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4
GROUPS AND CATEGORIES

This chapter is devoted to some of the various connections between groups and
categories. If you already know the basic group theory covered here, then this
gives you some insight into the categorical constructions we have learned so fay;
and if you do not know it yet, then you learn it now as an application of category
theory. We focus on three different aspects of the relationship between categorles
and groups:

1. groups in a category,

2. the category of groups,
3. groups as categories.

4.1 Groups in a category

As we have already seen, the notion of a group arises as an abstraction of the
automorphisms of an object. In a specific, concrete case, a group G may thus
consist of certain arrows g : X — X for some object X in a category C,

G C Homg(X, X)

But the abstract group concept can also be described directly as an object in 2
category, equipped with a certain structure. This more subtle notion of a “group
it a category” also proves to be quite useful.

Let C be a category with finite products. The notion of a group in C
essentially generalizes the usual notion of a group in Sets.

Definition 4.1, A group in C consists of objects and arrows as so:

Gxg Lot ¢
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satisfying the following conditions:

1. mn is assaciative, that is, the following commutes:

(GxG)xG — G x (G % )
mx1 I xm
GXC GxG

A

where 2 is the canonical associativity isomorphism for products.
9. u is a unit for m, that is, both triangles in the following commute:

(U, 1G)

G Gx G

1 .
(c,,ll) 1a m

Gx G &

m

' t i
where we write u for the “constant arrow” ul: G —1— G,
3. i is an inverse with respect to m, that is, both sides of the following

commute:
GxG G A GxG
laxi u ixleg
GxG G - GxG
m m

where A = {I1g,1g}.

Note that the requirement that these diagrams commute is equivalent to the
more familiar condition that, for all (generalized) elements,

a2 4o G
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the following equations hold: .
m{m{x,y), 2} = m{z, m(y, 2)}
mi{z,u) = z = mlu,z)
miz,iz) = v = mfiz,x)

Definition 4.2. A homomorphism h : ¢ — H of groups in C consists of an
arrow in C,

h:G— H
such that
1. k preserves m:

exc X yn

m m
G H
h
2. h preserves u:
h
G H
u ’
1
3. h preserves §:
h
G H
i i

G—— H

h

With the evident identities and composites, we thus have a category of groups
in C, denoted by

Group(C)

Frample 4.3, The idea of an internal group in a category captures the familiar
notion of a group with additional structure,
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« A group in the usual sense is a group in the category Sets.

« A topological group is a group in Top, the category of topological spaces.

+ A (partially) ordered group is a group in the category Pos of posets (in this
case, the inverse operation is usually required to be order-reversing, that

is, of the form ¢ : G°P — G).

For example, the real numbers R under addition are a topological and an
ordered group, since the operations of addition @ + y and additive inverse —x
are continuous and order-preserving (resp. reversing). They are a topological
“semigroup” under multiplication %y as well, but the multiplicative inverse
operation 1/2 is not continuous (or even defined!} at 0.

Bxample 4.4, Suppose we have a group G in the category Groups of groups.
So (7 is a group equipped with group homomorphisms m : G x & —» G, ete.
as in definition 4.1. Let us take this apart in more elementary terms. Wiite the
multiplication of the group G, that is, on the underlying set |G}, as xoy and write
the homomer phic multiplication m as z+y. That the latter is a homomorphism
from the product group G % G to G says in particular that, forall g, h € G x G
we have m(g o k) = m(g) o m{h). Recalling that g = {(g1,02), h = {fy, 2} and
multiplication o on G x G s pointwise, this then comes to the following:

{g10h) * (gzohe) = (g1 % g2} o (h1 * h2) 4.1

Write 1° for the unit with respect to o and 1* for the unit of %, The following
proposition is called the “Eckmann-Hilton argument,” and was first used in
homotopy theory.

Proposition 4.5. Given any set G equipped with two binary operations o, % :
G % G — G with units 1° and 1%, respectively and satisfying (4.1}, the following
hold.

1. 1° =1*,
2. o=+,
3. The operation o = % is commutative.
Proof. First, we have
1°=1%01°
={1"%x1*)o (I* %x1°)
={1°c1*)x(1*c1°)
=1 % 1*
= 1%,
Thus, let us write I° = 1 = 1*, Next, we have,

goy=(zxDo{lrxy)={zol)+{loy}=u*p.
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Thus, let us write oy = & y = z * y. Finally, we have

woy= (1o} (y-)={Ly) (- Y=y

We therefore have the following.

Carollary 4.6. The groups in the calegory of groups are exoctly the abelian
groups.

Proof. We have just shown that a group in Groups is necessarily abelian,
so it just remains to see that any abelian group admits homomorphic group
operations. We leave this as an easy exercise. )

Remark 4.7, Note that we did not really need the full group structure in this
argument. Indeed, the same result holds for monoids in the category of monoids:
these are exactly the cormmutative monoids.

Brample 4.8. A further example of an internal algebraic structure in a category
is provided by the notion of a (strict) monoidal category.

Definition 4.9. A sirict monoidal calegory is a category C equipped with a
binary operation & : C x © — C which is functorial and associative,

Ag(BalC)=(AeB)aC, (4.2}
together with a distinguished object T that acts as a unit,
I®eC=0C=CoL (4.3

A strict monoidal category is exactly the same thing as a monoid in Cat.
Fxamples where the underlying category is a poset P include both the meet x Ay
and join 2V y operations, with terminal object 1 and initial object O as units,
respectively (assuming P has these structures), as well as the poset End(P} of
monotene maps f : P — P, ordered pointwise, with composition go f as ® and
1p as unit. A diserete monoidal category, that is, one with a diserete underlying
category, is obviously just a regular monoid (in Sets), while a monoidal category
with only one object is a moncidal monoid, and thus exactly a commutative
monoid, by the foregoing remark 4.7.

More general strict monoidal categories, that is, ones having a proper category
with many objects and arrows, are rather less common-—not for a paucity of
sueh structures, but because the required equations (4.2) and (4.3) typically
hold enly “up to isomorphism,” This is so, for example, for preducts A x B and
coproducts A + B, as well as many other operations like tensor products A® 3
of vector spaces, modules, algebras over a ring, cte. (the category of prools in
lnear logic provides more examples). We return to this more general notion of
2 {not necessarily strict) moncidal category once we have the required notion of
a “natural isomorphism” (in Chapter 7), which is required to make the above
notion of “up to isomorphism” precise,

weer by Audek:
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A basic example of a non-poset monotdal category that is strict is provided
by the category Ordg, of all finite ordinal numbers 0,1,2,..., which can be
represented in set theory as,

0=46,
n+1={0...,n}

The arrows are just al] functions botween these sets. The monoidal product m@n
is then m-+n and © is the unit. In a sense thai ean be made precise in the expected
way, this example is in fact the “free monoidal category.”

In logical terms, the concept of an internal group corresponds to the observation
that one can “model the theory of groups” in any category with finite products,
not just Sets. Thus, for instance, one can also define the notion of a group in the
M-ealeulus, since the category of types of the A-calculus also has finite produets.
Of course the same is true for other algebraic theories, like monotds and rings,
given by operations and equations. Theories involving other logical operations
like negations, implication, or quantifiers can be modeled in categories having
more structure than just fnite products. Here we have a glimpse of so-called
categorical semantics. Such semanties can be useful for theories that are not
complete with respect to models in Sets, such as certain theories in intuitionistic
logic.

4.2 The category of groups

Let & and H be groups (in Seis), and lot

h:G— H
be a group homomorphisnt. The kernel of h is defined by the equalizer
h
ker(h)={gcC | hig)=u} — C T
i

where, again, we write u : G — H for the constant homomorphism
i | [
wW=0—-1— H.

We have alreacdly seen that this specification makes the above an equalizer
diagram.

Observe that ker(h) is a subgroup. Indeed, it Is & normel subgroup, in the
sense that for any k € ker(h), we have {using multiplicative notation)

g-k-gteker(h) forallgeG.

. i . .
Now if N »— G is any normal subgroup, we can construct the coequalizer

! by

G

N

G/N
u
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sending g € & to u iff g € N {*killing off N"}, as follows: the elements of G/N
are the “cosets of N,” that is, equivalence classes of the form [g] for all g € G,
where we define

g~h iff g-A7ledN
(Prove that this is an equivalence relation!) The multiplication on the factor
group G/N is then given by
[#] (1) ==~ 4}
which is well defined since N is normal: given any w, v with @ ~ u and y ~ », we
have
zoy~uv = (zeoy)-(wev) N
but

(-y)-{(w-v) ' =z-y-vtou?

=a- (@t w) oy towt
St (v ) e,

the tast of which is evidently in N.
Let us show that the diagram above really is a coequalizer. First, it is clear
that

moi=woul

since n - u = n implies [n] = [u]. Suppose we have [ : G — H killing N, that Is,
f(n) = u for all n € N. We then propose a “factorization” f, as indicated in

G ! H
v'-(
G /1\;
to be defined by
flol = £(g)

This is well defined if & ~ y implies f{z) = f{y). But, since x ~ y implies
Fla y71) = u, we have

fay=flz-y oy = fla-y™)- o) =u Jly) = f)

Moreover, f is unigue with #f = f, since 7 is epic. Thus, we have shown most
of the following classical Homomorphism Theorem for Groups.
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Theorem 4.10. Buery group homomorphism h: G — H has a kernel ker(h) =
h=Y(u), which is a normal subgroup of G with the property that, for any normal
subgroup N CG

N C ker(h)
iff there is a (necessarily unique} homomorphism hiGIN — IT withhowm=h,
as indicated in N

h i

>

G/J\.’

Proof. It only remains to show that if such a factorization 1—17 exists,
then N C ker(h). But this is clear, since a(N)={{uc]}. So, h(n)=hr(n)=
h{[n]) = un. |

Finally, putting N = ker(h) in the theorem, and taking any [z}, {y] €
G /ker{h), we have

hle] = Rly) = hiz) = h{y)
= hlay Y =u
= ay ' € ker(h)
= x~y
> [l = [l

"Thus, ki is injective, and we conclude.

Corollary 4.11. Every group homomorphism h : G — H factors as a quotient
Jollowed by an injective homomorphism,

G fker{h)

Thus, i ¢ G/ker(R) = im(h) C I is an isomorphism onle the subgroup im(h)
that is the image of h.

In particular, therefore, a homemorphism h is injective if and only if its
kernel is “trivial,” in the sense that ker(h) = {u}.
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There is a dual to the notion of 2 kernel of a homomorphism A : G — H,
namely a cokernel ¢ : H — C, which is the universal way of “killing off &” in
the sense that co h = u. Cokerncls are special eoequalizers, in just the way that
kernels are special equalizers. We leave the details as an exercise.

4.3 Groups as categories

First, let us recall that a group is a category. In particular, a group is a category
with one object, in which every arrow is an iso. If G and H are groups, regarded
as categories, then we can eonsider arbitrary functors between them

f:G— H.

It is obvious that a functor between groups is exactly the same thing as a group
homomorphism.

What is a functor R : G — C from a group G to another category C
that is not necessarily a group? If C is the category of (finite-dimensional)
vector spaces and lnear transformations, then such a functor is just what the
group theorist calls a “linear representation” of G} such a representation permits
the description of the group elements as matrices, and the group operation as
matrix multiplication. In general, any functor R : G — C may be regarded as a
representation of (7 in the category C: the elemonts of G become automorphisins
of some object in C. A permutation representation, for instance, is simply a
functor into Sets.

We now want to generalize the notions of kernel of a homomorphism,
ane quotient or factor group by a normal subgronp, from groups to arbitrary
categories, and then give the analogous homomorphism theorem for categories.

Definition 4.12. A congruence on a category C is an equivalence relation f ~ g
on mrrows such that

1. f ~ g implies dom(f) = dom{g} and cod{f) = cod{g),

2. f ~ g implies bfa ~ bga for all artows ¢ : A - X and b: Y — B, where
dom(f) = X = dom(g) and cod(f} = Y = cod{g},

_—
¢ -+ @ , ¢ —r
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Let ~ be a congruence on the category C, and define the congruence
category C~ by

(C™)o=0Cy
(Ch = {{f plf ~ g}

ic={le, lc)
(f’agr) o (flg) = {f’fyglg>

One casily checks that this composition is well defined, vsing the congruence
conditions.
There are two evident projection functors:

fuit

c~ C
P2
We build the quotient category G/~ as follows:
(C/~)o = Co

(Cf~h = (Ci)/~
The arrows have the form [f] where f € Cy, and we can put 1 = [l¢], and
lgl o [f] =g o f], as is easily checked, again using the congruence conditions.
There is an evident quotient functor 7 : G — C/ ~, making the following a
coequalizer of categories:
D ™

C

c~ C/~

Pz
This is proved much as for groups.
An exercise shows how to use this construction to make coeqgualizers for
certain functors. Let us show how Lo use it to prove an analogous “homomorphism
theorem for categories.” Suppose we have categories C and D and a functor

. C—=D.
Then, F' determines a congruence ~p on C by setting
frpg T dom{f) = dom(y), cod{f) = cod{y), F(f}= F(g}

That this is a congruence is easily checked.
Let us write

ker{F) = C~F 7+ C

for the congruence category, and call this the kernel category of I\
The quotient category

C/Nf;t
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then has the following universal mapping property (UMP):

Theorem 4.13. Every functor F : G — D has a kernel category ker(F),
determined by a congruence ~p on C such that given any congruence ~ on C
one has

freg=fr~rg

if and only if there is a factorization F: C/~ — D, as indicated in

»
C D
."(
c/ ~

Just as it the case of groups, applying the theorem to the case C™ = ker(F)
gives a factorization theorem.

Corollary 4.14, Fuery functor F: C — D factors as F = Fam,

C/ ker{F)

where 7 is bijective on objects and surjective on Hom-sets, and Fis infective on
Hom-sets {i.e., “faithful”}:

Fy 5 : Hom{A, B) > Hom{F A, FBY for all A,B € C/ker(F)

4.4 Finitely presented categorics

Finally, let us consider categories presented by generators and relations.
We begin with the free category C(&) on some finite graph G, and then
consider a finite set L of relations of the form

(gxo...og,;):(giO---Oﬂfn)

with all g; € &, and dom{g,) = dom(g},) and cod{g1} = cod(g; }. Such a relation
identifies two “paths” in C{G) with the same “endpoints” and “direction.” Next,
let ~35: be the smallest congruence ~ on C such that g ~ g’ for each equation
¢ =g' in B. Such a congruence cxists simply because the intersection of a family
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of congruences is again a congraence. Taking the quotient by this congruence,
we have a notion of a finitely presented calegory:

(G, 3) = C(G)/ ~x

This is completely analogous to the notion of a finite presentation for groups,
and indeed specializes to that notion in the case of a graph with only one
vertex. The UMP of C{G, £} is then an obvious variant of that already given for
groups.

Specifically, in C{G,X) there is a “diagram of type G, that is, a graph
homomorphism i : G — |C(G, 1), satisfying all the conditions i(g) = i(g'), for
all g = ¢' € . Morcover, given any category D with a diagram of type G, say
h i G - |D, that satisfies all the conditions k(g) = h{g"), for all g = ¢ € ¥,
there is a unique functor i : (G, %) — D with {hloi=h.

G C(&)

{6, %)

Just as in the case of presentations of groups, one can deseribe the
construction of C{G,Z) as a coequalizer for two functors. Indeed, suppose we
have arrows f, f' € C. Teke the least congruence ~ on C with f ~ f!. Consider
the diagram

q

c(2) C

Cf~

i

where 2 is the graph with two vertices and an edge between them, f and f’ are
the unique functors taking the generating edge to the arrows by the same names,
and g is the canonical functor to the quotient category. Then, g is a coequalizer
of f and f'. To show this, take any d: € — D with

df = df’.
Since C(2) is free on the graph - = -, and f{z) = [ and ['(z) = f', we have
d(f) = d(f(z)) = d(f'(2)) = d(f).

Thus, {f, f'} € ker{d}, so ~ C ker(d) {since ~ is minimal with f ~ f'). So there
is & functor d : C/~— D such that d = d o ¢ by the homomorphism theorem.

For the case of several equations rather than just one, in analogy with the
case of finitely presented algebras (example 3.22), one replaces 2 by the graph
n x 2, and thus the free category C(2) by

Cln x2) =n x C(2) = O(2) + - + C(2).
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Example 4.15. The category with two uniquely isomorphic objects is not free on
any graph, since it is finite, but has “loops” {(eycles). But it is finitely presented
with graph

I
g

A B

and relations

gleA: fgle

Similarly, there are finitely presented categories with just one nonidentity
arrow f : - — - and either

fof=1 or fof=F.

In the first case, we have the group Z/2Z. In the second case, an “identpotent”
{but not a group). Indeed, any of the cyclic groups

oy 22 LfEn

oceur in this way, with the graph f: % — % and the relation f* =1,

Of course, there are finitely presented categories with many objects as well.
These arc always given by a finite graph, the vertices of which are the objects and
the edges of which generate the arows, together with finitely many equations
among paths of edges.

4,5 Exercises

1. Regarding a group G as a category with one object and every arrow an
isomorphism, show that a categorical congruence ~ on G is the same thing
as (the equivalence relation on & determined by} a normal subgroup ¥ C G,
that is, show that the two kinds of things are in isomorphic correspondence.

Show further that the quotient category G/ ~ and the factor group G/N
coineide. Conclude that the homomorphism theorem f{or groups is a special
case of the one for calegories.

9. Consider the definition of a group in a category as applied to the category
Sets/T of sets sliced over a set I. Show that such a group G determines an
I-indexed family of {ordinary) groups G; by setting G; = G (i) for each
i € . Show that this determines a functor Groups(Sets/[) — Groups’
into the category of J-indexed families of groups and [-indexed famities of
homemorphisms.

3. Complete the proof that the groups in the category of groups ate exactly
the abelian groups by showing that any abelian group admits homomorphic
group operations.
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Use the FEckmann—Hilton argiment to prove that every monoid in the
category of groups is an internal group.

. Given a homomorphism of abelian groups [ : A — B, define the cokernel

¢: B — C to be the quotient of B by the subgroup im{f) C B.

{a} Show that the cokernel has the following UMP: eco f =0, and if g :
B — ( is any homoniorphism with go f = 0, then g factors uniquely
throughcasg=uoc.

{b) Show that the cokernel is a particular kind of coequalizer, and use
cokernels to construct arbitrary coequalizers.

(e} Take the kernel of the cokernel, and show that f : A — B factors
through it. Show, moreover, that this kernel is (isomorphic to} the image
of f: A — B. Infer that the factorization of f: A — B determined by
cokernels agrees with that determined by taking the kernels,

. Give four different presentations by generators and relations of the

category 3, pictured:

is 8 free?

. Given a congruence ~ on a category C and arrows in C as follows:

f g
A T B 0

f g
show that f~ f and g ~ ¢ implies go f ~g" o f'.

. Given functors F,G : C — D such that for all C € C, FC = GC, define a

congruence on I by the condition
F~g iff dom{f) =dom(g) & cod(f} = cod{y)}
EVEVH:D—FE: HF = HG = H{f) = H{g)

Prove that this is indeed a congruence. Prove, moreover, that D/~ is the
coequalizer of F' and G.
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LIMITS AND COLIMITS

In this chapter, we first briefly discuss some topics—mnamely, subobjeets and
puilbacks—relating to the definitions that we already have. This is partly in
order to see how these are used, but also because we need this material soon.
Then we approach things more systematically, defining the genoral notion of a
Hnit, which subsumes many of the particular abstract charactorizations we have
met so far. OFf course, there is a dual notion of colimit, which also has many
interesting applications. After a brief look at one more elementary notion in
Chapter 6, we go on to what may be called “higher category theory.”

5.1 Subobjects

We have seen that every subset I/ € X of a set X occurs as an equalizer and
that equalizers are always monomorphisims, Therefore, it is natural to regard
monos as generalized subsets, That is, a mono in Groups can be regarded as a
subgroup, a meono in Top as a sithspace, and so on,

The rough idea is this: given a monomorphism,

m:M— X

in a category G of structured sets of some sort—call them “gadgets”—the image
subset

{m(y) |lyeM}IC X

which may be written as m(M}, is often a sub-gadget of X to which A is

isomorphic khwuﬁl! m.

miM S m(M)C X

More generally, we can think of the mono m : M »— X itself as determining a
“part” of X, even in categories that do not have underlying functions to take
images of.

Definition 5.1. A subebject of an object X in a category C is a monomorphism:

m: M X,
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Given subobjects m and m’ of X, & morphism f:m — m’ is an arrow in C/ X,
as in

f

M —— M
m’

X
Thus, we have a category,

Subg(X)

of subobjects of X in C.

in this definition, since m’ is monic, there is at most one f as in the diagram
above, so that Subg{X)} is a preorder category. We define the relation of inclusion
of suthobjects by

m Cm’ iff there exists some f:m— m'

Finally, we say that m and m’ are equivalent, written m = mw’,  and only if
they are isomorphic as subobjects, that is, m C m' and m’ C m. This holds just
if there are f and f' making both triangles below commute:

f’
Mr—— M
f
m
m
X

Observe that, in the above diagram, m = m'f = mf'f, and since m is
monic, f'f = Ly and similarly ff' = 1ap. So, M = M via f. Thus, we see that
equivalent subobjects have isomorphic domains. We sometimes abuse notation
and langnage by calling A the subohjeet when the mono m : M »— X is clear.

Remark 5.2, Tt is often convenient to pass from the preorder
Subc{X) '

to the poset given by factoring out the equivalence relation “=". Then a
subobject, is an equivalence elass of monos under mutual inclusion,
In Sets, under this notion of subobject, one then has an isomorphism,

Subgets(X) 2 P(X)

that is, every subobject is represented by a unique subset, We shall use
hoth notions of subobjeet, making clear when monos are intended, and when
equivalence classes thereof are intended.
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Note that if A" C M, then the arrow f which makes this so in

f

M — M

X
is also monic, so also A’ is a subobject of Af. Thus we have a functor
Sub(M'} — Sub(X)

defined by composition with f (since the composite of monos is menie).
In terms of generalized elements of an object X,

z2:8 X
one can define a local membership relation,
zex M
between such elements and subobjects m : 8 »— X by
z €x M iff there exists f: £ — M such that z =mf.
Since m is monic, if z factors through it then it does so uniquely.

Example 5.3. An equalizer

I

is a subobject of A with the property

seal i () =9) ()

Thus, we can regard E as the subobject of generalized clements 2 : Z — A such
that f{z) = g{z), suggestively,

E={z621f(z):g€z)};A©

In eategorical logic, one develops a way of making this intuition even more precise
by giving a calcalus of such subobjects,

5.2 Pullbacks

The notion of a pullback, like that of a produet, is one that comes up very often
in mathematics and logle. It is a generalization of both intersection and inverse
image.

We begin with the definition.

&
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Definition 5.4, In any category C, given arrows f, g with cod{f) = cod{g),

B
4
A <
f
the pullback of [ and g consists of arrows
P B
Pz
Dy
A

such that fp; = gps and universal with this property. That is, given any z; @
Z — Aand 23 : Z - B with fz; = gza, there exists a unique 1 : Z — P with
# = pyu and & = pau. The situation is indicated in the following diagram:
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Pullbacks are clearly unique up to isomorphism since they are given by a
universal mapping property {UMP). Here, this means that given two pullbacks
of a given pair of arrows, the uniquely determined maps between the pullbacks
are mutually inverse,

In terms of generalized elements, any z € A x¢ B, can be written uniquely
as 2 = {23, 29) with fz; = gzo. This makes

AxcB={{z1,n) € Ax B fz1 = gz}

look like a subobject of A x B, determined as an equalizer of f o) and g oma,
In faet, this is so.

Proposition 5.5. In a categary with products and equalizers, given a corner of
arrows ’

B
g
A——C
f
Consider the diagram
E
\ b2
@\
o AxB - B
my g
A c

in which ¢ is an equalizer of fmy and gmg and py = wie, p2 = wee. Then, B, p1,p2
is a pullback of f and g. Conversely, if I, py, pz are given as such a pullback, then
the arrow

e={p,p) : E—-AxE

is an equalizer of fry and gmwg.
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Proof. Take
z—2 . B
21
A

with fz; = gz, We have {z1,2): Z — A x B, so0
fmilzr, za) = gma{zy, 22).
Thus, there is & u : Z — E to the equalizer with eu = {21, z2}. Then,
pru =meu = m {21, 52) = &
and
Palt = wgeu = walzy, 22} = 22.

Ifalso v’ : Z — K has p;u’ = z;,i = 1,2, then mew’ = z; so ev’ = {z1,22) = eu
whence ' = u since e in monic. The converse is.similar, O

Corollary 5.8, If a category C has binary products and equalizers, then it has
pullbocks.

The foregoing gives an explicit construction of a pullback in Sets as a subset of
the product:

{la,dy | fa=gbl=AxeB—AxB

Ezxample 5.7. In Sets, take a function f: A — B and a subset V' C B, Let, as
usuat,

iVy={ec Al flmeVic4A

and cousider

sy —Lv

A B

S

where i and § are the canonical inclusions and f is the evident factorization of
the restriction of f to f~1(V) {since a € f~YV) = fla) € V).
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This diagram is a pullback {observe that z ¢ f~YV) & fz € V for all
z: 4 — A). Thus, the inverse image

JHvyc A
is determined uniguely up to isomorphism as a pullback.

As suggested by the previous example, we can use pullbacks to define inverse
images in categories other than Sets. Indeed, given a pullback in any category

AxgM —— M
m m

A B

1

if m is monic, then m' is monic. {Exercisel)
Thus, we see that, for Axed f: A — B, taking pullbacks induces a map

71 Sub(B) — Sub{A)
mo—m’
We show that f~! also respects equivaleuée of subobjeects,
M=N= f"YM) = fHN)

by showing that f~! is a functor, which is our next goal.

5.3 Propertics of pullbacks

We start with the following simple lemma, which seems to come up all the time.

Lemma 5.8, (Two-pullbacks) Consider the commulative diagram below in a
category with pullbacks:

7 !
Pt g9 D
n R h
A B r
f g

1. If the two squares are pullbacks, so is the outer rectangle. Thus,
Axp(Bxg Dy Axg D,

8. If the right square and the outer rectangle are pullbacks, so is the left square.
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Proof. Diagram chase. 0

Corollary 5.9. The pullback of a commuiative triangle is a commuiotive
triangle. Specifically, given a commutative iriangle as on the right end of the
Jollowing “prism diagram”:

A r A
ha ‘
a' 'y’ a 4
h B’ B
hp
i 5]
, » O
¢ P

for any h: C" — C, if one can form the pullbacks o’ and ' as on the left end,
then there exists a unique ¥ as indicaled, making the lefi end u commutative
triangle, and the upper foce a commutative rectangle, and indeed a pullback.

Proof. Apply the two-pullbacks lemma, g

Proposition 5.10. Puilback is o functor. That is, for fizxed h : C' — C in o
category C with pullbacks, there is a functor

h*: C/C - C/C!
defined by
(ASC) e (' xg A CY)

where &' is the pullback of o along h, and the effect on an arrow v 1 a — B is
friven by the foregoing corollary.

Proof. One must check that
W (ix)=Lpex

and

h*{ge f} = h*(g) o h*(f).
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These can easily be verified by repeated applications of the two-puilbacks lemma.
For example, for the first condition, consider

Or

h

If the lower square is a pullback, then plainly so is the outer rectangle, whence
the upper square is, too, and we have

Wiy =1y = 1pex.
(]

Corollary 5.11. Let C be a category with pullbacks. For any avrow f: A— B
in C, we have the following diagram of categories and functors:

-1
Sub{A}

Sub(B)

C/A

c/B

*

This commutes simply becouse f~! is defined to be the restriction of f* to the
subcategory Sub{B). Thus, in particuler, 4 is funclorial:

MCN = 7Y C FHN)

Tt follows that M = N implies f~Y{M) = J~H(N), so that f~! is also defined
on equivalence classes.

Fi/=: Sub(B)/= — Sub{A)/=
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Fzample 5.12. Consider a pullback in Sets:

!
o B
g g
A 7 c

We saw that
I = {{a,b) | fla) = g(b}}
ean be constructed as an equalizer

fr
——t

gma
Nowlet B=1,C=2={T,1},and g =T :1— 2. Then, the equalizer

fm

Axl—= 2
Ty

’: it
g W0 p

E

is how we already described the “extension” of the “propositional function”
f i1 A — 2. Therefore, we can rephrase the correspondence beiween subsets
U C A and their characteristic functions yy : A4 —» 2 in terms of pulibacks:

!

U

oy

T

A— 2
Xu
Precisely, the isomorphism,
24 = P(A)
given by taking a function ¢ : 4 — 2 to its “extension”
Vp =o€ Al p(x) = T}
can he cescribed as a pullback.
Vo= {zedlplx)=T}=¢ Y(T)
Now suppose we have any function

f:B— A




“05-Awodey-c05” — 2009/12/18 — 17:0F — page 99 - #11 EF

LIMITS AND COLIMITS 99

and consider the induced inverse image operation
fHiP(A) - P(B)

given by pullback, as in example 5.9 above. Taking the extension V, C 4,
consider the twe-pullbacks diagran:

f‘l(Vl,o) > V‘p *

—

B A -
f i

We therefore have (by the two-pullbacks lemma)
FHV) = o (M) = (0f) H(T) = Vs

which from a logical point of view expresses the fact that the substitution of a
term f for the variable » in the propositional function ¢ is modeled by taking
the pullback along f of the corresponding extension

Filze Al =ThH={ye Blo(fy)) =T}

Note that we have shown that for any function [ : B — A the following
square conmmites: :

o)

94 = pra)
2f S
2B P{B)

where 2/ ; 24 — 2B is precomposition 2/(g) = g o f. In a situation like this, one
says that the isomorphism

24 22 P(A)

is naturel in A, which is cbviously a much stronger condition than just having
isomorplisms at each object A. We wilj consider such “naturality” systematically
later. It was in fact one of the phenomena that originally gave rise to category
theory.

Erample 5.13. Let T be an index set, and consider an I-indexed family of sets:

{Ai)ier
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Given any function o : J — I, there is a J-indexed family

(Aay)ies s

obtained by “reindexing along «." This reindexing can also be described as a
pullback. Specifically, for each set A; take the constant, i-valued function p; :
A; — I and consider the induced map on the coproduct

p=Ipi: HA" — I
icl
"The reindexed family (A,¢;)) e can be obtained by taking a pullback along a,
as indicated in the following diagram:
T4

[ 4an

Jed icf

¢ P

J—1T

o

where ¢ is the indexing projection for (Aap)jcs analogous to p. In other words,

we have
71140 % Tl Awo

icl jed

The reader should work out the details as an instructive exercise.

5.4 Limits

We have already seen that the notions of product, equalizer, and pullback are
not independent; the precise relation between them is this.

Proposition b.14. A category has finite products and equalizers iff i hos
pullbacks and ¢ terminal object,

Proaf. The “only if” direction has already been done, For the other direction,
suppose C has pullbacks and a terminal object 1.

« For any objects A, B we clearly have A x B 2 A x; B, as indicated in the
following:

Ax B yE]

A_—D-I
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o For any artows f,g: A — B, the equalizer e : [¥ — A is constructed as the
following pulthback:

h

B B

e A= (131 15}

1.————»
£ ) BxB

In terms of generalized elements,
B = {{a,b) | {f, g){a} = Ab}
where (f, g){a) = (fa, ga) and A{b) = {b,1}. So,
B= {{a,b} | f(a} = b= gla)}
= {a | f(a) = g(a)}
which is just what we want. An casy diagram chase shows that

e f

A

B B

g
is indeed an equalizer. 0
Product, terminal object, puliback, and equalizer, are all special cases of the

general notion of a limif, which we consider now. First, we need some preliminary
definitions.

Defnition 5.15. Let J and C be categories. A diagram of type J in Cis 2
funetor.

D:J—-C.
We write the objects in the “index category” J lower case, i, j, ... and the values
of the functor D : J — C in the form Dy, D, ete.

A cone to a diagram D consists of an object € in C and a family of arrows
in C,

c:C— D
one for each object § € J, such that for each arrow a: i — j in J, the following
triangle commutes:

<
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A morphism of cones
#:(Ce5) - (¢, ¢))

is an arrow ¥ in C making each triangle,

)
C o
o
] 7
D;

commute, That is, such that ¢; = c;. o for all § € J. Thus, we have an evident
category

Cone(D}
of cones to DL

We are here thinking of the diagram D as a “picture of J in C” A cone to
such a diagram D) is then imagined as a many-sided pyramid over the “base” D
and a morphism of cones is an arrow between the apexes of such pyramids. {The
reader should draw some pictures at this pointl) ‘

Definition 5.16. A [imit for a diagram D : J — C is a terminal object in
Cone(D). A finite limit is 2 limit for a diagram on a finite index category J.

We often denote a limit in the form
173 ]{EIDJ' — _Di.
i
Spelling out the definition, the limit of a diagram D has the following UMP:
given any cone {C) ¢;) to D, there is a unique arrow u : ¢ — li(_n}j Iy such that
for all 7,
pjou=cj.
Thus, the Hmiting cone {hﬂj Dj,p;} can be thought of as the “closest” cone

to the diagram D, and indeed any other cone (C,c¢j) comes from it just by
composing with an arrow at the vertex, namely u: C' — Mi ;.

| T PPN » lim Dj
—_
J

D,
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Fxample 5.17, Take J = {1,2} the discrete category with two objects and no
nonidentity arrows. A diagram D : J — C is & pair of objects Dy, 13 € C. A
cone on [7 is an object of C equipped with arrows

D¢

C2

+ Dy,
And a limit of D is a terminal such cone, that is, & product in G of D and Dy,

Dy <P b, x D, P2 D,

Thus, in this case,

ié"E“Dj = D1 X Da.
K

Example 5.18. Take J to be the following category:

o
f———
B
A diagram of type J looks like
D,
Dy Dy
Dy
and a cone is a pair of arrows
Do
y Dy
g
Cy .
C

such that Dey = ¢ and Dgey = eg; thus, Daey = Dgeyp. A limit for D is
therefore an equalizer for D,, Dg.

Erample 5.19. If J is empty, there is just one diagram 2 : J — C, and a limit
for it is thus a ferminal object in C,

Hm D; = 1.
Jmn
j€0

Frzample 5.206. 1f J is the finite category
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we see that a limit for a diagram of the form
B

is just a pullback of f and g,
fimly & AxeB.

—
4

Thus, we have shown half of the following.

Proposition 5.21. A calegory has oll finite limits iff it has finite products ond
equalizers (resp. pullbacks and a terminal object by the last proposition).

Here, a category C is said to have all finite limits if every finite diagram D :
J -+ C has a limit in C.

Proof. We need to show that any finite limit can be constructed from finite
products and equalizers, Take a finite diagram

D:J-—C.

As a first approximation, the product
11 o (5.1)
iedy

over the set Jg of ohjects at least has projeetions p; : HiEJo D; — D; of the right
sort. But these cannot be expected to commute with the arrows Dy 1 Dy — [
in the diagram D, as they must. So, as in making a pullback from a product and
an eqgualizer, we consider also the product H(mi_,j)g 3, Dj over all the arrows
(the set Jy), and two special maps,

¢
1o == 1I o
i l:b ot f
which record the effect of the arrows in the diagram on the product of the objects,
Specifically, we define ¢ and ¢ by taking their composites with the projections
1, from the second product to be, respectively,
Ta © ¢ = Pa = Teod(a)
Ta 0P =y = Dyo Fdom{a)

where Teodta) 88d Tyom(ay &re projections from the first product.
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Now, in order to get the subobject of the product 5.1 on which the arrows in
the diagram D commute, we take the equalizer:

E £ HDI% HDJ

i}

We show that (F,¢;) is a Hmit for D, where ¢; = m; o e. To that end, take any
arvow ¢ ¢ — [[; Dy, and wiite e = {1} for ¢; = m; o c. Observe that the family
of arrows (¢; : C — I}) is & cone to D if and only if éc = e, Indeed,

Blesy = Pled)
iff for all a,
Taplei} = mailer).
Buat,
Taplei) = dafe:) = Teautaylci) = ¢
and
Tatples) = Pales) = Da © Tgom(a) (€1} = Da o €i.

Whence ¢c = e Hl for all «v: i — j we have ¢j = Dy o ¢y thus, ff {¢; : C' — ;)
is a cone, as claimed. It follows that (E,e;) is a cone, and that any cone {¢; :
C — I¥) gives an arrow {c;) 1 C — [[; D; with ¢{e) = ¥{e:}, thus there is a
unigue factorization u : € — E of (¢;) through FE, which is clearly a morphism
of cones. (]

Since we made no real use of the finiteness of the index category apart from
the existence of certain products, essentially the same proof yields the foHowing.

Corollary 5.22. 4 entegory hos ell limits of some cardinelity iff it has all
equalizers and products of thot cordinality, where C is seid to have limits {resp.
products) of cardinality x iff C has a lim#t for every diagram D1 J — G, where
card{J ;) £ & (resp. C has oll products of n many objects).

The notions of cones and limits of course dualize to give those of cocones and
colimits. One then has the following dual theorem.

Theorem 5.23. A category C has finite colimits iff it has finite coproducts and
coequatizers (resp. iff it has pushouts and an initial object). C has oll colimits of
size & iff it has coequalizers and eoproducts of size K.

5.5 Preservation of Hmits

Ilere is an apphcation of the construction of limits by products and equalizers.
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Definition 5.24. A functor F : C — D is said to preserve limits of type J if,
whenever p; : L — Dj is a limit for a diagram D : J -+ C; the cone Fp; : FL —
FDy is then a limit for the diagram FD : J — D. Briefly,

F(jim Dj) & i F(D;).
A functor that preserves all limits is said to be continuvous.

For example, let C be a locally small category with all small lmits, such as
posets ar monoids. Recall the representable functor

Ifom(C, ) : C — Sets
for any object C € C, taking f: X - ¥ to
S+ t Hom{C, X} — Hom(C,Y)
where fulg: € — X)=fog.
Proposition 5.25. The representable functors Hom{C, —} preserve ell limits.

Since limits in C can be constructed from products and equalizers, it suffices
to show that Hom((), —) preserves products and equalizers. (Actually, even if C
does not have all limits, the representable functors will preserve those limits that
do exist; we leave that as an exercise.}

Proof. o C has a terminal object 1, for which,
Hom{C, 1} = {lg} = 1.
« Consider a binary product X x ¥ in C. Then, we already know that
Hom(C, X x ¥) & Hom{C, X} x Hom{C, ¥)

by eomposing any f: € — X x Y with the two product projections p; :
AxY s Xandp : X xY V.

o For arbitrary produets [;.; X:, one has analogously
Hom(C, [ [ Xi) 2 ] | Hom(C, X4)
i i

« Given an equalizer in C,

f
IY —: ),

€ g

consider the resulting diagram:

r

f
Hom(C, E) — Hom(C, X) =+ Hom(C,Y).
=
g*
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To show this is an equalizer in Sets, let # : € — X ¢ Hom{(C,X) with
J«b = g.h. Then fh = gh, so there is a unique u : € — F such that
eu = h. Thus, we have a unigue u € Hom(C, F} with e,u = eu = h. 8o,
e, : Hom(C, £} — Hom(C, X} is indeed the equalizer of f, and g..

O

Definition 5.26. A functor of the form F : C°P — D is called a contravariant
functor on C. Explicitly, such a funetor takes f: 4 — Bto F(f): F{B) — IF(A)
and F{go f)= F(f)o F(g).

A typical example of a contravariant functor is a represemiable functor of the
form,

Home(—,C) : C°F — Sets

for any C € C {where C is any locally small category}. Such a contravariant
representable functor takes f: X — Y to

f* : Hom{Y,C)} — Hom(X, C}
by f{{g: X > C)=go f.

Then, the following is the dual version of the foregoing proposition.

Corollary 5.27. Contravariant represeniable functors map all colimits o
limils.

For example, given a coproduct X + ¥ in any locally small category C, there is
a canonical isomorphism,

Hom{X + ¥,C) = Hom(X,C) x Hom(Y, C) (5.2)

given hy precomposing with the two coproduet inclusions.

From an example in Section 2.3, we can therefore conclude that the ultrafiliers
in a coproduct A + B of Boolean algebras correspond exactly to pais of
ultrafilters (I, V), with U/ in A and ¥V in B. This follows because we showed
there that the ultrafilter functor Ult : BA®P — Sets is representable:

Ult{B) = Homga(B,2).

Another case of the above iso (5.2) Is the familiar law of exponents for sets:
CXHY ¥ i O

The artthmetical law of exponents A+ = k™ - I™ is actually a special case of
this.
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5.6 Colimits

Let us briefly discuss some special colimits, since we did not really say much
about them Section 5.5,
First, we consider pushouts in Sets. Suppose we have two functions

A—2 ¢

B
We can construct the pushout of f and g like this. Start with the eoproduct
{disjoint sum}:

B B+C C
Now identify those clements b € B and ¢ € € such that, for some a € 4,
flay=b and gla)=¢c

That is, we take the equivalence relation ~ on B+C generated by the conditions
H{a) ~ gla) for alta € A.
Finally, we take the quotient by ~ to get the pushout

(B+C)~ = B4aC,

which can be imagined as B placed next to C, with the respective parts that are
images of A “pasted together” or overlapping. This construction follows simply
by dualizing the one for pullbacks by products and equalizers.

Ezomple 5.28. Pushouls in Top are similarly formed from coproducts and
coequalizers, which can be made first in Sets and then topologized as sum and
quotient spaces. Pushouts are used, for example, to construct sphereg from disks.
Indeed, let D? be the (two-dimensional) disk and ! the one-dimensional sphere
(i.e., the circle}, with its inclusion ¢ : §' — D? as the boundary of the disk.
Then, the two-sphere §2 is the pushout,
t

gt n?

DZ S‘Z
Can you see the analogous construction of §! at the next lower dimension?

In goneral, a colimit for a diagram D : J — C is, of course, an initial object
in the category of cocones. Explicitly, a cocone from the base D consists of an
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object € (the vertex} and arrows ¢; : D; — € for each j € J, such that for all
a:i—jinld,

gjo Do) =¢
A morphism of cocones f : (C, (7)) — (€', (e;')} is an arrow f: C — 7 in C
such that foe¢; = ¢;’ for all § € J. An initial cocone is the expected thing: one

that maps uniquely o any other cocone from D. We write such a colimit in the
form '

lim Dy
=
jed

Now let us consider some examples of a particular kind of celimit that comes
up quite often, namely over a linearly ordered index category. Qur first example
is what is sometimes called a direct limil of a sequence of algebraic objects, say
groups. A similar construction works for any sort of algebras {but non-equational
conditions are not always preserved by divect limits).

Fxample 5.29. Direct limit of groups. Suppose we are given a sequence,

Gy — Gy — Gy — et
o o gz

of groups and homomorphisms, and we want a “colimiting” group G with
homomeorphisms

Un : G — Gy

satisfying u,4.100; = uy. Moreover, G should be “universal” with this property.
T think you can see the colimit setup here:
« the index category is the ordinal oumber w = (N, <), regarded as a poset
category,

+ the sequence

Co — Gy — Gg —s -+
o 5 g2

is a diagram of type w in the category Groups,
« the colimiting group is the colimit of the sequence
G 2 [}E} Ga
new

This group ahways exists, and can be constructed as follows. Begin with the
coproduct (disjeint sum} of sets
11 ¢-.

new
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Then make identifications ©, ~ ym, where x, € Gy, and y,, € Gy, to ensure in
particilar that

L ™~ g?l(wﬂ)

for all z, € G, and g, : G — Gugi-
This means, specifically, that the elements of G, are equivalence classes of
the form

[xnls T, € Gy
for any n, and [a,] = [y iff for some k > m,n,
e} = grn.k(ym)
where, generally, if < 7, we define
9ij i Gi—= =G
by composing consecutive g's as in gij = gj-1 ©... ¢ g. The reader can easily
check that this is indeed the equivalence relation generated by all the conditions
Tp ~ gu(wn)-
The operations on G, are now defined by
[#]- [} = " - ¢/]
where 2 ~ o', ¥ ~ y', and o',y € G, for n sufficiently large. The unit is just
[e0], and we take,
o] = ).

One ean easily check that these operations are well defined, and determine a
group structure on G, which moreover makes all the evident functions

w1 Gy — G s up(z) = [=)

into homomorphisms.

The universality of G, and the u, results from the fact that the construction
is essentially a colimit in Sets, equipped with an induced group structure. Indeed,
given any group H and homomorphisms h, : G, — H with hyy0gn = I, define
Moo : Goo — H by hoo{[n]) = halx,). This is easily seen to be well defined and
indeed a homomerphism. Motreover, it is the unigue function that commutes
with all the u,.

The fact that the w-colimit G, of groups can be constructed as the colimit of
the underlying sets is a case of a general phenomenon, expressed by saying that
the forgetful functor U : Groups — Sets “creates w-colimits.”

Definition 5.30. A functor F: C — D is said to ereate limits of type J if for
every diagram €' : J — C and limit p; : L — FCyin D there is a unigue cone
¥7: L - ¢} in C with P{L}= L and F(p;) = p;, which, furthermore, is a limit
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for C'. Briefly, every Hmit in D is the image of a unique cone in C, which is a
Hmit there. The notion of creating colimits is defined analogously.

In these terms, then, we have the following proposition, the remaining details of
which have in effect already been shown.

Proposition 5.31. The forgeiful functor U : Groups — Sets creafes w-
colimils, It alse creates all limits.

The same fact holds quite generally for other categories of algebraic objects, that
is, sets equipped with operations satisfying some equations, Observe that not all
colimits are created in this way. For instance, we have already seen (in exan

r\)n:;{wﬁ'l'ic;\, % i\l

An: Please

that the coproduct of two abelian groups has their product as underlying set, specify

> : ; T “example” if
Example 5.32. Cumulative hierarchy. Another examp]e%f an w-colimit is the a k:‘z ﬁ'iate

“cumulative hierarchy” construction encountered in set theory. Let us set pprol ’

Vo=0
Vi=P(0)

Vi =P(Va)
Then there is a sequence of subset inclusions,

P=WCViCWC-.

since, generatly, A4 € B implies P(A) C P(B)} for any sets A and B. The colimit
of the seguence

V, =lim V,
n

is called the cumulative hierarchy of rank w. One can, of course, continue this
construction through higher ordinals w -+ 1,w 4 2,....
More generally, let us start with some set 4 (of “atoms”}, and let

Wid)y=4A
and then put
Vﬂ+1(A) =A + 'P(I/"(A)),

that is, the set of all elements and subsets of A. There is a sequence Vo{A) —
Vi{A} — Va(A) — ... as follows. Let

vt Va(A) = A = A+ P(A) = Vi(A)

be the left coproduct inclusion. Given vy .1 1 Vy—1{A4) — Vo(A), let vy 1 Va{d) —
Vi1 {A) be defined by

Vn = Ly o+ Pelvne) A+ PV (4)) = A+ P(Va(A))
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where P denotes the covariané powerset functor, taking a function f : X — Y
to the “image under f* operation B{f) : P{X} — P(Y}, defined by taking
UCXto

PUAUY={f) uc U} C Y.
The idea behind the sequence is that we start with A, add all the subsets of A,
then add alt the new subsets that can be formed from all of those elements, and
50 on. The colimit of the sequence

V() = lim ¥, ()

is called the cumulative hicrarchy (of rank w) over A. Of course, 1, = 1, (0).
Now suppose we have some function
R

f+A— B
Then, there is a map
Vol ) s Voo A) — Vo (B),
deterndned by the colimit description of V,, as indicated in the following
diagram:

Vo(A) s Vi(A) —— Va(A) . - 1,(A)
fo h fa fu
V{;(B) — V;(B) — (B r v.(B)

Here, the f, are defined by
fO = f rA— Ba
H=F+P(f): A+ PlA) - B+P(B),

Jas1 = FHPIfa) s A+ P(V(A)) — B+ P(Vu(B)).
Since all the squares clearly commute, we have a cocone on the diagram of
V. {AVs with vertex V,(B), and there is thus a unique f, : Vi,(A} — V,(B} that
completes the diagram.
Thus, we see that the ciumulative hievarchy is functorial.

Example 5.33. wCP0Os. An wCPO is a poset that is “w-cocomplete,” meaning
it has all colinits of type w = (N, <). Specifically, a poset D is an wCPOQ if for
every diagram d : w — D, that is, every chain of elements of I,

dp Sdy Sdp <o
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we have a colimit d, = Lmd,;. This is an element of > such that
I.d, <d, forall n e w,
2, forallz e D, ifd, <z for all n € w, then also d, < 2.
A monotone map of wCFQOs
h:D-—E
is called continuous if it preserves colimits of type w, that is,
k{lim dy,) = ﬁgh(fi,,).
An application of these notions is the following.
Proposition 5.34. If D is an wCPO with initial element 0 and
h:D—-D
is continuous, then h has a fized poini
h(z) ==

which, moreover, is least among all fized points.

Proof. We use “Newton’s method,” which can be used, for example, to find
fixed points of monotone, continuous functions f : [0,1] — [0,1]. Consider the
sequence d : w — D, defined by

do=10
dpr1 = h{d,)
Sinee 0 < dy, repeated application of h gives d,, < d,41. Now take the colimit
d, = lim _ d,. Then
—3nEw
h(d,) = h{lim da)
NEW

= lim h{dz)
new

= ]_E_Y_} dnJrl
new

=d,.

The last step follows because the first term dy = 0 of the sequence is trivial.
Moreover, if 2 is also a fixed point, k(z) = @, then we have

dp=0<zw
dy=h{0) < h{z) ==z

dps1 = h{dy) < h(z) = 2.
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So also d, < x, since d,, is the colimit, (]

Finally, here is an example of how (co}limits depend on the ambient category.
We consider colimits of posets and wCPOQOs, rather than in them.
Let us define the finite wCPQOs

wy={k<njkew}
then we have continuous inclusion maps:
Wy 2w — g —

In Pos, the colimit exists, and is w, as can be easily checked. But w itself is
not. w-complete. Indeed, the sequence

0<1<2< .

has no colimit, Therefore, the colimit of the w, in the category of wCPOs, if it
exists, must be something else. In fact, it is w -+ 1.

0<1<2<--<w

For then any bounded sequence has a eclimit in the bounded part, and any
unbounded one has w as colimit, The moral is that even w-colimits are not always
created in Sets, and indeed the colimit is sensitive to the ambient category in
which it is taken.

5.7 Fxercises
1. Show that a pullback of arrows

b2

Axx B B

M g

A—— o+ X

f

in a category C is the same thing as their product in the slice category
C/l\ro
2. Let C be a category with pullbacks.

(a) Show that an arrow m : M — X in C is monic if and enly if the
diagram below is a pultback.
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1

1
MM M

Tas m

Moa— X

Thus, as an object in C/X, m is monic iff m x m =2 m.

{b) Show that the pullback along an arrow f : ¥ — X of a pullback square
over X,
AxxB— B

A— X
is again a pullback square over Y. {Hint: draw a cube and use the two-
pullbacks lemma.} Conclude that the pullback functor f* preserves
products.

{c) Conclude from the foregoing that in a pullback square

M —— M

A 4

if m is monic, then so is m'.

3. Show directly that in any category, given a pullback square

M — M
m m

A 4

if m is monie, then so is m', _

4. For any object A in a category C and any subobjects A7, N € Subg(4),
show Af C N iff for every generalized element z 1 Z — A (arbitrary arrow
with codomain A):

zGa M implies 2 €4 N,
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5. For any object A in a eategory C and any subobjects A, N € Subg{A),
show A C N iff for every generalized element z : Z — A (arbitrary arrow
with codomain A): ‘

z €4 M implies z €4 N.
6. (Equalizers by pullbacks and products) Show that a category with

pullbacks and products has equalizers as follows: given arrows f,g: A -
B, take the puilback indicated below, where A = (15, 15}:

E B

e A

A BxB

(/. 9}

Show that e : £ — A is the equalizer of f and g.

7. Let C be a loeally small eategory with all small limits, and D : J — C
any diagram in C. Show that for any object C € C, the representable
functor

Homg{C,—): C — Sets

preserves the limit of D.

8. (Partial maps) For any category C with pullbacks, define the category
Par{C) of partial maps in C as follows: the objects are the same as those
of C, but an arrow f : A -+ B is a pair (|f,U), where U »— A is a
subobject and |f| : Uy — B is a suitable equivalence class of arrows, as
indicated in the diagram:

A

Composition of {|f|,Us): A — B and {|g], U;} : B — C is given by taking
a puilback and then composing to get (Jg o f, |S]*(Uy)), as suggested by
the following diagram:




10.

11.
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|F1*(Ug) Uy <
gl
U B
ST
A

Verify that this really does define a category, and show that there is a
functor,
C — Par(C)

which is the identity on objects.

. Suppose the category C has limits of type J, for some indox category J.

Tor diagrams F and G of type J in G, a morphistn of diagrams 8 : F — G
consists of arrows #; : Fi — Gi for each { € J such that for each o :
i — jin J, one has 8; F{a) = G(a)¥; (a commutative square). This makes
Diagrams(J, C) into a category {check this).

Show that taking the vertex-objects of limiting cones determines a functor:

I‘_i;_n : Diagrams(./, C) —» C

Infer that for any set F, there is a product functor,
H : Sots’ — Sets
icl

for I-indexed familes of sets {A;)ier.

{Pushouts)

(a) Dualize the definition of a pullback to define the “copullback” (usually
called the “pushout”} of two arrows with common domain.

{b) Indicate how to construct pushouts using coproducts and coequalizers
(proof “by duality”).

Let B C X x X be an equivalence relation on a set X, with quotient

¢ : X -» (), Show that the following is an equalizer:

P

q Pﬁ
PQ ——— PX

P [

where ri, 1o : B =3 X are the two projections of R C X, and P is the
(contravariant) powerset functor. (Hint: PX 22 2%))

PR,
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12.

13.
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Consicler the sequence of posets [0] — (1] — [2] — ..., where
= {o<- <),
and the arrows {n] — [n + 1] are the evident inclusions. Determine the
limit and colimit posets of this sequence.
Consider sequences of monoids,

Ay — My — My — ...
i\r[) — 1\’1 — J\TQ Ll

and the following limits and colimits, consiructed in the category of
monoids: :
im My, [hnd,, lim N, HmN,.
T i n n
(a) Suppose all M, and N, are abelian groups. Determine whether each
of the four {co)limits lim Ay, etc. is also an abelian group.

{b) Suppose all 1, and N, are finite groups. Determine whether each of
the four {co)limits liﬁ}n M, ete. has the following property: for every
element, =, there is a mumber & such that a* = 1 (the least such k is
called the order of x).




