’ (ﬂj}iA_’Hij
By uniqueness of adjoints, it therefore follows that (1) = £ and (1), =1L

A general reindexing a 5 J -+ I gives rise to generalized sum and product
aperations along o

5, Ha* AT,

defined on J-indexed families (B;) b;V

EalBi))i= >, Bi

ol fy=1

(B = 1] B
a{j)=i
These operations thus assign to an olement i € I the sum, respectively the
product, over all the sets indexed by the elements j in the preimage o™ (f) of i
under a.
Now let us recall from example 7.28 the equivalence hetween J-indexed
families of sets and the stice category of “sets over J7

Sets’ ~ Sets/.J.

It takes a family (A;);es to the indexing projection p : EJ-EJ A;j — Jand a
map 7 : A — J to the family (771(j)}jes. We know, moreover, from an exercise
in Chapter 7 that this equivalence respects reindexing, in the sense that for any
a i J — T the following square commutes up to natural isomorphism:

J Sets/J — Sets’
& af a*
I Sets/I — Sets’

Here we write of for the puliback functor along . Since a* has both right and
left adjoints, we have the diagram of induced adjoints:

J Sets/J —— Sets’

o ar lat g ad oo,

I Sets/] —Z . Sets'
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Praoposition 9.18, For any function a : J — I, the pullback functor of :
Sets/T — Sets/J has both left and right adjeints:

e Jat 4 ap
In particular, of therefore preserves all limits and colimits.

Let us compute the functors explicitly. Given w : A — J, let 4; = 7 1()
and recall that

ﬂ'g(/—l)i = Z A;.
alfy=i
But then, we have

a(A); = Z A

afj)=t

= Z Ai

iga~1(j}
= D 7'M
i€at(j}
=a"lea ! (j)
={oom) (i)
It foHows that ar{n : A — J) is simply the composite aom: 4 — J — I,
ap{r: A N =(aonm:t A= J =)

Indeed, the UMP of pullbacks essentially states that composition along any
function a is left adjoint to pultback along o.
As for the right adjoint

ay : Sets/J ~— Sets/]
given 7 : A — J, the result ay{m) : ay(A) — T can be described fiberwise by
(op(A)); = {s:a (i) — A | “s is a partial section of #"}
where the condition s is a partial section of " means that the following triangle

commutes with the canonieal inclusion a—{i) C J at the base.

A

oty J
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Henceforth, we also write thess “change of base” adjoints along a map « :
J — I'in the form

J Sets/J
o Yol o™ Hy Es a* A,
t Sets/T
Finally, let us reconsider the case 7 =1, where these adjoints take the form
J Sets/.J
! sy 00| 1, Sy AT AT
1 Sets
In this case, we have
Tjr:A—=J) =4
JHA) = (I xA—-d)
Oim:A—J) = {s:J—Alr0s=1}

as the reader ean easily verify. Moreover, one therefore has
NrJHA) = Fx 4
Iy Ay = AV

Thus, the product - exponential adjunction can be factored as a composite of
adjunctions as follows:

Jx(-)
Sets % Sets
()
J* bH
Sets 7———* Sets/J 77— Sets

18]

The foHowing definition captures the notion of a category having this sort
of adjoint structure. In such a category &, the slice categories can be regarded
as categorios of abstract-indexed families of objects of £, and the reindexing of
such families can be carried out, with associated adjoint operations of sum and

product.
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Definition 9.19. A category £ is called locally cartestan closed if £ has a
terminal object and for every arrow f: A — B in £, the composition functor
Li:EfA—E/B
has a right adjoint f* which, in turn, has a right adjoint Hy:
eIy
The choice of name for such categories is explained by the following
important fact.
Proposition 9.20. For any calegory £ with o terminal object, the following are
equivalent:
1. & is locally cartesian closed.
2. Ewery slice categery /A of € is cartesian closed,
Proof. Let £ be locally cartesian closed. Since £ has a terminal object, products
and exponentials in £ can be built as
Ax B=%pB*'A
BA=TIgB*A.
Thevefore, £ is cartesian closed. But clearly every slice category £/X is also
locally cartesian closed, since “a slice of a slice is a slice.” Thus, every slice of &
is eartesian closed.
Conversely, suppose every slice of £ is cartesian closed. Then £ has pullbacks,
since these are just binary products in a slice. Thus, we just need to construct

the “relative produet” functor Ity : £/A — £/B along a map f: A — B. First,
change notatiom:

F=E[B
F=f:A—-B
FIF=ElA

Thus, we want to construct Iz : F/F — F. Given an object p: X — Fin F/F,
the object TIx{p) is constructed as the following puliback:

IUp{p) — XF
»F (9.8)

] —— FF

1p
where 17 is the exponential transpose of the composite arrow

IxFep Y
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It is now easy to see from (9.8) that there is a natural bijection of the form
Y — Ip(p)
Y S p
[l
Remark 9.21. The reader should be aware that some authors do not require

the existence of a terminal object in the definition of a locally cartesian closed
category.

Ezample 9.22 (Presheaves). For any small category C, the category Sets®” of
presheaves an C is locally cartesian closed, This is a consequence of the following
[act.

Lemma 9.23. For any object P € Sets®™, there is a small category D and an
equtvalence of cofegories,

Sets®"/P ~ SetsP”.
Moreover, there is alse a functer p: D — C such that the following diagrom
commutes (up to nafurel isomorphism}:

Sets™” — Sets®" /P

N/

SetsC™"

p-[r
c

p:w:fPHC
C

Indeed, recall that by the Yoneda Lemma, the category fc P of elements of P
can be described equivalently (isomorphically, in fact) as the category that we
write suggestively as y/P, described as follows:

Proof. One can take

Objects: pairs {C,x) where C € Cand x:yC — Pin Sets®”

Arrows: all arrows betwean such objects in the slice category over PP

yC¢ yC’
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Note that by Yoneda, each such arrow is of the form ¥ = yh for a unique
k:C — D in C, which, moreover,'is sach that P(h){2') = .

Now let 7 : y/P — Sets®” /P be the evident (full and faithful} inclusion
functor, and define a functor

@ : Sets®” /P — Sets/PIT
by setting, for any ¢: € — P and (C,z} € y/P
B(gHC, ) = Homg p(2, g},

the elements of which look like

In other words, ®(q) = I*(yq), which is plainly functorial. We leave it to the
reader as an exercise to show that this functor establishes an equivalence of
categories. £t

Combining the foregoing with the fact {theorem 8.14) thal categories of
presheaves are always cartesian closed now yields the promised:

Corollary 9.24. For any small category C, the category Sets©” of presheaves
on C is locally cartesian closed.

Remark 9.25. Part of the interest in locally cartesian closed categories derives
from their use in the semantics of dependent type theory, which has type-indexed
families of types

x: AF B(x)

and type censtructors of dependent sum and product
Z B{z) H B(=z).
A xrA

Indeed, just as cartesian closed categories provide a categorical interpretation
of the simply typed A-calenlus, so locally cartesian closed categories interpret
the dependently typed A-caleulus. And since the Yoneda embedding preserves
CCC structure, the completeness theorem for A-caleulus with respect to arbitrary
CCCs (theorem 6. 17) implies campleteness with 1c-spect to just categories
of presheaves Sets® p, as was faleadyvema ] | Now, just the same
sort of completeness theorem holds for dependent type theory as well, by an
elementary argument involving the foregoing lemma. More difficult to prove is
the fact that one can do even better, retaining completeness while restricting the

Au: Please
confirm
“Lheorem
8.147 is OK.

aus,

Showu t:«x.

@%EV&QQ e o?
Au }"Rﬁ;f'{‘w % .

specify “777,
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interpretations to just the “categories of diagrams” on posets, Sets", which can
be regarded as Kripke models (and this of course then alse holds for the simply
typed A-caleulus as well). In this connection, the following allernate description
of such categories is then of particular inlerest.

Erample 9.26 Fibrations of posets. A monotone map of pesets f : X — Plisa
{discrete) fibration if it has the following lifting property:
For every € X and p’ < fw, there is a unigue 2° < z such that f(2") = p'.

One says that @ “lies over” p = f(2) and that any p’ < p “lifts” to a unique
2’ < z lying over it, as indicated in the following diagram:

X mr P o
<
I
P r
p—(_0P

The identity morphism of a given poset P is clearly a fibration, and the
composite of two fibrations is easily seen to be a fibration. Let Fib denote the
{non-full} subeategory of posets and fibrations between them as arrows.

Lemma 9.27. For any poset P, the slice category Fib/P is carfesian closed,
Proof. The category Fib/P is equivalent to the category of presheaves on P,
Fib/P =~ Sets’ .

To get a functor, ® : Fib/P — Sets‘pup, takes a fibration ¢ : @ — P to the
presheaf defined on objects by

py=q (p) forpeP.

The lifting property t}ﬁen determines the action on arrows p’ < p. For the other
direction, ¥ : Sets’ — Fib/P takes a presheal Q : P®® — Sets to (the
indexing projection of} its category of elements,

@)= [o=r
P
These are easily seen {0 be quasi-inverses. 0

The category Fib itself is alinost locally cartesian closed; it only lacks a
terminal object (why?). We can “fix” this shmply by slicing it.

Corollary 9.28, For any poset P, the slice category Fib/P is locally cartesian
closed. .
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"Fhis sort of case is not uncommon, which is why the notion “locally cartesian
closed” is sometimes formulated without requiring a terminal object.
{ )

9.8 Adjoint functor theorem

The guestion we now want to consider systematically is, when does a functor have
an adjoint? Consider fivst the question, when does a funetor of the form C —
Sets have a left adjoint? If I/ : C — Sets has F - U, then U is ropresentable
U = Hom(F'1, —), since U(C}) 2 Hom{1,UC) 2 Hom{F1,C).

A related condition that makes sense for categories other than Sets is
preservation of mits. Suppose that C is complete and U : C — X preserves
limits; then we can ask whether U has a left adjoint. The adjoint functor theorem
(AF'T) gives a necessary and sufficient condition for this case.

Theorotn 9.29 (Freyd). Let C be locally small and complete. Given any
category X and a limil-preserving functor

U:C—=X
the following are equivalent:

L U has e left adjoint.

2. For each object X € X, the functor U satisfies the following:
Solution set condition: There exists a sel of objects (Si)ies in C such that
Jor any object C € C and arrow f : X — UC, there exists an i € 1 and
arrows p: X — US; and f: 5 — C such that

f=U{flogp
X e Us; S;
h uf !
v C

Briefly: “every arrow X — UQ factors through some olject 5; in the
solution set.”

For the proof, we require the following,.

Lemma 9.30. Let D be locally small and complete. Then the following are
equivalenl:

L. D has ar initial object.
2. D satisfies the following:
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Solution set condition: There is a set of objects (Di)ier in D such that for
any object D € C, there is an arrow Dy — D for some i € I.

Proof. D has an initial object 0, then {8} is obviously a solution set.
Conversely, suppose we have a solution set {D;);e; and consider the object

w=][D
i€ !
which exists since 7 is small and D is complete. Now ¥ is “weakly initial” in the
sense that for any object D there is a {not necessarily unigue) arrow W — D,
namely the composite

1[pi=Di—D

ief
for a suitable product projection [];.; Dy — Dy Next, take the joint equalizer
of all endomorphisms d : W — W {which is a set, since D is locally small), as
indicated in the diagram:

Vet w— W
) awlw
Ifere, the arrows A and (d) have the d-projections 1y : W — Wandd : W — W,

respectively. This equalizer then has the property that for any endomorphism
d: W W,

doh=h. {9.9)

Note, moreover, that V is still weakly initial, since for any D there is an arrow
¥V »— IV — D. Suppose that for some D there are two arrows f,g: V — D,
Take their equalizer ¢ : 7 — V, and consider the following diagran:

D

Ur——ms ¥

W ¥
€8

in which the arrow s comes from W being weakly initial, So for the endomorphisin
hes by (9.9}, we have

hesh = h.

Since k is monic, esh = 1y. But then eshe = e, and so also she = 1y since ¢ is
moitic. Therefore U 2 V, and so f = g. Thus, V is an initial object. 0
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Now we can prove the theorem.

Proof. (Theorem) If U has a left adjoint & - U/, then {FX} is itself a solution
set for X, since we always have a factorization,

x A L Uurx FX
o )

) B |

ue c

where [ : F.X — C is the adioint transpose of f and 5 : X — UFX the unit of
the adjunction.
Conversely, consider the following so-called comme-category (X|U), with

Objects: are pairs (C, f) with [ X — UC
Arrows: g: (C, f) — (C', ') ave arvows g : C — C’ with f' = U(g)f.

; ueC c
X / Ulg) g

Clearly, U has a left adjoint F iff for each object X this category {X|U) has an
initial object, (FX,5: X — UFX), which then has the UMP of the unit. Thus,
to use the foregoing initial object lemma, we must check

L. {X]U) is locally small.

2, (X|U) satisfies ¢he solution sel condition in the lemma.

3. (X[|U)) is complete.

For {1), we just observe that C js locally small. For (2), the solution set condition
of the theorem implies that there is a set of objects,

{(Si,e: X > US) iel}
such that every object (C, f : X — UC) has an arrow FilSney—{C ).

JY L US; Si
f ur !
g, ¢
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Finally, to see that {X|U) is complete, one can easily check divectly that it
has preducts and equalizers, using the fact that U preserves these. We leave this
as an easy exercise for the reader. 0

Remark 0.31. 1. The theorem simply does not apply if C is not complete. In that
easo, a given functor may have an adjoint, but the AFT will not tell us that.

2. It is essential that the solution set in the theorem be a set (and that C have
all sot-sized Hmits).

3. On the other hand, if C is itself small and complete, then we can plainly
drop the solution set condition entirely. In that case, we have the following.

Corollary 9.32. If C is a small and complete category and U : C — X is a
functor that preserves all limits, then U has a left adjoint.

Erample 9.33. For complete posets P, @, a monotone function f: P — @ has a
right adjoint g : @ — P iff f is cocontinuous, in the sense that f(V, pi) = V; fvi)
for any set-indexed family of elements (p;)ies. {Of conrse, here we are using the
dual formulation of the AFT.)

Indeed, we can let

gy =\ =
fiz)sq
Then for any pe Pand ¢ € Q, if
p < gla)
then
M <teay=1C V. 2=V f@)<q
flz}<a Fixy<q
While, conversely, if
fey<q
then clearly
p< \ z=4lg)
fle)<y

As a further consequence of the AF'T, we have the following characterization
of representable functors on small complete categories.

Corollary 9.34. If C is a small and complete cafegory, then for any functor
U : C — Sets the following are’cquivelent:

1. U preserves all limils.

2. U has a left adjoint.

3. U is representable.
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Proof. Immediate. =

These corellaries are, however, somewhat weaker than it may at first appear,
in light of the following fact.

Proposition 9.35. If C is small and complete, then C is a preorder.

Proof. Suppose not, and take C, I} € C with Hom(C, D) > 2. Let J be any set,
and take the product

12

J

There are isomorphisms:

Hom(C, | [ D) 2 [ ] Hom(C, D) = Hom(C, D)’
J J

So, for the cardinalities of these sets, we have

|Hom(C,HD)§ = |Hom(C, D}|M! = 2Vt = |P(/).
J

And that is for any set J. On the other hand, elearly |Cy| > |Hom(C, [1; D). OJ }
0 Coacuu (e

So taking J = C in the above ke gives a contradiction.

Remark 9.36. An important special case of the AFL that often occurs “in

nature” is that in which the domain category satisfies certain conditions that
eliminate the need for the {rather unpleasant!) solution set condition entirely.
Specifically, let A be a locally small, complete category satisfying the following
conditions:

1. A is well powered: each object A has at most a set of subobjects § — A.

2, A has a cogenerating set: there is a set of objects {A; | 1 € T} (I some
index set), such that for any A, X and 2 # y: X = A in A, there is some
s: A — A; (for some i) that “separates” = and y, in the sense that sz # sy.

Then any functor I/ : A -+ X that preserves limits necessarily has a left adjoint.
In this form (alse originally proved by Freyd), the theorem is usually known as
the special adjoint functor theorem (“SAFT”). We refer to Mac Lane, V.8 for
the proof, and some sample applications.

Evample 9.37. An important application of the AFT is that any equational
theory T' gives rise to a free - forgetful adjunction between Sets and the category
of models of the theory, or “I-algebras.” In somewhat more detail, let T' be
a (finitary) equational theory, consisting of finitely many operation symbols,

each of some finite arity {including nullary operations, ie., constant symbols), Au: “O-ary”
and a set of equations between terms built from these operations and variables. has been
For instance, the theory of groups has a constant u (the group unit}), a unary changed to
operation g~ (the inverse), and a binary operation g - b (the group product), “nallary”
please

confirm if the
change is
OK.

—D

b
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and a handful of equations such as g - u = g. The theory of rings has a further
binaty operation and some more equations. The theory of fields is not equational,
however, because the condition z # 0 is required for an element z to have a
multiplicative inverse. A T-nlgebra is a set equipped with operations (of the
proper atities) corresponding to the operation symbols in 7', and satisfying the
equations of T. A hememorphism of T-algebras i : A — B is a function on
the underlying sets that preserves all the operations, in the usual sense. Let T-
Alg be the category of all such algebras and their homomorphisms. There is an
evident forgetful functor

U :T-Alg — Sets.
The AFT implics that this functor always has a left adjoint £, the “free algebra”
functor.
Proposition 9.38. For any equational theory T, the forgetful functor from T'-
algebras to Scts has a left adjoint,
Rather than proving this general proposition {for which see Mac Lane,
chapter V), it is more ifhuminating to do a simple example.

Example 9.39. Let T be the theory with one constant and one unary operation
(no axioms). A T-algebra is a set Af with the structure

QLI QR Y
11 -% N - N is another such algebra, a homomerphismn of T-algebras
o (M, a, £}~ {N,b,g) is a function ¢ : M — N that preserves the clement and
the operation, in the expected sense that

da="b
¢f = g¢.
as indicated in the commutative diagram:
M —fb M
/
1 & ¢
e
N N
g

There is an evident forgetful functor {forget the T-algebra structure):
U.:T-Alg — Sets.

This functor is easily seen to create all Hinits, as is the case for algebras for any
theory 7. So in particular, T-Alg is complete and U preserves limits. Thus in
order to apply the AFT, we just need to check the solution set condition.
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To that end, let X be any set and take any function
o h: X — M.

The image h(X) C M generates a sub-T-model of (M, a, f} as follows. Define
the set “generated by h(X}" to be

H=HX)={f2) | neN,z2=0ao0r z=h(z) forsome z € X}. {9.10)

Then ¢ € H, and f restricts to T to give a function f': H — H. Moreover, the
inclusion 7 : H < M is clearly a T-algebra homomorphism

' _r

/

1 i i

» I

M——— M

Furtherniore, since h{X) € H there is a factorization k' of h, as indicated in the
following diagram:
i

N—— H
(9.11)

A

Now observe that, given X, the cardinality |H] is bounded, that is, for a
sufficiently large « independent of f2 and A, we have

IH| € k.

Indeed, inspecting {9.10), we can take x = [N| x {1 4 [X]}-

To find a solution set for X, let us now take one representative N of each
isomorphism class of T-algebras with cardinality at most . The set of all such
algebras N is then a solution set for X and U. Indeed, as we just showed, any
Function h : X — M factors as in (9.11}) through an element of this set {namely
an isomorpliic copy N of ). By the AFT, there thus exists a free functor,

F: Sets — T-Alg.

A precisely analogous argument works for any equational theory T
Finally, let us consider the particular free model F(@) in T-Alg. Since left
adjoints preserve colimits, this is an initial objeet. It follows that F{#)) is a natural

numbers object\(—NPF@?, in the following sense.
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Definition 9.40. Let C be a category with a teriminal object 1. AZNN@-«}H C
is a structure of the form

-5 NS N

which is initial among all such structures. Precisely, given any 1 S X 4 Xin
C, there is a unique arrow ¢ : N — X such that the following commutes:

5
N—— N

i b &

T

XN— X
f
In other words, given any object X, a “starting point” @ € X and an operation
x> f(z) on X, we can build up a unique ¢ : N — X recursively by the
equations:

#(0) =a
¢ls(n)) = f(din)) forallne N

Thus, the UMP of an NNO says precisely that such an object supports recursive
definitions. It is easy to show that the set N of natural numbers with the canonical
structure of 0 and the “successor fitnction” s{n) = n + 1 is an NNO, and thus,
by the UMP any NNO in Sets is isomorphic to it. The characterization of N
in terms of the UMP of recuisive definitions is therefore equivalent to the usual
logical definition using the Peano axioms in Sets. But note that the notion of
an NNO (which is due to .W. Lawvere) also makes sense in many categories
where the Peano axioms do not make any sense, since the latter involve logical
operations like quantifiers.

Let us consider some simple examples of recursively defined functions using
this UNMP.

Evample 9.4%, 1. Let (V,0, s} be an NNO in any category C. Take any point
a:1-s N, and consider the new structure:
L N - N
Then by the universal property of the NNQO, there is a unique morphism
fa i N — N such that the following commutes:

N N
/
I (¢} f i
S
Ne— N
s

.

w{’wf‘a} mmmg
ob:}ﬁcjc (MM oY
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Thus we have the following “recurston equations”:
Fu(0) =4
Jals{n)} = s(fa(n))

If we write f,(n) = a + n, then the above equations become the familiar
recursive definition of addition:

at+0=a
a+{sn)=s{a +n)

. Now take this arrow a -+ {—) : N — N together with 0 : 1 — N to gel
another arrow g, : N — N, which is the unique one making the foltlowing
commute:

N— N

+{=)
We then have the recursion equations:
ga{0) =0

ga(sn) = a + go(n}
8o, writing g.(n) = a- n, the above equations become the familiar recursive
definition of multiplication:

a-0=0
a-(sny=a-+ta-n

. For an example of a different sort, suppose we have a {small) category C
and an endofunctor  : C — C. Then there is a structure

4, oo I oo

where id : 1 — C€ is the transpose of the identity 1o : C — C (composed
with the iso projection 1 x G = C). We thercfore have a unigue functor
f: N — C© making the following diagram commute (we use the easy fact,
which the reader should check, that the discrete category N is an NNO
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in Cat):

N> +N

/

1\1" !

id

C (&
G e C

Transposing gives the commutative diagram

I
1xc 28 nexe S nxo

= f f
C C C
id F
from which we can read off the recursion equations:
fo,0)=cC

f(sn,C) = F(f{(n,C))

It follows that f{n,C) = FUNE), that is, f(n) is the nth iterate of the
functor F: C — C,

IExercises
Complete the proof that the “Hom-set” definition of adjunction is

equivalent to the preliminary one by showing that the specification of the
unit e C — UFC as o = ¢(1pe) really is a natural transformation.

. Show that every monoid A admits a surjection from a free monoid

F(X} — M, by considering the counit of the free 1 forgetful adjunction.

. What is the unit of the product - exponential adjunciion {zay, in Sets)?
. Let 2 be any two-element set and consider the “diagonal funetor”

A:C—C?
for any category C, that is, the exponential transpose of the first product
projection

Cx2-0C.

Show that A has a right (resp. left) adjoint if and only if C has binary
products (resp. coproducts).




10.

11.

12.
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Now let C = Sets and replace 2 with an arbitrary small category J.
Determine both left and right adjoints for A : Sets — Sets®. (Hint: Sets
is complete and cocomplete.)

. Let C be cartesian closed and suppose morcover that C has all finite

colimits. Show that C is not only distributive,
(A+ByxC2(AxCY1+ (B xC)

but that also (=} x C preserves coegualizers. Dually, show that {~}¢
preserves produces and equalizers,

. Any category C determines a preorder P(C) by setting: A < B if and only

if there is an arrow A — B. Show that the functor P is (left? low right?)
adjoint to the evident inclusion functor of preorders into categories. Does
the inclusion also have an adjoint on the other side?

. Show that there is a string of four adjoints between Cat and Sets,

VAFHAUAR

where I7 : Cat — Sets is the forgetfut functor to the set of objects U{C) =
Cg. (Hint: for V, consider the “connected components” of a category.)

. Given a function f : A — B between sets, verify that the direct image

operation im(f) : P(A) — P(B) is left adjoint to the inverse image !
P(B) — P(A). Determine the dual image f, : P(A} — P(B) and show
that it is right adjoint to £ L

. Show that the contravariant powerset functor P : Sets™ — Sets is self-

acljoint.

Given an object C in a category C under what conditions does the evident

forgetful funetor from the slice category C/C

_ U:C/C—-C

have a right adjoint? What about a left adjoint?

(a} A cofeyting algebra is a poset P such that PP is a Heyting algebra.
Determine the coHeyting implication operation a/b in a lattice L by
adjointness (with respect to joins), and show that any Boolean algebra
is a coHeyting algebra by explicitly defining this operation a/b in terms
of the usual Boolean ones,

(b} In a coleyting algebra, there are operations of eoHeyting negation
~p = 1/p and coHeyting boundary dp = pA~p. State the logical rules
of inference for these operations.

{c} A biHeyting algebra Is a latiice that is both Heyting and coHeyting.
Give an example of a biHeyting algebra that is nol Boolean. (Hint:
consider the lower sets in a poset.)

Let P be the category of propositions {i.e., the preorder category assoclated

to the propositional caleulus, say with countably many propositional
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variables p, i, r,..., and & unique arrow p — ¢ if and only if p F q).
Show that for any fixed object p, there is a functor
—~Ap: PP

and that this functor has a right adjoint. What is the counit of the
adjunction? {When) does — A p have a left adjoint?

13. (a) Given any set 7, explicitly describe the Yoneda embedding y : I —
Sets’ of I into the category Sets! of I-indexed sets.
(b) Given any function f:J — I from another set J, prove directly that
the following diagram commutes up to natural jsomorphism.

f

Sets! ——2 + Sets’
YJ ¥r

J T

f

{c) Desctibe the result of composing the Yoneda embedding with the
equivalence,

Sets’ ~ Sets/I.
(d) What does the commutativity of the ahove “change of base” square
mean in terms of the categories Sets/! and Sets/J7
(e} Consider the inclusion functor i : P(I) — Sets/T that takes a subset
U C I to its inclusion funetion #{(U) + U — I. Show that this is a
functor and that it has a left adjoint
o : Sets/T — P(I).
() (Lawvere's Hyperdoctrine Diagram) In Sets, given any function f :
I — J, consider the following diagram of functors:
Iif
—_—
Sets/] « - f*— Sets/J
Bf
ort i ot i
vy
P(I) e 1— P{D)
_—
s
‘There are adjunctions ¢ - i (for both T and J), as weltas B, 4 f* 411y

and 35 - f~1 4 ¥y, where f* : Sets/J — Sets/I is pullback and
f1: P(J) — PI) is inverse image.




14.

16.

17.

18.

19,
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Consider which of the many possible squares commnute.

Complete the proof in the text that every slice of a category of presheaves
is again a category of presheaves: for any small category C and presheaf
P C° — Sets,

SetsC®/P ~ Setslc ™,

. Let C be a complete category and U : C — X a continuous functor. Show

that for any object X € X, the comma category (X|U) is also complete.

Use the adjoint functor theorem to prove the following facls, which were

shown by explicit constructions in Chapter 1:

{a) Tree monoids on sets exist.

(b) Free categories on graphs exist,

Tet 15 N 5 N be an NNO in a cartestan closed category.

{a) Show how to define the exponentiation operation m™ as an arrow
NxN— N,

(b) Do the same for the factorial function nl.

(Freyd's characterization of NNOs) Let 1 L N 2 N be an NNO in Sets

(for your information, however, the following holds in any topos).

(a) Prove that the following is a coproduct diagram:

1 0 N i N

So N=1+N.
{b) Prove that the following is a coequalizer:

8
N—N——1

1 N

(a} Show that any structure 1 SN &N satisfying the foregoing two
conditions is an NNQO.

Recall (from Chapter 1) the category Rel of relations {between sets), with

arrows B : A — B being the relations R C Ax B in Sets. Taking the graph

of a function f : A — B gives a relation T{f) = {{a, f(a)}la € A} C AxB,

and this assignment determines a functor T' : Sets — Rel. Show that T’

has a right adjoint. Compute the unit and counit of the adjunction.
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