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PREFACE TO THE SECOND EDITION

This second edition of Category Theory differs from the first in two respects:
firstly, numerous corrections and revisions have been made to the text, ineluding
correcting typographical errors, revising details in exposition and proofs,
providing additional diagrams, and finally adding an entirely new section on
menoidal eategories. Secondly, dozens of new exercises were added to make the
book more useful as a course text and for sel-study. To the same end, solutions
to selected exercises have also been provided; for these, | am grateful to Spencer
Breiner and Jason Reed.

Steve Awodey
Pittsburgh
September 2009
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PREFACE

Why write a new texthook on Category Theory, when we already have Mac
Lane’s Categories for the Working Mathemalician? Simply put, because Mac
Lane’s book is for the working {and aspiring) mathematician, What is needed
new, after 30 years of spreading into various other disciplines and places in the
curricubum, is a book for everyone else.

This book has grown from my courses on Category Theory at Carnegie
Mellon University over the last 10 years. In that time, I have given numerous
lecture courses and advanced sentinars to undergraduate and graduate students
in Computer Science, Mathematics, and Logic. The leciure course based on the
material in this book consists of two, 90-minute lectures a week for 15 weeks.
The germ of these lectures was my own graduate stucdent notes from a course on
Category Theory given by Mac Lane at the University of Chicago. Tn teaching
iy own coutse, I soon discovered that the mixed group of students at Carnegle
Mellon had very diflerent needs than the Mathematics graduaie students at
Chicago and my search for a suitable textbook to meet these needs revealed a
serious gap in the literature. My lecture notes evolved over a time o fill this gap,
supplementing and eventually replacing the various texts I tried using.

The students in my courses often have little background in Mathematics
beyond a course in Piscrete Math and some Caleulus or Linear Algebra or
a course or two in Logic. Nonetheless, eventually, as researchers in Computer
Science or Logic, many will need to be familiar with the basic notions of
Category Theory, without the benefit of much further mathematical training.
The Mathematics undergracuates are in & similar boat: mathematically talented,
motivated to learn the subject by its evident relevance to their further studies, yet
unable to follow Mac Lane because they still lack the mathematical prerequisites.
Most of my students do not know what a free group is {yet}, and so they are not
illuminated to learn that it is an example of an adjoint.

This, then, Is intended as a text and reference book on Category Theory,
not only for students of Mathematics, but also for researchers and students in
Computer Scionce, Logic, Linguistics, Cognitive Science, Philosephy, and any of
the other fields that now make use of it. The challenge for me was to make
the basic definitions, theorems, and proof techniques understandable to this
readership, and thus without presuming familiarity with the main (or at least
original} appHcations in algebra and topology. Tt will not de, however, to develop
the subject in & vacuum, simply skipping the examples and applications. Material
at this level of abstraction is simply incomprehensible without the applications
and examples that bring it to life.
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X PREFACE

Faced with this dilemma, I have adopted the strategy of developing a few
basic examples from scratch and in detail—namely posets and monoids—and
then carrying them along and using them throughout the book. This has
several didactic advantages worth mentioning: both posets and monoids are
themselves special kinds of categories, which in a certain sense represent the two
“dimensions” {objects and arrows) that a general category has. Many phenomena
occurring in categories can best be understood as generalizations from posets or
monoids. On the other hand, the categories of posets (and monotone maps) and
monoids (and homomorphisms) provide two further, quite different examples
of categories in which to consider various concepts. The notion of a limit,
for instance, can be considered both in a given poset and in the eategory of
posets.

Of course, many other examples besides posets and monoids are treated as
well. For examptle, the chapter on groups and categories develops the first steps of
Group Theory up to kernels, quotient groups, and the homomorphism theorem,
as an example of equalizers and coequalizers. Here, and occasionally elsewhere
{e.g., in connection with Stone duality), I have included a bit more Mathematics
than is strictly necessary to illustrate the concepts at hand. My thinking is that
this may be the closest some siudents will ever get to a higher Mathematics
course, so they should benefit from the labor of learning Category Theory by
reaping some of the nearby fruits.

Although the mathematical prerequisites are substantially lighter than for
Mac Lane, the standard of rigor has (I hope) not been compromised. Full proofs
of all important propositions and theorems are given, and only occasional rotuttine
lemmas are left as exercises {and these are then usually listed as such at the
end of the chapter}, The selection of material was easy. There Is a standard core
that must be included: categories, functors, natural transformations, equivalence,
limits and colimits, functor categories, representables, Yoneda’s lemma, adjoints,
and monads. That nearly fills a course. The only “optional” topic included here
is cartesian closed categories and thejcalculus, which is a must for computer
scientists, logicians, and linguists. Séveral other obvious further topics were
purposely not included: twG-categories, topoi {in any depth}, and monoidal
categories., These topics are treated in Mac Lane, which the student should be
able to read after having completed the course,

Finally, 1 take this opportunity to thank Wilfried Sieg for his exceptional
support of this project; Peter Johnstone and Dana Seott for helpful suggestions
and support; André Carus for advice and encouragement; Bill Lawvere for
many very useful comments on the text; and the many students in my courses
who have suggested improvements to the text, clarified the content with their
uestions, tested all of the exercises, and caught countless errors and typos. For
the latter, I also thank the many readers who took the trouble to collect and send
helpful corrections, particularly Brighten Godfrey, Peter Gumm, Bob Lubarsky,
and Dave Perkinson. Andrej Bauer and Kohei Kishida are to be thanked for
providing Figures 9.1 and Syﬁ’,' respectively, Of course, Paul Taylor’s macros for
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PREFACE xi

commutative diagrams must alse be acknowledged. And my dear Karin deserves
thanks for too many things to mention. Finally, I wish to record here my debt of
gratitude to my mentor Saunders Mac Lane, not only for teaching me Category
Theory, and trying to teach me how to write, but also for helping me to find my
place in Mathematies. 1 dedicate this book to his memory.

Steve Awodey
Pittsburgh
Sepiember 2005
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CATEGORIES

1.1 Introduction

What is calegory theory? As a first approximation, one could say thal category
theory is ihe mathematical study of (abstract) algebras of functions. Just as
group theory is the abstraction of the idea of a system of permutations of a set
or symmetries of a geometric object, category theory arises from the idea of a
system of functions among some objects.

A ! B
g

gof
c

We think of the composition g o f as a sort of “product” of the functions f
and g, and consider abstract “algebras” of the sort arising from collections of
functions. A category is just such an “algebra,” consisting of objects 4, B, C, ...
and arrows f : A — B, g: B — C,..., that are closed under composition
and satisfy certain conditions typical of the compesition of functions. A precise
definition is given later in this chapter.

A branch of abstract algebra, category theory was invented in the tradition
of Telix Klein's Erlanger Programm, as a way of studying and characterizing
different kinds of mathematical structures in terms of their “acdinissible
transformations.” The general notion of a category provides a characterization of
the notion of a “structure-preserving transformation,” and thereby of a species
of struetures admitting such transformations.

The historical development of the subject has been, very roughly, as {ollows:

1945 Eilenberg and Mac Lane’s “General theory of natwral equivalences” was
the original paper, in which the theory was first formulated.

Late 1940s The main applications were originally in the fields of algebraic
topology, particwlarly homology theory, and abstract algebra.
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2 CATEGORY THEORY

1950s A. Grothendieck et al. began using category theory with great suceess in
algebraic geometry.

1960s F.W. Lawvere and others began applying categories to logie, revealing
some deep and surprising connections.

1970s Applications were already appearing in computer science, linguistics,
cognitive science, philosophy, and many other areas.

One very striking thing about the field is that it has such wide-ranging
applications. In fact, it turns out to be a kind of universal mathematical
language like set theory. As a result of these various applications, category theory
also tends to reveal certain comnections between different fields—like logic and
geometry. For example, the important notion of an adjoint funetor occurs in
logic as the existential quantifier and in topology as the image operation along
a continuous function. From a categorical polnt of view, these turn out to be
essentially the same operation.

“I'he concept of adjoint functor is in fact one of the main things that the reader
should take away from the study of this book. It is a strictly category-theoretical
notion that has turned out to be a coneepiual tool of the first magnitude—on
par with the idea of a continuous function.

In fact, just as the idea of a topologieal space arose in connection with
continuous functions, so also the notion of a category arose in order to define
that of a functor, at least according to one of the inventors, The notion of a
functor arose—so the story goes on—in order to define natural transformations.
One might as well continue that natural transformations serve to define
actjoints:

Category
Functor
Natural transformation
Adjunction

Indeed, that gives a good outline of this book.

Before getting down to business, let us ask why it should be that category
theory has such far-reaching applications. Well, we said that it is the abstract
theory of functions, so the answer is simply this:

Funetions are everywhere!

And everywhere that fupctions are, there are categories. Indeed, the subject
might betier have been called abstract funciion theory, or, perhaps even better:
archery.
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CATEGORIES 3

1.2 TFunctions of sets

We begin by considering functions between sets. I am not going to say here what
a function is, anymore than what & set is. Insteact, we will assume & working
knowledge of these terms, They can in fact be defined using category theory, but
that is not our purpose here.

Lel f be a function from a set A to another set B, we write

f:A— B

To be explicit, this means that f is deﬁned/'f(all of A and all the values of f are oW,
in B. In set theoretic terms,

vange{f) C B.

Now suppose we also have a function g: B — C,

A_ / B

gof™, ‘
-

c
then there is a composite function go f: A — C, given by
{gofa)=g(f(a)) acA (1.1)

Now this operation %o of composition of functions is associative, as follows. If
we have a further function f: ¢ — D

A f B
hog
g
gof
C D
h

and form ftog and go f, then we can compare (hog)o f and ho(go f) as
indicated in the diagram given above, It turns out that these two functions are
always identical,

(hogyof=ho{gof)
since for any a € A, we have
(thog)e fla) = hlg(f(a))} = (ko (g0 f))(a)
using (1.1).
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4 CATEGORY THEORY

By the way, this is, of course, what it means for twe functions to be equal:
for every argument, they have the same value,
Finally, note that every set A has an identity function

1A tA—- A
given by
1a{a) = 0.

These identity functions act as “units” for the operation o of compesition, in
the sense of abstract algebra. That is to say,

Jola=[=1pof
forany f: A— B.

Ipof
.folrl

B B

ip

These are all the properties of set functions that we want to consider for the
abstract notion of function: composition and identities. Thus, we now want to
“abstract away” everything else, so to speak. That is what is accomplished by
the following definition.

1.3 Definition of a category

Definition 1.1. A category consists of the following data:

o Objecis: A, B,C,...
o Arrows: fig,h, ...
» For each arrow f, there are given objects

dom(f}, cod{f}
called the domain and codemain of f. We write
f+A—-B

to indicate that A = dom{f) and B = cod(f).
« Given arrows f: A — B and g: B — C, that is, with

cod(f) = dom(g}
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CATECGORIES 5

there is given an arrow
= gof: A C
called the co-;nposiie of fand g.
o For each object A, there is given an arrow
1a:A— A
calted the identity arrow of A
These data are required to satisfy the fo]lowi-ng laws:
» Associativity:
ho(gof)=(hog)of
forall f:A—-B,g:B—-C, h:C—D.
o Unit:
foly=f=1pgof
foral f: A — B,

A category is anything that saiisfies this definition—and we wilt have plenty of
examples very soon. For now I want to emphasize that, unlike in Section 1.2, the
objects do not have Lo be sets and the arrows need not be functions. In this sense,
a category Is an abstrect algebra of functions, or “arrows” (sometimes also called
“morphisms” ), with the composilion operation “o” as primitive. If you are familiar
with groups, you may think of a category as a sort of generalized group.

1.4 Examples of categories

1. We have already encountered the category Sets of sets and functions.
There is also the category

Setsy,

of all finite sets and functions between them,
Indeed, there are many categories like this, given by restricting the sets
that are 1o be tho objects and the functions that are to be the arrows.
For example, take fAnite sets as objects and injective (i.e., “t to 17)
functions as arrows. Since injective functions compose to give an injective
function, and since the identity functions are injective, this also gives
a category.

What if we take sets as objects and as arrows, those f 1 A — B such
that for all b € B, the subset

i CA
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has at most two elements {rather than one)? Ts this still a category? What
if we take the functions such that f=(b) is ﬁnit% infinite? There are
lots of such restricted categories of sets and functfons.

. Another kind of example one often sees in mathematics is categories of
structured sets, that is, sets with some further “structure” and functions
that “preserve it,” where these notions are deterinined in some independent
way. Examples of this kind you may be familiar with are

« groups and group homomorphisms,

« vector spaces and linear mappings,

« graphs and graph homomorphisins,

» the real numbers R and continuous functions R — &,

» open subsets U C R and continuous functions f: U — V¥ C R defined

on them,
« topological spaces and continuous mappings,
» differentiable manifolds and sinooth mappings,

« the natural numbers N and all recursive functions N — N, or as in
the example of continuous functions, one can take partial recursive

functions defined on subsets U C N, a.mL?_\

o posets and monotone functions,

Do not worry i some of these examples are unfamiliar to you. Later on,
we take a closer look at some of them. For now, let us just consider the
last of the above examples in more detail.

. A partially ordered set or paset is a set A equipped with a binary relation
a <. b sueh that the following conditions hold for all a,b,c € A:

reflexivity: @ <4 a,
trapnsitivity: fa < band b <4 ¢, then o <4 ¢,
antisymmetry: ifa <gq4 band b <4 a, then a = b.
For example, the real numbers R with thelr usual ordering » < y form a

poset that is also linearly ordered: either z < y or y < & for any z,y.
An arrow from a poset A to a poset B is a function

m:A— B
that is monetone, in the sense that, for all a,a’ € 4,
a<4qa imples m(a) <p m(a').

What does it take for this to be a category? We need to know that 1, :
A — A is monotone, but that is clear since ¢ <, ' Implics @ <4 a'.
We also need to know that if f: A — B and g : B — C are monotone,
then go f : A — C is monotone. This also holds, since a < o implies
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CATEGORIES 7

fla) < f(a') implies g{f(a}) < g(f(«")) implies {g o f)(a} < (g o F)a').

Therefore, we have the category Pos of posets and monotone functions.-

. The categories that we have been considering so far are examples of what -

arc sometimes callec concrele categories. Informally, these are categories in-
which the objects are sets, possibly equipped with some structure, and the
arrows are certain, possibly structure-preserving, functions (we shall see.
later on that this nolion is not entirely colerent; see remark 1.7). But in.
fact, one way of understanding what category theory is all about is “doing.
without elements,” and replacing them by arrows instead. Let us now take
a look at some examples where this point of view is not just optional, but
essential.

Let Rel be the following category: take sets as objects and take binary
relations as arrows. That is, an arrew f : A — B is an arbitrary subset
f € A x B, The identity arrow on a set A is the identity re]ationf\

La={(ma)eAxAlac A} CAxA ?
Given RC A x B and § € B x (', define composition §o 1 by
{,c)e SoR il b (e,b)e R& (be}e S

that is, the “relative product” of § and H. We leave it as an exercise to
show that Rel is in fact a category. (What needs to be done?)

For another example of a category in which the arrows are not
“functions,” let the ohjects be finite sets 4, B,C and an arrow F: A — B
is a rectangular matrix F' = {1;j }ica,j<p Of natural numbers with a = |A]
and b = |B|, where |} is the number of elements in a set €. The
composition of arrows is by the usual matrix multiplication, and the
identity arrows are the usual unit matrices. The objects here are serving
simply to ensure that the matrix multiplication is defined, but the matrices
are not functions between them.

. Finite calegories

Of course, the objects of a category do not have to he sets, either. Here
are some very simple examples:

« The category 1 looks like this:
%

It has one ohject and its identity arrow, which we do neot draw.
» 'The category 2 looks like this:
o %

It has two objects, their required identity arrows, and exactly one
arrow hetween the objects.
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CATEGORY THIORY

The category 3 looks like this:

E m— &

[ ]
It has three objects, their required identity arrows, exactly one arrow
from the first to the second object, exactly one arrow from the second
to the third object, and exactly one arrow from the first to the third
ohject {which is therefore the composite of the other two).

The category 0 looks like this:

-

It has no ohjects or arrows.

As above, we omit the identity arrows in drawing categories from
now oI

It is easy to specify finlte categories—just take some objects and start
putting arrows between them, but make sure to put in the necessary
identities and composites, as required by the axioms for a category. Also,
if there are any loops, then they need to be cut off by equations to keep
the category finite. For example, consider the following specification:

f

g

Unless we stipulate an equation like gf = 14, we will end up with infinitely
many arrows gf, gfgf. gfgfaf, .. .. This is still a category, of course, but
it is not a finite category. We come back to this situation when we discuss
free categories later in this chapter.

A B

. One impeortant slogan of category theory is

It's the arrows that really malter!

Thercfore, we should alse look at the arrows or “mappings” between
categories. A “homomorphism of categories” is called a functor.

Definition 1.2, A functor
F:C-D

hetween eategories C and D is a mapping of objects to objects and arrows
to arrows, in such a way that

{a) F{f: A— B}y= F(f}: I'(A) = I'(B),
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(b) F(lﬂ.) = IF{A):
{e) F{go [} =Flg)o F(f).
That is, F preserves domains and codomains, identity arrows, and

compostion. A functor 1 C — ]?/ thusygives a sort of “picture” —perhaps
distorted—of C in D.

A / B
T gof !
c
F
F(B)
D i Fg)
F{A) TR fote)

Now, one can easily see that funetors compose in the expected way, and
that every category C has an identity functor 1g : C — C. So we have
another example of a eategory, namely Cat, the category of all categories
and functors.

. A presrder is a set P equipped with a binary relation p < ¢ that is both
reflexive and transitive: ¢ < a, and f ¢ € band b < ¢, then a < . Any
preorder P can be regarded as a category by taking the objects to be the
elements of P and taking 2 unique arrow,

a—b fandonlyif a<bh (1.2)

The reflexive and transitive conditions on < ensure that this is indeed a
category.

Going in the other direction, any category with at most one arrow
between any two objects determines a preorder, simply by defining a binary
relation < on the objects by (1.2},

. A poset is evidently a preorder satisfying the additional condition of
antisymmetry: if @ < b and b < a, then a = b. So, in particular, a poset is
also a category. Such poset calegories are very commen,; for example, for
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any set X, the powerset P(X} is & poset under the usuat inclusion relation
U7 C V between the subsets U,V of X.

What is a functor ¥ : P — @ between poset categories P and Q7 It
must satisfy the identity and composition laws.... Clearly, these are just
the monotone functions alréeady considered above.
1t is often uselul to think of a category as a kind of generalized poset,
one with “more structure” than just p < ¢. Thus, one can also think of a
functor as a generalized monotone map.

. An example from topology: Let X be a topological space with collection of

open sats (H{ X). Ordered by inclusion, @{X'} is a poset category. Moreover,
the points of X can be preordered by specialization by setting » < y iff
x € U implies y € U for every open set U/, that is, y is contained in
every open set that contains z. If X is sufficiently separated (“13"), then
this ordering becomes trivial, but it can be quite interesting otherwise, as
happens in the spaces of algebraic geometry and denctational semantics.
It is an exercise to show that Ty spaces are actually posets under the
specialization ordering.

An example from logic: Given a deductive system of logic, there is an
associated eategoryy calegory of proofs, in which the objects are formulas:

‘P:wy--'

An arrow from ¢ to ¥ is a deduction of i from the {uncanceled)
assumption ¢.

W

Comyposition of arrows is given by putting together such deductions in the
ohvious way, which is clearly associative. (What should the identity arrows
L, be?} Observe that there can be many different arrows

piyp—

since there may be many different such proofs. This category turns out to
have a very rich structure, which we consider [ater in connection with the
A-ealculus.

An evample from compuler science: Given a functional programming
language I, there is an associated category, where the objects are the data
types of 1, and the arrows are the computable functions of L (“precesses,”
“procedures,” bindy “programs” ). The composition of two such programs

xhyszis given by applying g to the output of f, sometimes also
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written as
gof=fig.

The identity is the “do nothing” program.

Categories such as this are basic to the idea of denotational semantics of
programming languages. For example, if C(L) is the category just deflined,
then the denctational semantics of the langnage L In a category D of, say,
Seott domains is stmply a functor

§:C(L)—D

since S assigns domains to the types of L and continuous functions to
tho programs. Both this example and the previous one are related (o the
notion of “cartesian closed category” that is considered later,

Let X be a set, We can regard X as a category Dis(X) by taking the
objects 1o be the clements of X and taking the arrows to be just the
requirved identity arrows, one for cach » € X. Such categories, in which
the only arrows are identitics, are called discrete. Note that discrete
categories are just very special posets.

A moneid (sometimes called a semigroup with unit) is a set M equipped
with a binary operation - : M x M — M and a distinguished “unit”
element v € Af such that for all @, y,z € M,

ey z)=(x-y) =z
and
H-r =3 =2 U

Equivalently, a moneid is a category with just one object. The arrows of
the category are the elements of the monoid. In particular, the identity
arrow is the unit element u. Composition of arrows is the binary operation
m « 1 of the monoid.

Monoids are very common. There are the monoids of numbers like N,
0, or R with addition and 0, or muhipleation and 1. But also for any set
X, the set of functions from X to X, written as

Homgess{X, X}

is a monoid under the operation of composition. More generally, for any
object C in any category C, the set of arrows from C to C, written as
Homga(C, ), is a monoid under the composition operation of C.

Since monoids are structured sets, there is a category Mon whose
objects are monoids and whose arrows are functions that preserve the
monotd structure. In detail, a homomorphism from a menoid M to a
monoid N is a function b : A/ — N such that for all m,n € M,

h(m ag 0y = h{m) -5 h{n)
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and
h(u;.;) = Up.

Observe that a monoid homomorphism from A to N is the same thing
as a functor from M regarded as a category to NV regarded as a category.
In this sense, categories are also generalized monoids, and functors are
generalized homomorphisms.

1.5 Isomorphisms

Definition 1.3. In any category C, an arrow f : A — B is called an
isomorphism, if there is an arrow g : B -~ A in C such that

gof=14 and fog=1lp.

Since inverses are unique (proof!}, we write g = 1. We say that 4 is isomorphic
to B, written A = B, if there exists an isomorphism between them.

The definition of isomorphism is our first example of an absirect, category
theoretic definition of an important notion. It is abstraet in the sense that it
makes use only of the category theoretic notlons, rather than some additional
information about the objects and arrows. It has the advantage over other
possible definitions that it applies in any category. For example, one sometimes
defines an isomorphism of sets (moneids, etc.) as a bijective function {vesp...
homomorphism), that is, one that is *1-1 and onte”—making use of the elements
of the objects. This is equivalent to our definition in some cases, such as
sets and monoids. But note that, for example in Pos, the category theoretic
definition gives the right notion, while there are “bijective homomorphisms”
between non-isomorphie posets. Moreover, in many cases only the abstract
definition makes sense, as for example, in the case of a monoid regarded as a
category.

Definition 1.4. A group & is a monoid with an inverse g~* for every element g.
Phus, (7 Is a category with one object, in which every arrow is an isomorphism.

The natural numbers N do not form a group under either addition or
multiplication, but the integers Z and the positive rationals @, respectively, do.
For any set X, we have the group Aut{X) of automorphisms (or “permutations”)
of X, that is, isomorphisms f : X —» X. {Why is this closed under “"7} A group
of permutations is a subgroup G C Aut(X) for some set X, that is, a group of
(some) automorphisms of X. Thus, the set G must satisfy the following:

1. The identity function 1x on & isin G.
2. 1fg,¢' € G, thengog' € G.
. HgeG theng '€,

pesp @(_,;Ewi()_..@ (S 9
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A homomorphism of groups h : & — H is just a homomorphism of monokds,
which then necessarily also preserves the inverses (proofl}.
Now consider the following basie, classical result about abstract groups.

Theorem {Cayley}. Bvery group G is isomerphic lo a group of permutations.

Proof. (skeich)

1. First, define the Cayley representation G of G to be the following group of
permutations of a set: the set is just & itself, and for each clement g € G,
we have the permutation § : G — G, defined for all k € G by "acling on
the left”:

glhy=g-h.
This is indeed a permutation, since it has the action of g~? as an inverse.
2. Next define homomorphisms i : G — G by i(g} = g, and j : G — G by
i(g) = glu).
3. Pinally, show that iej=1g and joi = ig.
|

Warning 1.5. Note the two different levels of isomorphisms that ocenr in the
proof of Cayley's theorem. There are permutations of the set of elements of G,
which are isomorphisms in Sets, and there is the isomorphism between G and
G, which is in the category Groups of groups and group homomorphisms.

Cayley’s theorem says that any abstract group can be represented as a “concrete”
one, that is, a group of permutations of a set. The theorem can in fact he
generalized to show that any category that is nol “too big” can be represented
as one that is “concrete,” that is, a category of sets and functions, (‘There is a
technical sense of not being “too big” which is introduced in Section 1.8.)

Theorem 1.6. Euvery calegory C with a set of arrows s isomorphic fo one in
which the objects are sets and the arrows are functions.

Proof. (sketch) Define the Cayley representation C of C to be the following
concrete category:

» objects are sets of the form
C={feC| cod(f) = C}
for all C e C,

o arrows are functions
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for g: C — D in C, defined forany f: X > Cin C by g(f) =go f.

b 0

Reinark 1.7. This shows us what is wrong with the naive notion of a “concrete”
category of sets and functions: while not every category has special sets and
functions as its objeets and arrows, every category is isomorphic to such a one.
Thus, the only special properties such categories can possess are ones that are
categorically irrelevant, such as features of the objects that do not affect the
atrows in any way (like the difference between the real numbers constructed
as Dedekind cuts or as Cauchy sequences). A better attempi to capture what
is intended by the rather vague idea of a “concrete” category is that arbitrary
arrows f : (' — D are completely determined by their composites with arrows
2T — C from some “test object” T, in the sense that fx = gz for all such
@ imphes f = ¢. As we shall see Iater, this amounts to considering a particnlar
representation of the eategory, determined by T. A category is then said to he
“eoncrete” when this condition holds for 7' a “terminal object,” in the sense of
Section 2.2; but there are also good reasons for considering other objects T, as
we see Chapter 2.

* Note that the condition that C has a sel of arrows is needed to ensure that
the collections {f € C | cod{f} = C} really are sets—we return to this point in
Section 1.8.

1.6 Constructions on categories
Now that we have a stock of categories to work with, we can consider some
constructions that produce new categories from old.
1. The product of two categories C and D, written as
CxDb

has objects of the form (C, D), for ¢ € C and I € D, and arrows of the
form

(fr9):(C, D) — (¢, DY

for f: € - €' € Candg: D — D ¢D. Composition and units are
defined componentwise, that is,

(Fg)elfimy=(f"ofig og)
E{C,D} = (10, ID).
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There are two obvious projection functors

3! m

C CxD D

defined by m{C, P) = C and m{f, g} = f, and similarly for na.
The reader familiar with groups will recognize that for groups G and f,

the product eategory G % H is the usual (direct} product of groups..— = 1

. The opposite {or “duat”} category C°P of a category C%\ae. the same objects
as C, and an arrow f: C — D in C°P Is an avrow f: D — C in C. That

is, C° is just C with alt of the arrows formally turned around. TR

It is convenient to have a notation to distinguish an object {resp. almw}
in C from the same one in C°P. Thus, let us write

f*:th__)ct

in C° for f:C — D in C. With this notation, we can define composition
and units in C°F in terms of the corresponding operations in C, namely,

loe={1c)*
f*og*:{gof)Q(.

Thus, a diagram in C

A / B
g
gof
C
looks like this in C°F

A* f B’R
frog !

C#

Many “duality” theorems of mathematics express the fact that one category
is (a subcategory of) the apposite of another. An example of this sort which
we prove later is that Sets is dual to the category of complete, atomic
Boolean algebras.

. The arrow category G of a category C has the arrows of C as objects,
and an arrow g from f: A — Bto f/: A/ — B in C™ is a “commutative

N
bﬁp. LSQ.
\C, as

fm,@ Q,JLQ’)’P\Q.

Al




“01-Awodey-c01” — 2009/12/18 — 17:01 -~ page 16 — #16 GF

16 CATEGORY THEORY

square”

gt A

A—m

f f

B B

g2
where g; and g are arrows in C. That is, such an arrow is a pair of arrows
g = (g1, 92) in C such that
g2o f= fom.
The identity mrow 1y on an object f : A — B is the pabr {14,15).
Composition of arrows is done componentwise:
(hy, hi2) o {g1,02) = (h1 0 gs, h2 0 ga)

The reader should verify that this works out by drawing the appropriate
commutative diagram,
Observe that there are two functors:

c dom o cod . C

4. The slice category C/C of a category C over an object C € C has

+ Objects: all arrows f € C such that cod{[} = C,
« Arrows: an arrow a from f : X — Cto f/ : X' — C Is an arrow
a: X — X'in C such that f' o = f, as indicated in

X 4 X’

C

The identity arrows and composites are inherited from those of C, just as in
the arrow category. Note that there is a functor U : G/C — C that “forgets
about the base object C."

If g : © — D is any arrow, then there is a composition functor,

g : C/C — C/D
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defined by g.(f) =g [,
X
gof
f
o b
g

and similarly for arrows in C/C. Indeed, the whole construction is a functor,
C/H{—):C— Cat

as the reader can easily verify. Compared to the Cayley representation,
this Munctor gives a “representation” of C as a category of categories
and functors—rather than sets and fuctions. Of course, the Cayley
representation was just this one followed by the forgetful functor U7 : Cat —
Sots that takes a category to its underlying set of objects.

If C = P is a poset category and p € P, then

P/p= 1{p)
the slice category P/p is just the “principal ideal” | (p) of clements g € P
with g < p. We will have more examples of slice categories soon.

The coslice catepory C/C of a category C under an object € of C has
as objects all arrows [ of C such that dom{f) = C, and an arrow from
f:C—Xtof:C— X' isanarrow h: X -+ X' such that ho f = f,
The reader should now carry out the rest of the definition of the coslice
category by analogy with the definition of the slice category. How can the
caslice category be defined in terms of the slice category and the opposite
construction?

Frample 1.8. The category Sets, of poinfed sets consists of sets A with a
distingnished element a € A, and arrows f : {4,a) — {B,b) are functions
f: A — B that preserves the “points,” f(«) = b This is isomorphic to the
costice category,

Sets, = 1/Sets
of Sets “under” any singleton 1 = {+}. Indeed, functions a : 1 —» A correspond

uniquely to elements, a{+) = a € A, and arrows f : {A,a) — (B,b) correspond
exactly to commutative triangles:
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1.7 Free categories

Free monoid. Start with an “alphabet” A of “letters” a,b,¢,..., that is, a set,
A={abe ...}
A word over A is a finite sequence of letters:
thisword, categoriesarefun, asddjbnzzfj,...

We write “” for the empty word, The “Kleene closure” of 4 is defined to be
the sel

A* = {words over A}.

Define a binary operation “” on A* by w*w' = we' for words w,w' ¢ A"
Thus, “+” is just concatenation. The operation “+” is thus associative, and the
empty word ““” is a unit. Thus, A* is a monotd—called the free monoid on
the set A. The elements a € A can be regarded as words of length one, so we
have a function

iAo A

defined by i(a) = a, and called the “insertion of generators.” 'Fhe clements of A
“senerate” the free monoid, in the sense that every w € A is a »-product of a's,
that is, w == @y * ag %+ - * a,, for some ay,az,...,a, in A

MNow what does “free” mean here? Any guesses? One sometimes sees
definitions in “baby algebra” books along the following lines:

A monoid M is freely generated by a subset A of M, if the following conditions
hold:

1. BEvery element m € M can be written as a product of elements of A:
M=apAf--- M@, ;€A

2, No “nountrivial” relations hold in A7, that is, if ay...a; = ¢ ...a}, then
this is required by the axioms lor monoids.

The first condition is sometimes called “no junk,” while the second condition is
sometimes called “no neise,” Thus, the free monoid on A is a monoid containing
4 and having no junk and no noise. What do you think of this definition of 2
free monoid?

1 would object to the reference in the second condition to “provability,” or
something. 'This must be made more precise for this to succeed as a definition. In
category theory, we give a precise definition of “free” —capturing what is meant
in the above—which avoids such vagueness.

First, every monoid N has an underlying set |Ni, and every monoid
homomorphism f : N — A has an underlying function {f| : [N} — [M]. |t
is easy to see that this is a functor, called the “forgetful functer” The [ree
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monoid A{A) on a set A is by definition “the” monoid with the following so
calledd universal mapping property or UMP!

Universal Mapping Property of M{A)

There is a function { : A — |M(A)}, and given any menoid IV and any function
f i A — |N|, there is a unique monoid homomorphism f: M (A} — N such that
[flei = f, all as indicated in the following diagram:

in Mon:

M(A) s . N
in Scts:

e W

A

Proposition 1.9. A* has the UMP of ihe free monoid on A.
Proaf. Given f: A — |N|, define f: A* — N by

F(=) = uy, the unit of N
flay...ai) = fla) oo flag)
Then, [ is clearly a homomorphism with

fle)=fla) forallac A
If g1 A* — N also satisfies g(a) = f{a) for all a € 4, then for all ay ...q; € A*:

glas ... ;) =glag = ... a;)
=gla1) ‘x ... -w glag)
= flar) w - -n flag)
= fla1) n ... Flag)
= flay *...xqa;)
:f(al...a,-).
So, g = J, as required. _ O

Think about why the above UMP captures precisely what is meant by “no

junk” and “no noise.” Specifically, the existence part of the UMP captures the
vague notion of “no noise” {because any equation that holds between algebraic
combinations of the generators must also hold anywhere they can be mapped to,
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and thus everywhere), while the uniqueness part makes precise the “no junk”
idea (because any extra elements not combined from the generators would be
free 1o be mapped to differcnt values).

Using the UMP, it is easy 1o show that the free monoid M (A} is determined
uniguely up to isomorphism, in the following sense.

Proposition 1.10. Given monoids M and N with functions i: A— M| and
A — |N|, each with the UMP of the free monoid on A, there is a (unique)
monoid isomarphism h: M 22 N such that |hji = j and |~ YF =1,

Proaf. Frem j and the UMP of M, we have j : M — N with {]i = j and from
i and the UMP of N, we have 7 : N — M with [i|j = i. Composing gives a
homomorphism fo § : M — M sueh that [f o j|i = i. Since 157 : M — M also
has this property, by the uniqueness part of the UMP of M, we have foj = 1a.
Exchanging the roles of M and N shows joi= 1p:

in Mon:

¥ i
| ARy | - - M
in Sets:
L L VLN
] J ]

g

For example, the free monoid on any set with a single element is casily
geen to be isomorphic to the monoid of natural numbers N under addition {the
“generator” is the number 1), Thus, as a monoid, N is uniquely determined up
to isomorphism by the UMP of free monoids.

Free category. Now, we want to do the same thing for categories in general
(not just monoids). Instead of underlying sets, categorics have underlying graphs,
s0 let us review these first.

A directed graph consisis of vertices and edges, each of which is directed, that
is, each edge has a “source” and a “target” vertex.

z

A B
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We draw graphs just like calegories, but there is no composition of edges, and
there are no identities.

A graph thus consisis of iwo sets, FE (edges} and V {vertices}, and two
functions, s: 5 — V (source)} and { : It — V (target). Thus, in Sets, a graph is
just a configuration of objects and arrows of the form

s

5 V

2

Now, every graph G “generates” a category C{G), the free category on G. It
is defined by taking the vertices of & as ohjects, and the paths in G as arrows,
where a path is a finite sequence of edges ey,...,e, such that ¢(e;) = s(eiy1),
for all i = I...n. We' write the arrows of C{G)} in the form e e —1...€1.

3] €2 €3 €n
1] * U + Uy o Up

Put
domfe, ...eq) = s{er)
codle, ...e1) = t{eq)

and define eomposition by concatenation:

en...e106, ... =¢€,...e06,...¢}.
Tor each vertex », we have an “empty path” denoted by 1,, which is to be the
identity arrow at v.

Note that if G has only one vertex, then C{G) is just the free monoid on the
set of edges of G. Also note that if G has only vertices {no edges), then C{G) is
the discrote category on the set of vertices of G.

Later on, we will have a gencral definition of “free.” For now, let us see that
C{G) also has a UMP, First, define a “forgetful functor”

U : Cat — Graphs

in the obvious way: the underlying graph of a category C has as edges the arrows
of C, and as vertices the ohjects, with s = dom and £ = cod. The action of I/ on
functors is equally clear, or at least it will be, once we have defined the arrows
in Graphs.

A homomorphism of graphs is of course a “funclor without the conditions on
identities and composition,” that is, a mapping of edges to edges and veriices
to vertices that preserves sources and targets. We describe this from a slightly
different point of view, which will be useful later on.

First, chserve that we can describe a category C with a diagram like this:

cod
[

Cy

—_—
Cp +—i— Cy
—
dom
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where Cy is the collection of abjects of C, € the arrows, i is the identity arrow
operation, and Cy is the collection {{f, g) € C1 x Cy : cod{ [} = dom{g)}.

Then a fiunctor ¥ : C - D from C to another category I} is a pair of
functions

Fg : Cg — D[)
f“l H C] — Dl
such that each similarly labeled square in the foliowing diagram commutes:
cod
o —_—
s Ot —i——
—_—
dom
Fg F{ FQ
cod
—————
Dy D oe—i— I
—_—
dom

where I(f, g) = (F1(f), Fi(9)).
Now let us describe a homomorphisin of graphs,

h:G— H

We need a pair of functions Ap : Gg — Hp, by : G1 — Hi making the two squares
(once with #’s, once with §'s) in the following diagram conunule:

t
¢ Go
8
hy hy
t
1 Hy
s

In these terms, we can easily describe the forgetful functor,
U : Cat — Graphs
as sending the category
cod

o _
€ +—i— Cp
———r

Cy
cdom
to the underlying graph
cod

oy —=

dom

Co.
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And shmilarly for functors, the effect of U is described by simply erasing some
parts of the diagrams (which is easier to demonstrate with chalk!). Let us again
write |C| = U(C), ete., for the underlying graph of a category C, in analogy to
the ease of monoids above.

The free category on a graph now has the following UMP.

Uniwersal Mapping Property of C{G)

There is a graph homomorphism ¢ : G — {C{G)], and given any category ID and
any graph homomorphism A : G — |D], there is a unique functor k : C(G) — D
with [R]j o i = h.

in Cat:
C(G) v v D
in Graph:
@) L o)
! h
€4

The free category on a graph with just one vertex is just a free monoid on
the set of edges. The free category on a graph with two vertices and one edge
between them is the finite category 2. The free category on a graph of the form

e

f

has (in addition to the identity arrows) the infinitely many arrows:

e|f|ef1f€'a€fe:f8f|€f8f,...

A B

1.8 TFoundations: large, small, and locally smatll

Let us begin by distinguishing between the following things:

(i) categorical foundations for mathematies,
(it} mathematical foundations for category theory.

As for the first point, one sometimes hears it said that category theory can be
nsed to provide “foundations for mathematics,” as an alternative to set theory.
That is in fact the case, but it is not what we are doing here. In set theory,
one often begins with existential axioms such as “there is an infinite set” and
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derives further sets by axioms like “every set has a powerset,” thus building up a
universe of mathematical objects (namely sets}, which in principle suffice for “all
of mathematics.” Our axiom that every arrow has a domain and a codomain is
not to be understood in the same way as set theory’s axiom that every set has a
powerset! The difference is that in set theory—at leest as usually conceived—the
axioms are to be regarded as referring to (or determining) a single universe of sets.
It category theory, by contrast, the axioms are a definition of something, namely
of categories. This is just like in group theory or topology, where the axioms serve
to <efine the objects under investigation. ‘These, in turn, are assumed to exist in
some “background” or “foundational” system, like set theory (or type theory).
That theory of sets could itself, in turn, be detennined using category theory, or
in some other way.

This brings us to the second point: we assume that our categories are
comprised of sets and functions, in one way or another, like most mathematical
objects, and taking into account the remarks fust made about the possibility
of eategorical {or other} foundations. But in category theory, we sometimes run
into difficulties with set theory as usually practiced. Mostly these are questions
of size; some categories are “too hig” to be handled comfortably in conventional
set theory. We already encountered this issue when we considered the Cayley
representation in Section 1.5. There we had to require that the category under
consideration had (no more than} a set of arrows. We would certainiy not want to
impose this restriction in general, however (as one ustally does for, say, groups);
for then even the “category” Sets would fail to be a proper category, as would
many other eategories that we definitely want to study.

There are various formal devices for addressing these issues, and they are
discussed in the book by Mac Lane. For our immediate purposes, the following
distinction will be useful.

Definition 1.11. A category C is called small if both the collection Cy of
objects of C and the collection C; of arrows of C are sets. Otherwise, C is
called farge.

For examptle, all finite categories are clearly small, as is the category Setsg, of
finite sets and functions. (Actually, one should stipulate that the sets are only
built from other finkte sets, all the way down, i.e., that they are “hereditarily
finite™.} On the other hand, the category Pos of posets, the category Groups of
groups, and the category Sets of sets are all large. We let Cat be the category
of all small categories, which itself is a large category. In particular, then, Cat
is not an object of itself, which may come as a relief to some readers.

This does not really solve all of our difficulties. Iiven for large categories like
Groups and Sets we will want to also consider constructions like the category
of all functors from one to the other {we define this “functor category” later).
But if these are not small, conventional set theory does not provide the means
to do this directly {these categories would be “too large” ). Therefore, one needs
a more elaborate theory of “classes” to handle such construetions. We will not
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worry abowd this when i is just a matter of technical foundations (Mac Lane L6
addresses this issue). However, one very useful notion in this connection is the
following,

Definition 1.12. A category C is called locally small if for all objects X, V'
in C, the collection Homg(X,¥)={fe G | f: X - Y }is a sel {called a
hom-set).

Many of the large categories we want to consider are, in fact, locally small, Sets
is locally small since Homgais(X, ¥) = Y, the set of all finctions from X to V.
Similarly, Pos, Top, and Group are all locally small (is Cat?)}, and, of course,
any small category is locally small.

Warning 1.13. Do not confuse the notions concrefe and small To say that a
calegory is concrete is to say that the objects of the category are (structured)
sets, and the arrows of the category are {certain} functions. To say that a category
is small is to say that the collection of all objecis of the category is a set, as is
the collection of all arrows. The real numbers R, regarded as a poset category, is
small but not concrete. The category Pos of all posets is concrete but not small.

1.8 TExercises

1. The cbjects of Rel are sets, and an arrow /1 — B is a relation from A to B,
that is, a subset B C A % B. The equality relation {{z,¢) € Ax Al a € A}
is the identity arrow on a set A. Compesition in Rel is to be given by

SoR={{a,c€ AxC|W{le,b} € RE& (be) € 5)}
for RCAxBand SC B xC.

{a) Show that Rel is a category.

{b) Show also that there is a functor G : Sets — Rel taking objects to
themselves and each {function f: A — B to its graph,

GU) = {la, fla)) € A x B |a € A}

(c) Finally, show that there is a functor € : Rel®™ — Rel taking each
relation 2 C A x B 1o its converse R° C B x A, where,

{a,b) e R < (ba) € R.

2. Consider the following isomorphisms of categories and determine which
hold.

(a) Rel = ReloP
{b) Sets 2 Sots®?
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(c) For a fixed set X with powserset F{X), as poset categories P{X) =
P(XY%? {the arrows in P(X) are subset inclusions A C B for all
ABC X).

. {a) Show that in Sets, the isomorphisms are exactly the bijections.

{b) Show that in Monoids, the isomorphisms are exactly the bijective
homeomorphisms.

(¢} Show that in Posets, the isomorphisms are not the same as the
bijective homomorphisms.

. Let X be a topological space and preorder the points by specialization:

x < y iff y is contained i every open set that contains @, Show that this
is a preorder, and that it is a poset if X is Ty (for any two distinct points,
there is some open set containing one but not the other). Show that the
crcering is trivial if X is Ty (for any two distinet points, each is contained
in an open set not containing the other),

. Tor any category C, define a functor U : C/C — C from the slice category

over an object C' that “forgets about C.” Find a functor ¥ : C/C — C™
to the arrow category such that domo F =1U,

. Construct the “coslice category” C/C of a category C under an object C

from the slice category C/C and the “dual category” operation —°P.
gory

. Let 2 = {a,b} be any set with exactly 2 elements a and b. Define a functor

¥ : Sets/2 — Sets x Sets with F(f 1 X — 2) = (f " Ha), ;). Is this
an isomorphism of categories? What about the analogous situation with a
one-element set 1 = {a} instead of 27

. Any category O determines a preorder P{C) by defining a binary rela-

tion < on the objects by
A < B if and only if there is an arrow A4 — B

Show that P determines a functor from categories to preorders, by
defining its effect on functors between categories and ehecking the required
conditions. Show that P is a {one-sided) inverse to the evident inclusion
functor of preorders into categories.

. Describe the free categories on the following graphs by determining their

objects, arrows, and composition operations.

(a)

(b)
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(e}

10. How many free categories on graphs are there which have exactly six
arrows? Draw the graphs that generate these categories.

11. Show that the free monoid functor
M : Sets — Mon
exists, in two different ways:
(a) Assume the particular choice A(X)} = X* and define its offect
Mf): M(A) — M(B)
on a function f: A — B to be

M{f¥ay...ap) = flar}... flap), @y, a0 € A

(b) Assume only the UMP of the free monocid and use it to determine A
on functions, showing the result to be a functor.

Reflect on how these two approaches are related.

12. Verify the UMP for free categories on graphs, defined as above with arrows
being sequences of edges. Specifically, let C(G) be the free category on the
graph G, so defined, and i : G — U{C(G)) the graph homomorphism
taking vertices and edges to themselves, regarded as objects and arrows in
C(G). Show that for any category D and graph homomorphism f: G —
U{D), there is a unique functor

h:C(G)—D
with

U{hyoi=h,
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14,
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where U : Cat — Graph is the underlying graph functor.

Use the Cayley representation to show that every small category is
isomorphie to a “cencrete” one, that is, one in which the objects are sets
and the arrows are functions between them.

"The notion of a category ean also be defined with just one sert {arrows)
rather than two (arrows and objects); the domains and codomains are
taken to be certain arrews that act as units under composition, which is
partially defined. Read about this definition in section L1 of Mac Lane's
Calegories for the Working Mathematician, and do the exercise mentioned
there, showing thaj it is equivalent to the usual definition.




