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EXPONENTIALS

We have now managed to unify most of the universal mapping properties that
we have scen so far with the notion of Hmits {or colimits). Of course, the free
algebras are an exception to this. In fact, it turns out that there is a common
source of such universal mapping properties%'ﬁﬂf‘sf, but it lies somewhat deeper,
in the notion of adjoints, which unify free algebras, limits, and other universals
of various kinds. - i

Next we are going to look at one more elementary universal structure, which
is also an example of a universal that is not a limit. This impeortant structure
is called an “exponential” and it can be thought of as a categorical notion
of a “function space.” As we shall see it subsumes much more than just that,
however,

6.1 Exponential in a category

Let us start by considering a function of sets,
flayy  AxB->C

written using variables & over A and y over B. If we now hold a € A fixed, we
have a function

fay):B—=C
and thus an element
f(al y) e CB

of the set of all such functions.
Letting a vary over 4 then gives a map, which I write like this
_f tA— B
defined by a — fla,y).

The map f : A — CF takes the “parameter” « to the functionw: B—C.
it is uniquely determined by the equation

fla)(b) = Fla,b).

£@,9)
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Indeed, any map
$iA—C8
is uniquely of the form
¢=f
for some f: A x B — C, For we can set
Fla, by = d(a)d).
What this means, in sum, is that we have an isomorphism of Hom-sets:
Homsgets{A % B,C) = Homgets (A, CF)

That is, there is a bijective correspondence beiween functions of the form
f: Ax B — C and thosesof the form f 1 A — OB, which we can display

schematicallyy thus
/ { [:AxB=C

fiaocCB
This bijection is mediated by a certain operation of evaluotion, which we have
indicated in the foregeing by using variables. In order to generalize the indicated
bijection to other categories, we are going to need to make this evaluation
operation explicit, too.
In Sets, it is the function

eval: CB x B C
defined by {g,b) — g{b), that is,
eval(g, b) = g(b)-

‘I'his evaluation function has the following UMP: given any set A and any
function

JiAxB--C
there is a unique function
f:iA-CF
such that evalo {f x 15} = f. That is,
eval{ fle), b) = f{a,b). {6.1)

Here js the diagram:

ok cPx 2 ¢

f Fxlp fi
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You can read the equation {(6.1) off from this diagram by taking a pair of
elements (a,b) € A x B and chasing them around both ways, using the fact that
( x 18)(a,b) = (f(a),b).

Now, the property just stated of the set C¥ and the evaluation function
eval : OF x B — ( i3 one that makes sense in any category having binary
products. It says that evaluation is “the universal map into C from a product

M !‘/\ 0\,\’\9;—1 with B.” Precisely, ’it-mstatea\ the following: .

Definition 6.1, Let the category C have binary products. An exponential of
objects B and € consisis of an object

CB
and an arrow
0B O

such that, for any object A and arrow

fiAxB—=C
there is a unique arrow
fiA=CB
such that
eo{f x1p)=f
all as in the diagram
o CExB—C
f. ’ }FX 1p f]
A Ax B

Here is some terminology:

o ¢: 08 x B - C is called evaluation.
o f1A— OB is called the {exponential) transpose of f.

« Given any arrow
g: A= CE
we write

Gi=co(gxlg):AxXxB—=C
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and also call 7 the transpose of g. By the unigueness clause of the definition,
wo then have

and for any f: Ax B — C,

Briefly, transposition of transposition is the identity.
Thus in sum, the transposition operation
(Ff:AXB—C) r— (f: A CF)
provides an inverse to the induced operation
(7:A—CB) v (F=eofgxlp): AxB-C),
yielding the desired isomorphism,

Home(A x B,C) = Homg(4,C®).

6.2 Cartesian closed categories
Definition 6.2. A category is called earfesian closed, if it has all finite produets

and exponentials.

FExample 6.3. We already have Sets as one example, but note that also Setsy;,
is cartesian closed, since for fnite sets B, N, the set of functions NM has
eardinality

“N'M'! — II\{%E‘\”
and so is also finite.

Erample 6.4. Recall that the category Pos of posets has as arrows [ : P —
the monotone functions, p < p' implies fp < fp'. Given poscts P and @, the
poset P x @ has pairs {p,q) as elements, and is partially ordered by

P <@.d) i p<p and g<¢.
Thus, the evident projectiens

P

Px@Q————sQ

M iy

are monotone, as is the pairing
(fv g) X = PxQ

if f: X - Pand g: X — € are monotone.
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For the exponential QF, we take the set of monotone functions,
QY ={f: P - Q| f monotone }
ordered pointwise, that is,
f<g T fp<gporallpeP.

The evaluation

QP uP-Q
and transposition
f:x—-QF
of a given arrow
i1 XxP—-Q

are the usual ones of the underlying functions. Thus, we need only show that
these are monotone.
To that end, given {f,p} < (f/,p'} in @7 x P, wo have

«fp) = Flp)
< [0
< f'()
=e(f'.0')

5o € is monotone. Now take f: X x P — ) monotone and let x < 2'. We need
to show

fz) < )y QP
which means
fl@)p) < f(a')p) forallpe P.
But f(2)(p) = fla.p) < S, p) = F(='}p).

Example 6.5. Now let us consider what happens if we restrict to the category
of wCPOs (see example 5.33). Given two wCPOs P and (}, we take as an
exponential the subset,

QF = {f: P — Q| f monotone and w-continuous}.

Then take evaluation e : QF x P — @ and transposition as before, for functions.
Then, sinee we know that the required equations are satisfied, we just need to
check the following:

e QF is an wCPO
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¢ ¢ i3 w-continuous
+ f is w-continuous if f is g’ )

We leave this as an exercisel

Example 6.6. An example of a somewhat different sort is provided by the
category Graphs of graphs and thelr homomeorphisms. Recall that a graph G
consists of a pair of sets e and G ,~~the edges and vertices—and a pair of
fitnctions,

Ge
sa| Ha

Gy

called the source and target maps. A homomorphism of graphs h : G — H
is a mapping of edges to edges and vertices to vertices, preserving sources and
targets, that is, is a pair of maps b, : G, - H, and h, : G, — H., making the
two obvious squares commute.

o, he

H,

saf e sgl |ty

hy

Gy H,

The product G x H of two graphs G and H, like the product of categories, has
as vertices the pairs {g, ) of vertices g € G and © € H, and similarly the edges
are pairs of edges (u, v} with u an edge in G and v and edge in H. The source
and target operations are, then, “pointwise”: s{u, v) = (s{u), s(v)), etc.

Go x H,

Sg X sy to X iy

Gy x Hy

Now, the exponential graph HE has as vertices the (arbitrary!) maps of
vertices ¢ 1 Gy — H,. An edge & from o to another veitex ¥ : &y, — H, is a
family of edges (8.) in H, one for each edge e € G, such that s(6,) = w{s(e)} and
(0] = ¥{t{e)). In other words, @ is a map # : G, — H. making the following

I

D
NS,
T SS6

Au: Please
check the
sentence for
completeness.
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commutbe:
s 4
Gy Ge Gy
@ 0 P
H, H, > H,
L £

Imagining G as a certain configuration of edges and vertices, and the maps p
and ¥ as two different “pictures” or “images” of the vertices of G in H, the edge
# : @ — 3 appears as a family of edges in H, labeled by the edges of (7, each
connecting the source vertex in g {o the cotresponding target one in ¥. (The
reader should draw a diagram at this point.} The evaluation homomorphism
e: HS x G — H takes a vertex (p, g} to the vertex p{g), and an edge (f,¢)
to the edge 4. The {ranspose of a graph homomorphism f : F x G — His
the homomorphism f : F* — IC taking a vertex @ € F {o the mapping on
vertices f{a,—}: Gy — H,, and an edge ¢: a — b in F to the mapping of edges
fle,=):Ge — He.

We leave the verification of this cartesian closed structure as an exercise for
the reader.

Next, we derive some of the basic facts about exponentials and cartesian
closed categories. First, let us ask, what is the transpose of evaluation?

c:BYxA— B
It must be an arrow Z: B4 — B such that
E(E hs 1,;) =€

that is, making the foHowing diagram commute:

B x A B

Ex 14

BYx A

Since 1ga X 14 = lypayay clearly has this property, we must have
g = IBA

and so we also know that e = (Ipa).
Now let us show that the operation X — X4 on a CCC is funciorial.
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Proposition 6.7. In any cartesian closed calegory O, exponentiation by a fized
object A is a functor,

(-y*:c-cC.
Toward the proof, consider first the case of sets, Given some function
B:B— O,
we put
g4 BA o cd
defined by
fBof
That is,
A
Bo [ =pNJ)
B 7 o]

This assignment is functorial, becanse for any o : C — D
(aoB)yH{f)=aoBof

=aofr(f)

— Ct'A OﬁA(f).
Whence (@ o 3} = a? o 4. Alzo,

() (f)=1sof
=F
= 1pa(f)-

So {1g}* = 1pa. Thus, {~)* is indeed a functor; of course, it is just the
representable functor Hom{ A, —) that we have already eonsidered.
In a general CCC then, given §: B — C', we define

ﬁA . BA — CA
by

}3’1 = (,B/:)‘;).
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That is, we take the transpose of the composite
BixAaSBAC
giving
’6/1 . BA s CA.

It is easier to see in the form

c4 CAxA— s
prl o B x 14 B
BA B x A — B
Now, clearly,
(1g}* = 1ga: B4 — B4
by examining
Bt x A £ B
I(BAXA):}BAxIA Ip
B4 x A - B
Quite similatly, given
Bfhoehp

wa have

7ot ={yo By
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This follows froin considering the commutative diagram:

DA A—" D

v % 1a ¥
Chx A c
€
B %14 8
BYx A B

We use the fact that
Ot x 1ayo (B4 x 14) = {(v* 0 84) x 1a).

The result folows by the uniqueness of transposes.

There is also another distinguished “universal® arrow; rather than
transposing 1za : B4 — B4, we can transpose the identity laxp : 4 x B —
A x B, to get

iAxB:A——»(AxB)B.

In Sets, it has the values 14, p(a)(b) = (a,b). Let us denote this map by n =

1axp, so that
n{a}(b) = (a, b).

The map » lets us compute f from the functor —*. Indeed, given f : Zx A —
B, take

FA (2 x Ayt — BA

and precompese with 17: £ — (7 x A}*, as indicated in

A
(@ xay L, B

z
"This gives the useful equation

f=fton

which the reader should prove.
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6.3 Heyting algebras

Any Boolean algebra B, regarded as a poset category, has finite products 1 and
a A b. We can also define the exponential in B by

B = (—aVb)
which we also write @ = b, The evalnation arrow is
(a=>b)Aa<h
T'his aiways holds since
{(ravbhra=(—ara)V{bra)=0V(bAa)=bra<h
To show that ¢ = b is indeed an exponential in B, we just need to verify that if
aAb<cthen a € b= ¢, that is, transposition. But if a Ab < ¢, then
—bv{aAb)<-bVe=b=ec
But we also have
a<-bva<(-bva)A(-bVb)y=—bV(anb)

This example suggests generalizing the notion of a Boolean algebra to that
of a cartesian closed poset. Indeed, consider first the following stronger notion.

Definition 6.8. A Heyting algebre is a poset with
1. Finite meets: 1 and pA g,

2. Finite joins: 0 and pV g,
3. BExponentials: for each a,b, an element @ = b such that

aAb<c iff a<b=ec

The stated condition on exponentials ¢ = b is equivalent to the UMP in the
case of posets, Indeed, given the condition, the transpose of anb < cisa < b=¢
and the evaluation {a = &) Aa < b follows immediately from a = b < a => b (the
converse is just as simple).

First, observe that every Heyting algebra is a distributive latlice, that is, for
any a,b,c, one has

{avbhe=(ane)VibAe).
Indeed, we have
faviine<zillavb<c=2
ila<ec=>zand b<ec=z
ifanc<zand bAe< 2

iff (ane)vibre) <z
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Now pick z = (aVb)Ac and read the equivalences downward to get one direction,
then do the same with z = {a A ¢) V (b A ¢} and reading the equivalences upward
to get the other direction.

Remark 6.9, The foregoing distributivity is actually a special case of the more
general fact that in a cartesian closed category with coproducts, the products
necessarily distribute over the copreducts,

(A+ByxC=2(AxC)+(BxC).

Although we could prove this now directly, a much more olegant proof
{generalizing the one above for the poset case) will be available to us once we have
access to the Yoneda Lemma. For this reason, we defer the proof of distsibutivity
o 8.6.

One may well wonder whether all distributive lattices are Heyting algebras.
The answer is in general, no; but certain ones always are.

Definition 6.10. A poset is (co) complete if it is 50 as a category, thus if it has
all set-indexed meets A, ; a; (resp. joins V.., ;). For posets, completeness and
cocompleteness are equivalent {exercisel). A lattice, Heyting algebra, Boolean
algebra, etc. is called complete if it is so o5 a poset,

Proposition 6.11. A eomplete lattice is a Heyting algebra iff it satisfies the
infinite distributive low

ah (\1/ b,-) = \.-/(a Abi).

Proof, One shows that Heyting algebra implies distributivity just as in the finite
case. To show that the infinite distributive law implies Heyting algebra, set

a=b= v .

zha<h
Then, if
yha<b

then y < V:ngbm = g = b And conversely, if y < @ = b, then yAa <
(me\agb ‘l‘l) ha= v‘}:;‘\agb(ﬂ: A ﬂ} S Vb =b. B

Erample 6.12. For any set A, the powerset P{A} is a complete Heyting algebra
with unions and intersections as joins and meets, since it satisfies the infinite
distributive law. More generally, the lattice of open sets of a topelogical space is
also a Heyting algebra, since the open sets are closed under finite intersections
and arbitrary unions.
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Of course, every Boolean algebra is a Heyting algebra with ¢ = b= —a Vv b, as
we already showed. But in general, 2 Heyting algebra is not Boolean. Indeed, we
can define a proposed negation by

g =qa =}

as nmst be the case, since in a Boolean algebra —a = —a V0 = a = . Then
a < ——a since a A (a = 0) < 0. But, conversely, -—a < a need not hold in a
Heyting algebra. Indeed, in a topological space X, the negation -U of an open
subset 7 is the inferior of the complement X — U/, Thus, for example, in the
real interval [0, 1], we have (0,1} = [0, 1]

Moreover, the law,

1<aV—-a
also need not hold in general, In fact, the concept of a Heyting algebra is the 5
algebraic equivalent of the infuitionistic propositional calculus , in the ?

same sense that Boolean algebras are an algebraic formulation of the'clussical
propositional caleulus.

6.4 Propositional calculus

In order to make the connection between Heyting algebras and propositional
calculus more rigorous, let us frst give a specific systom of rules for the I’P’C‘)
This we do in terms of entailments p I g between formmlas p and ¢

;. [ }i—s';eﬂcxive and transitive :1 A ‘h&i'é‘ ; .‘ 34"\'@
.p e
3. Lbp Q?fblpc%f{ﬂ%a/?

I, ptgand pbrifptqaAr C&/{Cﬁ{lug CI@C\,

5. phrandgtriffpvegbr
.phgbrifiprg=r

fasr]

This is a complete system for IPC, equivalent to the more standard presgnta-
tions the reader may have seen. To compare with one perhaps more familiar
presentation, note first that we have an “evaluation” entailment by reflexivity
and {6):

p=qgbtp=gq
(p=agrptq
We therefore have the rule of “modus ponens” by {4) and transitivity:
Thp=q and Tkp
TH{p=qg)A })
Thkg
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Moreover, by {4) there are “projections”:
phgtphg
pAgtp (resp. q)

from which it foBows that p - T A p. Thus, we get one of the usual axioms for
products:

phgkp
TA{pAQt
TH{pAg=>p

Now let us derive the usual axioms for =, namely,

1.p :> D,
2. p={g=ph
3p==m={r=>ad=>0=r)

The first two are almost immediate:
ptp
TApkp
Tkp=p

pAgtp
phg=p

TApk{g=rp)
Trp=(g=p)

For the third one, we use the fact that = distributes over A on the right:
a= Ay (=) Ala= o)
This is a special case of the exercise:
(Bxo)yt = pixed

We also use the foltowing simple fact, which will be recognized as a special case
of proposition 6.7:

akFb implies p=>abp=0 (6.2
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Then we have
{g=ryAgqkr
r={g=rAagkbp=r
(p=(g=rn{p=qFp=r by (6.3}
E=@=rb=0=@E=r)
TeHp=g=r)={=>rp=>1)
The “positive” fragment of IPC, involving only the logical operations
T A

cotresponds to the notion of a cartesian closed poget. We then add 1 and
disjunction p vV ¢ on the logical side and finite joins on the algebraic side
to arrive at a correspendence hetween IPC and Ifeyting algebras. The exact
correspondence is given by mutually inverse constructions between Heyting
algebras and IPCs. We briefly indicate one direction of this correspondence,
leaving the other one to the reader’s ingenuity.

Given any IPSs £, consisting of propositional formulas p, ¢, r,... over some
set of variables x, ¥, 2,.. . together with the rules of inference stated above, and
perhaps some distinguished formulas a, b, ¢, . . . as axioms, one constructs from £ é % %
a Heyting a!gebra/{HM’(ﬁ), calted the Lindenbaum-Tarski algebra, consisting of
equivalence classes Ip| of formulas p, where

pl=[a} f p-rgqg (6.3)
The ordering in HA(L) is given by
P <[gl it phg (6.4)

This is clearly well defined on equivalence classes, in the sense that if p - g and
ip} = [p'] then p’ I q, and similarly for g. The operations in HA(L) are then
induced in the expected way by the logical operations:

1= [T]
0=[1]
inlgd=[pAd
pivig=[pvad
] =g =[p=d

Again, these operations are easily seen to be well defined on equivalence classes,

!
and they satisfy the laws for a Heyting algebra because the logical rules evidently E ‘ ‘l’
imply them. 'ﬁ W{%

Lemma 6,13, Observe that, by {6.3), [HA(L) has the property that a formula p

is provable T+ p if and only if [p} = 1. M % ‘e)b(‘a"
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Now define an interpretation M of £ in a Heyting algebra H to be an
assignment of the basic propositional variables z, ¥, 2,... to elements of IT, which
we shall write as Jaf, [#], [2], ... An interpretation then extends to all formulas
by recursion in the evident way, that is, [p A g] = [p]Alg]. etc. An interpretation
is called a model of £ if for every theorem T - p, one has [p] = 1. Observe that
there is a canonical interpretation of £ in HA(L) given by [z] = {z]. One shows
easily by induction that, for any formula p, moreover, [p] = [p]. Now lemma 6.13
tells us that this interpretation is in fact a model of £ and that, moreover, it is
“senerie,” in the sense that it validates only the provable formulas. We therefore
have the following logical completeness theorem for IPC,

Proposition 6.14. TheMﬁs complete with respect fo models in Heyling
algebras.

Proof. Suppose a formula p is true in all models in all Heyting algebras. Then
in particular, it is so in HA(L). Thus, 1 = [p] = [p] in HA{L), ands0 T Fp. O

In sum, then, a particular instance £ of IPC can be regarded as a way of
specifying (and reasoning about) a particular Heyting algebra HA(L). Indeed, it
is essentially a presentation by generators and relations, in just the way that we
have already seen for other algebraic objects like monoids. The Heyting algebra
HA(L) even has a UMP with respect to £ that is entirely analogous to the UMP
of a finitely presented monoid given by gencrators and relations. Specifieally, if,
for instance, £ is generated by the two elements =, y subject to the single “axiom”
2V y =z Ay, then in HA(L) the clements [z] and [y] satisfy [z] V {y] < fz] A [y]
{which is of course equivalent to ([z]Vy] = [#]A[y]) = 1}, and given any Heyling
algebra A with two elements a and b satisfying a Vb < a A'b, there is 2 unique
Heyting homomorphism h : HA(L) — A with h([x]} = e and A{[y]) = b In this
sense, the Lindenbaum—Tarski Heyting algebra HA(L), being finitely presented
by the generators and axioms of £, can be said to contain a “universal model”
of the theory determined by £.

6.5 Equational definition of CCC

The following deseription of CCCs in terms of operations and eguations on a
category is often useful. The proof is entirely routine and left to the reader,

Proposition 6.15. A category C is a COC iff it hos the following structure:
o A distinguished object 1, and for each object C there is given an arrow
le:C—1
such that for each arrow f:C — 1,

f=lo.
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e For each pair of objects A, B, there is given an object A x B and arrows,
p:AxB—oA and p:AxXxB- B

and for each pair of arrows f : Z — A and g 1 Z — B, there is given an

arrow,
{(figh:Z2—-AxB
such that
pif gy =t
pifig) =g

(mh,pah)y = h forallh:Z — AxB.
For each pair of objects A, B, there is given an object B* and an arrow,

c:BY*xA—- B

and for each arrow f: Z x A — B, there is given an arrow
f:2—- Bt
such that
co(fxia)=1/
and
(colgx1a) =g

for all g : Z — BA. Here, and generally, for anya: X — A andb: Y = B,
we write
axb={aop,bopy): X xY¥Y - AxB.

It is sometimes easier to check these equational conditions than to verify the
corresponding UMPs. Section 6.6 provides an example of this sort.

6.6 A-calculus

A =~
We have seen that the notions of a cartesian closed poset with finite joins (ie., /{,\A/LW% orwnts %‘T &
a Heyting algebra) and lﬁ"€73re essentially the same:

HA ~ IPC, Q‘YD? GQ? }“ \t;"’v“* %p

These are two different ways of describing one and the same structure; whereby, M i
to be sure, the logical description contains some superfluous data in the choice Q ik b{g
of a particular presentation.

We now want to consider another, very similar, correspondence between
systems of logic and categories, involving more general CCCs. Indeed, the
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foregoing correspondence was the poset case of the following general one between
CCCs and M-caleulus:

CCC ~ A-calculus.

These notions are also essentially equivalent, in a sense that we now sketch (a
more detailed treatment can be found in the book by Lambek and Scott), Thebe~
are two different ways of representing the same idea, namely that of a collection
of objects and functions, with operations of pairing, projection, application, and
transposilion {ov “currying’).

First, recall the notion of a {typed) M-caleulus from Chapter 2. It consists
of

a Types: A x B, A— B,... {and some basic types)

o Torms: ,4,2,...: A (variables for each type 4)
a: A, b: B,... {possibly some typed constants)

{a,0y: AxB f(a:4, b:B)

fst(c) : A {(¢: Ax B)
sud{c): B {e: A x B)
ca: B (c:A—> B, a: A}

MAb:A—B (z:4 b:B)
« Equations, including at least all instances of the following:
fatl{a,b)) =a
snd{{a,0)) = b
{fst{c), snd(e)) = ¢
(Az.ba = bla/x]
Azex=¢ {nozinc)
Given a particular such M-caleulus £, the associated category of fypes C(L)
was then defined as follows:
+ Objects: the types,

¢ Arrows A — B equivalence classes of closed terms [¢] 1 A — B, identified
according to (renaming of bound variables and},

[ef=1[4 TLFa=b (6.5)
o Identities: 1y = [Az.z] (where 2 4),
o Composition: [c} o [b} = [Az.c{bz}].

We have already seen that this is a well-defined category, and that it has
binary products. [t is a simple matter to add a terminal object. Now let us use
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the equational characterizalion of CCCs to show that it is cartesian closed. Given
any objects A, B, we set BY = 4 — B, and as the evaluation arrow, we take
{the equivalence class of},

e=Azfst(z)snd(z): BAx A= B (2:2).
Then for any arrow f: Z »x A — B, we take as the transpose,
f=Azde.flz,0): 2= BY (2:2, 2: A

It is now a straightforward A-calculus calculation io verify the two required
equations, namely,

eo(fxia)=1,
. (colgx 1) =g.
In detaﬁ, for the first one recall that
a X = Aw. (afst(w), Osnd(w)}.
So, we have

eo (f x 14) = (A2fst(z)snd(z)) o {{Apha. f{y, ) % Au.y]

= Aw{dzfst(z)snd{z))[(Ayra. f (g, 2}) x duue
= Avf Az Jst(z)snd(z) ) [N {{ Dy f g, 2wy Mst{w), (Aw.w)snd(w)]v
= v{hzIst{z)and(z))[Aw.{{Ax. f{fst{w), 2)), snd(w))]w
= Av.{ Az Tst(2)snd(2))[{(Aw. f {fst(v}, z}}, snd(v}}]
= Av.{ A f{st{v), 2))snd(v)
= Av.f{fst{v),snd(v}}
= A fv
= f

The second eguation is proved similarly.

Let us call a set of hasic types and terms, together with a set of equations
between terms, a theory in the A-calenlus. Given such a theory £, the cartesian
closed category C(L) built {from the A-calculus over £ is the CCC presented by
the generators and relations stated by £. Just as in the poset case of IPC and
Heyting algebras, there is a logical completeness theorem that follows from this
fact. To state it, we require the notion of a model of a theory £ in the A-calenlus

in an arbitrary cartesian closed category €. We give only a brief sketch to give
the reader the general idea.
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Definition 6.16. A model of £ in C is an assignment of the types and terms
of £ to objects and arrows of C:

X basic type ~ [X] object
b: A — B basic tertm  ~  [b] : [A] — [B] arrow

This assignment is then exiended to all types and terms in such a way that the
M-cateulus operations are taken to the corresponding CCC ones:

[A % B} =[4] = [B]
[(f9)F = {L7). [s]}
ete,
Finally, it is required that all the equations of £ are satisfied, in the sense that
LH{g=[:A— B implies [aof =1b}:[A] -8B (6.6)

This is what is sometimes called “denotational semantics” for the A-calculus,
It is essentially the conventional, set-theoretic semantics for first-order logie, but
extended to higher types, restricted to equational theories, and generalized to
CCCs.

For example, let £ be the theory with one basic type X, two basic terms,

u: X
m: X xX—-X
and the usual equations for associativily and units,
miu,zy =x
m{z,u) =z
miz, mly, 2} = m{m{z, y), =)

Thus, £ is just the usual equational theory of monoids. Then & model of £ in
a cartesian closed category C is nothing but a monoid in C, that is, an object
M = [X] equipped with a distinguished poing

fu] 11> M
and a binarvy operation
Iml:MxM—M

gatisfying the unit and associativily laws.

Note that by (6.5) and (6.6), there is a model of £ in C{L} with the
property that fa] = [b] : X — Y if and only if ¢ = b is provable in
£. In this way, one can prove the following CCC completeness theorem for
A-calculus.
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Proposition 6.17. For any theory L in the A-calculus, one has the following:

1. For any terims a,b, L1 a = b iff for all models M in CCCs, [alar = [V]as-

2. Moreover, for any type A, there is a closed t 1 A iff for all models M in
CCCs, there 1s an arvow 1 — [A]ar.

This proposition says that the A-calculus is deductively sound and complete
for models in CCCs. Tt is worth emphasizing that completeness is not true if one
restricts attention to models in the single category Sets; indeed, there are many
examples of theories in A-calenlus in which equations helding for all models in
Sets are siill not provable {see the exercises for an example).

Soundness (i.e., the “only if” direction of the above siatements) follows from
the following UMP of the cartesian closed category C(L), analogous to the one
for any algebra presented by generators and retations, Given any model M of £
in any cartesian closed category C, there is a unique functor,

[—Jasr: G{LYy— C
preserving the CCC structure, given by
[X]ar = M

for the basic type X, and similarly for the other basic types and terms of £. Tn
this precise sense, the theory £ is a presentation of the cartesian closed category
C{L) by generators and relations,

Finally, let us note that the notions of M-calculus and CCC are essontially
“equivalent,” in the sense that any cartesian closed category C also gives rise
to a A-calculus £{C}, and this construction is essentially inverse to the one just
sketched.

Briefly, given C, we define £(C) by

» Basic types: the objects of C
e Basicterms: a: A > Bforeacha: A - BinC
« Equations: many equations identifying the A-calculus operations with the
corresponding eategory and CCC structure on C, for example,
Az fst{z) = py
Ax.snd{z) = p2
Ay S w) = f(=)
g(f(z)) = (go /)=)
Apy =1y
This suffices to ensuve that there is an isomerphism of categories,

CL(C)) = C.
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Moreover, the theories £ and £(C(L)) are also “equivalent” in a suitable sense,
involving the kinds of considerations typical of comparing different presenta-
tions of algebras. We refer the reader to the excellent hook by Lamtbek and Seott
{1986), for further details,

6.7 Variable sets

We conclude with a special kind of CCC related to the so-called Kripke models
of logic, namely categories of wariable sets. These categories provide specific
examples of the “algebraic” semantics of IPC and M-calcuhus just given.

6.7.1 IPC
Let us hegin by very briefly reviewing the notion of a Kripke model of IPC from
our algebraie point of view; we focus on the positive fragment involving only
T,p A g, p=> g, and variables.
A Kripke model of this langnage £ consists of a poset I of “possible worlds,”
: -~ Pb\.w which we write i < 7, together with a relation hetween worlds i and propositions £ t@ 3

o

read “p holds at 1.* T'his relation is assumed {o satisfy the following conditions:

ilkp,

(1) ik pand i < j implies § IF p

(2)ilFT

3)ilkpAagifi-pandilbg

(4) i1k p = g iff j I p implies j - ¢ for all § > &

One then sets
Ip iff itbp fwalliel

And finally, we have the well-known theorem,
Theorem 6.18 (Kripke completeness for IPC}. A propositional formula p

is provable from the rules for IPC iff il holds in all Kripke models, that is, iff
I'l: p for all relalions W over all posels I,

IPCERp iff Tlkp foralll

Now let us see how to relate this result to our formulation of the semantics of
IPC in Heyting algebras. First, the relation I C I x Prop(£) between worlds [
and propositional formulas Prop(£) can be equivalently formalated as a mapping,

[] : Prop(£) — 27, (6.7)

where we write 27 = Hompog(/, 2) for the exponential peoset of monetone maps
from 7 into the poset 2 = {L < T}. This poset is a CCC, and indeed a IHeyting
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algebra, the proof of which we leave as an exercise for the reader. The mapping
(6.7) is determined by the condition

Bl =T iff ilkp.

Now, in termns of the Heyling algebra semantics of IPC developed in Section
6.4 (adapted in the evident way to the current setting without the coproducts
4,pV q, and writing ITA™ for Heyting algebras without coproducts, i.e., poset
CCCs), the poset HA™{L) is a quotient of Prop{£) by the equivalence relation
of mutual derivability p <& ¢, which clearly makes it a CCC, and the map (6.7)
therefore determines a model (with the same name),

[-]:HA(L) — 2.

Indeed, condition (1) above ensures that {p] : J — 2 is monotone, and (2)-
(4) ensure that [~] is a homomorphism of poset CCCs, that is, that it is
menotone and preserves the CCC structure (exercisel). Thus, a Kripke model
is just an “algebraic” model in a Heyting algebra of the special form 21, The
Kripke completeness theorem for positive I1°C above then follows from Heyting-
valued completeness theorem proposition 6.14 together with the following, purely
algebraic, embedding theorem for poset CCCs.

Proposition 6.19. For every poset CCC A, there is a poset I and on injective,
monotone maep,

y: A2l
preserving CCC structure.

Preof. Wo can take I = A°P and y(a) : A% — 2, the “truth-value” of » < a,
that is, y{a) is determined by

yadz)=T il z<a

Clearly, y(a)} is monotone and contravariant, while y itself Is monotone and
covariant. We leave it as an exercise to verify that y is injective and preserves
the CCC structure, but note that 22 can be identified with the collection of
lower sets S € A in A, that is, subsets that are closed downward: 2 < y € §
implies € S. Under this identification, we then have y{a) = |(a} = {# {2z < a}.

A proof is also given in Chapter 8 as a consequence of the Yoneda Lemma, O

The result can be extended from poset CCCs to Heyting algebras, thus
recovering the usual Kripke completeness theorem for full IPC, by the same
argument using a more delicate embedding theorem that also preserves the
coproducts L and p Vv q.

6.7.8 A-calculus

We now want to generalize the forogoing [rem propositional logic to the A
calculbus, motivated by the insight that the latter is the proof theory of the former
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(according to the Curry-Howard—correspondence). Categorically speaking, we
are generalizing from the poset case to the general case of a CCC. According
to the “propositions-as-types” conception behind the C-H correspondence, we
therefore should replace the poset CCC of idealized propositions 2 with the
general CCC of idealized types Sets. We therefore model the A-calculus in
categories of the form Sets! for posets I, which can be regarded as comprised
of “F-indexed,” or “variable sets,” as we now indicate.

Given a poset I, an I-indezed set is a family of sets {A;}ier togethor with
transition functions ay; : A; — A for each i < 7, satisfying the compatibility
conditions:

e Qi = o ooy whenever i <7 <k,
o az = la, forall i,
In other words, it is simply a functor,

AT — Sets.

We can think of such I-indexed sets as “sets varying in a parameter” from the
poset I. For instance, if 7 = I thought of as time, then an R-indexed set A
may be thought of as a set varying through time: some elements a,b € A; may
hecome identified over time (the as need not be injective), and new elements
may appear over time (the as need not be surjective}, but once an clement is in
the set {a € A;), it stays in forever (o (a) € Ay). For a more genoral poset 1,
the variation is parameterized accordingly.

A product of two variable sets A and B can be constructed by taking the
pointwise products {A x B)(i) = A(i} x B(i) with the evident transition maps,

s % Gij 0 A(E) x B(i) — A{f) x B(j) i<j

where B : B; — Bj s the transition map for B. This plainly gives an /-indexed
set, but to check that it really is & product we need to make Sets’ into a category
and verify the UMP (respectively, the operations and equations of Section 6.5},
What is a map of I-indexed sets f : A — B? One natural proposal is this: it is
an I-indexed family of functions (f; : A; — By)ies that are compatible with the
transition maps, in the sense that whenever i < 7, then the following commnutes:

fi

A —— B
o B
Aj BJ

fi
We can think of this condition as saying that f takes elements a € A to elements
fla) € B without regard to when the transition is made, since given a € A; it
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does not matter if we first wait until 7 > ¢ and then take fi{ay;{a))}, or go right
away to fi{a) and then wait until 8;;(fi{a)).

Indeed, in Chapter 7 we sce that this type of map is exactly what is called
a “natural transformation” of the functors A and B. These maps f: A —= B
compose in the evident way:

(gofi=giofi: i — B;

to make Sets! into a category, the category of I-indered sefs. It is now an easy
exercise to confirm that the specification of the product A x B just given really
is a product in the resulting category Sets’, and the terminal object is obviously
the constant index set I, so Sets’ has all finite products,

What about exponentials? The first attempt at defining pointwise
exponentials,

(BA)f — Bifl(
fails, because the indexing is covariant in B and conlravariant in A, as the reader
shoutd confirm. The idea that maybe B is just the collection of all index maps
from A to B also fails, because H. is not indexed! The solution is a combintion of
these two ideas which genevalizes the “Kripke” exponential as follows. For each
tel,let
el

be the lower set below i, regarded as a subposet. Then for any A : J — Sets, let
Al; be the restriction,

I—2 & Sets

Als

1)
This determines an indexed set over [(i}. Given any f: 4 — B and i€ ], there
is an evident restriction fi; : Al; — BY; which is defined to be simply (f|:); = f;
for any 7 < i. Now we can define

(BY); = {f: Al = Bl; | fis |({)-indexed}
with the transition maps given by
fedly Jsd

1t is immediate that this determines an I-indexed set B4, That it is actualiy the
exponential of A and B in Sets’ is shown later, as an easy consequence of the
Yoneda Lemma. For the record, we therefore have the following (proof deferred).

Proposition 6.20, For any peset I, the category Sets! of I-indexed sets and
Junctions is cartesian closed.
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Definition 6.21. A Kripke model of a theory £ in the A-calculus is a model {in
the sense of definition 6.16} in a cartesian closed category of the form Sets’ for
a poset 1.

For instance, it can be scen that a Kripke model over a poset I of a
conventional algebraic theory such as the theory of groups is just an I-indexed
group, that is, a functor I — Group. In particular, f [ = O(XY® for a
topological space X, then this is just what the topologist calls a “presheal of
groups.” On the other hand, it also agrees with (or generalizes) the logician's
notion of a Kripke model of a first-order language, in that it consists of a varying
domain of “individuals” equipped with varying strueture.

Finally, in order to generalize the Kripke completencss theorem for IPC to
M-caleulus, it clearly suffices to sharpen our general CCC completeness theorem,
proposition 6.17, to the special models in CCCs of the form Sets’ by means
of an embedding theorem analogows to proposition 6.19. Indeed, one can prove
Hhtiac
Proposition 6.22. For cvery CCC C, there is a poset I and ua functon,

y:Crs Sets?,

thai is tnjective on both objects and arrows and preserves CCC structure.
Morcover, every map between objects in the image of y is dtself in the image
of y (y s “fudl”).

The full proof of this result involves methods from topos theory that are
beyond the scope of this book. But a significant part of it, to be given below, is
entirely analogous to the proof of the poset case, and will again be a consequence
of the Yoneda Lemima.

6.8 Exercises

1. Show that for all finite sets M and N,
ENer — |1\7E§;\f|=

where |K| is the number of elements in the set K, while N¥ is the
exponential in the category of sets (the set of all functions f: &/ — N),
and n™ is the usual exponentiation operation of arithmetic.

2. Show that for any three objects A, B, in a cartesian closed category,
there are isomorphisims:
{a) (A x B)¢ =2 A¥ x B¢
(b) (AB)C > ABxC

3. Determine the exponential transpose £ of evaluation £ : B x A — B (for
any objecis in any CCC). In Sets, determine the transpose 1 of the identity
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1:Ax B — Ax B. Also detormine the transpose of so71: A x B4 — B,
where 7 : A x B4 — B4 x A is the “twist” arrow 7 = (pz, p1).

4. Is the eategory of monoids cartesian closed?

5. Verify the descripsion given in the text of the exponential graph HY for

1.

11

two graphs G and H. Determine the exponential 2%, where 2 is the graph
vy — vz with two vertices and one edge, and G is an arbitrary graph.
Determine 2% explicitely for & the graph pictured below.

a ] 4

d

. Consider the eategory of sets equipped with a (binary) relation, {4, R C

A x A), with maps f : (A, R) — (B, 8) being those functions f: A — B
such that eRe’ implies f{a)S f{e’). Show this category is cartesian closed
by deseribing it as a subcategory of graphs.

. Consider the category of sets equipped with a distinguished subset,

{A,P C A), with maps [ : (4, P) — (B,Q)} being those functions
f: A~ Bsuch that a € Piff f{e) € Q. Show this calegory is cartesian
closed by describing it as a category of pairs of sets,

. Consider the categery of “pointed sets,” that is, sets equipped with a

distingnished element, (A,a € A}, with maps f : (4,a) — (B,b) being
those functions f : A — B such that f(a} = b. Is this category cartesian
closed?

. Show that for any objects A, B in a cartesian closed category, there s a

bijective correspondence between points of the exponential 1 — B4 and

arrows A — B,

Show that the category of wCPOs is cartesian closed, but that the category

of strict wCPOs is not {the strict wCPOs are the ones with initial object

1, and the continuous maps between them are supposed to preserve .L).

{a) Show that in any cartesian closed poset with joins p V g, the following
“distributive” law of IPC helds:

pva=r={=>rIrlg=r)

(b) Generalize the foregoing problem to an arbitrary category (not

necessarily a poset), by showing that there is always an arrow of the

corresponding form. Text is
mismateh i

{c) If you ave brave, show that the previous {wo arrows are isomorphisms.
followed the

. Prove that in a CCC C, exponentiation with a fixed base object C is a hard copy pl=

contravariant functor C(7) 1 €9 — C, where CU)(A) = C4, confirnt.
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Show that in a cartesian closed category with coproducts, the products
necessarily distribute over the coproducts,

(AxCY+(BxCY=(A+B)xC.

. In the A-caleulus, consider the theory (due to Dana Scott) of a reflexive

domain: there is one hasic type IJ, two constants s and r of types
s:(D—=D)y—=D
ri D — (D — DY,
and twe egquations,
sre=2 (x:D)
rsy=1y (y: D D).

Prove that, up to isomnorphism, this theory has only one model M in Sets,
and that every equation holds in M.

. Complete the proof from the text of Kripke completeness for the positive

fragement of IPC as follows:

{a) Show that for any poset [, the exponential poset 27 ig a Heyting
algebra. (Hint: the limits and colimits are “pointwise,” and the Heyting
implication p = ¢ is defined at € I by (p = ¢)(i}) = T iff for all § =
i, p(7) < a{d))

{b} Show that for any poset CCC A, the map y: A — 24% defined in
the text is indeed (i) monotone, (i} injective, and (i) preserves CCC
structure,

Verify the clatm in the text that the proeducts A x B in categories Sets’ of
I-indexed sets {1 a poset) can be ecomputed “pointwise.” Show, moreover,
that the same is true for all limits and colimits.
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We now want to start considering categories and functors more systematically,
developing the “category theory” of category theory itself, rather than of other
mathematical objects, like groups, or formulas in a logical system. Let me
emphasize that, while some of this may look a bit like “abstract nonsense,”
the idea behind it is that when one has a particular application at hand, the
theory can then be specialized to that concrete case, The notion of a funcler is
a case in point; developing its general theory makes it a clarifying, simplifying,
and pewerful tool in its many instances.

7.1 Category of categories

We begin by reviewing what we know about the category Cat of categories and
functors and tying up some loose ends.

We have already seen that Cat has finite coproducts 0, C + B and finite
produets 1, C x D. Tt is very casy to see that there are also all small coproducts
and products, constrneted analogously. We can therefore show that Cat has
all limits by constructing equalizers. Thus, let categories C and D and parallel
funetors F and G be given, and define the category I and functor E,

B rF
C
G

B D

as follows {recall that for a category C, we write Cg and C; for the collections
of objects and arrows, respectively):

Fo = {C € Co | F(C) = G(C)}
By = {f € C1 | F(f) = GUY

and let £ : E — C be the evident inclusion. This is then an cqualizer, as the
reader can easily check.

The category I& is an example of a subcategory, that is, a monomorphism in
Cat {recall that equallzers are monic), Often, by a subcategory of a category C
ona means specifically a collection U of some of the objects and arrows, Ug € Cy
and Uy C Cy), that is clesed under the operations dom, cod, id, and o, There is
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then an evident inclusion functor
i:U—=C

which is clearly monic.

In general, coequalizers of categories are more complicated to describe—
indeed, even for posets, determining the coequalizer of a pair of monotone maps
can be quite involved, as the reader should consider.

There are various properties of functors other than being monic and epic that
turn out to be quite useful in Cat. A few of these are given by the following:

Definition 7.1, A functor ¥ : C - D is said to be
o injective on objects if the object part Iy : Cg — Dg is injective, it is
surjective on objects if Fy is surjective.
+ Similarly, F is injective {resp. surjective) on arrows if the arrow part Fy :
C,; - D is injective (resp. surjective).
o Fis faithful if for all A, B € Gy, the map
Fa.p : Homg{4, B} —» Homp(FA, FB)

defined by f+ F([) is injective.
¢ Similarly, F is full if Fy g is always surjective.
What is the difference between being faithful and being injective on arrows?

Consider, Tor example, the “codiagonal functor” ¥V : C 4+ C — C, as indicated
in the following:

C c+C C

le v 1o
C
V is faithful, but not injective on arrows.
A full subcategory
U—C

consists of some objects of C and all of the arrows between them (thus satisfying
the closure conditions for a subcategory). For example, the inclusion functor
Setsy, — Sets is full and faithful, but the forgetful functor Groups - Sets
is faithful but not full.

Example 7.2. There is another “forgetful” functor for groups, namely to the
category Cat of categories,

G : Groups — Cat.
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Observe that this functor is full and faithful, since a functor between groups
F: G(A) —» G(B) is exactly the same thing as a group homomorphism.

And exactly the same situation holds for monoids.

Yor posets, too, there is a full and faithful, forgetful functor

P :Pos — Cat

again because a functor hetween posets I : P(A)} — P(B) is exactly a
monotone map. And the same thing holds for the “discrete category” functor
S : Sets — Cat.

Thus, Cat provides a setting for comparing structures of many different kinds.
For instance, one can have & functor R : G — C from a group G to a category
C that is not a group. If C is a poset, then any such functor must be trivial
{why?). But if C is, say, the category of finite dimensional, real vector spaces
and linear maps, then a functor R is exactly a linear representation of the group
G, representing every element of G as an invertible matrix of real numbers and
the group multiplication as matrix multiplication,

What is a functor g : P — (7 from & poset to a group? Since G has only
one object =, it has g{p} = * = g(q) for all p,g € P. For each p < ¢, it picks an
element g, , in such a way that

Gpp = U {the unit of G}
gq.r *Gpy = 8p,r-

For example, take P = (R, <) to be the ordered real numbers and G = (R, +)
the additive group of reals, then subtraction is a functor,

g: (&, <) — (R, +)
defined by
gry = (4 — %)-
Tndeed, we have
Jua={x—z)=0
G Guy =z~ y) H{y—-2)=(2-2) = gsa.

7.2 Representable structure

Let C be a locally small category, so that we have the representable functors,
Homg(C,—): C — Sets

for all objects C € C. This functor is evidently faithful if the object C has the
properly that for any objects X and ¥ and arrows f,g: X 3 Y, if f # ¢ there
is an arrow z : & — X such that fx # gx. That Is, the arrows in the category
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are distinguished by their eflect on genevalized elements based at €. Such an
object C is called a generator for G, :

In the category of sets, for example, the terminal cbject 1 is a generator. In
groups, as we have already discussed, the free group F(1) on one elemnent is a
generator. Indeed, the functor represented by F(1) is isomorphic to the forgetful
functor J : Grp — Sets,

Hom({F(1),G) = U{G). (7.1)

This isomorphism not only holds for each group G, but also respects group
homomerphisms, in the sense that for amy such & + G — IH, there is a
commutative square,

¢ Hom(F(1),G) —r U(G)
h b 0]

H Hom(F (1), H} —» U{H})

One says that the isomorphism (7.1} is “natural in G." In a certain sense, this also
“explains” why the forgetful functor U preserves all Himits, since representable
functors necessarily do. The related fact that the forgetful functor is faithful is
a precise way to capture the vague idea, which we initislly used for motivation,
that the category of groups is “concrete.”

Recall that there are also contravariant representable functors

Homg(—,C}: C" - Sets

taking f : 4 — B lo f* : Homg(B,C) — Homg(4,C) by f*(h) = ho f for
h:B—C.

Erample 7.3. Given a group G in a (locally small} category C, the contravariant
representable functor Homg(—,G) actually has a group structure, giving a
functor

Homg(—,G) : C°P — Grp.

Tn Sets, for example, for cach set X, we can define the operations on the group
Hom(X, &) pointwise,

u(z) = u (the unit of G)
(f - 9)(z) = f{z)- g{x)
@) = =)
In this case, we have an isomorphism

Hom{X, G} & Wpex G
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with the product group. Functoriality in X is given simply by precomposition;
thus, for any function h : ¥ — X, one has
W (f - g)wy = (F - a){h(y))
= [(h{y)) - 9(R{y))
=R ()} - R {gKy)
= (h*(f)- R {(g)w)

and similarly for inverses and the unit. Indeed, it is easy to see that this
construction works just as well for any other algebraic structure defined by
operations and equations. Nov is there anything special about the category
Sets here; we can do the same thing in any category with an internal algebraic
structure,

Tor instance, in topological spaces, one has the ring R of real numbers and,
{or any space X, the ring

C(X) = Homrep (X, R)
of real-valued, continuous functions on X. Just as in the previous case, if
h:Y +X
is any continuous function, we then get a ring homomeorphism
k2 C(X) - C(Y)
by precomposing with A, The recognition of C{X) as representable ensures that
this “ring of real-valued functions” construction is functorial,
C: Top®F — Rings.

Note that in passing from B to Hoinrep(X,R), all the algebraic structure
of B is retained, but properties determined by conditions that are not strictly
equational are not necessarily preserved. For instance, R is not only a ring, but
also a field, meaning that every nonzero real number r has a multiplicative inverse
r~ 1 formally,

Vo(z=0vIy. y-&=1)
To see that this condition fails in, for example, C(R), consider the continnous
function f{z) = x?. For any argument y # 0, the multiplicative inverse must be

gy} = 1/5*. But if this function were to be continuous, at 0 it would have to be
limy_e 1/y* bhat does not exist in R.

Frample 7.4. A very similar situation ocowrs in the category BA of Boolean
algebras. Given the Boolean algebra 2 with the usual {truth-table} operations
AV, 0, 0,1, for any set X, we make the set

Homgets{ X, 2)

wh

.
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into a Boolean algebra with the pointwise operations:

O{z)=0
Hz)=1

(f A g)() = flz) A gla}
ete.

When we define the operations in this way in terms of those on 2, we see
immediately that Hom{X, 2) is a Boolean algebra too, and that precomposition
is a contravariant functor,

om(-,2) : Sets®” — BA

into the category BA of Boolean algebras and their homomorphisms.
Now observe that for any set X, the familiar isomorphism

Hom(X,2} = P(X)

between characteristie functions ¢ : X — 2 and subsets 1, = 9711} € X,
relates the pointwise Boolean operations in Hom{X, 2) to the subset operations
of intersection, union, ete. in P(X}):

Vony = VoV
Vavy = Vo UV
Ve=X—-V,
Vi=X
Vo =1
In this sense, the set-theoretic Boolean operations on P{X) are induced by those

on 2, and the powerset P is seen to be a contravariant functor to the category
of Boolean algebras,

PBA L Sets™ — BA.

As was the case for the covariant representable functor Homgrp{F{1}, —)
and the forgetful functor U from groups to sets, here the contravariant functors
Homgets{—, 2} and PB4 from sets to Boolean algebras can also be seen to be
naturally isomorphic, in the sense that for any function f : ¥ — X, the following
square of Boolean algebras and homomorphisms commutes:

X Hom(.X,2) —» P(X)
f fr 1

¥ Hom(Y, 2) —+ P(¥)
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7.3 Stone duality

Before considering the topic of naturality more systematically, let us take a closer
look at the foregoing example of powersets and Boolean algebras.

Recall that an wlirefilier in a Boolean algebra B is a proper subset U C B
such that

elelt

s, yelimpliscAyelU

e and e <ylmpliesyelt/

T CU and U is a fiHer, then U'= B

The maximality condition on U is equivalent to the condition that for every
z € B, either € U or - € U but not both (exercisel}.

We already know that there is an isomorphism between the set UL{BE} of
nltrafilters on B and the Boolean homomorphisms B — 2,

Ult(B) = Homga (B, 2).

This assignment UL{B) is functorial and contraveriant, and the displayed
isomorphisin above is natural in B, Indeed, given a Boolean homomorphism
h: B — B, let

Ult(h) = h~! : Ul{B) — Ul(B').

Of course, we have to show that the inverse image =~ HU7) € B of an ultzafilter
U ¢ B is an ultrafilter in B. But since we know that U = x7;'(1) for some
xu B’ — 2, we have

Ul(R)(U) = h™Hxg (1))
= (xw o )M,

Therefore, Ut(h)}(U) is also an ultrafilter. Thus, we have a contravariant functor
of ultrafitters

Ult: BA — Sets,
as well as the contravariant powerset functor coming back
PBA: Sets®® — BA,
The constructions,
Gl
Ult

BA®F Sets

are nol mutually inverse, however, For in general, UR{P(X)) is much larger than
X, since there are many ultrafillers in P{X) that are nol “principal,” that is, of
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the form {U € X |z € U} for some » € X. (But what if X is finite?) Instead,
there is a more subtle relation between these fanctors that we consider in more
detail later; namely, these are an example of adjeint functors.

For now, constder the following observations. Let

U = Ult o (PP*)” : Sets — BA®P — Sets
so that
U(X) = {U CP{X) | U is an ultrafilter}

is a covariani functor on Sets. Now, cbserve that for any set X, there is a
Function

7: X — UX)
taking each element x € X to the principal ultrafilter
y={UCX{rxeU}

This map is “natural” in X, that is, for any function f: X — ¥, the following
diagran commuies:

x X L x)
f U
Y uY)
ny

This is so because, for any ultrafilter ¥ in P(X),
UNV =Y | F Uy ev)
So in the case of the principal ultrafilters n{x}, we have
U{Sf) o nx Mo} = U(f)mx ()
={vey|fi(V)enx(=)}
={Vveylze [ (V)
={VCY|fzeV}
= ny{fz}
= (v o f)(=).
Finally, observe that there is an analogous natural map at the “other side” of

this situation, in the category of Boolean algebras. Specifically, for every Beoolean
algebra B, there is o homomorphism similar to the function 7,

ép: B — P{(UIL{B))
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- given by
op(b)={Y e U(B) | b V}.

It is not hard to see thai ¢p is always injective. For, given any distinct
elements b, b € B, the Boolean prime ideal theorem implies that there is an
ultrafilter ¥ containing one but not the other. The Boolean algebra P(Ult(3}),
together with the homomorphism ¢p, is called the Stene representation of B.
It presents the arbitrary Boolean algebra B as an algebra of subsets. For the
record, we thus have the following slep toward a special case of the far-rcaching
Stone duslity theorem.

Proposition 7.5. Every Boolean algebra B is isomorphic to one consisting of
subsets of some set X, equipped with the sel-theoretical Boolean operations.

7.4 Naturality

A natural transformation is a morphism of functors. That is right: for fixed
categmies C and D, we can regard the functors C — D as the objects of a
new category, and the arrows belween these objects are what we are going to
call natural transformations. They are to be thought of as different ways of
“relating” functors to each other, in a sense that we now explain.

Let us begin by considering a certain kind of situation that often arises: we
have some “construction” on a category C and some other “consiruction,” and
we observe that these two “constructions” are related to each other in a way that
is independent of the specific objects and arrows involved. "That is, the relation is
really between the constructions themselves, To give a simple example, suppose
C has products and consider, for objects A, B,C € C,

(AxB)xC and Ax(BxC}
Regardless of what objects A, B, and C are, we have an isomorphism
hi{Ax B)xC = Ax(BxC)

What does it mean that this isomorphism does not really depend on the
particulatr objects A, B, C7? One way to explain it is this:
Given any f: A — A, we get a commutative square

(AxB)xChAx(BxC)

(xl'xB)xCTzl'x(BxC)
AI
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So what we really have is an isomorphism between the “constructions”
{(-xBYxC and —x{BxC()

without regard to what is in the argument-place of these.

Now, by a “construction,” we of course just mean a functor, and by a “relation
between constructors” we mean a morphism of functors {which is what wo are
about to define). In the example, it is an isomorphism

(—xB)yxC =2 —x(BxC)

of functors € — C. In fact, we can of course consider the functors of three
argunients:

Fe{ep x—3)x—3:C* = C
and
G=—;><{-"2><73):CB—-»C
and there is an analogous isomorphism
Fe=ga.

But an isomorphism is a special morphism, so let us define the general notion
first.

Definition 7.6. For categories C, D and functors
FG:C—-D
a natural transformation ¢ : F — G is a family of srows in D
(¢ : FC — GC)eec,

such that, for any f: € — C' in C, one has Jg: 0 F(f) = G(f}o d¢, that is, the
following commutes:

e _ Yo |

GC
Ffy o Gf

re! ao!

ﬂcr

CGiven such a natural transformation ¢ : /' — G, the D-arrow d¢ : F'C — GC
is called the component of & at C.

1f you think of a functor 1 C — D as a “picture” of C in D, then you can
think of a natural transformation ¥¢ : FC — GC as a “cylinder” with such a
picture at each end.
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7.6 Examples of natural transformations

We have already seen several examples of natural transformations in previous
sections, namely the isomorphisins

Homgp(F(1),G} = U(G)
Homges (X, 2) = P(X)
Hompa{B,2) = Ul(B).
There were also the maps from Stene duaﬁty.
nx 1 X — U(P(X))
dp : B — P(U{B)).
We now consider some further examples.

Example 7.7. Consider the free monoid M (X) on a set X and define a natural
transformation ! lges — UM, such that each component ny + X — UM (X} is
givon by the “ingertion of generators” taking every clement @ to Hself, considered
as a word.

s HUM(f)
i
Y s UM (Y)
g
This is natural, because the homomorphism M{f) on the free monoid 44 (X} is

completely determined by what f does to the generators.

Frample 7.8. Let C be a category with products, and A € C fixed. A natural
transformation from the functor A x — : € — G to 1g : C — C is given by
taking the component at ' to be the second projection

Ma: AxC—C.

From this, together with the pairing operation {—, —}, one can build up the
isomorphism,

E:{(AxBYxC S5 Ax{BxC)
For another such example in more detail, consider the functors
x: 0?7 - C
x: 2P C
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where x is defined on objects by
AXx B=BxA
and on arrows by
ax A=08x%a.
Define a “twist” natural transformation § : x — x by
tamia, by = e}
To check that the following commutes,

tea,m)

Ax B BxA
axf Bxa
A xB B' x A
t(AJ!BJ)

observe that for any generalized clements a: Z — Aand b: Z — B,
(ﬂ X 0‘)t(‘,;.3)(a,b> = (ﬂ X ﬂ'){b,ﬂ)
= {8, o}
= ta,pm{0a, Ab)
= t(A',B’) & (O; X ﬁ)(a,b)

Thus, £ : x — X is natural. In fact, each component ;4 ;y is an isomorphism
with inverse ¢z uy. This is a simple case of an isomorphism of functors.

Definition 7.9. The functor cateyory Fun(C, D) has
Objects: functors F: C— D,
Arrows: natural transformations & : ' — G.
For each object F, the natural transformation 1p has components

(ip)gc=1pc: FC = FC

and the composite natural transformation of I %G % H has components
(oo =doode.
Definition 7.10. A nafural isomorphism is a natural transformation
d:F-G

which is an lsomorphism in the functor category Fun{C, D).
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Lemma 7.11. A natural transformation 9 : F' — G is a natural isomorphism
ff each component ¥¢ : FC — GC is an isomorphism.

Proof. Exercise! O
In our first example, we can thervefore say that the isomorphism
D {AxB)xC=2Ax(Bx()
is naturel in A, meaning that the functors
FA)=(AxByxC
G(A) = A x (B xC)

are naturally isomorphic.
Here is a classical example of a natural isomorphism.

Ezample 7.12. Censider the category
Vect{R)

of real vector spaces and linear transformations

V=1
Every vector space V has a dual space

¥* = Vect(V,R)

of linear transformations. And every linear transformation

fiV =
gives rise to a dual linear transformation

W=y

defined by precomposition, f*{4) = Ao f for A : W — R. In brief,
(=} = Vect{—,IR} : Voct®" -» Vect is the contravariant representable functor
endowed with vector space structure, just like the examples already considered
in Section 7.2.

As in those examples, Lhere is a canonical linear transformation from each
vector space to its double dual,

v Vo v
g (evy : V' = R)

where ev,{4) = Afx) for every A : ¥V — R. This map is the component of a
natural transformation,

1 1\J’(—:ct —F &%
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since the following always commutes:

v v el

f f'-iﬂ!‘

W W
i
in Vect. Indeed, given any v € V¥ and A : I — R in W*, we have
(f*" omv) (v A) = [ (evy)(A)
= evy(f7(4))

= ov(Ao )
={A0 f)(v)
= A{fv)
= evy,{A)
= {nw o [)(w)(A).
Now, it is a well-known fact in linear algebra that every finite dimensional
vector space V is lsomorphic to its dual space V 2 ¥* just for reasons of

dimension. However, there Is no “natural” way to chaose such an isomorphism,
On the other hand, the natural transformation,

py V-
is & natural isomorphism when ¥V is finite dimensional.

Thus, the formal notion of naturality captures the informal fact that ¥V 22 ¥**
“naturatly,” unlike V 2 V7.

A similar situation cceurs in Sets. Here we take 2 instead of B, and the dual
A* of a set A then becomes
A* = P{A) > Sets(A,2)

while the dual of a map f: A — B is the inverse image f* : P{B) — P(4).
Note that the exponential evaluation corresponds to (the characteristic
function of) the membership relation on A x P{4).

2

24 % A
&= id

A x P(A) —= 2
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Transposing again gives a map

AT, ppiay= A"

N

pP(A)

which is described by
nale)={UC Alac U}

In Sets, one always has A strictly smaller than P{A), so na : 4 — A" is
never an isomorphism. Nonetheless, 1 : lgets — #+* Is a natural {ransformation,
which the reader should prove.

7.6 Exponentials of categories

We now want to show that the category Cat of (small} categories and functors
is cartestan closed, by showing that any two categories C, D) have an exponential
DE. Of course, we take DC = Fun{C, D), the eategory of functors and natural
transfortmations, for which we need to prove the required universal mapping
property {UMP).

Proposition 7.13. Cat is cartesian closed, with the exponentials
DC = Fm(C, D).

Before giving the proof, let us note the following. Since exponentials are unique
up to isomorphism, this gives us a way to verify that we have found the “right”
definition of a morphism of functors, For the notion of a natural transformation
is completely determined by the requirement that it makes the set Hom{C, 1)}
into an exponential category. This Is an example of how category theory can
serve as a conceptual tool for discovering new concepts. Before giving the proof,
we need the following.

Lemma 7.14 (bifunctor lemma). Given categories A, B, and C, a map of
arrows and objects,

FQ:AQXB[J—*C(]
FliAIXBl'""Ci
is q functor F: AxB — Ciff
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1. F is functorial in each argument: F(A,—}: B — C and F(~,8): A - C
are functors for all A € Ay and B € By,

2, I satisfies the following “inferchange low.” Given o : A — A" € A and
0 : B — B' € B, the following commutes:

F(A, B) HAAB), p, By

Fa, B) Fa, B)

F(A', B) F(A', B"}

FA 5)

that is, F(A’, B) o Fla, B) = F{a, B') o F(A, 3} in C.

Proof. k—vﬁemtm*}l In A x B, any arrow

(Lemmm)

{o,8) : {4, B) — (A!)BI>

factors as

{11-!» ﬁ)

(4, B) (4,B%

((1’,1)3) (allB’)

(A, B) (4, B')

{1ar, )

So {1) and {2) are clearly necessary. To show that they are also sufficient, we can
define the {proposed) functor:

F{(A,B)) = F(4,B)
F({e, 8)) = F(A', 8) o Fla, B)

The interchange law, logether with functeriality in each argument, then ensures
that

e!, ) o Flo, f) = F({e/, 5} o {a, B))
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/“F{: __ascan be read off from the following diagram:
F(AB) T
Flo, B)
Fla, B)

F(A', B) ———— F(A', B)

F{A, )
Fl{o!, ')
Fla', B F{a, B')
L) R—— v F(A", B} v (A", B"
(4, B) o { ) 7 { )

{ 'Pmp ssrbioa ) a
g Proof. bﬁf‘pmpusmum We need to show:
1. ¢ = eval : Fun(C, D) x C — D is functorial.
2. For any category X and functor
F:XxC—-D
there is a functor
F: X — Fun{C,D)
such that eo (F x 1g) = F.
3. Given any functor
G : X — Iun(C, D),

one has {eo (’(?;lc)) =G,

(1) Using the bifunetor lemma, we show that ¢ is functorial. First, fix £: C—> D
and consider ¢(FF, —) = F: C — D. This is clearly functoriall Next, fix ¢ € Cp
and consider e{—,C) : Fun{C, D) — D defined by

(#:F - Gy (P FC — GC).

This is also clearly functorial,
For the interchange law, consider any 9 : F - G € Fun(C,D) and {f : € —
'} € C, then we need the following to commute:

el F,C) Je, G, C)
F(f) G(f)

(7, C) T G,CN)
C'
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But this holds because (F, C) = F{C) and ¥ is a natural transformation.
The conditions {2} and (3) are now routine. For example, for (2}, given

F:XxC—-D
let
F: X — Fun(C, D)
be defined by
F(XYC)Y= F{X,C).

7.7 Functor categories

Let us consider some particular functor categories.

Ezemple 7.15. First, clearly C! = C for the terminal category 1. Next, what
about G2, where 2 = - — . is the single arrow category? This is just the arrow
category of C that we already know,

CZ — CH
Consider instead the discrete eategory, 2 = {0, 1}. Then clearly,
C?=CxC.
Similarly, for any set ! (regarded as a discrete category}, we have
c¢'~J]c
iel
Evample 7.16. “Transcendental deduction of natural transformations”

Given the possibility of functor categories DC, we can determine what the objects
and arrows therein must be as follows:

Objects: these correspond uniquely to functers of the form
1—- D%

and hence to functors
C—-D.

Arrows: by the foregoing example, arrows in the functor category correspond
uniquely to functors of the form

1 — (D%)?
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thus to functors of the form
2 - D
and hence to functors
Cx2-D
respectively
C — D2,

But a functor from C hto the arrow category D? {vespectively a functor into D
from the eylinder category C x 2) is exactly a natural transformation between
two functors from C into D, as the reader can see by drawing a picture of the
functor’s image in D.

Frample 7.17. Recall that a {directed) graph can be regarded as a pair of sets
and a pair of functions,

4

Gy Go

5

where G is the set of edges, Gyg is the set of vertices, and s and ¢ are the source
and target operations.

A homomorphism of graphs £ : G — H is a map that preserves sources and
targets. In detail, this is a pair of functions by : Gy — Hy and hp : Gy — Ho
such that for all edges e € (¢, we have shy{e) = hos(e) and similarly for ¢ as well.
But this amounts exactly to saying that the fellowing two diagrams commute:

h h
(5 ! Hy Gy ! Hy
sG SH le iy
Go Hy Gy ; Hy
0 1]

Now consider the category T, pictured as follows:

————
. ‘ ’

1t has exactly two objects and two distinct, parallel, nonidentity airows. A graph
G is then exactly a functor,

G : ' — Sets

and & homomorphism of graphs k : G — H is exactly a natural transformation
between these funetors. Thus, the category of graphs is a functor category,

Graphs = Sets’.
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As we see later, it follows from this fact that Graphs is cartesian closed.

Ezample 7.18. Given a product C x D of categories, take the first product
projection
CxD—-C
and transpose it to get a functor
A:C—CP,
For € € C, the functor A{C) is the “constant C-valued functor,”
o AMOHX)=CTforall X € Dg
o Alz)=1g forall z € Dy.
Moreover, A(f) : A(C) — A{C") is the natural transformation, each component

of which is f.
Now suppose we have any functor

F:D-C
and a natural iransformation
d:A{C)y— F.
Then, the components of # all look like
dp: C— F{D)

since A(CHD) = C. Moreover, for any d : D — D' in D, the usual naturality
square becomes a triangle, since A(C)(d) = 1¢ foralld: D — D',

c_ . pp
1(; Fd
FDY
C rp.

Thus, such & natural transformation & : A{C} — F is exactly a cone to the
base F (with vertex C). Similarly, a map of cones ¥ — ¢ is a constant natural
transformation, that s, one of the forn;i A(h) for some £ : € — D, making a
commutative triangle

Aty 2 Acpy

N
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Ezample 7.19. Take posets P, @ and consider the functor category,

QP
The functors ¢ — P, as we know, are just monotone maps, but what is a natural
iransformation?

B:f—g
Tor each p € I7, we must have
Uy fp<gp
and if p < ¢, then there must be a commutative square involving fp < fg and
ap < gq, which, however, is automatic. Thus, the only condition is that fp < gp
for all p, that is, f < g pointwise. Since this is just the usual ordering of the

poset 3, the exponential poset agrees with the functor category. Thus, we have
the following.

Proposition 7.20. The inclusion functor,

Pos — Cat

preserves CCC structure.

Fazample 7.21. What happens if we take the functor cetegory of two groups G
and H?

HG

Do we get an exponential of groups? Let us first ask, what is a natural transforma-
tion between two group homornorphisms f,g: G — H ?Suchamap?: f — g
would be an element h € H such that for every 2 € G, we have

gz} -h=h- f(z)
or, equivalently,
glay=h. f(=)-h7"

Therefore, a natural transformation ¥ : f — g is an inner autownorphism y —
feyh—1 of H (calied conjugation by h) that takes f to g, Clearly, every such arrow
91 f — g has an lnverse 9 : g — f (conjugation by h~'). But H is still not
usually a group, sitmply because there may be many different homomorphisms
¢ — H, so the functor category H has more than one object,

This suggests enlarging the category of groups to include also categories with
more than one object, but still having inverses for all arrows. Such categories
are called groupoids, and have been studied by topelogists (they occur as the
collection of paths between different points in a topological space). A groupoid
can thus be regarded as a generalized group, in which the domains and codomains
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of elements x and y must match up, as in any category, for the multiplication
x -y to be defined.

1t is clear that if G and H are any groupoids, then the functor category HY
is also a groupoid, Thus, we have the following proposition, the detailed proof
of which is telt as an exercise.

Proposition 7.22. The category Grpd of groupoids is cartesian closed and the
inclusion functor

Grpd — Cat

preserves the CCC structure.

7.8 Monoidal categories

As a further application of natural transformations, we can finally give the
general notion of a monotda] eategory, as opposed to the special case of a sérict
one. Recall from Sectiof that a strict monoidal category is by definition a
moneid in Cat, that is, a category C equipped with an associative multiplication
functor,

@:CxC—C

and a distinguished object T that acts as 2 unit {or ®. A monoidal category with
a discrete category C is just a monoid in the usual sense, and every set X gives
rise to one of these, with C the set of endomorphisins End(X) under composition.
Another example, not discrete, is now had by considering the category End(D)
of endofunctors of an arbitrary category D, with their natural transformations
as arrows; that is, let,

C=End(D), GRF=CGokF, I=Ilp.

"This can also be seen to be a strict monoidal category. Indeed, the multiplication
is clearly associative and has 1p as unit, so we just need to check that composition
is a bifunctor End{D} x End{D) — End{D). Of course, for this we can use the
bifanctor lemma. Fixing F' and taking any natural iransformation a : G — &7,
we have, for any object D,

arp: G(FD) hacd G'(FD)

which is clearly functorial as an operation End(D) — End{D)}. Fixing  and
taking 4 : F' — F’ gives :

G(Bp) : G(FD) — G(F' D)

which is also easily seen to be functorial. So it just remains to check the exchange
law. This comes down to seeing that the square below commutes, which it plainty
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does just because « is natural.
arD 8FP, o'pp
GBp G'Bp

GF'D —— G'F'D
app

Some of the other examples of strict monoidal categories that we have seen
involved “product-like” operations such as meets a A b and joins a V b in posets.
We would like to also capture general products A x B and coproducts A + B in
categories having these; however, these operations are not generaily associative
on the nose, but only up to isomorphism. Specifically, given any three objects
A, B,C i a category with all finite products, we do not have 4 x (B x C) =
{A x B} x C, but instead an isomorphism,

Ax{(BxOY=(AxB)xC.
Nole, however, that there is exactly one such isomorphism that commutes
with all three projections, and it is natural in all three arguments. Similarly,

taking a terminal object 1, rather than 1 x A = 4 = A x 1, we have natural
isomorphisms,

1Az A2 Ax1

which, again, are uniquely determined by the condition that they commute with
the projections. This leads us to the following definition.

Definition 7.23. A monoidal category consists of a category C equipped with
a functor

@:CxC—C

and & distingnished object I, together with natural isomorphisms,

arpe AR (BRC) " (A9 B) % C,

/\,1:I®A—N—>A, p,i:/i®f-l>/1.

Moreover, these are required to always make the following diagrams commute:
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(A e(Ce D)
[43 s
A®(B&{C®D)) (AeB)yeC)eD
I1®a a®l

A{{Bal)gD)

(Ae(BeC)eD

{“Mae Lane’s pentagon”)

A (I® A) a (AeDh®A
1® A Al

A® A

Il Il
I

In this precise sense, 2 monoidal category is thus a category that is strict
monoidal “up to natural isomorphism”—where the natural lsomorphisms are
specified and compatible. An example is, of cowrse, a category with all finite
products, where the required eguations above are ensured by the UMP of
products and the selection of the maps o, A, p as the unique ones commuting
with projections. We leave the verification as an exercise. The reader familiar
with tensor products of vector spaces, modules, rings, etc., will have no trouble
verifying that these, too, give examples of monoidal categories.

A further example comes from an unexpected source: linear logic. The logical
operations of linear conjunction and disjunction, sometimes written P ® ¢ and
P&, can be modeled in a monoidal category, usually with extra structure oap :
A® B -2 B® A making these operations “symmetric” (up to isomorphism).
Here, too, we leave the verification to the reader familiar with this logical system.

The basic theorem regarding monoidal categories is Mac Lane's coherence
theorem, which says that “all diagrams commute.” Semewhat more precisely, it
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says that any diagram in a monoidal category constructed, like those above, just
from identities, the functor @, and the maps a, A, p will necessarily commute. We
shall not state the theorem more precisely than this, nor will we give its somewhat
technical proof which, surprisingly, uses ideas from proof theory related to
Gentzen’s cutk imination theorem! The details can be found in Mac Lane’s
book, Categories Work.

7.9 Eguivalence of categories

Before examining some particular functor categories in more detail, we consider
one very special application of the concept of natural isomorphism. Consider first
the following situation.

Example 7.24. Let Ordg, be the category of finite ordinal numbers. Thus, the
objects are the sets 0,1,2,..., where 0 = @ and n = {0,...,n — 1}, while the
arrows are all Iunctions between these sets. Now suppose that for each finite set
A we select an ordinal |A] that is its cardinal and an isomorphism,

A2 AL

Then for each function f : A — B of finite sets, we have a function |f]| by
completing the square

A=Al
/ 1 (r2)
B 151

This clearly gives us a functor
| — | : Setsg, — Ordan.

Actually, all the maps in the above square are in Setsgn; so we should also make
the inclusion functor

i: Ordg, - Setsgy
explicit. Then we have the selected ises,
DA A
and we know by (7.2} that

i(|flyeda=dpof.
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This, of course, says that we have a natural isomorphism
¥ lgetsy, —f0f—|
between two functors of the form
Setsg, — Setsgy.

On the other hand, if we take an ordinal and take its ordinal, we get nothing
new,

[i{=} = lorda, : Ordas, — Ordgn.
This is s0 because, for any finite ordinal n,
li{n)] = n
and we can assume that we take 8, = 1, : n — |i{n}], so that also,
(=S m.

In sum, then, we have a situation where two categories are very similar; but
they are not the same and they are not even isomorphic {(why?). This kind of
correspondence is what is captured by the notion of equivalence of categories.

Definition 7.25. An equivalence of categories consists of a pair of functors
E:C—-D
F:D—C
and a pair of natural isomorphisms
ailgS FoE  inCC
Biip S EokF  inDP,
In this situation, the functor F is called a pseudo-inverse of E. The categories
C and D are then said to be equivalent, written C ~ D.

Observe that equivalence of categorics is a generalization of isomorphism.
Indeed, two categories C, 1) are isomorphic if there are functors.

E:C—-D

F:D—-C
such that

Ic=FokE

Ip=FEol

In the case of equivalence C 2 D, we replace the identity natural
transformations by natural isomorphisms. In that sense, equivalence of categories
a5 “isomorphism up to isomorphism.”
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Expertence has shown that the mathematically significant properties of
objects are those that are invariant under isomorphisms, and in category theory,
identity of objects is a much less important relation than isemorphism. So it is
really equivalence of categories that is the more important notion of “similarity”
for categories.

Tn the foregoing example Setsg, =~ Ordg,, we see that every set is isomorphic
to an ordinal, and the maps between ordinals are just the maps between them
as sefs. Thus, we have ‘

1. for every set A, there is some ordinal n with A = i{n),

2. for any ordinals n, m, there is an isomorphism,
Homoydg, (71, m) = Homgets,, {81}, i{m))
where i : Ordg, — Setsg, is the inclusion functer.

In fact, these condilions are characteristic of equivalences, as the following
proposition shows.

Proposition 7.26. The following conditions on o functer F : C — D are
equivalent:

1. F is (part of ) an equivelence of ecategories.

2. F is full and faithful and “essentiolly surjective” on objects: for every DeD
there is some C € C such that FC =2 D.

Proof. (1 implies 2) Take & : 1} — C, and
a:le S EF
B:lp S FE,
In C, for any C, we then have ac : € = EF{C)}, and

o 2¢

EF(C)
f EF(f)

' — EF(C))
ﬂ'cf
commutes for any f: C — O
Thus, if F(f) = F(f'), then EF(f) = EF(f'), so f = f’. So F is faithful.
Note that by symmetry, F is also faithful.
Now take any arrow

fi: F{C) - F(C") in D,
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and consider
fas3

C

~ EF(C)
f B(h)
¢’ EF(C")

where f = {ag:) "L o B{h) o ap. Then, we have also F(f) : F(C) — F{C'} and
EP(f}=E(h): EF(C) — BF(C")
by the naturality square

o 2¢

EF(C)
f EF(f)
¢ —— EF(C")

agr

Since F is faithful, F{f) = k. So F is also full.
Finally, for any object D € D, we have

8:1p = FE
50
Bp: D F(ED), for ED € Cq.
{2 implies 1} We need to define £ : D — C and natural transformations,
a:lg S ER
g:1p > FE.

Since F is essentially surjective, for each I} € Dy, we can choose some F{D) ¢ Cp
along with some fp : D 5 FE(D). That gives E on objects and the proposed
components of 3: 1p — FE.

Given h: D — D' in D, consider

Bp

D FE(D)
h g )BD’ oho ﬁgl
i
' FE(D")

8o
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Since F': C — D is full and faithful, there is a unique arrow
E(h) : B{D) — E{D")

with FE{R) = 8p o ho 8p". It is easy to see that then E: D — C is a functor
and 8: 1p 5 FE is clearly a natural isomorphism.

To find & : 1¢ — EF, apply F to any € and consider Jpe : F(C) —
FEF{C). Since F is full and {aithful, the preimage of fy¢ is an isomorphism,

ag = FH{drg) : C 5 EF(C)

which is easily seen to be natural, since & is. a

7.10 Examples of equivalence

Fzample 7.27. Pointed sets and partial maps
Let Par be the category of sets and partial functions. An arrow

f‘A*/B

is a function |f| : Uy — B for some Uy C A, Identities in Par are the same as
those in Sets, that is, !, is the fotal identity function on A. The compaosite
of f: A~ Bandg: B — C is given as follows: Let Uyopy := f1(Uy) € A,
and |g o f| : Uggesy — C is the horizontal composite indicated in the following
diagran, in which the square is a pullback:

-1

17 0) —— Uy — v ©
Vit
A

1t is easy to see that composition is associative and that the identities are units,
so we have a category Par.
The category of poinied sets,

Sets,
has as objects, sets A equipped with a distinguished “point” a € A, that is, pairs,

(A, a) with a € A.
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Arrows are functions that preserve the point, that is, an arvow f : {&,e) — (B, b)
is a function f: A — B such that f{a) =5
Now we show ¢

Proposition 7.28. Par ~ Sets,

The functors establishing the equivalence are as follows:
F : Par — Sets,
is defined on an object A by F{A) = (AU {#},#), where % is a new element

that we add to A. We also wrile A, = AU {=}, For arrows, given f: 4 — B,
F(f): A, — B, is defined by

% otherwise.

foe) = {f(.c) ifze Uy

Then clearty f.(*1) = xp, 30 in fact f, : A, — B, is “pointed,” as requirel,
Coming back, the functor

G : Sets, — Par

is defined on an object {4, a) by G{A,a) = A— {a} and for an arrow f : (A, e} —
(B, b)

G(fi:A—{a} = B-{b}
is the function with domain
Uaipy = A~ i)

defined by G{f)(z)} = f(x} for every f{z}# b
Now G o F is the identity on Par, because we are just adding a2 new point
and then throwing it away. Bul F o G is only naturally isomorphic to lges,,

since we have

{A ) = (A~ {2} U {x},5).
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These sets are not equal, since a # . Tt still needs to be checked, of course,
that F and G are functorial, and that the comparison {4, a) & ({4 —{a})U{=} )
is natural, but we leave these easy verifications to the reader,

Observe that this equivalence implies that Par has all limits, since it is
equivalent to a category of “algebras” of a very simple type, namely sets equipped
with a single, nullary operation, that is, a “constant.” We already know that
limits of algebras can always be constructed as limits of the underlying sets, and
an easy exercise shows that a category equivalent to one with limits of any type
also has such limits.

Brample 7.29, Slice calegories and indexed Jamilies
For any set I, the functor category Sets’ is the category of I-indexed sets.
The objects are F-indexed families of sets

(Asdier
and the arrows are J-indexed families of funciions,
(fi v Ai = By)ier : {(Aidier — (Bikies-

This calegory has an equivalent description that is often quite useful: it is
equivalent to the slice category of Scts over /, consisting of arrows a : A—=T
and “commutative triangles” over I (see Section 1.8},

Sets’ =~ Sets/I.
Indeed, define functors
@ : Sets! — Sets/I
¥ : Sets/I — Sets’
on objects as follows:
(A her) =m: H A; = I (the indexing projection),
iel
where the coproduct is conveniently taken to be
HA;‘ = {(i,a){a € A;}.
ief
And coming back, we have
Va: A I)= (C}:_l{'i});’ef.

The effect on arrows is analogous and easily inferred. We leave it as an exercise
to show that these are indeed mutually psendo-inverse functors. (Why are they
not inverses?)

The equivalent description of Sets’ as Sets/] leads to the idea that, for a
general category £, the stice category £/X, for any object X, can also be regarded
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as the category of “X-indexed objects of £, although the functor category £¥

usually does not make sense. This provides a precise notion of an *X-indexed
family of objects E; of £, namely as a map F — X.

For instance, in topology, there is the notion of a “fber bundle” as a
continuous function 7w : ¥ — X, thought of as a family of spaces ¥, = «#~{x), the
“fibers” of m, varying continuously in a parameter & € X. Similarly, in dependent
type theory there are “dependent types” x: X  A{z), thought of as families of
types indexed over a type. These can be modeled as objects [A} — [X] in the
slice category £/[X] over the interpretation of the {closed) type X as an object
of & category £.

If £ has pullbacks, reindexing of an “indexed family” along an arrow f :
¥ — X in & is represented by the pullback functor f* : £/X — £/Y. This
is motivated hy the fact that in Sets the following diagram commutes (up to
natural isomorphism) for any f:J - It

Sots! ——r Sets/I
Sets’ f*
Sets’! ——+ Sets/J

where the functor Sets’ is the reindexing along f:
(SCtSI(Ai))j = Aj(j),
Moreover, there are also functors going in the other direction,
¥4, My : Sets/J — Sets/J

which, in terms of indexed families, are given by taking sums and products of

the fibers:
(ZrAgk= > 4
FlD=i

ang} similarly for [1. These functors can be characterized in terms of the pullback
functor f* (as adjoints, see Section 9.7}, and so alse make sense in categories more
general than Sets, where there are no “indexed families” in the usual sense. For
instance, in dependent type theory, these operations are formalized by logical
rules of inference similar to those for the existential and universal quantifier,
and the resulting category of types has such operations of dependent sums and
products. ’

Frample 7.30. Stone duality

Many examples of equivalences of categories ave given by what ave called
“dualities.” Often, classical duality theorems are not of the form C 2 D°P (much
less C = D), but rather C = D°P, that is, C is equivalent to the opposite
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(or “dual”) category of . This is because the dualily is established by a
construction that returns the original thing only up to isomorphism, not “on the
nose.” Here is a simple example, which is a very special case of the far-reaching
Stone duality theorem.

Proposition 7.31. The category of finite Boolean algebras is equivalent to the
opposite of the category of finife sels,

BAg, =~ Setsh.

Proof. 'The functors involved here are the contravariant powerset functor
PBA : Setst? — BAg,
on one side {the powerset of a finite set is finitel). Going back, we use the functor,
A:BAZ — Setsy,

taking the set of atoms of a Boolean algebra,

AB)={eeB|0<aand (b<a=b=0)}

In the finite case, this is isormorphic to the uitrafilter functor that we have already
studied {see Section 7.3).

Lemma 7.32. For any finite Boolean algebre B, there is an isomorphism
between atoms a in B and ultrafiliers U C B, given by

Ui /\b

bell
aqd

ar T{a).

Proof. 1f a is an atom, then 1 (e} is an ultrafilier, since for any b either aAb =«
and then b €f{a) or a Ab =0 and so ~b €1 {a).

If U € B is an ultrafilier then 0 < A;.., b, because, since U is finite and
closed under intersections, we must have Moy b € U T 0 3 by < Ay b then
by is not in U, so =l € U. But then by < —by and so by = 0.

Plainly, U CT{A,cy ¥} since b € U implies Apopy b € b Now let Ay b < a
for some a not in U/. Then, »a € U implies that also A, ;b £ —a, and so
Averr b < @ A—a = 0, which is impossible. £l

Since we know that the set of ultrafiiters Ult{B} is contravariantly functorial
(it is represented by the Boolean algebra 2, see Section 7.3), we therefore also
have a contravariant functor of atoms A = Ult. The explicit description of this
functor is this: if h : B — B and «’ € A(B'), then it follows from the lemma that
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there is a unique atom a € B such that o' < h(b) iff a < b for atl b < B. To find
this atom g, take the intersection over the ultrafilter R=1(1 (a”))},

Ala'y=a= /A b
a' <h{b)
Thus, we get a function
A(R) : A(B") — A(B).
Of course, we must still check that this is & pseudo-inverse for PB4 : Setsg), —
BAg,. The required natural isomorphisms,
oy X — A(P(X))
B B — P(A(B))

are explicitly described as follows:

The atoms in a finite powerset P(X) are just the singletons {z} for z € X,
thus ay{z) = {2} is clearly an isomorphism.

To define (g, let

Bu(b) ={a e A(B) | a < b}.
To see that Gz is also iso, consider the proposed inverse,
(Bs)"H(B)=\/ «  for BC A(B).

ael?

The isomorphism then follows from the following lemma, the proof of which is
routine.

Lemma 7.33. For any finite Boolean algebra B,
Lb=\V{aec AB) | a<b}
2 Ifais an gtom and e <bV ¥, thena<bora<¥.

Of course, one mwmst still check that o and ( really are natural
transformations. This is left to the reader. O

Finally, we remark that the duality
BAgn ~ Setsgh

extends to one between all sets on the one side and the complete, atomic Boolean
algebras, on the other,

caBA =~ Sets"?,

where a Boolean algebra B is complete if every subsel 7 C Bhasajoin YU € B
and a complete homomorphism presetves these joins and B is atomic if every
nonzero element 0 % b € BB has some a < b with a an atom.
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Moreover, this is just the diserete case of the full Stone duality theorem,
which states an equivalence hetween the category of oll Boolean algebras
and the opposite of a certain category of topological spaces, called “Stone
spaces,” and all continuous maps between then. For details, see Johnston (19826

7.11 Exercises

1. Consider the {covariant) composite functor,
F=PBALUL™ : BA — Sets® — BA

taking each Boolean algebra B to the powerset algebra of sets of ultrafillers
in B. Note that

F(B) & Homgets{ Hompa (5,2),2)

is a sort of “double-dual” Boolean algebra. There is always a
homomorphism,

ép: B — F(B)

given by ¢p(b) = {V € UK{B} | b € V}. Show that for any Boolean
homomorphism k : A — B, the following square commutes:

a4
h F(h)
B F(B)

2. Show that the homomorphism ¢z : B — F(B) in the foregoing problem is
always injective (use the Boolean prime ideal theorem}. This is the classical
“Stone representation theorem,” stating that every Boolean algebia is
isomorphic to a “field of sets,” that is, a sub-Boolean algebra of a powerset,
Is the functor F faithful?

3. Prove that for any finite Boolean algebra B, the “Stone representation”
¢ B — PUL{B))

is in fact an isomorphism of Boalean algebras. (Note the similarity to the
case of finite dimensional vector spaces.) This concludes the proof that we
have an equivalence of categories,

BAgy, = Setsgy
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This is the “Hnite” case of Stone duality.

. Consider the forgetful functors

Groupé Y, Monoids 2 Sets

Say whether each is fatthful, full, injective on arrows, surjective on arrows,
injective on objects, and surjective on objects,

. Make every poset (X, <) into a topological space by letting U C X be

open just if @ € I and = < y imphes y € U (U is “closed upward”). This
is called the Alexandroff topology on X. Show that it gives a functor

A :Pos — Top

from posets and monotone maps to spaces and continuous maps by showing
that any monotone map of posets f : P — ( is continuous with respect
to this topology ot P and @ (the inverse image of an open sct must be
open}.

Is A faithfil? Is it full?

. Prove that every functor F: C — D can be factored as Do B = F,

c-LHe 2o
in the following two ways:

(a) £ : C — B is bijective on objects and full, and D : T — D is faithiul;
(b) E:C — I surjective on objects and D : E — D is injective on objects
and {ull and faithful.

When do the two {actorizations agree?

. Show that a natural transformation is a natwral isomorphism just if

each of its components is an isomorphism. Is the same true for
monomorphisms?

. Show that a functor category D has binary products if D does (construct

the product of two functors I and & “objectwise”: (F x G)(C} = F(C} =
G(C)).

. Show that the map of sets

na:A— PP(A)
ar— {U/ C Ala € U}

is the component at A of a natural transformation 1 : lgets — PP, where
P : Sets®® — Sets is the (contravariant) powerset functor.

Let C be a locally small category. Show that there is a functor

Hom : C* x C — Sets
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such that for each object € of C,
Bom({C,-): C — Sets
is the covariant representable functor and
Hom{—, () : C°P - Sets
is the contravariant one. {Hint: use the bifunctor lemma.)

Recall from the text that a groupoid is a category in which every arrow is
an isomorphism. Prove that the category of groupoids is cartesian closed.

Let C = D be equivalont categories. Show that C has binary products if
and only H I does.

What sorts of properties of categories do not respect equivalence? Find
one that respects isomorphisim, but not equivalence.

Complete the proof that Par 2 Sets,.
Show that equivalence of categories is an equivalence relation.

A category is skeletal if isomorphic objects are always identical. Show that
every category is equivalent to a skeletal subcategory. (Every category has
a “skeleton.”}

Complete the proof that, for any set I, the category of I-indexed families
of sets, regarded as the functor category Sets!, is equivalent to the slice
category Sets/[ of sots over I,

Sets’ =~ Sets/I.

Show that reindexing of families along a function f : J — [, given by
precomposition,

Sets! ((As)ier} = (Apiydies
is represented by pullback, in the sense that the following diagram of

categories and functors commutes wp to natural isomorphism:

Sets! —— Sets/[
Sets’ fr

Sets’ —— Sets/J

Here f* : Sets/J — Sets/I is the pullback functor aleng f : J — I
Finally, infer that Sets/2 ~ Sets x Sets, and similarly for any n other
than 2.

Show that a edtegory with finite products is a monoidal category. Infer
that the same is true for any category with finite coproducts,
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