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10
MONADS AND ALGEBRAS

Inn Chapter 9, the adjoint functor theorem was seen to imply that the category
of algebras for an equational theory T always has a “free T-algebra” functor, left
adjoint to the forgetinl functor into Sets, This adjunction describes the notion
of a T-algebra in a way that is independent of the specific syntactic description
given by the theory T, the operations and equations of which are rather lke a
particular presentation of that notion. In a certain sense that we are about to
make precise, it turns out that every adjunction describes, in a “syntax invariant”
way, & notion of an “algebra” for an abstract “equational theory.”

Toward this end, we begin with yet a third characterization of adjunctions.
This one has the virtue of being entirely equational.

10.1 The triangle identitics

Suppose we are given an adjunction,
F:C—D:U

with unit and counit,

nilg—-UF

e: FU— 1p.
We can take any f: FC — D to

$(f) = UfYono: C - UD,
and for any ¢ : ¢ — UD, we have
¢ g) = ep o F(g): FC — D. .
This we know gives the isomorphism ‘ : C@'VL S [' ég\f‘ a:{ficm,
Homp{FC, D} =, Homg(C,UD).

Now put lyp : UD — UD in place of ¢ : © — UD in the foregoing ey We
know that ¢ '{1yp) = ep, and so

lyp = ¢lep)
=Ulcp)onup.
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And similarly, #(1p¢) = 5o, s0
tro= ¢7i(?]C)
= e o Flne)-

Thus, we have shown that the following two diagrams commute:

> UD

D iup
k Uep

Urup

e, tre |, re

FURC
Indeed, one has the following equations of natural transformations:
Ucony =1y (1.1}
GFOFIJ:IF (102)

These are called the “triangle identities.”

Proposition 10.1. Given categories, funclors, and natural transfoermations
F:C—D:U

nilg—oUokF
e : Foll =1np

one has FF - U with unit 5 and countl ¢ iF the triangle identities (10.1) and
{10.2) hold.

Proof. We have alveady shown one direction. For the other, we just need a natural
isomorphisim,

¢ : Homp (FC, D) =2 Homg(C, U D).
As d&rlier, we put
o(f  FC - Dy =U(f}onc
Hg:C — UDYy=¢epo Flg).
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&

Then we check that these are mutually inverse:

HHa)} = dlep o Flg))

=Ulep) o UF(g) o nc
=Ulepyonunog 1 natural
=g {10.1)
Similarly, ‘
(S} = HU(f) o ne)
=¢epo FU(f)o Fno
= foeppo Fic € natural
=f (10.2)
Moreover, this isomorphism is easily scen to be natural, 1

The triangle identities have the virtue of being entirely “algebraic”—no
guantifiers, limits, Hom-sets, infinite conditions, ete. Thus, anything defined
by adjoints such as free groups, product spaces, quantifiers, ... can be defined
equationally. This is not only a matter of conceptual simplification; i also has
important consequences for the existence and properties of the structures that
are s0 determined.

10.2 Monads and adjoints

Next consider an adjunction F 3 U and the composite functor
UoF:C—-D—-C.
Given any category C and endofunctor
T:C—-C

one can ask the following kuestior=

Question: When is T' = U o F for some adjoint functors F' 3 U to and from
another category D?

Thus, we seek necessary and sufficient conditions on the given endofunctor 7" :
C — C for recovering a category I} and adjunction 7 4 U, Of course, not every
T arises so, and we see that even if T = U o F for some D and F 4 U, we cannot
always recover that adjunction. Thus, a better way to ask the question would
be, given an adjunction what sort of “trace” does it leave on a category and can
we recover the adjunction from this?

Tirst, suppose we have D and F - IJ and T is the composite functor T =
U o FF. We then have a natural transformation,

n:1—T.
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And from the counit € at FC,
epe: FUFC — FC
we have Uepe : UFUFC — UFC, which we call,
o T? T

In general, then, as a first step toward answering our question, if T° arises from
an adjunction, then it should have such a structure 5: 1 — T and ¢ % T,
Now, what can be said about the structure (T', 7, #)7 Actually, quite a bit!

Indeed, the triangle equalities give us the following commutative diagrams:

Ty

T3 2‘2
o 7
T? T
T
jopur =polu {10.3)

T o T? o Ty T

T

pepr=1lr=poly (10.4)

To prove the first one, for any f: X — Y in D, the following square in C
commutes, just since ¢ is natural:

FUX —Iinva- FUY

EX £y

N—
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Now take X = FUY and f = ey to get the following:
Fley
FUFUY —% FUY
cFUY ey

Uy Y

ey
Puiting FC for Y and applying U, therefore, gives this
UFU
UFUFUFC =S yruFc
UeFUFC UEFC

UFUFC UFC

EFC

which has the required form (10.3}. The equations (10.4} in the form

UFC WFS gy pe YE0C ure
Uere

UFC

are simply the triangle identities, once taken at FC, and once under I/, We
record this data in the following definition.

Definition 10.2. A monaed on a category C consists of an endofunctor T : C —
C, and natural transformations i : 1 — T, and g : T2 — T satisflying the two
ecommutative diagrams above, that is,

popr =poTy (10.5}
ponpr=1=poTn. (10.6)

Note the formal analogy to the definition of a monotd. In fact, a monad is
exactly the same thing a moneidal monoid in the monoidal category CC with
composition as the monoidal product, G ® F = G o I (cf. section 7.8). For this
reason, the equations (10.5) and (10.6) above are called the essocietivity and
unit laws, respectively.

We have now shown the following proposition.
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Proposition 10.3. Every adjeint pair F AU with U : D — G, unit g : UF —
1c and ecounit € : 1p — U gives rise to @ monad (T, n, 1) on C with
T=UoF:C—C
n:t— T the unit
;1:U5F:T2—»T.
FEzample 10.4. Let P be a poset. A monad on £ is a monoiene function I': P —
P with z < Tz and T2z < Tz But then T? = T, that is, 1" is idempotent.
Such 2 T, that is both inflationary and idempotent, is sometimes called a closure
operation and written Tp = B, since it acts like the closure operation on the
subsets of a topological space. The “possibility operator” <p in medal logic is
another example.
In the poset case, we can easily recover an adjunction from the monad. First,

let K = im(T)(P) (the fixed points of T), and let i : K — P be the inclusion.
Then let ¢ be the factorization of T' through K, as indicated in

Pt ,p

K

Ohserve that since TT'p = Tp, for any element & € K we then have, for some
p € P, the equation ik = ititp = iip = ik, whence {ik =k since i is monic. We
therefore have

p<ik implies fp<tik=kFk
ip <k implies p<itp<ik
So indeed ¢ 1.
Ezample 10.5. Consider the covariant powerset functor
‘P : Scts — Sets

which takes each funetion f: X — ¥ 1o the image mapping im{f) : P{X) —
P{Y). Let gy : X — P{X) be the singleton operation

o) = {2)
and let gy : PP(X) — P(X) be the union operation
pxlo) = Ua-.

The reader should verify as an exercise that these operations are in fact natural
in X and that this defines a monad (P, {—},1J) on Sets.
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As we see in these examples, monads can, and often do, arise without
coming from evident adjunctions. In fact, the notion of a monad originally
did ocecur independently of adjunctions! Monads were originally also known
by the names “triples” and sometimes “standard constructions.” Despite their
independent origin, however, our gquestion “when does an endofunctor T arise
from an adjunction? has the shnple answer: just if it is the functer part of
a monad.

10.3 Algebras for a monad

Proposition 10.6. Fvery moned arises from an adjunction. More precisely,
given a monad {I',n, 1) on the category C, there exists a category D and an
adjunclion FAU, p:1 > UF, ¢: FU -» 1 with U : D — C such that

T=UoF
n=rn {(the unit}
= Uep.

Proof. We first define the important category C7 called the Filenberg-AMoore
category of T, This will be our “D.” Then we need suitable functors

F:C7— ct 0

And, finally, we need natural transformations 71 1 - UF and ¢ : FIJ — 1
satisfying the triangle identities.

To begin, CT has as objects the “T-algebras,” which are pairs (4, ¢) of the
form a: TA — A in C, such that

la=aony and aops=acTo (10.7}
A 7a T24 Ta TA
1 x HA 23
A TA ——— A
o

A morphism of T-algebras,
b (A, 0) — (B, 5)
is simply an arrow h : A — B in C, such that,

hea= 3oT(h}
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as indicated in the following diagram:

m

TA TB
al &
A B

h

1t is obvious that CT is a category with the expected composites and identities
coming from C, and that T" is a functor.
Now define the functors,

v:.¢f-cC
Ufd,a) =4
and
F:C-CT
FC={IC uc).

We need to check that {(TC,puc) is a 1-algebra. The cquations (10.7} for
T-algebras in this case become

o . Tu
re M, pag r3¢ —H9, g2¢
1 ho Hre H
TC 20— TC

H

But these come directly from the definition of a monad.
To see that I is a funetor, given any fi: C' - D in C, we have

T2%h

T 0

ke HD
TC ———— 1D
Th

since g is natural. But this is a T-algebra homomorphism FC — FD, so we
can put

FPh=Th.TC - TD

to get an arrow in CT.
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Now we have defined the category GT and the functors
"
U

and wo want to show that F - U, Next, we need the unit and counit:

C ol

filg—UoF
e : Fol = 1gr
Given C € C, we have
URCYy=U{TC,pe) =TC.

Sowe can take f=1n:1lc — U o F, as required,
Given (4,a) € C7,

FU(A, Cl') = (TA, ,u,;)

and the definition of a T-algebra makes the following diagram commute:

724 19y
A o
TA A

&

But this is a morphism €pq,4) ¢ (T4, 54) — (4,0) in C7, Thus we are setting
E(A’ﬂ) = .

And e is natural by the definition of 2 morphism of T-algebras, as follows, Given
any b (A,a) — (B, ), we need to show

ho £ia,a) ™ €B,B) oTh.

But by the definition of ¢, that is, k o« = f§ o Th, which holds since & is a
T-algebra homomorphism.
Finally, the triangle identities now read as follows:

1. For {4, a), a T-algebra

U(A,a) U(A, )

MA,0) Uega,ey

UFU(A,a)
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which amounts to

na @

TA
which holds since (A4, o} is T-algebra.
2. Forany Ce C
FC FC

FURC
which is

o TC

The He
yide)
which holds by one of the unit laws for T
Finally, note that we indeed have
T=UoF
np= unitof FHU.
And for the multiplication,
H=Uel
we have, for any C € C, .
fic = Vepe = Utroug = Ute = pe.

So jt = p and we are done; the adjunctton ¥ - U via 5 and ¢ gives rise to the
monad {7, 1, jt). ]

Ezxample 10.7. Take the free monoid adjunction,

F . 8ets 7= Mon: U
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The monad on Sets is then T : Sets — Sots, where for any set X, T(X) =
UF{X) = “strings over X.” The unit 7 : X — T'X is the usual “string of length
one” operation, but what is the multipleation?

wTiX - TX

Here T2.X is the set of strings of strings,

[[-T‘lh e smlﬂ]: {3‘21; . ,93271]1 ceey [17;1111 ven az’v'mn];-

And p of such a string of strings is the string of their elements,

“({[xllv e 1-'1:11!}, Efb"zh v |-'L'2nL sy {Emly e smmn]]) = [3-:111 e ;-1’1?1?1]-

Now, what is a T-algebra in this case? By the equations for a T-algebra, it
is a map,

a:TA— A
from strings over 4 to elements of A, such that
alal =a
and
ol Lo b I = alof Jral el ),
If we start with a monoid, then we can get a T-algebra a : TAf -~ M by
afmy,...,mp]=my ..My,

This clearly satisfies the required conditions. Observe that we can even recover
the monoid structure from m by u = m{—) for the unit and 2 - y = m{z,y)
for the multiplication. Indeed, every T-algebra is of this form for & unigue monoid
(exercise!). .

We have now given comstructions back and forth belween adjunctions and
monads. Ard we know that if we start with a monad T : C — C, and then take
the adjunction,

FT.¢ -~ cf. u?

then we can get the monad back by T = UT o FT. Thus, in particular, every
memoid arises rom some acdjunction. But are CT,UT, FT unique with this
property?

In general, the answer is no. There may be many diffevent categories D and
adjunctions F -1 U : D — C, all giving the same monad on C. We have used the
Eilenberg—oore category C7, but there is also something called the “Kleisli
category,” which is in general different from CT, but also has an adjoint pair to
C giving rise to the same monad (sce the exercises).
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I we start with an adjunction F - U and construct CT for T = U o F, we
then get a comparison functor @ : D — CT, with

UTod 2y
DoF=FT
D ® , CT
U FT
F Tt

In fact, ® is unique with this property. A functor U/ : D — C is called
monadic if it has a left adjoint I 4 U, such that this comparison functor is an
egguivalence of categories,

=

D cT

it

for T=UF.

Typical examples of menadie forgetful functors IV : C — Sets are those from
the “algebraic” categories arising as models for equational theories, like monoids,
groups, rings, etc. Indeed, one can reasonably take monadicity as the definilion
of being “algebraic.”

An example of a right adjoint that is not monadic is the forgetful functor
from posets,

{7 : Pos — Sets,

Its lefe adjoint £ is the discrete poset functor. For any set X, therefore, one has
as the unit the identity function X = UF(X). The reader can easily show that
the Eilenberg-Moore category for T = lgas Js then just Sets itself.

10.4 Comonads and coalgebras
By definition, a comonad on a category C is a monad on C°P. Explicitly, this
consists of an endofunctor G : C ~» C and natural transformations,
e:G—1 the counit
§: G —G? comultiplication
satisfying the duals of the equations for a monad, namely
dpod = Gdod

egod = lg = Geod.
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We leave it as an exercise in duality to verify that an adjoint pair # 4 U with
U:b—-Cand F:C—oDandn:leg— UF and ¢: FU — Ip gives rise to a
comonad {G,¢,6) on D, where

G=Foli:D—D
e:G—1
§=Fyy : G — G2

The notions of coalgebra for a comonad, and of a comonadic functor, are
of course also precisely dual to the corresponding ones for monads. Why do
we even hother to study these notions separately, rather than just constdering
their duals? As in other examples of duality, there are actually twe distinct
reasons:

1. We may be interested in a particular category with special properties not
had by its dual. A comonad on Sets® is of course a monad on (Sets®)",
but as we now know, Sets® has many special properties that its dual does
not have {e.g., it is a topos!). So we can prefitably consider the notion of a
comonad on such a category.

A simple example of this kind is the comonad G = A o lim resulting
from composing the “constant funclor” functor A : Sets — SetsC with
the “limit” functor lim : Sets® — Sets. It can be shown in general that
the coalgebras for this comonad again form a topos. In fact, they are just the
constant functors A(S) for sets S, and the category Sets is thus comonadic
aver Sets®,

2. Tt may happen that both structures—monad and comonad—oceur together,
and interact. Taking the opposite category will not alter this situation! This
happens for instance when a system of three adjoint functors are composed:

R
U
L

LAUAR C D

resulting in a monad T'= U o L and a comonad G = U o R, hoth on C. In
such a case, T and (7 are then of course also adjoint 7" < G.

"This arises, for instance, in the foregoing example with R = lim, and
U= A, and L = lim the “colimit” functor. It also occurs in propositional
modal logic, with T = ¢ “possibility” and G = [0 “necessily,” where
the adjointuess & = [0 is equivalent to the law known to modal logicians
as “35."

A related example is given by the open and closed subsets of a topological
space: the Lopological interior operation on arbitrary subsets is a comonad
and closure is a monad. We leave the details as an exercise,
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10.5 Algebras for endofunctors

Some very basic kinds of algebraic structures have a more simple deseription
than as algebras for a monad, and this description generalizes to structures that
are not algebras for any monad, but still have some algebra-like properties.

As a familiar example, consider first the underlying structure of the notion
of a group. We have a set G equipped with operations as indicated in the
following: :

GxG - G G

1

We do not assume, however, that these operations satisfy the group equations
of associativity, ete. Observe that this description of what we call a “group
structure” can plainly be compressed into a single atrow of the form

[, 4, m] G

I1+G+GxG
Now let us define the functor F'; Sets — Sets by
FX) =14+4X+XxX
Then a group structure is simply an arrow,
v: F(G) - G.
Moreover, a homomorphism of group structures in the conventional sense

h:G-— H,

hug) = un
Wi(a)) = i(h(x))
h{m(z,y)) = m(h(z), h{y))
is then exactly a function h : G — I7 such that the foHowing diagram commutes:

#(@) 29 pimy

h




“10-Awedey-c10” — 2009/12/18 — 17:02 -— page 267 — F£15

MONADS AND ALGEBRAS 267

where d : F(H) — H is the group structure on H. This cbservation motivates
the following definition, '

Definition 10.8. Given an endofunctor P : & — & on any categmy &,
a P-algebra consists of an object A of § and an arvow,

a: PA— A

A howmomorphism h: (A,a) — (B,3) of P-algebrasis anarrow h: A— Bin &
such that koo = 3 o P{h), ns indicated in the fellowing diagram:

piy 20, gy

a B

A B

h

The category of all such [P-algebras and their homomorphisms are
denoted as

P-Alg(S)

We usually write more simply P-Alg when & is understood. Also, if there is
a monad present, we need to be careful to distinguish between algebras for the
monad and algebras for the endofunctor {especially if P is the functor part of
the monad!).

Fgample 10.9. 1. For the functor P(X) = 1+ X + X x X on Sets, we have
already seen that the category GrpStr of group structures is the satne
thing as the category of P-algebras,

P-Alg = GrpStr.

2. Clearly, for any other algebraic structure of finite “signature,” that is,
consisting of finitely many, finitary operations, there is an analogous
description of the structures of that sort as algebras for an associated
endofunctor. For instance, a ring structure, with two nullary, one unary,
and two binary operations is given by the endofunctor

RX)=2+X +2x X2
In general, a functor of the form
P(X})=Co+Ci x X +Cox X? 4+ 4 Cp x X"

with natural number coefficients Cy, is called a (finitary} pelynomial
funetor, for obvious reasons. These functors present exactly the finitary
structures. The same thing holds for finitary structures in any category S
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with finite products and coproducts; these can always be represented as
algebras for a suitable endofunctor.

3. In a category such as Sets that is complete and cocomplete, there is
an evident generalization to infinitary signatures by using generalized or
“infinitary” polynromial functors, that is, ones with infinite sets Oy as
coeflicients (representing infinitely many operations of a given arity), infinite
sets B, as the exponents X P% (representing operations of infinite arity},
or infinitely many terms (representing infinitely many different avities
of operations), or some combination of these. The algebras for such an
endefunctor

P(X) = Cix X5
iel
con then he naturally viewed as generalized “algebraic structures.” Using
locally cartesian closed eategories, one can even present this notion without
needing (co)completeness.

4. One can of course also consider algebras for an endofunctor P: & — & that
is not polynomial at all, such as the covariant powerset functor 7 : Sets —
Sets. This leads to a proper generalization of the notion of an “algebra,”
which however stilt shares some of the formal properties of conventional
algebras, as seen below,

Let P: Sets — Sets be a polynomial functor, say
P(X)=1+X*?

(what structure is ¢his?). Then the notion of aw initial P-algebra gives rise to 2
reeursion property analogous to that of the natural numbers. Specifically, let

[o,m}: 1+ T

be an initial P-algebra, that is, an initial object in the category of P-algebras.
Then, explicitly, we have the structure

ecl, milx -1
and for any set X with a distinguished element and a binary operation
ac X, 1 XA XX X
there is a unique function u : I — X such that the following diagram commutes:

P
1+I2m£)>1+)(2

fo, m] o

I— X

17
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This of course says that, for all i,7 € I,

ulo) =a
w{m{i, §)) = ufi) = u(j)

which is exactly a definition by structural recursion of the function u: / — X,
Indeed, the usual recursion property of the natural numbers N withj0 € N and
succossor s : N - N says precisely that {N,0,s) is the initial algebra for the
endofunctor,

P(X)=1+ X : Sets — Sets

as the reader should check. :

We next briefly investigate the question: When does an endofunctor have an
initial algebra? The existence is constrained by the fact that initial algebras,
when they exist, must have the following noteworthy property.

Lemma 10,10 (Lambek). Given eny endofunctor P @ & — & on an
arbitrary cetegory 8, if i + P(I) — [ is an inilial P-algebra, then i is an
isomorphism,

P(Iy=T.

We leave the proof as an easy exercise.

In this sense, the initial algebra for an endofunctor P : § — § is a “least
fixed point” for P. Such algebras are often used in computer science to model
“recursive datatypes” determined by the so-called fixed point equations X =
P{X).

Prample 10.11. 1. For the polynomial functor,
P(X)=1+X?
{monoid structure!), let us “unwind” the initial algebra,

[,@:1+7x =]

Given any element x € I, it is thus etther of the form # or of the form
21@gx4 for some elements 11, o € . Fach of these x;, in turn, is either of
the form * or of the form x;;@x0, and so on. Continuing in this way, we
have a representation of = as a finite, binary tree. For instance, an element
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of the form 2 = *@{*@x) looks like

N
SN

We can present the monoid structure explicitly by letting
I={t|tis a finite, binary trec}
with
* = “the empty tree”
@1y, o) = {1813
1@ty

O\

%@ :1+IxT—1

The isomorphism,

here is plain to see.
. Similarly, for any other polynomial functor,

PX)=Co+Ci x X+Cox X2+ +Cy x X
we can describe the initial algebra (in Sets),
P(Iye 1

as 2 set of trees with branching types and labels determined by P.
Tor instance, consider the polynomial

P{X)=1+AxX
for some set A. What is the initial algebra? Since,

@il Ax i)
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we can unwind an element x as
@ =% or q1@zy

z1 = * or ag@xs

Thus, we essentially have © = ¢1@as@ - - - @a,. So I can be represented as
the set A-List of (finite) lists of elements ay, ag,... of A, with the structure

* = “the empty list”
Q(a, ) = e@f
The usual procedure of “recursive definition” follows from initiality. For
example, the length function for lists length @ A-List — N is usually
defined by
length(*) = 0 (10.8)
length(a@f) = 1 + length{{) (10.9)
We can do this by equipping N with a suitable P{X) = 1+ A4 x X structure,
namely,
[0,m]:1+AxN—-N

where m{a, n) = 14 for all n € N. Then by the universal mapping property
of the initial algebra, wo get a unique function length : A-List — N
making a commutative square:

1+ A % length 1
—_—

14+ A x A-List +AxHN
[+, @] [0,m]
A-List > N

length

But this commutativity is, of course, precisely equivalent to the equations
{10.8} and (10.9).

In virtue of Lambek’s lemima, we at least know that not all endofunctors can

have initial algebras. For, consider the covariamt powerset functor P : Sets —
Scts, An initial algebra for this would give us & set J with the property that
P(I) = I, which is impossible by the well-known theorem of Cantor!

The following proposition gives a useful sufficient condition for the existence

of an initial algebra.

Proposition 10.12. If the eategory & has an indtial object O and colimits of
dingrams of type w [call them ‘w-colimits™), and the functor

P:8-8
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preserves w-colimils, then P has an initial elgebra.

Proof. Note that this generalizes a very similar result for posets already given
above as proposition 5.34. And even the proof by “Newton's method” is
essentially the same! Take the w-sequence

80— PO P
and let 7 be the colimit

I = lim P0.
iy

Then, since P preserves the colimit, there is an isomorphism

P(I) = P{limg P"0) & lim P(P"0) =l P"0 = I

n n n

which is seen to be an initial algebra for P by an easy diagram chase. 0

Since (as the reader should verify) every polynomial functor P : Sets — Sets
preserves w-colimits, we have

Corollary 10.13. Bvery polynomial functor P : Sets — Sets has an initial
algebra.

Finally, we ask, what is the relationship between algebras for endofunctors and
algebras for monads? The following proposition, which is a sort of “folk theorem,”
gives the answer.

Proposition 10.14. Let the cafegory & Lt&t‘ finite coproducts. Given an
endofunctor P: 8 — 8, ihe following conditions are equivalent:

1. The P-algebras are the algebras for a monad. Precisely, there is a monad
(T:S8 — &, p), and an equivalence

P-Alg(8) =~ 87

botween the category of P-algebras and the category ST of algebras for the
monad. Moreover, this equivalence preserves the respective forgetful functors
lo S.

2. The forgetful functor U : P-Alg(8) — & has e left edjoint
FEU
3. For each object A of 8, the endofunctor
P X)=A4PX): 8§ =8
has an initial olgebra.

Proof. That {1} implies {2) is clear.
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Tor {2) implies (3}, suppose that U has a left adjoint F : & — P-Alg and
consider the endofunctor P4(X) = A + P(X). An slgebra {X,) is a map v :
A+ P(X) — X. But there is clearly a unigue correspondence between the
following three types of things:

’Y.A+P{¢Y)Hz\’

P(X}

a:A—UX, 05

Thus, the Pas-algebras can be deseribed equivalently as arrows of the form
a: A — UX,8) for P-algebras (X, 3). Moreover, a Py-homomorphism h :
(o, U(X, 8)) — (of, (X', 3")) is just a P-homomorphism 4 : (X, 8) — (X',8')
making a commutative triangle with a and of : A — U{X', 7). But an initial
object in this category is given by the unit  : A — UFA of the adjunction
F + U, which shows (3).

Tndeed, given just ihe forgetful functor U : P-Alg — &, the existence of initial
objects in the respective categories of arrows o @ A4 — U{X, ), for each 4, is
exactly what is needed for the existence of a left adjoint F to I, So {3) also
implies (2).

Before concluding the proof, it is illuminating to see how the free functor
F : & — P-Alg results from condition {3). For each object A in &, consider
the initial Pa-algebra o : 4 + P(I4) — I4. In the notation of recursive type
theory,

Iy = px A+ PX)
meaning it is the (least} solution to the “fixed point equation”
X =A+PX).

Since  is a map on the coproduct 4 + P14}, we have a = [0, 03], and we
can let

F{A)Y = (T4, ag : P{T4) > T4}




274

“10-Awodey-c10” — 2009/12/18 — 17:02 — page 274 — #22

CATECGORY THEORY

To define the action of F on an arrow f: A — B, let 0: B+ P{Ig) — Ip be
the initial Pg-algebra and consider the diagram

A+ P{I4) A A+ P{g)
f+ Pz}
a B+ P(Ip)
B
O ————— » I

The right-hand vertical composite Ao (f 4+ F?(Jg}) now makes I into a Py-
algebra. There is thus a unique Py-homomorphism u as indicated, and we can set

P(fy=u.

Finally, to conclude, the fact that {2) implies {1} is an easy application of

Beck's Precise Tripteability Theorem, for which we refer the reader to section
V1.7 of Mac Lane's Cafegories Work (1971). O

10.6 Exercises

1. Let T be the equational theory with one constant symbol and one wnary

funection symbol (no axioms). In any category with a terminal object, a
natural mimbers object (NNO) is just an initial T-model. Show that the
natural numbers

(MoeNn+1:N—N)
is an NNO in Sets, and that any NNO is uniquely isomorphic to it (as a
T-model}.

FinaHy, show that (N,0 € N,n+1: N — N) is uniguely characterized {up
to isomorphism) as the initial algebra for the endofunctor F(X) = X + 1.

. Let C be a category and T : C — C an endofunctor. A T-algebra consists

of an object A and an atrow a : T4 — A in C. A morphism & : (g, A) —
(b, B) of T-algebras is a C-morphism h : A — B such that hoa = boT'(h).
Let C he a category with a terminal object 1 and binary coproducts.
Let T : ¢ — C be the evident functor with cobject-part € — € +1 for
all objects € of C, Show (easily) that the categories of T-algebras and
T-models (T as above) {in C} are equivalent:

T-Alg ~ T-Mod.
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Conclude that free T-algebras exist in Sets, and that an initial T-algebra
is the same thing as an NNO,

. {“Lambek’s lomma”) Show that for any endofunctor ' : C — G, if i :

TI — I is an initial T-algebra, then i is an isomorphism. (Hint: consider
a diagram of the following form, with suitable arrows.)

T YES ] » TF

i Ti

I - TI I
Conclude that for any NNO N in any category, there is an isomorphism
N +1 2 N. Also, derive the usual recursion property of the natural
numbers from initiakity.

. Given categories C and D) and adjoint functors F: C — DandU: D - C

with F 4 U, unit 5 : 1g — UF, and counit ¢ : FUJ — Ip, show that
T=UoF:C—=C
n:lg—T
p=Uep: T2 T

do indeed determine a monad on C, as stated in the text.

. Assume given categories C and I} and adjoint functors

F.C2D:U

with unit 5 : 1¢ — UF and counit € : FIJ — Ip. Show that every D in
D determines a T = UF algelna Ue: UFUD — UD, and that there is a
“comparison functor™ & : 1) — C7 which, moreover, commutes with the
“forgetful” functors U/ : D — Cand U7 : CT - C.

D P

CT
N %T
C

. Show that (P, s,1)) is a monad on Sets, where

« P: Sets — Sets is the covariant powerset functor, which takes each
function f: & — Y to the image mapping

P(f) = im(f}: P(X) — P(Y)




“10-Awodey-c10" — 2009/12/18 — 17:02 — page 276 — #24

276 CATEGORY THEORY

s for cach sel X, the component sy : X — P(X} is the singleton
mapping, with
sxfz)={2}C X
for each z € X;
o for each set X, the component Uy : PP{X} — P{X} is the union
operation, with
Ux(e)={z € X |3pea.zeU}CX
for each o« C P{X).
7. Determine the category of (Eilenberg-Moore) algebras for the (P,s,U)

monad on Sets defined in the foregoing problem. (Hint: consider complete
tattices.)

8. Consider the free - forgetful adjunction
F:8ets = Mon: U
between sets and monoids, and let (7,57, 47) be the associated monad
on Sets. Show that any T-algebra o : T'A ~» A for this monad comes
from a monoid structure on A (exhibit the monoid multiplication and unit
element).
9. (a) Show that an adjoint pair F AU with U: D > Cand p: UF - 1g
and ¢ : 1p — FU also gives rise to a comoned {G,¢,8) in D, with
G=FolU:D—-D
¢: G -+ 1 the counit
§=Fny:G— G?
satisfying the duals of the equations for a monad.
(b) Define the notion of a coalgebra for a comonad, and show (by
duality) that every comonad (G, ¢,8) on a category D “comes from” a
(not necessarily unique} adjunction F = G such that G == IFU and ¢
is the counit.

{¢) Let End be the category of sets equipped with an endomorphism,
e: 8 — 8. Consider the functor ¢ : End — End defined by

G(S,e) = {a € § | eV {(z) = el"}{z) for some n}
equipped with the restriction of e. Show that this is the functor part
of a comonad on End.

10. Verify that the open and closed subsets of a topological space give
rise to comonad and monad, rtespectively, on the powerset of the

underlying pointset. Moreover, the categories of coalgebras and algebras
are isomorphie.
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11, {Kleisli category) Given a monad {7, 7, pr) on a categery C, in addition to
the Eilenberg—Moore category, we can construct ancther category Cr and
an adjunction F AU, np:1 > UF, e: FU — 1 with U : Cpr — C such
that

T=UoF
n=n (the unit)
u =U€F

This category Cr is called the Kleisli category of the adjunction, and is
defined as follows:

» the ohjects are the same as those of C, but written Ay, Br,.. .,

o an arrow fr: A7 — By is an arrow f:A—=TBmnC,

o the identity arrow 14, : Ay o Ap isthe arrow g : A - TAin C,

e for composition, given fp : Ay — By and gr : By — Cp, the
composite g o fr : Ar — Crp is defined A

peolgro fr
as indicated in the following diagram:

4 gre fr e

fr] e

TB Tre

Tgr
Verify that this indeed defines a category, and that there are adjoint
functors F : C — Cpr and U : Cy — C giving rise to the monad as
T = UF, as claimed.

12, Let P : Sets — Sets be a polynomial functor,
PX)=Co+Cix X +Coax X2+ -+ G x X"

with natural number coefficients Cy,. Show that P preserves w-colimits.

13. The notion of a coalgebra for an endofunctor P § — & on an arbitrary
category S is exactly dual to that of a P-algebra. Deternine the finol
coalgebra for the functor

PX)=1+AxX

for a set A. (Hint: Recall that the initial algebra consisted of finite lists
a1, 4as,... of elements of A.)

ANS .

+s be
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Chapter 1
1. (a) Identity arrows behave ecorrectly, for if f C A x B, then
fola={la,]3a" € A:{a,ay €14 A, B} € f}
={{a,B) | cAd:a=d r{d,b)c f}
~ (e, | ab)y & £y = f

and symmetrically 1p o f = f. Composition is associative; if f C A x B,
gC BxC,and h C O x D, then

{hogye f={{a,d) | Tb: {a,b) € FA(bd) € hoyg}
={{a,d} | Ib: {a,by e fA{bd) € {{byd) | Fe: {be) €gAled) € h}}
={{a,d} | Fo:{e, by € fATe: {be)€gAledych}
= {{a,d} | I3c: {a,b} € F A {b,c) € gnfe,d) eh}
= {{a,dy | Je: (Fb: (o, By € f A {hc) € gl Aie,d) € h}
= {{a,d) | e: {a,b) € go f Afe,d) € h}
~holgo ).

2, (a) Rel = Rel®, The isomorphism functor (in both dircctions) takes an
object A to itself, and takes a relation f C A x B to the opposite relation
for C B x A defined by f°° := {{b,a) | {a,b} € f}. It is straightforward
to check that this is a functor Rel — Rel°? and Rel® — Rel, and it is
its own inverse.

(b} Sets % Sets®. Constder maps into the empty set @; there is exactly one,
If Sets = Sets°? held, there would have to be a corresponding set § with
exactly one arrow out of it.

{c) P(X) = P(X)°. The isomerphism takes each element U of the powerset
to its complement X — U. Functoriality amounts to the fact that U CV
implies X -V CX —U.

3. {a) A bijection f from a set A to a set B, and its inverse 71, comprise an
isomorphistm; f(f~1(b}) = band f~!(f{a)) = @, and so fo f ! = Iz and
fta f =14, by definition of the inverse. If an arrow f: A — B in Sets
is an isomorphism, then there is an arrow g : B — A such that fog=1p
and go f = 4. The arrow [ is an injection because f(a) = f(a") implies
a = g{f{a)) = g(f{a’)} = &, and [ is surjective because every b € B has
a preimage, namely g(b}, since f{g(b)) =&
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(b) Monoid homomorphisms that are isomorphisms are also isomorphisms in
Sets, so by the previous solution they are bijective homomorphisms. It
remains to show that bijective homomorphisms are isomorphisms. It is
sufficient o show that the inverse mapping of a bijective homomorphism
[+ M — N is a homomorphism. But we have

T bwn 8 = FHAF O FUTHON)
= FHAE b)Y war TR
= fTHB) *ar f (V)

and f~ (ex) = f7H(flenr)) = enr.

{c) Counsider the posets A = (I, <a) and B = (U, <p) given by U = {6, 1},
<a= {{8,0),{1,1}}, and <p= {{0,0}, {0, 1}, {1, 1}}. The identity function
i: U = Uisanarrow A — B in Posets, and it is a bijection, but the
only arrows B — A in Posets are the two constant functions U7 — U,
because arrows in Posets must be monotone. Neither is an inverse to i,
which is therefore not an isormorphisnt.

. The coslice category C/C, the category whose objects are arrows f:C — A

for A € C and whose arrows f — f' are arrows h completing commutative
triangles

—

fl

can equivalently be described as (CoP/C)°P. For example, in the above
diagram f, [’ are arrows infe C in the opposite category C°P, so they are
objects in the slice C°P/C, The mrow his B— Ain CPand ho f = [ so
it is an arrow B — A in C%®/C, hence an arrow A — B in (C°P/C)°P.

9. The free category on the graph
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has infinitely many arrows, all possible finite sequence of alternating fs and
gs—there are two empty sequences (L., identity arrows}, one for each object,

10. The graphs whose free categories have exactly six arrows are the discrete
graph with six nodes, and the following 10 graphs:

: : . . : N
| | pMOVE
ERARRREE
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11. (a) The functor A : Sets -+ Mon that takes a set X to the free monoid on
X (i.e., strings over X and concatenation) and takes a function f: X - V
to the funetion M(f) defined by AM{fHas...ar) = Flar)... fleg) is a
functor; A (f) is a monoid homomorphism MX — MY since it preserves the
monoid identity (the empty string) and the monoid operation (composition).
It can be checked that Af preserves identity functions and composttion:
M(x)ai...ap)=1x{a1).. . Ix{ar) =a1...ar and

Mgo fies...ar) =(go FHas)...(go fHlar}

=g{f(a1)) .. g(flar)) = Mg} (M(f)er... ar))
= (M{g)o M{fiai ... ar).
12. Let I be a category and f : G — U{D) be a graph homomorphism. Suppose
h is a functor C(G) — D such that

Uhyoi=h (%)

From this equation, we see that U{R}i{z}) = h(z) for all vertices and
edges & € (. So the behavior of & on objects and paths of length one
(i.e., arrows in the image of i) in C(G) is completely determined by the
requirement {#), But since h is assumed to be a functor, and so must
preserve composition, its behavior on arrows in C(G) that correspond to
longer paths in G is also determined, by a simple induction. Now it must be
that R(f1 -+ f) = A{f3)o-- - h{f) if b is a functor, and stmilarly I{g4) = 14,
where £, is the empty path at 4. So uniqueness of h is established, and it
is easily checked that this definition is indeed a functor, so the dnivessat

—Hnapping-propoety(UhiRy is satisfied.

Chapter 2

1. Suppose f: A — B is ept and not surjective. Choose b € B not in the range
of f. Define g1,92 : B — {0,1} as follows: g1{z) = 0 for all z € B, and
gafz) = 1 if z = b, and O otherwise. Note that g1 o f = go o [ by choice
of b, a contradiction. In the other direction, suppose [ is surjective, and
suppose g;,02 : B — € are such that g1 # g2. Then there is b € B such
that g)(b) # ga(b). By asswmption, b has & preimage a such that f(a) = b
So g1(f(a)} # g2(f{a)) and gro f # gao f.

4. {a) Iso: the inverse of h is f~Yog~!. Monic: If hoky = hoky, then gofok =
go foks. Since g is monie, foky = foko. Since f is monic, k) = kg, Epi:
dual argument.

(bYIf fok; == foke, thengo fok; =go foky. Since h is monie, by = ka.

(e} Dual argument to (b},

(d) In Sets, put A = = {0}, B = {0,1}, and all arrows constantly 0. h is
monic but g is not.
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Suppose f : A — B is an isomorphism. Then § is mono because foky = foks
implies ks = f o foki = f~Y o foky = ks, and dually f is mono also.
Triviadly, f is split mono and split epi because fof ' = Ipand f~lof = 1,4.
So we know {a)=+(b), (o), {d}. If f is mono and split epi, then there is g such
that fog = 1. Butsince f is mono, (fog)ef = fo(gof} = f = fol, implies
go f =1, and so g is in fact the inverse of f, and we have (b)=-{a}. Dually,
{e)=r{a). The fact that {d)=(b), (¢} needs only that split mono implies mono
(or dually that split epi impHes epi). If there is g such that go f = 1.4, then
foky=fokyimpliesky =go foky=gofoks=ke

L B — H is injective on edges and vertices, and ho f = hog in Graphs,

then the underlying set functions on edges and vertices are mono arrows in
Sets, so the edge and vertex parts of f and g ave equal, and so f = ¢. If
h : G — H is mono in Graphs, and it is not injective on vertices, then
there are two vertices v, w such that k{v) = h(w). Let 1 be the graph with
one vertex, and f,g be graph homomorphisms 1 — & taking that vertex
to v, w, respectively. Then, ho f = hog. A similar argument holds for
edges.

. First, in the category Pos, an arrow is epi il it is surjective: suppose that

f: A — B issurjestive and let g,h : B — C with gf == kf. In Pos, this
means that ¢ and h agree on the image of f, which by surjectivity is all of B.
Hence g =} and f is epi. On the other hand, suppose f is not epi and that
g,k 1 B — (' witness this. Since g # &, there is some b € B with g(b) # h{b).
But from this b & f{A), and s0 A is not surjective.

Next, the singleton set 1, regarded as a poset, is projective: suppose f:1 —
Y and e: X —» ¥ are arrows in Pos, with e epi. Then ¢ is surjective, so there
is some x € X with e(x) = f(*). Any map * — x witnesses the projectivity
of 1.

Any set A is projective in Pos: suppose that f: A > Y ande: X - Y are
arrows in Pos. Choose for each y € ¥ an element z, € X with f{z;} = y; this
is possible since ¢ is opt and hence surjective, Now define a map fiA=X
by @+ 2p(qy. Since A is discrele this is necessarily monotonic, and we have
ef = f, so A is projective.

For conteast, the two element poset P = {0 < 1} is not prejective. Indeed,
we may take f to be the identity and X to be the discrete two-clement set
{a,b}. Then the surjective map e : a4 +— 0,51~ 1 is an epi, since it is surjective.
However, any monotone map g : P — {«,b} must identify 0 and 1, since the
only arrows in the second category are identities. But then eog # tp. Thus,
there is no function g lifting the identity map on P across e, so P is not
projective.

Morcover, every projective object in Pos is discrete: For suppose @ is
projective. We can always consider the discretation |Q] of 2, which has the
same objects as @ and only identity arrows, We clearly get a map |[Qf — @
which is surjective and hence epi. This means that we can complete the
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ciagram
Ql
X
L7 el
Q aQ

1o

But the only object Tunction that could possibly commute in this sttuation
is the object identity. Then,

1<¥ = f2) < @) = f@)=[) = z2=2"

Butt then the only arrows of (§ are identity arrows, so @ is discrete, as claimed.
Thus, the projective posets are exactly the discrete sets. Clearly, composition
of maps and identity arrows of discrete posets are exactly those of Set, so
Set is a subcategory of Pos. Moreover, every function between discrete sets
is monotone, so this is a full subeategory.

"The UMP of a free monoid states that for any f: A — UB, there is a unique

f:MA - B such that

UMA uf B
I f ()
A

conmutes. For n+ A — UM to be an initial ebject in A-Mon, it must be
that for object f : A — UB, there is a unique arrow f in A-Mon from 5
to f. But the definition of arrow in A-Mon is such that this arrow must
complete exactly the commutative triangle (x) above. Therefore, the two
characterizations of the free monoid coincide,

Let P be the iterated produet A x{B x C) with the obvious maps py : P — 4,
p2: P— BxC— B,andps: P— BxC — C. Define @ = (Ax B)x and
g; similarly. By the UMP, we get a unique map fi = py X p2: P = A x B,
Applying it again, we get a unique map f = (py X p2) X pa : P — @ with
gif = pi. We can run a similar argument to get a map g in the other direction.
Coniposing, we get gf : P — P which respects the p;. By the UMP, such a
map is unique, but the identity is another such map. Thus they must be the
same, so gf = lp. Similarly fg = 1g, 80 f and g are inverse and P = Q.

The pairing of any arrow with the identity is in fact split mono: w1014, f) =
14. There is a functor G : Sets — Rel which is constant on objects and
takes f : A — B to (im(la, f}} € A x B. It preserves identities since
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G{14)im{1a4,14) = {{a,a} | « € A} = 14 € Rel. It preserves composition
because for g : B — C, we have

Glgo f) =im(ba,go f) = {{a,g(f(a})} | a € A}
= {{a,c) [ Fbc Bb= fla) Ae=g(b)}
= {{b,g(1)} | b€ B} o {{a, fa}) | e € 4}

= Glgy e G(f).

Chapter 8

1. In any category C, the diagram

A C B
=] 3

is a product diagram iff the mapping
hom(%, C) — hom{Z, A} x hom{Z, B)

given by [+ {c; o f,co 0 f} is an isomorphism. Applying this fact to C,
the elaim foltows.

2, Say #ar.4,{asp ave the injections into the coproduct M A+A B, and na, 7 are
the injections into the free monoids on A, B. Put e = {U(ipra)ona, Uliarg)o
7). Let an ebject Z and an arrow f : A+ B - UZ be given, Suppose
h:MA+ MB — Z has the property that

Uhoe=f . (%)

Because of the UMP of the coproduct, we have generally that a o [b,c] =
[@ o b, aod], and in particular

Uhoe={UhoUliara) oy, Uho Ulisrn) o nn)

Because this is equal to f, which is an arrow out of A+ B, and since functors
preserve composition, we have

Ulhoiya)ona= foia

Ulhoiyp)ons=foin

where i4,ip are the injections into A + B. But the UMP of the {ree monoid
implies that i o ips4 must coincide with the unique foi,4 that makes the
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triangle
na
foia
A
commute, Similarly, h o iyrp = foip. Since its behavior is known on

both injections, A is uniquely determined by the condition (x}; in fact,
h=[foig,foip] Thatis, the UNMP of the free monoid on A+ B is satisfied
by M A+ M B. Objects characterized by UMPs are unique up to isomorphism,
so M{A+B)= MA+ MB.

. In the eategory of proofs, we want to see that (modulo some identifications)

the coproduct of formulas ¢ and i is given by ¢ V . The intro and elim
rules automatically give us maps {proofs} of the coproduct from either of
its disjuncts, and from pairs of proofs that begin with each of the disjuncts
into a single proof beginning with the disjunetion. To see that this object
really is a coproduct, we must verify that this is the unigue commuting
arrow,
i
eV +——— P

pdl 4

'
1
t

But this is simple since composition is simply concatenation of proofs.
Suppose we have another proof r : @ V¢ — 0 with roi = p. Then by
disjunetion elimination, r necessarily has the form

-l W
L AVES g 8
]
Applying i on the right simply has the effect of bringing down part of the

el

proof above, so that the quotienting eguation now reads roi = o = p- Hence,
up to the presence of more detours, we know that the proof appearing as part
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[y}

of r is exactly p. Similarly, we know that the second part of the proof g
must be ¢. Thus 7 is umiquely defined {(up to detours} by pand g, p Vi is
indeedt a coproduct.

. {Equalizers in Ab). Suppese we have a diagram

f .
(Aa +a, OA) - (B; +a, OB)
g -

in Ab. Put &' := {a € A | f(a) = g(a)}. Tt is easy to check that A is in fact
a subgroup of A, so it remains to be shown that

f
(A’a +A!0A) — (/1,4»,1,0'{;) g (Ba+B;OB)

g
is an equalizer diagram.
{-’Ys +x, 0,\')
‘
R g
)
' f
(A’; + 4, OA) e (Al +a, OA) - (B} +BrOB)
g

If the triangle is to commute, h(z) = z(z) for all x € X, so h is uniquely
determined. It is easily checked that h is & homomorphism, implying that
Ab indeed has all equalizers.

{a) The equalizer of f o m and f oy is the relation ker(f) = {{a,¢') €
Ax A| f(a) = fla')}. Synumetry, transitivity, and reflexivity of ker(f)
follow immediately from the same properties of equality.

{(bY We need to show that 2 pair a,&" of elements are in the kernel of the
projection g : A — A/R ifl they are related by R. Bui this amounts
to saying that q(a) = g(a’) iff aRe’, whero ¢(z) = {2 | xRa} is the
equivalenco class. But this is true since R Is an equivalence relation,

(¢) Take any function f: A — B with f{a) = f(¢') for all aRa’. The kernel
ker(f} of f is therefore an equivalence relation that contains R, so (R) C
ker(f). It follows that f factors through the projection ¢: A — A/{R}
(necessarily uniguely, since ¢ is epic).

(d) The coequalizer of the projections from R is the projection g
A —» A/{R), which has {R) as its kernel.
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Chapler 4
1. Given a categorical congruence ~ on a group G, the corresponding normal

subgroup is N. = {g | g ~ e}. N is a subgroup; it contains the identity
by reflexivity of ~. It is closed under inverse by symmetry and the fact that
e ~ g implies g™t = g le ~ g~ 'g = e. It is closed under product because if
g~ e and h ~ e then gh ~ ge = g ~ e, and by transitivity gh ¢ N.. It is
normal because

wlglg~e={zglg~el={a@h) e h~e}={h|h~a}
and

{g1g~ele={ga|gr~el = {{he e | ha' ~e} = [ | h~a}.
In the other direction, the categorical congruence ~u corresponding to a
normal subgroup N is g ~y h @ <=> gh™' € N. The fact that ~y is an
equivalence follows easily from the fact that N is a subgroup. If f ~x g, then
also hfk ~y hgk, since fg1 € N implies Afkk g~ th™t = hfg~th~ 1 e N,
because N was assumed normal, and so N = ANA™L.
Since two elements g, h of a group are in the same coset of N precisely when
gf! = e, the quotient G/N and the guotient G/~ coincide when N and ~
are in the correspondence described above.

. {a)
1 » 2 3
No equations. (i.e., 3 Is free)
(b)
S
Vb oo—— 32— 3
g
Equations: f =g
{c)
f h
i T2 >3
g k
Equations: f =g, h = E
(d)
1 / > 2
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*

Egunations: f=hog

7. By definition of congruence, f ~ f' implies gf ~ gf’ and g ~ g implies
gf' ~ g' f'. By transitivity of ~, we conclude gf ~ ¢'f'.

8. ~ is an equivalence because equality is. For instance, if f ~ g, then for all

Eand H:D — B we have HF = HG = H(f)} = H(g). But under the
same conditions, we have H{g) = H(f), so g ~ f. Since H is assumed to
be a functor, it preserves composition, and so H(hfk) = H(h)H(f)H (k) =
H{RYH (g)H (k) = H{hgk) for any H such that HFF = HG and any h, &,
hence ~ is a congruence. -
Let ¢ be the funetor assigning all the arrows in D to their ~-equivalence
classes in the quotient Df~. We know ¢ is indeed a well-defined functor by
a previous cxercise. Suppose we have H coequalizing F,G. By definition
of ~ amy arrows that IT identifies are ~-equivalent, and therefore
identified also by g. There can be at most one K making the triangle
in

q

C D D/~
G
H o
B

commute, (for any [fl. € D/~ it must be that K({fl.)
H{f)) and the fact that ¢ identifies at least as many arrows as
implies the existence of such 2 K. So ¢ is indeed the coequalizer
FG.

g i

Chapter § .

1. Their UMPs coincide. A product in C/X of f and g is an object b : A X x
B — X and projections m; + A — f and m2 1 h — g which is terminal
among such structures. The pullback of f, g requires an object A xx B and
projections 7y : A xx B — Aand mp 1 A xxy B — B such that fom =
¢ oy, terminal among such structures. The commutativity requirements of
the pultback are exactly those imposed by the definition of arrow in the slice
category.

2. (a} If m is monic, then the diagram is a pullback; if mo f = mo g, then
f = g, the unigue mediating map being equivalently f or g. If the diagram
is a pullback, suppose m o f = m o g. The definition of pullback implies the
unique existence of & such that 1ar ot = f and 1370 h = g, but this imphies

f=g
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h 7

— M

m’ m

A —— 4

Tet h,k : Z — M’ be given, Suppose m'h = m'k. Then, fm'h = fm'k and
so mf'h = mf'k. Since m is assumed mono, f'h = f'k. The definition of
pullback applied to the pair of arrows m’k, f'k implies, there is exactly one
arrow ¢ : Z — M’ such that m’ og = m'k and f'o ¢ = f'k But both i,k
can be substituted for ¢ and satisfy this equation, so i = k.

. Suppose m : M — A and n: N — A are subobjects of A. If M T N, then

there is an arrow 5 : M — N such that nos = m. I z €4 M, then there is
an arrow f : 4 — A such that mo f = 2. Then so f witnesses z €4 N, since
noso f=mof=yz Hfforallz: Z — A wehave z €y M=z €4 N, then
in particular this holds for z = m, and in fact m €4 M {via setting f =14}
50 m €4 N, in other words M C N.

. We show that the representable functor Ilomg{C, —} : C — Sets preserves

all small produets and equalizers; it follows that it preserves all small limits,
since the latter can be constructed from the former. For products, we need
to show that for any set I and family (D;);er of objects of C, there is a
(canonical) isomorphism,

Hom({C, H Dy H Hom(C', ).
i€l iel
But this follows immediately from the definition of the product [, D;.
Tor equalizers, consider an equalizer in G,

I L, A B.
g
Applying Hom({C, -) 1‘esu£t-s in the following diagram in Sets:
e ‘ i
Hom(C, F) Hom{C, A) Hom(C, B},
=

which is clearly an equalizer: for, given h : € — A with f.(h) = g.{h), we
therefore have fh = f.(h) = g.(k) = gh, whence there is a unique v : C — E
with b = eu = e, (u).

. We have a putative category of partial maps. We need to verify identity and

associativity. The first is easy. Any object is a subobject of itself, so we may
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set 14 in the eategory of partial maps to be the pair (14, A). Tt is trivial to
check that this acts as an identity.

For associativity, suppose U, V/, and W are subobjects of A, B, and C,
respectively, and that we have maps as in the diagram:

UxpV V xg W

U vV W

NN SN,
A B c . D
Now let P be the pullback of U x gV and V x W over E and k the associated
partial map. Since we can compose puliback squares, that means that P is
also the pullback of I and V x W over B, Since the latter is the composition
of g and h, this means k = {h e g} o f. Similarly, k = h o (g o f). Hence the
composition of partial maps is associative, and this setup does deseribe a
category.

If we let the numeral n dencte the initial segment of the natural sumber
sequence {0 <1< ... < n}, we have a chain of inclusions in Pos:

gosl—D2—2...on—....

We would like to determine the lmit and colimit of the diagram.
For the limit, suppose we have a cone ,, : £ — n. Since 0 is the initial object,
€o is constant, and each map ¢, has (g as a factor {¢his is the cone condition).
But each such map simply takes 0 to itself, regarded as an element of n, so
that €, is also the constant zero map. So the limit of the diagram can be
(anything isomorphic to) the object 0 together with the inclusions 0 — n.
Now suppose we have a co-cone ¥, : n — Y. The co-cone condition implies
that i, is simply the restriction of ¥p. 4, to the subset n Cn4+m. fm <n,
then

P(m) = Ym(m} = Yn(m) < in{n)
so this is 2 monotone function, For any other ¢ : N — ¥, thero is some n
with ¢o{n) # ¥{n) = ¥, {r). Thus, ¥ is the unique map factoring the co-cone
on Y, Thus, w = {0 < 1 < 2 < ...} together with the evident injections
n — w Is the colimit of the diagram.

Chapter 6
Notation: Tf f: A > BC, thehevo f x C=F 1 AxC > B Hf:AxC— B,
then Af : A — B,

2.

These isomorphism are witnessed by the following pairs: fi{Ax B —
AC x BC defined by f = (Mm o Taxme), MmzoTaxme)) and f71 ¢
AC x B s (A x B)C defined by f~! = (i, 72); and g : (AF)C — ABXC
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defined by g = AV o apame) and g7t 1 AFXC — (AB)C defined by
g ! = A\evo a;,lnc), where az is the evident isomeorphism from
associativity and commputativity of the product, up to isomorphism, Z x
(BxCYy—={(ZxC)yxB.

. The exponential transpose of ev is 1p4. The exponential transpose of 14xp

is the “partial pairing function” A — (A x B)® defined by a v+ Ab: B.{a,b).
The exponential transpose of ev o 7 is the “partial application function”
A = BE" defined by a — Af : BA.f(a).

. Here we consider the category Sub, whose objects are paits {4, P C A), and

whose arrows f : (4, P} — (B, @) are sot functions A — B such that ¢ € P
iff f{a) € Q. This means that an arrow in this categary is essentially a pair
of arrows f; 1 P — Q and fo : A\ P — B\ @; thus, this s (isomorphic to)
the category Sets/2.

Now, Sets/2 is equivalent to the product category Sets x Sets, by a previous
exercise. ‘This latter category is cartesian closed, by the equational definition
of CCCs, which clearly holds in the two factors. But equivalence of categories
preserves cartestan closure, so Sub is also cartesian closed.

For products, eheck that the set of pairs of elements of wCPOs A and B
ordered pointwise, constitutes an wCPO (with w-limits computed pointwise}
and satisfies the UMP of a product. Similarly, the exponential js the set
of continuous monotone functions hetween A and B ordered pointwise, with
limits computed pointwise, In strict wCPOs, by contrast, there is exactly one
map {L} — A, for any object A. Since {1} = 1 is also a terminal object,
however, given an exponential B there can be only one map A — B, since
Hom({A, B) =2 Hom({1 x A, B) 2 Hom({1, B4).
{a} The identity
(voy=r)=(p=rAlg=r)
“holds” in any CC peset with joins, that is, this object is equal to the
top element 1. Equivalently, from the definition of =, we have

((pva)=r}s{p=rialg=n),
as follows immediately from part (b}, which shows the existence of such
an arrow in any CCC,
{(b) In any category where the constructions make sense, there is an arrow

CUAFE) o oA oB.

indeed, by the definition of the coproduct, we have arrows A - A+ B
and B — A+ B, to which we apply the contravariant functor C(7) to
obtain maps OB} o AC and CWHEY , OB, By the UMP of the
product, this gives a map OB 5 04 « CF | as desired.
This can be done directly by comparing UMPs. TFor a different proof
{anticipating the Yoneda Lemma), consider, for an arbitrary object X, the
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bijective correspondence of arrows,

(AxC)+(BxC) X
(A+B)xC X

This is arrived ai via the canonical isos:
Hom{{A % C}+ {B x €}, X} 2 Hom{A x C, X) x Hom(B x C, X)
o HQm(A,XC) x Hom{B, X )
2 Hom(A + B, X©)
2 Hom({{A + B) x C, X).

Now let X == (A x C) + (B x C}, respectively X = (A + B} x C, and trace
the respective identity arrows through the displayed isomorphisms to arrive
at the desired isomorphism

(AxC)+ (BxCy=(A+B)x (.

14. ¥ D = 0 then D7 =2 1, so there can be no interpretation of s DP D ¥
D =21 then also DP 22 1, so there are unique interpretations of s : PO
and £ : D — DP.If1D| 2 2 (in cardinality), then |D?] > |2P| = [P(D)), so
there can be no such {split} mono s : P” — D, by Cantor’s theorem on the
cardinality of powersets, Thus, the only models can be D 2 1, and in these,
clearly all equations hold, since all terms are interpreted as maps into 1.

Chapter 7
1. Take any element a € A and compute
(F(h) o da)a) = F(R)($ala))
= FI{ {4 € UIt(A) | a € U})
= P(Ule{h))({if € Ule{A} | @ € U})
= (U(R)*({U € Uls(A) | a € U})
= {V e U(B) ! e ¢ UL(R)(V)}
= [V ¢ UL(B) | h{a) € V}

= ¢n{h(a))
= (¢ o h)}a).
4. Both functors are faithful, U is full because every monoid homomorphism
between groups is a group homomorphism: if h(eb) = h{a)h(b) then

e = h{a~la) = h{e~Dh{a) and symmetrically e = h{a)h(a™!) and so
h{a~1) is the inverse of h(a). V is not full; there are set functions between
monoids that are not homomorphisms, Only V is surjective on objects (there
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are, for example eyclic groups of every cardinality). Only U is injective
on objects, since monoid structure uniquely determines inverses, i they
exist. !

. Tt is easy to check that upward-closed sets are closed under unions and finite

intersections. The arrow part of the functor A simply takes a monotoue
function f : P — € to itself, construed as a function f : A(P) — A(Q}).
Preservation of identities and composition is therefore frivial, but we must
check that f is in fact an arrow in Top. Let U be an open (that is, upward-
closed) subset of A{Q). We must show that f~(U) is upward-closed. Let
z e fHU)and y € P be given, and suppose z < y. We know that f{z) e U
and f{z)} < f{y) since f is monotone. Because U is upward-closed, we have
F) €, soy ¢ f7HU) and so f is continuous.

A is trivially faithful.' A is also full: Let f be a continueous function P — Q.
Put = {g € @] f{z) < q}. Since f is continuous and D is upward-closed,
FUD) is upward-closed. If & < y then the fact that = € f'(D) implies
y € f~YD) and so fly) € D. That is, f{z} < f(y). Hence every continuous
function A(P) -— A{Q) is a monotone function P — Q.

. {a) Let the objects of E be those of C, and identify arrows in G if they

are identified by F, that is, let E be the quotient category of C by the
congruence induced by F. The functor D is the canenical factorization
of F' through the quotient.

(b} Let E be the subcategory of D whose objects are those in the image of
I, and whose arrows are all the D-arrows among those objects. Let D
be the inclusion of B in D and F the evident factorization of F through
B

These factorizations agree iff F itself is injective on objects and full.

. Suppose a is a natural isomoprhism I — G : C — I}. Then it has an inverse

a1, Since a~loa = 15 and aoa™! = 1g, it must be that agoag' = lge and
aal o e = lpc. So the components of o are isomorphisms. If conversely
all o's components are isomorphisms, then defining o = (ag) ™! for all
C' € C makes o~ ! a natural transformation which is a's inverse. For f :
A — B, knowing Gf o aq = ap o Ff, we compose on the left with of’
and on the right with a;l to obtain Ffo a-;‘ = aEl o G'f, the naturality of
a-i,

The same does not hold for monomorphisms. Let C be the two-element poset
{0 < 1} and D the category

x

g1
¥
such that fr = fy. Let F be the funcior taking 0 £ 1tox: 4 — B and

@ the functor taking it to f : B — C. There is & natural transformation
a:F > Gsuchthat ag = z: 4 - Band oy = f: B — . The

A C
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component, f of a is not mono, but « itself is; there are no nontrivial natural
transformations into F: any 8 : H — F would have to satisfy a naturality
square

H<
HO — > H1
Bo ik
A B
:c

But H0 must be A and 83 = 14. Then H1 must be either A or B, forcing
3 to either be the unique natural transformation to F from the functor
taking 0 < 1to 14 : A — A, or else the identity natural transformation
on F.
8. Pul {F x G)C) = FC x GC, and (F x G} J) = Ff x Gf. Defire (m)c =
aFCX6C . PO % GC — FC and {m)c = m3 %% : FC x GC — GC.
It is easy fo check that 7, and mp are natural. Let a functor Z : C — D
and natural transformations a : Z — F and § — F be given. By the UMP
of the product, there are unique mrows he @ ZC — FC x GC such that
(w1)e o he = ac and (m2)¢ o ke = B We need to verify that

70 "¢, roxao
Zf FfxGf

2D —— FDx GD
hp

But
ﬂfDchofoGfszc:Ffovrf:CXGCOhC

wFfoag=apoZf=mnu 2P ohpoZf.
And similarly with the second projection, using the naturality of .

10. To satisfy the bifunctor lemma, we need to show that for any f: C — C'e
C°P and g: D — P’ € C the following commutes:

hy D
hom(c, 0y 2D e, by
hom(C, g) hom{C", g)
hom{(C, D) hom(C’, D')

hom(f, D)
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But either path around the squarc takes an arrow k : € — D and turns it
into gohof: C" — I thus the associativity of composition implies that
the square commutes.

if C ~ D, then there are functors I': G2 D : G and natural isomorphisms
a:lp — FGand 3: GF — 1g. Suppose C has products, and let D, D' € D
be given, We claim that F(GD x GD') is a product object of D and D',
with projections ap! o FafP*@0 "and ap} o FagPxCP ", For suppose we
have an object Z and arrows @ : Z — D and &' : Z — D' in D. There
is a unique h : GZ — GD x GD' € C such that frfD"GDr oh = Ga and
Tr«fDXGDr o h = Gd’. Then the mediating map in D is Fh o agz. We can
calculate

GoxGLD GDxGD’]
I 1 t

aplo Fx oFhoaz =ap o F(x ooy
-1 g
=ap o FGaoay

-1
ap oapoa

I

=a

and similarly for the second projection.
Uniqueness of the map Fho az follows from that of h.

Let C be given. Choose one object Djgj,, from each isomorphism class [Cle
of objects in C and call the resultting full subcategory D. Tor every object
C of C choose an isomorphism ic : € — Dygy,. Then, C is equivalent
to D via the inchusion functor [ : D — C and the functor ¥ defined by
FC = Dig, and F(f : A— B)=ipofo i;' (I is a functor because the
s ave isomorphisms) and i construed as a natural isomorphism ip — Ff
and Io — IF. Naturality is easy to check:

At TRA
! igfiz'
B—— + IFB
i

So C is equivalent to the skeletal category D.

Chapter 8

1.

Let f: C = ¢ : g be an iso. Then, clemly, Ff : FC 2 FC' : Fg is
also one. Conversely, if p : FC 2 FC’ : g is an iso, then since I is full
there are f : & & €7 : g with Ff = pand Fg = ¢. Then go f = 1¢
since {go f) = Fgo Ff = 1pg = F(lg), and F is faithful. Simitarly,
fog=lg.
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2. Given two natural transformations @, : P — @, where P, € Setscup,
assume that for each € € Cand 0 : yC — P, we have pofl = o f. In other
words,

pox = Po* : hom{yC, P) — hom{yC, Q).

The Yonecta Lemma gives us a bijection hom(yC, P) 2 PC for each C, and
these bijections are natural in P, so the following diagram commutes:

hom(yC, P) = PC
pox = hox ol Yo

hom{pC, Q) —— QC

~

But then both pe and e must be given by the single composttion through
the left side of the square, so that p = .

3. The following isos are natural in Z:

homa{Z, A% x AC} = home{Z, A®) x homg(Z, A%
= homg(Z x B, A) x homg{Z x C, A)
2 home ({2 x BY +{Z x C), A)
= home(Z x (B+C), A)
& homg(Z, AFTEY,
Hence A7 x AC 2 AB+C gince the Yoneda embedding is full and faithful.
The case of {4 x B)¢ 22 AC x BC is shnilar,

8. Limits in functor categories DC can be computed “pointwise”: given I7: J —
D€ set

(lim F5)(C) = Im(FF(C)).
jed jei

Thus, it suffices to have limits in I in order to have limits in DE. Colimits
in DC are limits in (DC)P = (DoP)C™,
7. The following are natural in C:
y{A x BY{C) = hom(C, A x B)
2 hom(C, A} x hom(C, B)
= Y(A)(C) x y(B)C)
= (y(4) x y(B))(C),
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30 y(A x B) 2 y(A) x y(I3). For exponentials, take any A, B, C and compute:
w{(BYYNCY = hom(yC, y BYY)
= hom{yC x yA, yB)
2 hom{y(C x A), yB)
= hom(C x A, B}
= hom{C, B*)
= y(BY(C).
4 Q~ /kf (a) For any poset P, the subobject classifier { in Sets® is the functor:
Qpy={FCPlzelP=pa)rlzeFaz<y=y€F)}
that is, £2{p) is the set of all upper sets ahove p. The action of Eonp < ¢
is by “restriction™ F > Fl,={x € F|lg < a} The point t : 1 — 0 is
given by selecting the maximal upper sot above p,
() = {o | p < ).
In Sets®, the subobject classifier is therefore the functor £2: 2 — Sets
defined by

00) = {{0,1}, {1}}
Q1) = {1}
together with the natural transformation ¢ : 1 — §2 with
to{=) = {0, 1}
() = {1}
1n Sets¥, the subobject classifier is the functor £ : w — Sets defined by
O = {{0,1,2,...1,{1,2,3,... 1,{2,3,4,... },... }
Q1) = {{1,2,3,... L, {2,3,4,... 1, {3,4,5,.. . },...}

)= {{no+tn+2.. . L{n+ln+2,n+3,... 5. }

with the transition maps §¥{n} — Ofn +1} defined by taking {n,n+1,n+
2,...} to{n+L,n-+2,n+3,...} and like sets to themselves, together
with the natural transformation ¢ : 1 — £ with

to(+) = {0,1,2,...}
L(+) =1{1,2,3,...}
th(x)={nn+Ln+2,.. .}
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{(b) One can check directly that all of the topos operations—pullbacks,
exponcntials, subobject classifier—construct only finite set-valued
functors when applied to finite set-valued functors.

Chapler 9
3. 4 takes an element a € A and returns the function (¢ (a,¢)} € (A x C)©.

}FC

(AxC)¢ — BY

na fi

A
4. For any small index category J, the left adjoint of A: C — CJ is the functor
taking a diagram in C? 1o its colimit (if it exists), and the right adjoint to
its imit. Indeed, suppose D : J — C is a functor.

atimp -2 A

22 [}

D
Define the natwal transformation np to take an object J € J to the injection
ir: PJ > limD. The commutativity condition on the colimit guarantees

that, 77 Is natural. Suppose ¥ and § : D — AFE are given. That Is, suppose It
is a co-cone from the diagram D to the object E. Then there exists a unigque
arrow out of 8 : lim I — E making the above diagram comnmute. Therefore,
Jim -t A. Dually, A - lim.
I?‘foﬂows that for J 25, the left adjoint is binary coproduct and the right
adjoint is binary product.

. Right adjoints preserve limits, and left adjoints preserve colimits.

o

8. The first adjunction is equivalent to the statement:
m{fX)CY <= X C /Y,
for all X C A, Y C B. Here,
im{ fHX) = {b| b= f(z) for some z € X}
Sy ={al fla)eY)
Ifim(f)(X)} C Y then for any v € X, we have f(z) € ¥, andso X © .

Conversely, take b € im{ f){X), so there is some x € X with f(x) = b If
XCfYYV)thenb= f(z}e Y.
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For the right adjoint, set

LXy={1 7 {{H X}
We need to show

FUY)ICX < Y C LX)
Suppose f~HY) C X and take any y € Y, then f1({y}) C /7H{¥) C X.
Conversely, given ¥ C f{X), we have f~H(Y) C [~ /(X)} C X, since
be f,(X) implies f~H{p}) C X.

. We show that P : Sets®" — Sets has itself, regarded as a functor P :

Sets — Sets®P, as a (left) adjoint:
Homsees{A, P{B)) = Homgas( 4, 27} & Homgers (B, 2)
= Homgas (B, P(A)) = Homgereow (PUP{A), B).
A right adjoint to U7 : C/C — C is given by products with ¢,
A (m: AxC—C),

so U has a right adjoint iff every object A hes such a product,

To have a lefi adjoint, I would have to preserve limits, and in particular
the terminal object I : € — C. But U(lg) = €, so € would need to he
terminal, in which case C/C = C.

{a) In a Heyting algebra, we have an operation b = ¢ such that
a<b=ec = aAb<e

We define a coHeyting algebra by duality, as a bounded lattice with an
operation a/b satisfying

afb<e < a<bve

In a Boolean algebra, we know that b = ¢ = —bV ¢, By duality, we can
set afb=aV b

(b} In intuitionistic logic, we have two inference rules regarding negation:
ph-pt L
ph -y
We get inference rules for the conegation ~ p = 1/p by duality
ThpV~p

For the boundary 8p = pA ~ p, we have the inference rules derived from
the rules for A:
gF-8p T gbpandgb~p
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{e) We seek = billeyting algebra P which is not Boolean, The urderlying
lattice of P will be the three-element set {0,p, 1}, ordered 0 < p < 1,
Now let

This s easily checked to satisfy the required condition for x = y, thus
P is a Heyting algebra. But since P is self-dual, it is also a coHeyting
algebra, and co-implication must be given by

b z>2y
fv/yﬂ{

y oW,

To see that P is not Boolean, observe that —x =2 = 0 =0, s¢c ~5 =
1#a

Note that P is the lattice of lower sets in the poset 2. In general, such
a lattice is always a Heyting algebra, since it is completely distributive,
as is easily seen. Tt follows that such a lattice is also coleyting, since its
opposite is isomorphic to the lower sets in the opposite of the poset.

19. The right adjoint Rel — Sets is the powerset functor, A — P(A), with
action on a relation 2 C A x B given by

P{R}: P{A) — P(B)
X {b] 2Rb for some v € X}

The unit 4 : A — P{A) is the singleton mapping « — {e}, and the counit
is the {converse) membership relation 34 € P(A) x 4.

Chapter 10

2. Let C be a category with tevininal object 1 and binary coproduets, and define
T:C > Chy TC =1+ C. Let T be the equational theary of a set equipped
with a unary operation and a distinguished constant {no equations). We want
to show that the following categories are equivalent: Au: Please

T-algebras | Objects : {(AcCa:1+4A—4 cto?ﬁrm ti.[ the /= %&/\
Arrows ! R:(A,a) — (B,b) st hoa={ho T(h) lta lm-fai:m ", .
T-algebras | Objects : {X € 8ets,ex € X,sy: X — X) O cerialns

elements in
TOWS : X Y s, - = ¢y and ;= Sy .
Arrows: [:X —Y st fex=cyand fosy=syof the text. is ok.

We have the functor I : T-Alg — T-Alg sending

(A} (Ayay 11— Ayag s A — A)
where a = [a1,a2] as @ map from the copreduct 1 + A,
Conversely, given {X,ce X,s: X — X),wecanset f =les]: 1+ X - X
to get a T-algebra. The effect on morphisms is easily seen, as is the fact that
these are pseudo-inverse functers. '
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Since free T-algebras exist in Sets and such existence is preserved by
equivalence functors, it foilows that Sets has free T-algebras. In particular,
an initial T-algebra in Sets is the initial T-algebra N, which is an NNO.

3. Let i : 7T — T be an initial T-algebra. By initiality, we can {(uniquely) fill in
the dotted arvows of the fellowing diagran:

Tu i
7 40 S T L
F Ti !
I, 4 . I
i ?

Composing the squares, we have a map of T-algebras I --» [, which by
umniqueness must be the identity. But then iocu=1;, and noi=TioTu =
T(iou) = 1ry, s0 i is an isomorphism, A natural numbers object AV is initial
for the endofunctor T'C' = 14-C, so it follows that ¥ 22 1+ N for any NNO.




“12-Awodey-ref” — 2008/12/18 — 17:02 — page 303 — H#1 EF

REFERENCES

The following works are referred to in the text. They are also recommended for
further reading.

1.

Eifenberg, 8. and 8. Mac Lane (1945) “General theory of natural
equivalences,” Transactions of the American AMathematical Seciety 58,
231-04.

. Johnstone, P.T. (1982} Stene Spaces, Cambridge: Cambridge University

Press.

. Johnstone, P.T. (2002) Skeiches of an FBlephant: A Topos Theory

Compendium, 2 vols, Oxford: Oxford University Press,

. Lambek, J. and P. Scott (1986} Introdu@; to Higher-Order Categorical
i

Logic, Cambridge: Cambridge University Press.

. Lawvere, F.W. (1969) “Adjointness in Foundations,” Dialectica, 23, 281-96. &ﬁ% &A(;— o

. Mac Lane, S. {1971) Categories for the Working Mathematician, Springer:

S
Berlin, Heidelberg, New York, 2nd ed. 1998,

. Mac Lane, 8. and L Moerdijk (1992} Sheaves in Geomelry and Logic: A g\-
First Introduction to Topos Theory, Springer: Berlil}LHeidelberg(New York. »3‘ }‘(

. McLarty, C. (1995) Elementary Categories, Elemeniary Toposes, Oxford:

Oxford University Press.




“12-Awodey-ref” — 2009/12/18 — 17:02 — page 304 — #2




“13-Awodey-Index” — 2009/12/18 — 17:03 — page 306 — #1

151
88

LN
CO_.\]‘*IOG

adjoint, 209250
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polynomial ring as, 220
presexvation of limits, 227
product as, 21}
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rules of inference, 224
adjoint functor, 2
Adjoint functor theorem, 241
special, 245
adjunction, 2, see adjoint
counit of, 217
Hom-set definition, 217
pretiminary definition, 218
unit of, 211
AFT, see Adjoint functor
theorem
algebra, 1, 4, 61
and logic, 223
boolean, see boolean algebra
for a monad, 261
and endofunctors, 274
for an endofunctor, 268, 269
and monads, 274
heyting, see heyting algebra
initial, 270, 273
Lindenbaum-Tarski, 133
presentation, 68, 69, 255
arrow, 4
classifying, 201
associative law, 5
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atom

in a Boolean algebra, 179
automorphism, 12

inner, 187

Beck's thecrem, 276

bifunctor, 161

biHeyting
algebra, 252

BA, 151

Boolean algebra, 34, 35, 51, 151, 153
finite, 179

boolean algebra, 15, 12¢

Cantor, 273, 295
Cat, 9, 24, 34, 147, 149
cartesian closed, 161
category, 2, 4
-algebraic, 266
arrow, 16
cartesian closed, 11, 128, 122-128, 188
angd lambda calculus, 135
equational, 134
cocomplete, 195
comina, 243
complete, 194, 244
concreke, 7, 14, 150
congruence, 84
constructions on, 14-17
coslice, I7, 26
diserete, 11, 103, 149
durl, 15
Eilenberg-Moore, 261
finite, 7
finitely presented, 35-87
free, 1823, 27, 28
homomorphism of, 8
homomorphism theorem, 83
Kleish, 265, 279
laege, 24
locally cartesian closed, 233, 237
tocally small, 25
monoid, 11
moneidal, 80, 168, 170
strict, 80
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category (cont.)
of Boolean algebras, 151
of categories, 9, 147
of diagrams, 185, 202
of elements, 196, 238
of functors, see functor category
of graphs, 166
of groups, 80-83
of indexed sets, 143
of prools, 10, 46
of propositions, 252
of subobjects, 50
of kypes, 43, 1306
opposite, 15
pointed sets, 17, 175
poset, %, 17
preorder, 9
product, 15
quotient, 84
skeletal, 183
slice, 16, 177
and indexed families, 234
small, 14, 24
with Hmits, 104
with products, 48, 46-48

category theory, 1-2, 8, 12, 23, 29, 38, 53,

147

and adjoints, 208

history of, 1
Cayley's theorem, 13-14, 187
CCC, see category, cartesian closed
change of base, 233
choice

axiom of, 32, 51

function, see function, choice
co-, 45
coelgebra

for a comonad, 267
cocompletion of a category, 229
cocone, 105
codomain, 4, 55
coequealizer, 66, 65-71

of monaids, 70

of categories, 148

of monaoids, 73

of posets, 148

of sets, 72

of spaces, 73
cogenerating set, 245
coherence theorein

for monoidal categories, 170
coHeyting

algebra, 252

boundary, 252

negation, 252

INDEX

cokernel

of groups, 88
colimit, k05, 103-114

creation of, 111
w-colimit, 273
colimits

of posets, 114
comonacd, 266, 266267

and adjoints, 267
component, 156
composition, 4

of functions, 3
computer science, 2, 10, 36
concatination, 18
cone, 101

as a natural transformation,

166

congruence, 83-85, 88
constant, 36
C{X}, 151
contravariant, 107
coproduct, 55, 5561

of monoids, 59

tn a COG, 193

in a posets, 58

injection, 658

of catepories, 147

of groups, 60

of meneids, 56

of posets, 58

of sets, 66, 109

of spaces, 57
covariant, 48
wCPO, 112, 145

map of, 113

strict, 145
Curry-Howard correspondence, 45,

142

data type, 10
deduction, 19, 131
transcendentat, 164
denotational semantics, 10, 138
diagram
as a functor, 185
commutative, 3
hyperdoctrine, 253
of & group, 77
of type, 101
product, 3%
pultback, 92
distributive law, 130
and adjoints, 228
domuain, 4, 55
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and equivalence, 178
conceptual, 54
formal, 54
in Sets, 160
of vector spaces, 1569
principle, 53
stone, }153-155, 178

Eckmann-Hilton argument, 78,
33
element
generalized, 35-39, 91, 93
globel, 36
variable, 36
endofunctor, 249, 267, 268-276
epi, see epimorphism
epimorphism, 29, 51, 67
of meneids, 31
split, 32
equalizer, 62, 62-85
of abelian groups, 65
of functors, 147
of monoids, 65
of posets, 65
of spaces, 65
equivalence
and duality, 178
class, 65
of categories, 172, 171-181
and isomorphism, ¥72
refation, 65, 73, 90
equivalent categories, 172
evaluation, 121
exponent, 107
exponential, 121, 119-140
in a poset, 129
of categories, 161, 164
of diagrams, 199
of graphs, 125, 165
of groups, 167
of posets, 122
of wCPUs, 123

Fibh, 240

and presheaves, 240
fibration, 240
field, 151
filter, 35

maximal, 35

ultra-, see ultrafilier
fixed point, 113, 271, 275

fargetful functor, see functor, forgesful

INDEX

foundations, 2325
free, 18

category, 20

‘cocompletion, 198

maonoid, 18, 67, 209
monad, 264

free algebra, 245
Freyd, 241, 245
Freyd, P., 253
Fun, 158
function, 1-3

bijective, 12

characteristic, 63, 98, 152, 201
choice, 33

continuous, 6

equality of, 4

identity, 4

injective, 5, 29

moenotone,

recursive, 6, 248

surjective, 28, 50

functor, 2, 8, 32, 147-149

adjoint, see adjoint, see adjoint
cocontinuous, 229
codiagonal, 148
comaenadic, 267
comparison for a monad, 266
compoesitien of, 9
canstant, 166, 194
continuous, 106
contravariant, 107
coproduct, 61
enthedding, 187
endo-, see endofunctor
exponential, 126
factoring, 182
faithful, 148
forgetful, 16, 18, 21, 50, 148
adjoint, 248
and limits, 111
full, 148
identity, 9
injective, 148
monadic, 266
morphism of, 155
of groups, 83
of posets, 10
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polynomial, see polynomial functor, see

polynomial functor
precomposition, 231
product, 47
product preserving, 49
projection, 18

representable, see representable futictor

set-valued, 185
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functor category, 158, 164168, 185

cocompleteness of, 195
completeness of, 194
of groups, 167

of posets, 167

Galois connection, 221

generator, 15¢

generators, 21, 68
for a category, 85, 88
for a CCC, 139
insertion of, 18, 157

graph, 6, 27
as a functor, 166, 186
cirected, 20
of a function, 254
underlying, 21

Graphs, 165

graphs
category of, 125

Grothendieck, 2

group, 5, 6, 12, 15, 75-88, 149
abelian, 60, 72
abstract, 75
as a calegory, 83-85, 87
factor, 81
homomorphism theorem, 81
in a category, 76-80, 87
in lambda calculus, 80
nornel subgroup, 89
ordered, 78
permutation, 12
representation, 83, 149
siructure, 150, 268
topological, 78

Group, 25

group theory, 1

groupoid, 168

ETOipS
direct limit of, 109

heyting algebra, 129, 120134
and adjoints, 223
Homeset, 11, 48, 18-560

homomorphism
category, 8
complete, 180
graph, 21
group, 13, 77, 149
moneid, 12
of algebras, 269
ring, 35

INBEX

ideal, 17
adjoint, 233
identity arrow, 4
image
direct, 222
dual, 222
inverse, 222
indexed family, 177
and adjoints, 233-236
indexed sets, 143
[ P, 196, 238
interpretation
of propositional calculus, 134
inyvariant, 37
IPC, see propositional caleuwlus, intuitionistie
isomorphic, {12
isomorphism, 12, 12-14, 20, 25, 26, 31
natural, 158

junk, 18, 20

Kan extension, 232
Kan, Daniel, 209
kernet
of a functor, 84
of a group homomorphism, 82
Kleene closure, 18
Kripke model, 240
of A-calculus, 144
Kripke semantics
for propositional calculus, 140

A-caleutus, see lambda caleulus
tatnbda calcubus, 10, 43, 80, 135-140, 194,
240
and CCC, 130
completeness theorem, 138
theory in, 137
Lambek’s lenuna, 271, 277
large category, sce category, large
lattice, 129
Lawvere, 2, 223, 253
Lawwere, F.\V,, 248
LCCCG, see category, locally cartesian closed
lifts, 33
Hmit, 102
creation of, 111
direct, 109
equalizer as, 103
product as, 103
pultback as, 104
terminal object as, 103
lim, 109
=L
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lim, 102
Eits, 100
and monomorphisms, 1156
by products and equalizers, 104
of cardinatity, 105
of categories, 147
of diagrams, 194
preservation of, 105
preserved by adjoints, 227
focally small category, see category, locally
small
logic, 2, 10, 36, 46, 69, 80, 135, 194, 252
algebraic, 223
and adjoints, 223
and topoi, 203
categorical, 1
first-order, 223
higher-order, 194, 203
intuitionistic, 131
linear, 79, 170
maodal, 260, 267
positive, 133

Mac Lane, 1, 38, 61
Mac Lane’s pentagon, 17¢
mapping, 6, 8
property, see wniversal mapping property
model
of propositional calculus, 134
Mon, 11
monad, 259, 255-279
algebra for, 261
and adjoints, 255, 257, 261
Eilenberg-Moore category, 261
on a poset, 260
powerset, 260
monadie, 266
mene, see monomorphism
monoid, {1, 30, 59, 70, 271
and monad, 259
free, 19, 18-20
monomorphism, 29, 5k, 64, 89
as a limit, 115
pullback of, 1156
split, 32
morphism, 5
of T-algebras, 261
of cocanes, 109
of cones, 1062

Natural numbers object, 263
natural numbers object, 248, 246250, 271,
276

natural transformation, 2, 156, 157161,
1G4
naturality, 155-156
Newton’s method, 113, 274
NNO, see natural numbers object
neise, 18, 20
nonsense
abstract, 147
nurnbers, 11, 12, 20, 247
ordinal, 171

object, {
generating, see generator
initial, 33-35
natural numbers, see natural numbers
cbjeck
projective, 33, 51
terminal, 33-36
objects
family of, 33
Ord, 171

Pav, 175
partial map, 175
T1, 234
point, 36, 175
points
enough, 36
polynomial functor, 269, 279
and trees, 272
generalized, 270
Pos, 7,25
not monadic, 266
poset, 8, 30, 35, 57, 149
compleie, 130
fibration ef, 240
preorder, 4, 90, 245
presheaf, 187
product, 3%, 38-48
cartesian, 39
in a poset, 42
of categories, 43, 147
of functors, 157
of monoids, 42
of posets, 412
of sets, 41
of topological spaces, 42
programming language, 10
projective, see object, projective
propositional calculus, 131-134, 194
and adjoints, 223
completeness theorem, 134
intuitionistic, 131
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propositional function, 98
in a topos, 203
pseudo-inverse, 172
pullback, 91, 91-100
and characteristic functions, 98
and extensions, 88
and reindexing, 99
by products and equalizers, 94
functor, 96, ¥78
inverse image as, 94
of sets, 94
properties of, 95-100
two, lemma, 95
pushout, 117
of sets, 103

quantifiers

geometric interpretation, 225
quantifiers as adjoints, 203, 223-227
quotient, 85, 66

of sets, 73

RAPL, 227233
recursion, 248, 271, 273
reindexing, 234
Rel, 7, 25
relation, 7, 68
composition, T
identity, 7
focal memberskip, 91
relative product, 7
representable functor, 48, 149, 187
and colimits, 107
and limits, 106
characterization of, 244
contravariant, 107, 150
representation, 13, 187
retract, 92
retraction, 32, 32--33
ring, 30
of functions, 151
pointed, 220
polynomial, 220

SAFT, see Adjoint functor theorem,
special
Scott, Dana, 146
section, %8, 32-33
semigroup, 11
set, 3, 11, 14
function, 120
pointed, 17, 175

INDEX

power, 34, 80, 130, 152, 260, 270
as an adjeint, 251
structured, 6, 11, 30, 41, 188
and functors, 186
sek theory, 23
Sets., 17, 175
sets
cumulative hierarchy, 111
family of, 99, 177, 233
Sets, b, 24, 26
cartesian closed, 122
SetsC, 185
and adjoint functors, 231
cartesian closed, 201
cocomplete, 196
complete, 194
locally cartesian closed, 239
slice category of, 238
topos, 262
Setsg),, 5, 171, 179
Sets’, 177
Sets!, 233
sieve, 208
¥, 234
shnplicial
nerve, 186, 201
set, 186, 204
small category, see category, small
solution set, 241
space, see topological space
Stone duality, see duality, stone
Stone duality theorem, 155
Stone representation, 155
Stone space, 181
string, 265
structure, }, 29, 37, 151, 258
finitary, 269
representable, 149-153
Sub, 80
subcategory, 147
full, 148
subobject, 84, 89-91
as an extension, 203
classifler, 201, 205
for presheaves, 202

T-algebra, 245
T-algebra, 255
for 2 monad, 261
test object, 14, 36
Top, 25
topological space, G, 42, 57, 130, 151, 267,
278
Alexandroff, 182
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topological space {coni.} of coproducts, 55
interior, 221 of equalizers, 62
topology of exponentials, 121
specialization order, 10, 26 of free categories, 23
topos, 2082, 201-203, 254 of free monoids, 9
and legic, 203 "of function sets, 120
transformation of initial objects, 33
natural, see natural transformation of limits, 102
transpose, 141 of natural numnbers, 248
tree, 271, 272 of polynomials, 221
triangle identities, 256, 255-257 of products, 39, 51
triple, see nonad of pullbacks, 92
twist, 158 of terminal objects, 33
type theory, 43-45, 135—1490, see lambda of Yoneda, 198, 229

calculus
dependent, 240
vector space, 6, 30, [59

wltrafilter, 35, 51, 107, 153, 170 finite dimensional, 160

principal, 154
UMP, see universal mapping property
uuit law, §
universal, 19, 119

well powered, 245
word, 18, 60

subobject, 201 empty, 18
universal mapping property, 19, 2i, 29, 34,
139 :
and adjoints, 210 Yoneda embedding, 187, 187-188, 192
of a congruence, 85 Yoneda lemma, 188, 193, 238

of coequalizers, 66 Yoneda pringciple, 193
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