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NATURALITY

We now want to start considering categories and functors more systematically,
developing the “category theory” of category theory itself, rather than of other
mathematical objects, like groups, or formulas in a logical system. Let me
emphasize that, while some of this may look a bit like “abstract nonsense,”
the idea behind it is that when one has a particular application at hand, the
theory can then be specialized to that concrete case. The notion of a functor is
a case in point; developing its general theory makes it a clarifying, simplifying,
and powerful tool in its many instances.

7.1 Category of categories

We begin by reviewing what we know about the category Cat of categories and
functors and tying up some loose ends.

We have already seen that Cat has finite coproducts 0, C + D; and finite
products 1, C×D. It is very easy to see that there are also all small coproducts
and products, constructed analogously. We can therefore show that Cat has
all limits by constructing equalizers. Thus, let categories C and D and parallel
functors F and G be given, and define the category E and functor E,

E
E � C

F �

G
� D

as follows (recall that for a category C, we write C0 and C1 for the collections
of objects and arrows, respectively):

E0 = {C ∈ C0 | F (C) = G(C)}
E1 = {f ∈ C1 | F (f) = G(f)}

and let E : E → C be the evident inclusion. This is then an equalizer, as the
reader can easily check.

The category E is an example of a subcategory, that is, a monomorphism in
Cat (recall that equalizers are monic). Often, by a subcategory of a category C
one means specifically a collection U of some of the objects and arrows, U0 ⊆ C0

and U1 ⊆ C1), that is closed under the operations dom, cod, id, and ◦. There is



�

�

“07-Awodey-c07” — 2009/12/18 — 17:11 — page 148 — #2
�

�

�

�

�

�

148 CATEGORY THEORY

then an evident inclusion functor

i : U → C

which is clearly monic.
In general, coequalizers of categories are more complicated to describe—

indeed, even for posets, determining the coequalizer of a pair of monotone maps
can be quite involved, as the reader should consider.

There are various properties of functors other than being monic and epic that
turn out to be quite useful in Cat. A few of these are given by the following:

Definition 7.1. A functor F : C → D is said to be

• injective on objects if the object part F0 : C0 → D0 is injective, it is
surjective on objects if F0 is surjective.

• Similarly, F is injective (resp. surjective) on arrows if the arrow part F1 :
C1 → D1 is injective (resp. surjective).

• F is faithful if for all A,B ∈ C0, the map

FA,B : HomC(A,B) → HomD(FA,FB)

defined by f �→ F (f) is injective.

• Similarly, F is full if FA,B is always surjective.

What is the difference between being faithful and being injective on arrows?
Consider, for example, the “codiagonal functor” ∇ : C + C → C, as indicated
in the following:

C � C + C � C

C

∇

�

1C

�

1C
�

∇ is faithful, but not injective on arrows.
A full subcategory

U � C

consists of some objects of C and all of the arrows between them (thus satisfying
the closure conditions for a subcategory). For example, the inclusion functor
Setsfin � Sets is full and faithful, but the forgetful functor Groups � Sets
is faithful but not full.

Example 7.2. There is another “forgetful” functor for groups, namely to the
category Cat of categories,

G : Groups → Cat.
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Observe that this functor is full and faithful, since a functor between groups
F : G(A) → G(B) is exactly the same thing as a group homomorphism.

And exactly the same situation holds for monoids.
For posets, too, there is a full and faithful, forgetful functor

P : Pos → Cat

again because a functor between posets F : P (A) → P (B) is exactly a
monotone map. And the same thing holds for the “discrete category” functor
S : Sets → Cat.

Thus, Cat provides a setting for comparing structures of many different kinds.
For instance, one can have a functor R : G → C from a group G to a category
C that is not a group. If C is a poset, then any such functor must be trivial
(why?). But if C is, say, the category of finite dimensional, real vector spaces
and linear maps, then a functor R is exactly a linear representation of the group
G, representing every element of G as an invertible matrix of real numbers and
the group multiplication as matrix multiplication.

What is a functor g : P → G from a poset to a group? Since G has only
one object ∗, it has g(p) = ∗ = g(q) for all p, q ∈ P . For each p ≤ q, it picks an
element gp,q in such a way that

gp,p = u (the unit of G)

gq,r · gp,q = gp,r.

For example, take P = (R,≤) to be the ordered real numbers and G = (R,+)
the additive group of reals, then subtraction is a functor,

g : (R,≤) → (R,+)

defined by

gx,y = (y − x).

Indeed, we have

gx,x = (x − x) = 0

gy,z · gx,y = (z − y) + (y − x) = (z − x) = gx,z.

7.2 Representable structure

Let C be a locally small category, so that we have the representable functors,

HomC(C,−) : C → Sets

for all objects C ∈ C. This functor is evidently faithful if the object C has the
property that for any objects X and Y and arrows f, g : X ⇒ Y , if f 
= g there
is an arrow x : C → X such that fx 
= gx. That is, the arrows in the category
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are distinguished by their effect on generalized elements based at C. Such an
object C is called a generator for C.

In the category of sets, for example, the terminal object 1 is a generator. In
groups, as we have already discussed, the free group F (1) on one element is a
generator. Indeed, the functor represented by F (1) is isomorphic to the forgetful
functor U : Grp → Sets,

Hom(F (1), G) ∼= U(G). (7.1)

This isomorphism not only holds for each group G, but also respects group
homomorphisms, in the sense that for any such h : G → H, there is a
commutative square,

G Hom(F (1), G)
∼=� U(G)

H

h

�
Hom(F (1),H)

h∗

�

∼=
� U(H)

U(h)

�

One says that the isomorphism (7.1) is “natural in G.” In a certain sense, this also
“explains” why the forgetful functor U preserves all limits, since representable
functors necessarily do. The related fact that the forgetful functor is faithful is
a precise way to capture the vague idea, which we initially used for motivation,
that the category of groups is “concrete.”

Recall that there are also contravariant representable functors

HomC(−, C) : Cop → Sets

taking f : A → B to f∗ : HomC(B,C) → HomC(A,C) by f∗(h) = h ◦ f for
h : B → C.

Example 7.3. Given a group G in a (locally small) category C, the contravariant
representable functor HomC(−, G) actually has a group structure, giving a
functor

HomC(−, G) : Cop → Grp.

In Sets, for example, for each set X, we can define the operations on the group
Hom(X,G) pointwise,

u(x) = u (the unit of G)

(f · g)(x) = f(x) · g(x)

f−1(x) = f(x)−1.

In this case, we have an isomorphism

Hom(X,G) ∼= Πx∈XG
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with the product group. Functoriality in X is given simply by precomposition;
thus, for any function h : Y → X, one has

h∗(f · g)(y) = (f · g)(h(y))

= f(h(y)) · g(h(y))

= h∗(f)(y) · h∗(g)(y)

= (h∗(f) · h∗(g))(y)

and similarly for inverses and the unit. Indeed, it is easy to see that this
construction works just as well for any other algebraic structure defined by
operations and equations. Nor is there anything special about the category
Sets here; we can do the same thing in any category with an internal algebraic
structure.

For instance, in topological spaces, one has the ring R of real numbers and,
for any space X, the ring

C(X) = HomTop(X, R)

of real-valued, continuous functions on X. Just as in the previous case, if

h : Y → X

is any continuous function, we then get a ring homomorphism

h∗ : C(X) → C(Y )

by precomposing with h. The recognition of C(X) as representable ensures that
this “ring of real-valued functions” construction is functorial,

C : Topop → Rings.

Note that in passing from R to HomTop(X, R), all the algebraic structure
of R is retained, but properties determined by conditions that are not strictly
equational are not necessarily preserved. For instance, R is not only a ring, but
also a field, meaning that every nonzero real number r has a multiplicative inverse
r−1; formally,

∀x(x = 0 ∨ ∃y. y · x = 1).

To see that this condition fails in, for example, C(R), consider the continuous
function f(x) = x2. For any argument y 
= 0, the multiplicative inverse must be
g(y) = 1/y2. But if this function were to be continuous, at 0 it would have to be
limy→0 1/y2 that does not exist in R.

Example 7.4. A very similar situation occurs in the category BA of Boolean
algebras. Given the Boolean algebra 2 with the usual (truth-table) operations
∧,∨,¬, 0, 1, for any set X, we make the set

HomSets(X,2)
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into a Boolean algebra with the pointwise operations:

0(x) = 0

1(x) = 1

(f ∧ g)(x) = f(x) ∧ g(x)

etc.

When we define the operations in this way in terms of those on 2, we see
immediately that Hom(X,2) is a Boolean algebra too, and that precomposition
is a contravariant functor,

Hom(−,2) : Setsop → BA

into the category BA of Boolean algebras and their homomorphisms.
Now observe that for any set X, the familiar isomorphism

Hom(X,2) ∼= P(X)

between characteristic functions φ : X → 2 and subsets Vφ = φ−1(1) ⊆ X,
relates the pointwise Boolean operations in Hom(X,2) to the subset operations
of intersection, union, etc. in P(X):

Vφ∧ψ = Vφ ∩ Vψ

Vφ∨ψ = Vφ ∪ Vψ

V¬φ = X − Vφ

V1 = X

V0 = ∅
In this sense, the set-theoretic Boolean operations on P(X) are induced by those
on 2, and the powerset P is seen to be a contravariant functor to the category
of Boolean algebras,

PBA : Setsop → BA.

As was the case for the covariant representable functor HomGrp(F (1),−)
and the forgetful functor U from groups to sets, here the contravariant functors
HomSets(−,2) and PBA from sets to Boolean algebras can also be seen to be
naturally isomorphic, in the sense that for any function f : Y → X, the following
square of Boolean algebras and homomorphisms commutes:

X Hom(X,2)
∼=� P (X)

Y

f

�

Hom(Y,2)

f∗

�

∼=
� P (Y )

f−1

�
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7.3 Stone duality

Before considering the topic of naturality more systematically, let us take a closer
look at the foregoing example of powersets and Boolean algebras.

Recall that an ultrafilter in a Boolean algebra B is a proper subset U ⊂ B
such that

• 1 ∈ U

• x, y ∈ U implies x ∧ y ∈ U

• x ∈ U and x ≤ y implies y ∈ U

• if U ⊂ U ′ and U ′ is a filter, then U ′ = B

The maximality condition on U is equivalent to the condition that for every
x ∈ B, either x ∈ U or ¬x ∈ U but not both (exercise!).

We already know that there is an isomorphism between the set Ult(B) of
ultrafilters on B and the Boolean homomorphisms B → 2,

Ult(B) ∼= HomBA(B,2).

This assignment Ult(B) is functorial and contravariant, and the displayed
isomorphism above is natural in B. Indeed, given a Boolean homomorphism
h : B′ → B, let

Ult(h) = h−1 : Ult(B) → Ult(B′).

Of course, we have to show that the inverse image h−1(U) ⊂ B of an ultrafilter
U ⊂ B′ is an ultrafilter in B. But since we know that U = χ−1

U (1) for some
χU : B′ → 2, we have

Ult(h)(U) = h−1(χ−1
U (1))

= (χU ◦ h)−1(1).

Therefore, Ult(h)(U) is also an ultrafilter. Thus, we have a contravariant functor
of ultrafilters

Ult : BAop → Sets,

as well as the contravariant powerset functor coming back

PBA : Setsop → BA.

The constructions,

BAop � (PBA)op

Ult
� Sets

are not mutually inverse, however. For in general, Ult(P(X)) is much larger than
X, since there are many ultrafilters in P(X) that are not “principal,” that is, of
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the form {U ⊆ X | x ∈ U} for some x ∈ X. (But what if X is finite?) Instead,
there is a more subtle relation between these functors that we consider in more
detail later; namely, these are an example of adjoint functors.

For now, consider the following observations. Let

U = Ult ◦ (PBA)
op

: Sets → BAop → Sets

so that

U(X) = {U ⊆ P(X) | U is an ultrafilter}
is a covariant functor on Sets. Now, observe that for any set X, there is a
function

η : X → U(X)

taking each element x ∈ X to the principal ultrafilter

η(x) = {U ⊆ X | x ∈ U}.
This map is “natural” in X, that is, for any function f : X → Y , the following
diagram commutes:

X
ηX � U(X)

Y

f

�

ηY

� U(Y )

U(f)

�

This is so because, for any ultrafilter V in P(X),

U(f)(V) = {U ⊆ Y | f−1(U) ∈ V}.
So in the case of the principal ultrafilters η(x), we have

(U(f) ◦ ηX)(x) = U(f)(ηX(x))

= {V ⊆ Y | f−1(V ) ∈ ηX(x)}

= {V ⊆ Y | x ∈ f−1(V )}
= {V ⊆ Y | fx ∈ V }
= ηY (fx)

= (ηY ◦ f)(x).

Finally, observe that there is an analogous natural map at the “other side” of
this situation, in the category of Boolean algebras. Specifically, for every Boolean
algebra B, there is a homomorphism similar to the function η,

φB : B → P(Ult(B))
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given by

φB(b) = {V ∈ Ult(B) | b ∈ V}.

It is not hard to see that φB is always injective. For, given any distinct
elements b, b′ ∈ B, the Boolean prime ideal theorem implies that there is an
ultrafilter V containing one but not the other. The Boolean algebra P(Ult(B)),
together with the homomorphism φB , is called the Stone representation of B.
It presents the arbitrary Boolean algebra B as an algebra of subsets. For the
record, we thus have the following step toward a special case of the far-reaching
Stone duality theorem.

Proposition 7.5. Every Boolean algebra B is isomorphic to one consisting of
subsets of some set X, equipped with the set-theoretical Boolean operations.

7.4 Naturality

A natural transformation is a morphism of functors. That is right: for fixed
categories C and D, we can regard the functors C → D as the objects of a
new category, and the arrows between these objects are what we are going to
call natural transformations. They are to be thought of as different ways of
“relating” functors to each other, in a sense that we now explain.

Let us begin by considering a certain kind of situation that often arises: we
have some “construction” on a category C and some other “construction,” and
we observe that these two “constructions” are related to each other in a way that
is independent of the specific objects and arrows involved. That is, the relation is
really between the constructions themselves. To give a simple example, suppose
C has products and consider, for objects A,B,C ∈ C,

(A × B) × C and A × (B × C).

Regardless of what objects A,B, and C are, we have an isomorphism

h : (A × B) × C
∼→ A × (B × C).

What does it mean that this isomorphism does not really depend on the
particular objects A,B,C? One way to explain it is this:

Given any f : A → A′, we get a commutative square

(A × B) × C
hA� A × (B × C)

(A′ × B) × C
�

hA′

� A′ × (B × C)
�
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So what we really have is an isomorphism between the “constructions”

(−× B) × C and −×(B × C)

without regard to what is in the argument-place of these.
Now, by a “construction,” we of course just mean a functor, and by a “relation

between constructors” we mean a morphism of functors (which is what we are
about to define). In the example, it is an isomorphism

(−× B) × C ∼= −× (B × C)

of functors C → C. In fact, we can of course consider the functors of three
arguments:

F = (−1 ×−2) ×−3 : C3 → C

and

G = −1 × (−2 ×−3) : C3 → C

and there is an analogous isomorphism

F ∼= G.

But an isomorphism is a special morphism, so let us define the general notion
first.

Definition 7.6. For categories C,D and functors

F,G : C → D

a natural transformation ϑ : F → G is a family of arrows in D

(ϑC : FC → GC)C∈C0

such that, for any f : C → C ′ in C, one has ϑC′ ◦F (f) = G(f) ◦ϑC , that is, the
following commutes:

FC
ϑC � GC

FC ′

Ff

�

ϑC′

� GC ′

Gf

�

Given such a natural transformation ϑ : F → G, the D-arrow ϑC : FC → GC
is called the component of ϑ at C.

If you think of a functor F : C → D as a “picture” of C in D, then you can
think of a natural transformation ϑC : FC → GC as a “cylinder” with such a
picture at each end.
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7.5 Examples of natural transformations

We have already seen several examples of natural transformations in previous
sections, namely the isomorphisms

HomGrp(F (1), G) ∼= U(G)

HomSets(X,2) ∼= P(X)

HomBA(B,2) ∼= Ult(B).

There were also the maps from Stone duality,

ηX : X → Ult(P(X))

φB : B → P(Ult(B)).

We now consider some further examples.

Example 7.7. Consider the free monoid M(X) on a set X and define a natural
transformation η : 1Sets → UM , such that each component ηX : X → UM(X) is
given by the “insertion of generators” taking every element x to itself, considered
as a word.

X
ηX� UM(X)

Y

f

�

ηY

� UM(Y )

UM(f)

�

................

This is natural, because the homomorphism M(f) on the free monoid M(X) is
completely determined by what f does to the generators.

Example 7.8. Let C be a category with products, and A ∈ C fixed. A natural
transformation from the functor A × − : C → C to 1C : C → C is given by
taking the component at C to be the second projection

π2 : A × C → C.

From this, together with the pairing operation 〈−,−〉, one can build up the
isomorphism,

h : (A × B) × C
∼→ A × (B × C).

For another such example in more detail, consider the functors

× : C2 → C

×̄ : C2 → C
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where ×̄ is defined on objects by

A ×̄ B = B × A

and on arrows by

α ×̄ β = β × α.

Define a “twist” natural transformation t : × → ×̄ by

t(A,B)〈a, b〉 = 〈b, a〉.

To check that the following commutes,

A × B
t(A,B)� B × A

A′ × B′

α × β

�

t(A′,B′)

� B′ × A′

β × α

�

observe that for any generalized elements a : Z → A and b : Z → B,

(β × α)t(A,B)〈a, b〉 = (β × α)〈b, a〉
= 〈βb, αa〉
= t(A′,B′)〈αa, βb〉
= t(A′,B′) ◦ (α × β)〈a, b〉.

Thus, t : × → ×̄ is natural. In fact, each component t(A,B) is an isomorphism
with inverse t(B,A). This is a simple case of an isomorphism of functors.

Definition 7.9. The functor category Fun(C,D) has

Objects: functors F : C → D,

Arrows: natural transformations ϑ : F → G.

For each object F , the natural transformation 1F has components

(1F )C = 1FC : FC → FC

and the composite natural transformation of F
ϑ→ G

φ→ H has components

(φ ◦ ϑ)C = φC ◦ ϑC .

Definition 7.10. A natural isomorphism is a natural transformation

ϑ : F → G

which is an isomorphism in the functor category Fun(C,D).
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Lemma 7.11. A natural transformation ϑ : F → G is a natural isomorphism
iff each component ϑC : FC → GC is an isomorphism.

Proof. Exercise!

In our first example, we can therefore say that the isomorphism

ϑA : (A × B) × C ∼= A × (B × C)

is natural in A, meaning that the functors

F (A) = (A × B) × C

G(A) = A × (B × C)

are naturally isomorphic.
Here is a classical example of a natural isomorphism.

Example 7.12. Consider the category

Vect(R)

of real vector spaces and linear transformations

f : V → W.

Every vector space V has a dual space

V ∗ = Vect(V, R)

of linear transformations. And every linear transformation

f : V → W

gives rise to a dual linear transformation

f∗ : W ∗ → V ∗

defined by precomposition, f∗(A) = A ◦ f for A : W → R. In brief,
(−)∗ = Vect(−, R) : Vectop → Vect is the contravariant representable functor
endowed with vector space structure, just like the examples already considered
in Section 7.2.

As in those examples, there is a canonical linear transformation from each
vector space to its double dual,

ηV : V → V ∗∗

x �→ (evx : V ∗ → R)

where evx(A) = A(x) for every A : V → R. This map is the component of a
natural transformation,

η : 1Vect → ∗∗
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since the following always commutes:

V
ηV � V ∗∗

W

f

�

ηW

� W ∗∗

f∗∗

�

in Vect. Indeed, given any v ∈ V and A : W → R in W ∗, we have

(f∗∗ ◦ ηV )(v)(A) = f∗∗(evv)(A)

= evv(f∗(A))

= evv(A ◦ f)

= (A ◦ f)(v)

= A(fv)

= evfv(A)

= (ηW ◦ f)(v)(A).

Now, it is a well-known fact in linear algebra that every finite dimensional
vector space V is isomorphic to its dual space V ∼= V ∗ just for reasons of
dimension. However, there is no “natural” way to choose such an isomorphism.
On the other hand, the natural transformation,

ηV : V → V ∗∗

is a natural isomorphism when V is finite dimensional.
Thus, the formal notion of naturality captures the informal fact that V ∼= V ∗∗

“naturally,” unlike V ∼= V ∗.

A similar situation occurs in Sets. Here we take 2 instead of R, and the dual
A∗ of a set A then becomes

A∗ = P(A) ∼= Sets(A, 2)

while the dual of a map f : A → B is the inverse image f∗ : P(B) → P(A).
Note that the exponential evaluation corresponds to (the characteristic

function of) the membership relation on A × P(A).

2A × A
ε � 2

A × P (A)

∼=
�

∈̃
� 2

id

�



�

�

“07-Awodey-c07” — 2009/12/18 — 17:11 — page 161 — #15
�

�

�

�

�

�

NATURALITY 161

Transposing again gives a map

A
ηA� PP (A)= A∗∗

2P (A)

∼=
�

�

which is described by

ηA(a) = {U ⊆ A | a ∈ U}.

In Sets, one always has A strictly smaller than P(A), so ηA : A → A∗∗ is
never an isomorphism. Nonetheless, η : 1Sets → ∗∗ is a natural transformation,
which the reader should prove.

7.6 Exponentials of categories

We now want to show that the category Cat of (small) categories and functors
is cartesian closed, by showing that any two categories C,D have an exponential
DC. Of course, we take DC = Fun(C,D), the category of functors and natural
transformations, for which we need to prove the required universal mapping
property (UMP).

Proposition 7.13. Cat is cartesian closed, with the exponentials

DC = Fun(C,D).

Before giving the proof, let us note the following. Since exponentials are unique
up to isomorphism, this gives us a way to verify that we have found the “right”
definition of a morphism of functors. For the notion of a natural transformation
is completely determined by the requirement that it makes the set Hom(C,D)
into an exponential category. This is an example of how category theory can
serve as a conceptual tool for discovering new concepts. Before giving the proof,
we need the following.

Lemma 7.14.(bifunctor lemma). Given categories A,B, and C, a map of
arrows and objects,

F0 : A0 × B0 → C0

F1 : A1 × B1 → C1

is a functor F : A × B → C iff
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1. F is functorial in each argument: F (A,−) : B → C and F (−, B) : A → C
are functors for all A ∈ A0 and B ∈ B0.

2. F satisfies the following “interchange law.” Given α : A → A′ ∈ A and
β : B → B′ ∈ B, the following commutes:

F (A,B)
F (A, β)� F (A,B′)

F (A′, B)

F (α,B)

�

F (A′, β)
� F (A′, B′)

F (α,B′)

�

that is, F (A′, β) ◦ F (α,B) = F (α,B′) ◦ F (A, β) in C.

Proof. (of lemma). In A × B, any arrow

〈α, β〉 : 〈A,B〉 → 〈A′, B′〉

factors as

〈A,B〉 〈1A, β〉� 〈A,B′〉

〈A′, B〉

〈α, 1B〉
�

〈1A′ , β〉
� 〈A′, B′〉

〈α, 1B′〉
�

So (1) and (2) are clearly necessary. To show that they are also sufficient, we can
define the (proposed) functor:

F (〈A,B〉) = F (A,B)

F (〈α, β〉) = F (A′, β) ◦ F (α,B)

The interchange law, together with functoriality in each argument, then ensures
that

F (α′, β′) ◦ F (α, β) = F (〈α′, β′〉 ◦ 〈α, β〉)



�

�

“07-Awodey-c07” — 2009/12/18 — 17:11 — page 163 — #17
�

�

�

�

�

�

NATURALITY 163

as can be read off from the following diagram:
F (A,B)

F (A′, B)

F (α,B)

�

F (A′, β)
� F (A′, B′)

F (α, β)

�

F (A′, B)

F (α′, B)

�

................
...................
F (A′′, β)

� F (A′′, B′)

F (α,B′)

�

F (A′′, β′)
� F (A′′, B′′)

F (α′, β′)

�

Proof. (of proposition): We need to show:

1. ε = eval : Fun(C,D) × C → D is functorial.
2. For any category X and functor

F : X × C → D

there is a functor

F̃ : X → Fun(C,D)

such that ε ◦ (F̃ × 1C) = F .
3. Given any functor

G : X → Fun(C,D),

one has ˜(ε ◦ (G × 1C)) = G.

(1) Using the bifunctor lemma, we show that ε is functorial. First, fix F : C → D
and consider ε(F,−) = F : C → D. This is clearly functorial! Next, fix C ∈ C0

and consider ε(−, C) : Fun(C,D) → D defined by

(ϑ : F → G) �→ (ϑC : FC → GC).

This is also clearly functorial.
For the interchange law, consider any ϑ : F → G ∈ Fun(C,D) and (f : C →

C ′) ∈ C, then we need the following to commute:

ε(F,C)
ϑC� ε(G,C)

ε(F,C ′)

F (f)

�

ϑC′

� ε(G,C ′)

G(f)

�
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But this holds because ε(F,C) = F (C) and ϑ is a natural transformation.
The conditions (2) and (3) are now routine. For example, for (2), given

F : X × C → D

let

F̃ : X → Fun(C,D)

be defined by

F̃ (X)(C) = F (X,C).

7.7 Functor categories

Let us consider some particular functor categories.

Example 7.15. First, clearly C1 = C for the terminal category 1. Next, what
about C2, where 2 = · → · is the single arrow category? This is just the arrow
category of C that we already know,

C2 = C→.

Consider instead the discrete category, 2 = {0, 1}. Then clearly,

C2 ∼= C × C.

Similarly, for any set I (regarded as a discrete category), we have

CI ∼=
∏

i∈I

C.

Example 7.16. “Transcendental deduction of natural transformations”
Given the possibility of functor categories DC, we can determine what the objects
and arrows therein must be as follows:

Objects: these correspond uniquely to functors of the form

1 → DC

and hence to functors

C → D.

Arrows: by the foregoing example, arrows in the functor category correspond
uniquely to functors of the form

1 → (DC)2
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thus to functors of the form

2 → DC

and hence to functors

C × 2 → D

respectively

C → D2.

But a functor from C into the arrow category D2 (respectively a functor into D
from the cylinder category C × 2) is exactly a natural transformation between
two functors from C into D, as the reader can see by drawing a picture of the
functor’s image in D.

Example 7.17. Recall that a (directed) graph can be regarded as a pair of sets
and a pair of functions,

G1

t �

s
� G0

where G1 is the set of edges, G0 is the set of vertices, and s and t are the source
and target operations.

A homomorphism of graphs h : G → H is a map that preserves sources and
targets. In detail, this is a pair of functions h1 : G1 → H1 and h0 : G0 → H0

such that for all edges e ∈ G, we have sh1(e) = h0s(e) and similarly for t as well.
But this amounts exactly to saying that the following two diagrams commute:

G1
h1 � H1 G1

h1 � H1

G0

sG

�

h0

� H0

sH

�
G0

tG

�

h0

� H0

tH

�

Now consider the category Γ, pictured as follows:

· �� ·

It has exactly two objects and two distinct, parallel, nonidentity arrows. A graph
G is then exactly a functor,

G : Γ → Sets

and a homomorphism of graphs h : G → H is exactly a natural transformation
between these functors. Thus, the category of graphs is a functor category,

Graphs = SetsΓ.
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As we see later, it follows from this fact that Graphs is cartesian closed.

Example 7.18. Given a product C × D of categories, take the first product
projection

C × D → C

and transpose it to get a functor

Δ : C → CD.

For C ∈ C, the functor Δ(C) is the “constant C-valued functor,”

• Δ(C)(X) = C for all X ∈ D0

• Δ(x) = 1C for all x ∈ D1.

Moreover, Δ(f) : Δ(C) → Δ(C ′) is the natural transformation, each component
of which is f .

Now suppose we have any functor

F : D → C

and a natural transformation

ϑ : Δ(C) → F.

Then, the components of ϑ all look like

ϑD : C → F (D)

since Δ(C)(D) = C. Moreover, for any d : D → D′ in D, the usual naturality
square becomes a triangle, since Δ(C)(d) = 1C for all d : D → D′.

C
ϑD � FD

C

1C

�

ϑD′

� FD′

Fd

�

Thus, such a natural transformation ϑ : Δ(C) → F is exactly a cone to the
base F (with vertex C). Similarly, a map of cones ϑ → ϕ is a constant natural
transformation, that is, one of the forms Δ(h) for some h : C → D, making a
commutative triangle

Δ(C) Δ(h)� Δ(D)

F

ϕ

�

ϑ

�
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Example 7.19. Take posets P,Q and consider the functor category,

QP .

The functors Q → P , as we know, are just monotone maps, but what is a natural
transformation?

ϑ : f → g

For each p ∈ P , we must have

ϑp : fp ≤ gp

and if p ≤ q, then there must be a commutative square involving fp ≤ fq and
gp ≤ gq, which, however, is automatic. Thus, the only condition is that fp ≤ gp
for all p, that is, f ≤ g pointwise. Since this is just the usual ordering of the
poset QP , the exponential poset agrees with the functor category. Thus, we have
the following.

Proposition 7.20. The inclusion functor,

Pos → Cat

preserves CCC structure.

Example 7.21. What happens if we take the functor category of two groups G
and H?

HG

Do we get an exponential of groups? Let us first ask, what is a natural transforma-
tion between two group homomorphisms f, g : G → H ? Such a map ϑ : f → g
would be an element h ∈ H such that for every x ∈ G, we have

g(x) · h = h · f(x)

or, equivalently,

g(x) = h · f(x) · h−1.

Therefore, a natural transformation ϑ : f → g is an inner automorphism y �→
h·y·h−1 of H (called conjugation by h) that takes f to g. Clearly, every such arrow
ϑ : f → g has an inverse ϑ−1 : g → f (conjugation by h−1). But HG is still not
usually a group, simply because there may be many different homomorphisms
G → H, so the functor category HG has more than one object.

This suggests enlarging the category of groups to include also categories with
more than one object, but still having inverses for all arrows. Such categories
are called groupoids, and have been studied by topologists (they occur as the
collection of paths between different points in a topological space). A groupoid
can thus be regarded as a generalized group, in which the domains and codomains
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of elements x and y must match up, as in any category, for the multiplication
x · y to be defined.

It is clear that if G and H are any groupoids, then the functor category HG

is also a groupoid. Thus, we have the following proposition, the detailed proof
of which is left as an exercise.

Proposition 7.22. The category Grpd of groupoids is cartesian closed and the
inclusion functor

Grpd → Cat

preserves the CCC structure.

7.8 Monoidal categories

As a further application of natural transformations, we can finally give the
general notion of a monoidal category, as opposed to the special case of a strict
one. Recall from Section ?? that a strict monoidal category is by definition aAu: Please

specify
section
number.

monoid in Cat, that is, a category C equipped with an associative multiplication
functor,

⊗ : C × C −→ C

and a distinguished object I that acts as a unit for ⊗. A monoidal category with
a discrete category C is just a monoid in the usual sense, and every set X gives
rise to one of these, with C the set of endomorphisms End(X) under composition.
Another example, not discrete, is now had by considering the category End(D)
of endofunctors of an arbitrary category D, with their natural transformations
as arrows; that is, let,

C = End(D), G ⊗ F = G ◦ F, I = 1D.

This can also be seen to be a strict monoidal category. Indeed, the multiplication
is clearly associative and has 1D as unit, so we just need to check that composition
is a bifunctor End(D)×End(D) −→ End(D). Of course, for this we can use the
bifunctor lemma. Fixing F and taking any natural transformation α : G → G′,
we have, for any object D,

αFD : G(FD) → G′(FD)

which is clearly functorial as an operation End(D) −→ End(D). Fixing G and
taking β : F → F ′ gives

G(βD) : G(FD) → G(F ′D)

which is also easily seen to be functorial. So it just remains to check the exchange
law. This comes down to seeing that the square below commutes, which it plainly
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does just because α is natural.

GFD
αFD� G′FD

GF ′D

GβD

�

αF ′D

� G′F ′D

G′βD

�

Some of the other examples of strict monoidal categories that we have seen
involved “product-like” operations such as meets a ∧ b and joins a ∨ b in posets.
We would like to also capture general products A×B and coproducts A + B in
categories having these; however, these operations are not generally associative
on the nose, but only up to isomorphism. Specifically, given any three objects
A,B,C in a category with all finite products, we do not have A × (B × C) =
(A × B) × C, but instead an isomorphism,

A × (B × C) ∼= (A × B) × C.

Note, however, that there is exactly one such isomorphism that commutes
with all three projections, and it is natural in all three arguments. Similarly,
taking a terminal object 1, rather than 1 × A = A = A × 1, we have natural
isomorphisms,

1 × A ∼= A ∼= A × 1

which, again, are uniquely determined by the condition that they commute with
the projections. This leads us to the following definition.

Definition 7.23. A monoidal category consists of a category C equipped with
a functor

⊗ : C × C −→ C

and a distinguished object I, together with natural isomorphisms,

αABC : A ⊗ (B ⊗ C) ∼−→ (A ⊗ B) × C,

λA : I ⊗ A
∼−→ A, ρA : A ⊗ I

∼−→ A.

Moreover, these are required to always make the following diagrams commute:
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(A ⊗ B) ⊗ (C ⊗ D)

A ⊗ (B ⊗ (C ⊗ D))

α

�

((A ⊗ B) ⊗ C) ⊗ D

α

�

A ⊗ ((B ⊗ C) ⊗ D)

1 ⊗ α

�

α
� (A ⊗ (B ⊗ C)) ⊗ D

α ⊗ 1
�

(“Mac Lane’s pentagon”)

A ⊗ (I ⊗ A)
α � (A ⊗ I) ⊗ A

A ⊗ A

ρA ⊗ 1

�

1 ⊗ λA �

I ⊗ I ================== I ⊗ I

I

ρI

�

λI
�

In this precise sense, a monoidal category is thus a category that is strict
monoidal “up to natural isomorphism”—where the natural isomorphisms are
specified and compatible. An example is, of course, a category with all finite
products, where the required equations above are ensured by the UMP of
products and the selection of the maps α, λ, ρ as the unique ones commuting
with projections. We leave the verification as an exercise. The reader familiar
with tensor products of vector spaces, modules, rings, etc., will have no trouble
verifying that these, too, give examples of monoidal categories.

A further example comes from an unexpected source: linear logic. The logical
operations of linear conjunction and disjunction, sometimes written P ⊗ Q and
P⊕Q, can be modeled in a monoidal category, usually with extra structure σAB :
A ⊗ B

∼−→ B ⊗ A making these operations “symmetric” (up to isomorphism).
Here, too, we leave the verification to the reader familiar with this logical system.

The basic theorem regarding monoidal categories is Mac Lane’s coherence
theorem, which says that “all diagrams commute.” Somewhat more precisely, it
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says that any diagram in a monoidal category constructed, like those above, just
from identities, the functor ⊗, and the maps α, λ, ρ will necessarily commute. We
shall not state the theorem more precisely than this, nor will we give its somewhat
technical proof which, surprisingly, uses ideas from proof theory related to
Gentzen’s cute limination theorem! The details can be found in Mac Lane’s
book, Categories Work.

7.9 Equivalence of categories

Before examining some particular functor categories in more detail, we consider
one very special application of the concept of natural isomorphism. Consider first
the following situation.

Example 7.24. Let Ordfin be the category of finite ordinal numbers. Thus, the
objects are the sets 0, 1, 2, . . . , where 0 = ∅ and n = {0, . . . , n − 1}, while the
arrows are all functions between these sets. Now suppose that for each finite set
A we select an ordinal |A| that is its cardinal and an isomorphism,

A ∼= |A|.

Then for each function f : A → B of finite sets, we have a function |f | by
completing the square

A
∼= � |A|

B

f

�

∼=
� |B|

|f |

�

................

(7.2)

This clearly gives us a functor

| − | : Setsfin → Ordfin.

Actually, all the maps in the above square are in Setsfin; so we should also make
the inclusion functor

i : Ordfin → Setsfin

explicit. Then we have the selected isos,

ϑA : A
∼→ i|A|

and we know by (7.2) that

i(|f |) ◦ ϑA = ϑB ◦ f.
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This, of course, says that we have a natural isomorphism

ϑ : 1Setsfin → i ◦ | − |

between two functors of the form

Setsfin → Setsfin.

On the other hand, if we take an ordinal and take its ordinal, we get nothing
new,

|i(−)| = 1Ordfin : Ordfin → Ordfin.

This is so because, for any finite ordinal n,

|i(n)| = n

and we can assume that we take ϑn = 1n : n → |i(n)|, so that also,

|i(f)| = f : n → m.

In sum, then, we have a situation where two categories are very similar; but
they are not the same and they are not even isomorphic (why?). This kind of
correspondence is what is captured by the notion of equivalence of categories.

Definition 7.25. An equivalence of categories consists of a pair of functors

E : C → D

F : D → C

and a pair of natural isomorphisms

α : 1C
∼→ F ◦ E in CC

β : 1D
∼→ E ◦ F in DD.

In this situation, the functor F is called a pseudo-inverse of E. The categories
C and D are then said to be equivalent, written C � D.

Observe that equivalence of categories is a generalization of isomorphism.
Indeed, two categories C,D are isomorphic if there are functors.

E : C → D

F : D → C

such that

1C = F ◦ E

1D = E ◦ F.

In the case of equivalence C � D, we replace the identity natural
transformations by natural isomorphisms. In that sense, equivalence of categories
as “isomorphism up to isomorphism.”
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Experience has shown that the mathematically significant properties of
objects are those that are invariant under isomorphisms, and in category theory,
identity of objects is a much less important relation than isomorphism. So it is
really equivalence of categories that is the more important notion of “similarity”
for categories.

In the foregoing example Setsfin � Ordfin, we see that every set is isomorphic
to an ordinal, and the maps between ordinals are just the maps between them
as sets. Thus, we have

1. for every set A, there is some ordinal n with A ∼= i(n),
2. for any ordinals n,m, there is an isomorphism,

HomOrdfin(n,m) ∼= HomSetsfin(i(n), i(m))

where i : Ordfin → Setsfin is the inclusion functor.

In fact, these conditions are characteristic of equivalences, as the following
proposition shows.

Proposition 7.26. The following conditions on a functor F : C → D are
equivalent:

1. F is (part of) an equivalence of categories.
2. F is full and faithful and “essentially surjective” on objects: for every D∈D

there is some C ∈ C such that FC ∼= D.

Proof. (1 implies 2) Take E : D → C, and

α : 1C
∼→ EF

β : 1D
∼→ FE.

In C, for any C, we then have αC : C
∼→ EF (C), and

C
αC� EF (C)

C ′

f

�

αC′

� EF (C ′)

EF (f)

�

commutes for any f : C → C ′.
Thus, if F (f) = F (f ′), then EF (f) = EF (f ′), so f = f ′. So F is faithful.

Note that by symmetry, E is also faithful.
Now take any arrow

h : F (C) → F (C ′) in D,
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and consider

C
∼= � EF (C)

C ′

f

�

∼=
� EF (C ′)

E(h)

�

where f = (αC′)−1 ◦ E(h) ◦ αC . Then, we have also F (f) : F (C) → F (C ′) and

EF (f) = E(h) : EF (C) → EF (C ′)

by the naturality square

C
αC� EF (C)

C ′

f

�

αC′

� EF (C ′)

EF (f)

�

Since E is faithful, F (f) = h. So F is also full.
Finally, for any object D ∈ D, we have

β : 1D
∼→ FE

so

βD : D ∼= F (ED), for ED ∈ C0.

(2 implies 1) We need to define E : D → C and natural transformations,

α : 1C
∼→ EF

β : 1D
∼→ FE.

Since F is essentially surjective, for each D ∈ D0, we can choose some E(D) ∈ C0

along with some βD : D
∼→ FE(D). That gives E on objects and the proposed

components of β : 1D → FE.
Given h : D → D′ in D, consider

D
βD � FE(D)

D′

h

�

βD′

� FE(D′)

βD′ ◦ h ◦ β−1
D

�

................



�

�

“07-Awodey-c07” — 2009/12/18 — 17:11 — page 175 — #29
�

�

�

�

�

�

NATURALITY 175

Since F : C → D is full and faithful, there is a unique arrow

E(h) : E(D) → E(D′)

with FE(h) = βD′ ◦ h ◦ β−1
D . It is easy to see that then E : D → C is a functor

and β : 1D
∼→ FE is clearly a natural isomorphism.

To find α : 1C → EF , apply F to any C and consider βFC : F (C) →
FEF (C). Since F is full and faithful, the preimage of βFC is an isomorphism,

αC = F−1(βFC) : C
∼→ EF (C)

which is easily seen to be natural, since β is.

7.10 Examples of equivalence

Example 7.27. Pointed sets and partial maps
Let Par be the category of sets and partial functions. An arrow

f : A ⇁ B

is a function |f | : Uf → B for some Uf ⊆ A. Identities in Par are the same as
those in Sets, that is, 1A is the total identity function on A. The composite
of f : A ⇁ B and g : B ⇁ C is given as follows: Let U(g◦f) := f−1(Ug) ⊆ A,
and |g ◦ f | : U(g◦f) → C is the horizontal composite indicated in the following
diagram, in which the square is a pullback:

|f |−1(Ug) � Ug |g|
� C

Uf

�

∩

|f |
� B

�

∩

A
�

∩

It is easy to see that composition is associative and that the identities are units,
so we have a category Par.

The category of pointed sets,

Sets∗

has as objects, sets A equipped with a distinguished “point” a ∈ A, that is, pairs,

(A, a) with a ∈ A.
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Arrows are functions that preserve the point, that is, an arrow f : (A, a) → (B, b)
is a function f : A → B such that f(a) = b.

Now we show

Proposition 7.28. Par � Sets∗

The functors establishing the equivalence are as follows:

F : Par → Sets∗

is defined on an object A by F (A) = (A ∪ {∗}, ∗), where ∗ is a new element
that we add to A. We also write A∗ = A ∪ {∗}. For arrows, given f : A ⇁ B,
F (f) : A∗ → B∗ is defined by

f∗(x) =

{
f(x) if x ∈ Uf

∗ otherwise.

Then clearly f∗(∗A) = ∗B , so in fact f∗ : A∗ → B∗ is “pointed,” as required.
Coming back, the functor

G : Sets∗ → Par

is defined on an object (A, a) by G(A, a) = A−{a} and for an arrow f : (A, a) →
(B, b)

G(f) : A − {a} ⇁ B − {b}

is the function with domain

UG(f) = A − f−1(b)

defined by G(f)(x) = f(x) for every f(x) 
= b.
Now G ◦ F is the identity on Par, because we are just adding a new point

and then throwing it away. But F ◦ G is only naturally isomorphic to 1Sets∗ ,
since we have

(A, a) ∼= ((A − {a}) ∪ {∗}, ∗).
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These sets are not equal, since a 
= ∗. It still needs to be checked, of course,
that F and G are functorial, and that the comparison (A, a) ∼= ((A−{a})∪{∗}, ∗)
is natural, but we leave these easy verifications to the reader.

Observe that this equivalence implies that Par has all limits, since it is
equivalent to a category of “algebras” of a very simple type, namely sets equipped
with a single, nullary operation, that is, a “constant.” We already know that
limits of algebras can always be constructed as limits of the underlying sets, and
an easy exercise shows that a category equivalent to one with limits of any type
also has such limits.

Example 7.29. Slice categories and indexed families
For any set I, the functor category SetsI is the category of I-indexed sets.

The objects are I-indexed families of sets

(Ai)i∈I

and the arrows are I-indexed families of functions,

(fi : Ai → Bi)i∈I : (Ai)i∈I −→ (Bi)i∈I .

This category has an equivalent description that is often quite useful: it is
equivalent to the slice category of Sets over I, consisting of arrows α : A → I
and “commutative triangles” over I (see Section 1.6),

SetsI � Sets/I.

Indeed, define functors

Φ : SetsI −→ Sets/I

Ψ : Sets/I −→ SetsI

on objects as follows:

Φ((Ai)i∈I) = π :
∐

i∈I

Ai → I (the indexing projection),

where the coproduct is conveniently taken to be
∐

i∈I

Ai = {(i, a) | a ∈ Ai}.

And coming back, we have

Ψ(α : A → I) = (α−1{i})i∈I .

The effect on arrows is analogous and easily inferred. We leave it as an exercise
to show that these are indeed mutually pseudo-inverse functors. (Why are they
not inverses?)

The equivalent description of SetsI as Sets/I leads to the idea that, for a
general category E , the slice category E/X, for any object X, can also be regarded
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as the category of “X-indexed objects of E”, although the functor category EX

usually does not make sense. This provides a precise notion of an “X-indexed
family of objects Ex of E ,” namely as a map E → X.

For instance, in topology, there is the notion of a “fiber bundle” as a
continuous function π : Y → X, thought of as a family of spaces Yx = π−1(x), the
“fibers” of π, varying continuously in a parameter x ∈ X. Similarly, in dependent
type theory there are “dependent types” x : X � A(x), thought of as families of
types indexed over a type. These can be modeled as objects [[A]] → [[X]] in the
slice category E/[[X]] over the interpretation of the (closed) type X as an object
of a category E .

If E has pullbacks, reindexing of an “indexed family” along an arrow f :
Y → X in E is represented by the pullback functor f∗ : E/X → E/Y . This
is motivated by the fact that in Sets the following diagram commutes (up to
natural isomorphism) for any f : J → I:

SetsI �� Sets/I

SetsJ

Setsf

�

�
� Sets/J

f∗

�

where the functor Setsf is the reindexing along f :

(Setsf (Ai))j = Af(j).

Moreover, there are also functors going in the other direction,

Σf ,Πf : Sets/J −→ Sets/I

which, in terms of indexed families, are given by taking sums and products of
the fibers:

(Σf (Aj))i =
∑

f(j)=i

Aj

and similarly for Π. These functors can be characterized in terms of the pullback
functor f∗ (as adjoints, see Section 9.7), and so also make sense in categories more
general than Sets, where there are no “indexed families” in the usual sense. For
instance, in dependent type theory, these operations are formalized by logical
rules of inference similar to those for the existential and universal quantifier,
and the resulting category of types has such operations of dependent sums and
products.

Example 7.30. Stone duality
Many examples of equivalences of categories are given by what are called
“dualities.” Often, classical duality theorems are not of the form C ∼= Dop (much
less C = Dop), but rather C � Dop, that is, C is equivalent to the opposite
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(or “dual”) category of D. This is because the duality is established by a
construction that returns the original thing only up to isomorphism, not “on the
nose.” Here is a simple example, which is a very special case of the far-reaching
Stone duality theorem.

Proposition 7.31. The category of finite Boolean algebras is equivalent to the
opposite of the category of finite sets,

BAfin � Setsop
fin.

Proof. The functors involved here are the contravariant powerset functor

PBA : Setsop
fin → BAfin

on one side (the powerset of a finite set is finite!). Going back, we use the functor,

A : BAop
fin → Setsfin

taking the set of atoms of a Boolean algebra,

A(B) = {a ∈ B | 0 < a and (b < a ⇒ b = 0)}.

In the finite case, this is isomorphic to the ultrafilter functor that we have already
studied (see Section 7.3).

Lemma 7.32. For any finite Boolean algebra B, there is an isomorphism
between atoms a in B and ultrafilters U ⊆ B, given by

U �→
∧

b∈U

b

and

a �→ ↑(a).

Proof. If a is an atom, then ↑(a) is an ultrafilter, since for any b either a∧ b = a
and then b ∈↑(a) or a ∧ b = 0 and so ¬b ∈↑(a).

If U ⊆ B is an ultrafilter then 0 <
∧

b∈U b, because, since U is finite and
closed under intersections, we must have

∧
b∈U b ∈ U . If 0 
= b0 <

∧
b∈U b then

b0 is not in U , so ¬b0 ∈ U . But then b0 < ¬b0 and so b0 = 0.
Plainly, U ⊆↑ (

∧
b∈U b) since b ∈ U implies

∧
b∈U b ⊆ b. Now let

∧
b∈U b ≤ a

for some a not in U . Then, ¬a ∈ U implies that also
∧

b∈U b ≤ ¬a, and so∧
b∈U b ≤ a ∧ ¬a = 0, which is impossible.

Since we know that the set of ultrafilters Ult(B) is contravariantly functorial
(it is represented by the Boolean algebra 2, see Section 7.3), we therefore also
have a contravariant functor of atoms A ∼= Ult. The explicit description of this
functor is this: if h : B → B′ and a′ ∈ A(B′), then it follows from the lemma that
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there is a unique atom a ∈ B such that a′ ≤ h(b) iff a ≤ b for all b ∈ B. To find
this atom a, take the intersection over the ultrafilter h−1(↑(a′)),

A(a′) = a =
∧

a′≤h(b)

b.

Thus, we get a function

A(h) : A(B′) → A(B).

Of course, we must still check that this is a pseudo-inverse for PBA : Setsop
fin →

BAfin. The required natural isomorphisms,

αX : X → A(P(X))

βB : B → P(A(B))

are explicitly described as follows:
The atoms in a finite powerset P(X) are just the singletons {x} for x ∈ X,

thus αX(x) = {x} is clearly an isomorphism.
To define βB, let

βB(b) = {a ∈ A(B) | a ≤ b}.
To see that βB is also iso, consider the proposed inverse,

(βB)−1(B) =
∨

a∈B

a for B ⊆ A(B).

The isomorphism then follows from the following lemma, the proof of which is
routine.

Lemma 7.33. For any finite Boolean algebra B,

1. b =
∨
{a ∈ A(B) | a ≤ b}.

2. If a is an atom and a ≤ b ∨ b′, then a ≤ b or a ≤ b′.

Of course, one must still check that α and β really are natural
transformations. This is left to the reader.

Finally, we remark that the duality

BAfin � Setsop
fin

extends to one between all sets on the one side and the complete, atomic Boolean
algebras, on the other,

caBA � Setsop,

where a Boolean algebra B is complete if every subset U ⊆ B has a join
∨

U ∈ B
and a complete homomorphism preserves these joins and B is atomic if every
nonzero element 0 
= b ∈ B has some a ≤ b with a an atom.
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Moreover, this is just the discrete case of the full Stone duality theorem,
which states an equivalence between the category of all Boolean algebras
and the opposite of a certain category of topological spaces, called “Stone
spaces,” and all continuous maps between them. For details, see Johnston (1982)

7.11 Exercises

1. Consider the (covariant) composite functor,

F = PBA ◦ Ultop : BA → Setsop → BA

taking each Boolean algebra B to the powerset algebra of sets of ultrafilters
in B. Note that

F(B) ∼= HomSets(HomBA(B,2), 2)

is a sort of “double-dual” Boolean algebra. There is always a
homomorphism,

φB : B → F(B)

given by φB(b) = {V ∈ Ult(B) | b ∈ V}. Show that for any Boolean
homomorphism h : A → B, the following square commutes:

A
φA � F(A)

B

h

�

φB

� F(B)

F(h)

�

2. Show that the homomorphism φB : B → F(B) in the foregoing problem is
always injective (use the Boolean prime ideal theorem). This is the classical
“Stone representation theorem,” stating that every Boolean algebra is
isomorphic to a “field of sets,” that is, a sub-Boolean algebra of a powerset.
Is the functor F faithful?

3. Prove that for any finite Boolean algebra B, the “Stone representation”

φ : B → P(Ult(B))

is in fact an isomorphism of Boolean algebras. (Note the similarity to the
case of finite dimensional vector spaces.) This concludes the proof that we
have an equivalence of categories,

BAfin � Setsop
fin
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This is the “finite” case of Stone duality.
4. Consider the forgetful functors

Groups U−→ Monoids V−→ Sets

Say whether each is faithful, full, injective on arrows, surjective on arrows,
injective on objects, and surjective on objects.

5. Make every poset (X,≤) into a topological space by letting U ⊆ X be
open just if x ∈ U and x ≤ y implies y ∈ U (U is “closed upward”). This
is called the Alexandroff topology on X. Show that it gives a functor

A : Pos → Top

from posets and monotone maps to spaces and continuous maps by showing
that any monotone map of posets f : P → Q is continuous with respect
to this topology on P and Q (the inverse image of an open set must be
open).

Is A faithful? Is it full?
6. Prove that every functor F : C → D can be factored as D ◦ E = F ,

C E−→ E D−→ D

in the following two ways:

(a) E : C → E is bijective on objects and full, and D : E → D is faithful;
(b) E : C → E surjective on objects and D : E → D is injective on objects

and full and faithful.

When do the two factorizations agree?
7. Show that a natural transformation is a natural isomorphism just if

each of its components is an isomorphism. Is the same true for
monomorphisms?

8. Show that a functor category DC has binary products if D does (construct
the product of two functors F and G “objectwise”: (F ×G)(C) = F (C)×
G(C)).

9. Show that the map of sets

ηA : A −→ PP (A)

a �−→ {U ⊆ A|a ∈ U}

is the component at A of a natural transformation η : 1Sets → PP , where
P : Setsop → Sets is the (contravariant) powerset functor.

10. Let C be a locally small category. Show that there is a functor

Hom : Cop × C → Sets
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such that for each object C of C,

Hom(C,−) : C → Sets

is the covariant representable functor and

Hom(−, C) : Cop → Sets

is the contravariant one. (Hint: use the bifunctor lemma.)
11. Recall from the text that a groupoid is a category in which every arrow is

an isomorphism. Prove that the category of groupoids is cartesian closed.
12. Let C ∼= D be equivalent categories. Show that C has binary products if

and only if D does.
13. What sorts of properties of categories do not respect equivalence? Find

one that respects isomorphism, but not equivalence.
14. Complete the proof that Par ∼= Sets∗.
15. Show that equivalence of categories is an equivalence relation.
16. A category is skeletal if isomorphic objects are always identical. Show that

every category is equivalent to a skeletal subcategory. (Every category has
a “skeleton.”)

17. Complete the proof that, for any set I, the category of I-indexed families
of sets, regarded as the functor category SetsI , is equivalent to the slice
category Sets/I of sets over I,

SetsI � Sets/I.

Show that reindexing of families along a function f : J → I, given by
precomposition,

Setsf ((Ai)i∈I) = (Af(j))j∈J

is represented by pullback, in the sense that the following diagram of
categories and functors commutes up to natural isomorphism:

SetsI �� Sets/I

SetsJ

Setsf

�

�
� Sets/J

f∗

�

Here f∗ : Sets/J → Sets/I is the pullback functor along f : J → I.
Finally, infer that Sets/2 � Sets × Sets, and similarly for any n other
than 2.

18. Show that a category with finite products is a monoidal category. Infer
that the same is true for any category with finite coproducts.
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