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EXPONENTIALS

We have now managed to unify most of the universal mapping properties that
we have seen so far with the notion of limits (or colimits). Of course, the free
algebras are an exception to this. In fact, it turns out that there is a common
source of such universal mapping properties (UMPs), but it lies somewhat deeper,
in the notion of adjoints, which unify free algebras, limits, and other universals
of various kinds.

Next we are going to look at one more elementary universal structure, which
is also an example of a universal that is not a limit. This important structure
is called an “exponential,” and it can be thought of as a categorical notion
of a “function space.” As we shall see it subsumes much more than just that,
however.

6.1 Exponential in a category

Let us start by considering a function of sets,

f(x, y) : A × B → C

written using variables x over A and y over B. If we now hold a ∈ A fixed, we
have a function

f(a, y) : B → C

and thus an element

f(a, y) ∈ CB

of the set of all such functions.
Letting a vary over A then gives a map, which I write like this

f̃ : A → CB

defined by a �→ f(a, y).
The map f̃ : A → CB takes the “parameter” a to the function fa(y) : B → C.

It is uniquely determined by the equation

f̃(a)(b) = f(a, b).
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120 CATEGORY THEORY

Indeed, any map

φ : A → CB

is uniquely of the form

φ = f̃

for some f : A × B → C. For we can set

f(a, b) := φ(a)(b).

What this means, in sum, is that we have an isomorphism of Hom-sets:

HomSets(A × B,C) ∼= HomSets(A,CB)

That is, there is a bijective correspondence between functions of the form
f : A × B → C and those of the form f̃ : A → CB , which we can display
schematically, thus,

f : A × B → C

f̃ : A → CB

This bijection is mediated by a certain operation of evaluation, which we have
indicated in the foregoing by using variables. In order to generalize the indicated
bijection to other categories, we are going to need to make this evaluation
operation explicit, too.

In Sets, it is the function

eval : CB × B → C

defined by (g, b) �→ g(b), that is,

eval(g, b) = g(b).

This evaluation function has the following UMP: given any set A and any
function

f : A × B → C

there is a unique function

f̃ : A → CB

such that eval ◦ (f̃ × 1B) = f . That is,

eval(f̃(a), b) = f(a, b). (6.1)

Here is the diagram:

CB CB × B
eval� C

A

f̃

�

A × B

f̃ × 1B

�

f

�
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You can read the equation (6.1) off from this diagram by taking a pair of
elements (a, b) ∈ A×B and chasing them around both ways, using the fact that
(f̃ × 1B)(a, b) = (f̃(a), b).

Now, the property just stated of the set CB and the evaluation function
eval : CB × B → C is one that makes sense in any category having binary
products. It says that evaluation is “the universal map into C from a product
with B.” Precisely, it states the following:

Definition 6.1. Let the category C have binary products. An exponential of
objects B and C consists of an object

CB

and an arrow

ε : CB × B → C

such that, for any object A and arrow

f : A × B → C

there is a unique arrow

f̃ : A → CB

such that

ε ◦ (f̃ × 1B) = f

all as in the diagram

CB CB × B
ε � C

A

f̃

�

A × B

f̃ × 1B

�

f

�

Here is some terminology:

• ε : CB × B → C is called evaluation.

• f̃ : A → CB is called the (exponential) transpose of f .

• Given any arrow

g : A → CB

we write

ḡ := ε ◦ (g × 1B) : A × B → C
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122 CATEGORY THEORY

and also call ḡ the transpose of g. By the uniqueness clause of the definition,
we then have

˜̄g = g

and for any f : A × B → C,

¯̃
f = f.

Briefly, transposition of transposition is the identity.

Thus in sum, the transposition operation

(f : A × B → C) �−→ (f̃ : A → CB)

provides an inverse to the induced operation

(g : A → CB) �−→ (ḡ = ε ◦ (g × 1B) : A × B → C),

yielding the desired isomorphism,

HomC(A × B,C) ∼= HomC(A,CB).
Au: Please
confirm
“Cartesian
closed
categories”
and “CCC”
are one and
the same.

6.2 Cartesian closed categories

Definition 6.2. A category is called cartesian closed, if it has all finite products
and exponentials.

Example 6.3. We already have Sets as one example, but note that also Setsfin

is cartesian closed, since for finite sets M,N , the set of functions NM has
cardinality

|NM | = |N ||M |

and so is also finite.

Example 6.4. Recall that the category Pos of posets has as arrows f : P → Q
the monotone functions, p ≤ p′ implies fp ≤ fp′. Given posets P and Q, the
poset P × Q has pairs (p, q) as elements, and is partially ordered by

(p, q) ≤ (p′, q′) iff p ≤ p′ and q ≤ q′.

Thus, the evident projections

P �
π1

P × Q
π2

� Q

are monotone, as is the pairing

〈f, g〉 : X → P × Q

if f : X → P and g : X → Q are monotone.
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For the exponential QP , we take the set of monotone functions,

QP = {f : P → Q | f monotone }

ordered pointwise, that is,

f ≤ g iff fp ≤ gp for all p ∈ P .

The evaluation

ε : QP × P → Q

and transposition

f̃ : X → QP

of a given arrow

f : X × P → Q

are the usual ones of the underlying functions. Thus, we need only show that
these are monotone.

To that end, given (f, p) ≤ (f ′, p′) in QP × P , we have

ε(f, p) = f(p)

≤ f(p′)

≤ f ′(p′)

= ε(f ′, p′)

so ε is monotone. Now take f : X × P → Q monotone and let x ≤ x′. We need
to show

f̃(x) ≤ f̃(x′) in QP

which means

f̃(x)(p) ≤ f̃(x′)(p) for all p ∈ P .

But f̃(x)(p) = f(x, p) ≤ f(x′, p) = f̃(x′)(p).

Example 6.5. Now let us consider what happens if we restrict to the category
of ωCPOs (see example 5.33). Given two ωCPOs P and Q, we take as an
exponential the subset,

QP = {f : P → Q | f monotone and ω-continuous}.

Then take evaluation ε : QP ×P → Q and transposition as before, for functions.
Then, since we know that the required equations are satisfied, we just need to
check the following:

• QP is an ωCPO
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• ε is ω-continuous

• f̃ is ω-continuous if f is Au: Please
check the
sentence for
completeness.

We leave this as an exercise!

Example 6.6. An example of a somewhat different sort is provided by the
category Graphs of graphs and their homomorphisms. Recall that a graph G
consists of a pair of sets Ge and Gv—the edges and vertices—and a pair of
functions,

Ge

Gv

sG

�

tG

�

called the source and target maps. A homomorphism of graphs h : G → H
is a mapping of edges to edges and vertices to vertices, preserving sources and
targets, that is, is a pair of maps hv : Gv → Hv and he : Ge → He, making the
two obvious squares commute.

Ge
he � He

Gv

sG

�

tG

� hv � He

sH

�

tH

�

The product G × H of two graphs G and H, like the product of categories, has
as vertices the pairs (g, h) of vertices g ∈ G and h ∈ H, and similarly the edges
are pairs of edges (u, v) with u an edge in G and v and edge in H. The source
and target operations are, then, “pointwise”: s(u, v) = (s(u), s(v)), etc.

Ge × He

Gv × Hv

sG × sH

�

tG × tH

�

Now, the exponential graph HG has as vertices the (arbitrary!) maps of
vertices ϕ : Gv → Hv. An edge θ from ϕ to another vertex ψ : Gv → Hv is a
family of edges (θe) in H, one for each edge e ∈ G, such that s(θe) = ϕ(s(e)) and
t(θe) = ψ(t(e)). In other words, θ is a map θ : Ge → He making the following
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commute:

Gv
� s

Ge
t � Gv

Hv

ϕ

�
�

s
He

θ

�

t
� Hv

ψ

�

Imagining G as a certain configuration of edges and vertices, and the maps ϕ
and ψ as two different “pictures” or “images” of the vertices of G in H, the edge
θ : ϕ → ψ appears as a family of edges in H, labeled by the edges of G, each
connecting the source vertex in ϕ to the corresponding target one in ψ. (The
reader should draw a diagram at this point.) The evaluation homomorphism
ε : HG × G → H takes a vertex (ϕ, g) to the vertex ϕ(g), and an edge (θ, e)
to the edge θe. The transpose of a graph homomorphism f : F × G → H is
the homomorphism f̃ : F → HG taking a vertex a ∈ F to the mapping on
vertices f(a,−) : Gv → Hv, and an edge c : a → b in F to the mapping of edges
f(c,−) : Ge → He.

We leave the verification of this cartesian closed structure as an exercise for
the reader.

Next, we derive some of the basic facts about exponentials and cartesian
closed categories. First, let us ask, what is the transpose of evaluation?

ε : BA × A → B

It must be an arrow ε̃ : BA → BA such that

ε(ε̃ × 1A) = ε

that is, making the following diagram commute:

BA × A
ε � B

BA × A

ε̃ × 1A

�

ε

�

Since 1BA × 1A = 1(BA×A) clearly has this property, we must have

ε̃ = 1BA

and so we also know that ε = (1BA).
Now let us show that the operation X �→ XA on a CCC is functorial.
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Proposition 6.7. In any cartesian closed category C, exponentiation by a fixed
object A is a functor,

(−)A : C → C.

Toward the proof, consider first the case of sets. Given some function

β : B → C,

we put

βA : BA → CA

defined by

f �→ β ◦ f.

That is,

A

B

f

�

β
� C

β ◦ f = βA(f)

�

This assignment is functorial, because for any α : C → D

(α ◦ β)A(f) = α ◦ β ◦ f

= α ◦ βA(f)

= αA ◦ βA(f).

Whence (α ◦ β)A = αA ◦ βA. Also,

(1B)A(f) = 1B ◦ f

= f

= 1BA(f).

So (1B)A = 1BA . Thus, (−)A is indeed a functor; of course, it is just the
representable functor Hom(A,−) that we have already considered.

In a general CCC then, given β : B → C, we define

βA : BA → CA

by

βA := ˜(β ◦ ε).
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That is, we take the transpose of the composite

BA × A
ε→ B

β→ C

giving

βA : BA → CA.

It is easier to see in the form

CA CA × A
ε � C

BA

βA

�

BA × A

βA × 1A

�

ε
� B

β

�

Now, clearly,

(1B)A = 1BA : BA → BA

by examining

BA × A
ε � B

BA × A

1(BA×A) = 1BA × 1A

�

ε
� B

1B

�

Quite similarly, given

B
β→ C

γ→ D

we have

γA ◦ βA = (γ ◦ β)A.
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This follows from considering the commutative diagram:

DA × A
ε � D

CA × A

γA × 1A

�

ε
� C

γ

�

BA × A

βA × 1A

�

ε
� B

β

�

We use the fact that

(γA × 1A) ◦ (βA × 1A) = ((γA ◦ βA) × 1A).

The result follows by the uniqueness of transposes.
There is also another distinguished “universal” arrow; rather than

transposing 1BA : BA → BA, we can transpose the identity 1A×B : A × B →
A × B, to get

1̃A×B : A → (A × B)B .

In Sets, it has the values 1̃A×B(a)(b) = (a, b). Let us denote this map by η =
1̃A×B , so that

η(a)(b) = (a, b).

The map η lets us compute f̃ from the functor −A. Indeed, given f : Z×A →
B, take

fA : (Z × A)A → BA

and precompose with η : Z → (Z × A)A, as indicated in

(Z × A)A fA
� BA

Z

η

�

f̃

�

This gives the useful equation

f̃ = fA ◦ η

which the reader should prove.
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6.3 Heyting algebras

Any Boolean algebra B, regarded as a poset category, has finite products 1 and
a ∧ b. We can also define the exponential in B by

ba = (¬a ∨ b)

which we also write a ⇒ b. The evaluation arrow is

(a ⇒ b) ∧ a ≤ b.

This always holds since

(¬a ∨ b) ∧ a = (¬a ∧ a) ∨ (b ∧ a) = 0 ∨ (b ∧ a) = b ∧ a ≤ b.

To show that a ⇒ b is indeed an exponential in B, we just need to verify that if
a ∧ b ≤ c then a ≤ b ⇒ c, that is, transposition. But if a ∧ b ≤ c, then

¬b ∨ (a ∧ b) ≤ ¬b ∨ c = b ⇒ c.

But we also have

a ≤ ¬b ∨ a ≤ (¬b ∨ a) ∧ (¬b ∨ b) = ¬b ∨ (a ∧ b).

This example suggests generalizing the notion of a Boolean algebra to that
of a cartesian closed poset. Indeed, consider first the following stronger notion.

Definition 6.8. A Heyting algebra is a poset with

1. Finite meets: 1 and p ∧ q,
2. Finite joins: 0 and p ∨ q,
3. Exponentials: for each a, b, an element a ⇒ b such that

a ∧ b ≤ c iff a ≤ b ⇒ c.

The stated condition on exponentials a ⇒ b is equivalent to the UMP in the
case of posets. Indeed, given the condition, the transpose of a∧b ≤ c is a ≤ b ⇒ c
and the evaluation (a ⇒ b)∧a ≤ b follows immediately from a ⇒ b ≤ a ⇒ b (the
converse is just as simple).

First, observe that every Heyting algebra is a distributive lattice, that is, for
any a, b, c, one has

(a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c).

Indeed, we have

(a ∨ b) ∧ c ≤ z iff a ∨ b ≤ c ⇒ z

iff a ≤ c ⇒ z and b ≤ c ⇒ z

iff a ∧ c ≤ z and b ∧ c ≤ z

iff (a ∧ c) ∨ (b ∧ c) ≤ z.



�

�

“06-Awodey-c06” — 2009/12/18 — 17:02 — page 130 — #12
�

�

�

�

�

�

130 CATEGORY THEORY

Now pick z = (a∨b)∧c and read the equivalences downward to get one direction,
then do the same with z = (a∧ c)∨ (b∧ c) and reading the equivalences upward
to get the other direction.

Remark 6.9. The foregoing distributivity is actually a special case of the more
general fact that in a cartesian closed category with coproducts, the products
necessarily distribute over the coproducts,

(A + B) × C ∼= (A × C) + (B × C).

Although we could prove this now directly, a much more elegant proof
(generalizing the one above for the poset case) will be available to us once we have
access to the Yoneda Lemma. For this reason, we defer the proof of distributivity
to 8.6.

One may well wonder whether all distributive lattices are Heyting algebras.
The answer is in general, no; but certain ones always are.

Definition 6.10. A poset is (co) complete if it is so as a category, thus if it has
all set-indexed meets

∧
i∈I ai (resp. joins

∨
i∈I ai). For posets, completeness and

cocompleteness are equivalent (exercise!). A lattice, Heyting algebra, Boolean
algebra, etc. is called complete if it is so as a poset.

Proposition 6.11. A complete lattice is a Heyting algebra iff it satisfies the
infinite distributive law

a ∧
(

∨

i

bi

)

=
∨

i

(a ∧ bi).

Proof. One shows that Heyting algebra implies distributivity just as in the finite
case. To show that the infinite distributive law implies Heyting algebra, set

a ⇒ b =
∨

x∧a≤b

x.

Then, if

y ∧ a ≤ b

then y ≤
∨

x∧a≤b x = a ⇒ b. And conversely, if y ≤ a ⇒ b, then y ∧ a ≤
(
∨

x∧a≤b x) ∧ a =
∨

x∧a≤b(x ∧ a) ≤
∨

b = b.

Example 6.12. For any set A, the powerset P (A) is a complete Heyting algebra
with unions and intersections as joins and meets, since it satisfies the infinite
distributive law. More generally, the lattice of open sets of a topological space is
also a Heyting algebra, since the open sets are closed under finite intersections
and arbitrary unions.
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Of course, every Boolean algebra is a Heyting algebra with a ⇒ b = ¬a ∨ b, as
we already showed. But in general, a Heyting algebra is not Boolean. Indeed, we
can define a proposed negation by

¬a = a ⇒ 0

as must be the case, since in a Boolean algebra ¬a = ¬a ∨ 0 = a ⇒ 0. Then
a ≤ ¬¬a since a ∧ (a ⇒ 0) ≤ 0. But, conversely, ¬¬a ≤ a need not hold in a
Heyting algebra. Indeed, in a topological space X, the negation ¬U of an open
subset U is the interior of the complement X − U . Thus, for example, in the
real interval [0, 1], we have ¬¬(0, 1) = [0, 1].

Moreover, the law,

1 ≤ a ∨ ¬a

also need not hold in general. In fact, the concept of a Heyting algebra is the
algebraic equivalent of the intuitionistic propositional calculus (IPC), in the
same sense that Boolean algebras are an algebraic formulation of the classical
propositional calculus.

6.4 Propositional calculus

In order to make the connection between Heyting algebras and propositional
calculus more rigorous, let us first give a specific system of rules for the IPC.
This we do in terms of entailments p 
 q between formulas p and q:

1. 
 is reflexive and transitive
2. p 
 �
3. ⊥ 
 p

4. p 
 q and p 
 r iff p 
 q ∧ r

5. p 
 r and q 
 r iff p ∨ q 
 r

6. p ∧ q 
 r iff p 
 q ⇒ r

This is a complete system for IPC, equivalent to the more standard presenta-
tions the reader may have seen. To compare with one perhaps more familiar
presentation, note first that we have an “evaluation” entailment by reflexivity
and (6):

p ⇒ q 
 p ⇒ q

(p ⇒ q) ∧ p 
 q

We therefore have the rule of “modus ponens” by (4) and transitivity:

� 
 p ⇒ q and � 
 p

� 
 (p ⇒ q) ∧ p

� 
 q
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Moreover, by (4) there are “projections”:

p ∧ q 
 p ∧ q

p ∧ q 
 p (resp. q)

from which it follows that p �
 � ∧ p. Thus, we get one of the usual axioms for
products:

p ∧ q 
 p

� ∧ (p ∧ q) 
 p

� 
 (p ∧ q) ⇒ p

Now let us derive the usual axioms for ⇒, namely,

1. p ⇒ p,
2. p ⇒ (q ⇒ p),
3. (p ⇒ (q ⇒ r)) ⇒ ((p ⇒ q) ⇒ (p ⇒ r)).

The first two are almost immediate:

p 
 p

� ∧ p 
 p

� 
 p ⇒ p

p ∧ q 
 p

p 
 q ⇒ p

� ∧ p 
 (q ⇒ p)

� 
 p ⇒ (q ⇒ p)

For the third one, we use the fact that ⇒ distributes over ∧ on the right:

a ⇒ (b ∧ c) �
 (a ⇒ b) ∧ (a ⇒ c)

This is a special case of the exercise:

(B × C)A ∼= BA × CA

We also use the following simple fact, which will be recognized as a special case
of proposition 6.7:

a 
 b implies p ⇒ a 
 p ⇒ b (6.2)
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Then we have

(q ⇒ r) ∧ q 
 r

p ⇒ ((q ⇒ r) ∧ q) 
 p ⇒ r

(p ⇒ (q ⇒ r)) ∧ (p ⇒ q) 
 p ⇒ r by (6.3)

(p ⇒ (q ⇒ r)) 
 (p ⇒ q) ⇒ (p ⇒ r)

� 
 (p ⇒ (q ⇒ r)) ⇒ ((p ⇒ q) ∧ (p ⇒ r)).

The “positive” fragment of IPC, involving only the logical operations

�, ∧, ⇒
corresponds to the notion of a cartesian closed poset. We then add ⊥ and
disjunction p ∨ q on the logical side and finite joins on the algebraic side
to arrive at a correspondence between IPC and Heyting algebras. The exact
correspondence is given by mutually inverse constructions between Heyting
algebras and IPCs. We briefly indicate one direction of this correspondence,
leaving the other one to the reader’s ingenuity.

Given any IPSs L, consisting of propositional formulas p, q, r, . . . over some
set of variables x, y, z, . . . together with the rules of inference stated above, and
perhaps some distinguished formulas a, b, c, . . . as axioms, one constructs from L
a Heyting algebra (HA)(L), called the Lindenbaum–Tarski algebra, consisting of
equivalence classes [p] of formulas p, where

[p] = [q] iff p �
 q (6.3)

The ordering in HA(L) is given by

[p] ≤ [q] iff p 
 q (6.4)

This is clearly well defined on equivalence classes, in the sense that if p 
 q and
[p] = [p′] then p′ 
 q, and similarly for q. The operations in HA(L) are then
induced in the expected way by the logical operations:

1 = [�]

0 = [⊥]

[p] ∧ [q] = [p ∧ q]

[p] ∨ [q] = [p ∨ q]

[p] ⇒ [q] = [p ⇒ q]

Again, these operations are easily seen to be well defined on equivalence classes,
and they satisfy the laws for a Heyting algebra because the logical rules evidently
imply them.

Lemma 6.13. Observe that, by (6.3), HA(L) has the property that a formula p
is provable � 
 p if and only if [p] = 1.
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Now define an interpretation M of L in a Heyting algebra H to be an
assignment of the basic propositional variables x, y, z, . . . to elements of H, which
we shall write as [[x]], [[y]], [[z]], .... An interpretation then extends to all formulas
by recursion in the evident way, that is, [[p ∧ q]] = [[p]]∧ [[q]], etc. An interpretation
is called a model of L if for every theorem � 
 p, one has [[p]] = 1. Observe that
there is a canonical interpretation of L in HA(L) given by [[x]] = [x]. One shows
easily by induction that, for any formula p, moreover, [[p]] = [p]. Now lemma 6.13
tells us that this interpretation is in fact a model of L and that, moreover, it is
“generic,” in the sense that it validates only the provable formulas. We therefore
have the following logical completeness theorem for IPC.

Proposition 6.14. The IPC is complete with respect to models in Heyting
algebras.

Proof. Suppose a formula p is true in all models in all Heyting algebras. Then
in particular, it is so in HA(L). Thus, 1 = [[p]] = [p] in HA(L), and so � 
 p.

In sum, then, a particular instance L of IPC can be regarded as a way of
specifying (and reasoning about) a particular Heyting algebra HA(L). Indeed, it
is essentially a presentation by generators and relations, in just the way that we
have already seen for other algebraic objects like monoids. The Heyting algebra
HA(L) even has a UMP with respect to L that is entirely analogous to the UMP
of a finitely presented monoid given by generators and relations. Specifically, if,
for instance, L is generated by the two elements x, y subject to the single “axiom”
x ∨ y ⇒ x ∧ y, then in HA(L) the elements [x] and [y] satisfy [x] ∨ [y] ≤ [x] ∧ [y]
(which is of course equivalent to ([x]∨[y] ⇒ [x]∧[y]) = 1), and given any Heyting
algebra A with two elements a and b satisfying a ∨ b ≤ a ∧ b, there is a unique
Heyting homomorphism h : HA(L) → A with h([x]) = a and h([y]) = b. In this
sense, the Lindenbaum–Tarski Heyting algebra HA(L), being finitely presented
by the generators and axioms of L, can be said to contain a “universal model”
of the theory determined by L.

6.5 Equational definition of CCC

The following description of CCCs in terms of operations and equations on a
category is often useful. The proof is entirely routine and left to the reader.

Proposition 6.15. A category C is a CCC iff it has the following structure:

• A distinguished object 1, and for each object C there is given an arrow

!C : C → 1

such that for each arrow f : C → 1,

f =!C .
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• For each pair of objects A,B, there is given an object A × B and arrows,

p1 : A × B → A and p2 : A × B → B

and for each pair of arrows f : Z → A and g : Z → B, there is given an
arrow,

〈f, g〉 : Z → A × B

such that

p1〈f, g〉 = f

p2〈f, g〉 = g

〈p1h, p2h〉 = h for all h : Z → A × B.

• For each pair of objects A,B, there is given an object BA and an arrow,

ε : BA × A → B

and for each arrow f : Z × A → B, there is given an arrow

f̃ : Z → BA

such that

ε ◦ (f̃ × 1A) = f

and

˜(ε ◦ (g × 1A)) = g

for all g : Z → BA. Here, and generally, for any a : X → A and b : Y → B,
we write

a × b = 〈a ◦ p1, b ◦ p2〉 : X × Y → A × B.

It is sometimes easier to check these equational conditions than to verify the
corresponding UMPs. Section 6.6 provides an example of this sort.

6.6 λ-calculus

We have seen that the notions of a cartesian closed poset with finite joins (i.e.,
a Heyting algebra) and IPC are essentially the same:

HA ∼ IPC.

These are two different ways of describing one and the same structure; whereby,
to be sure, the logical description contains some superfluous data in the choice
of a particular presentation.

We now want to consider another, very similar, correspondence between
systems of logic and categories, involving more general CCCs. Indeed, the
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foregoing correspondence was the poset case of the following general one between
CCCs and λ-calculus:

CCC ∼ λ-calculus.

These notions are also essentially equivalent, in a sense that we now sketch (a
more detailed treatment can be found in the book by Lambek and Scott). There
are two different ways of representing the same idea, namely that of a collection
of objects and functions, with operations of pairing, projection, application, and
transposition (or “currying”).

First, recall the notion of a (typed) λ-calculus from Chapter 2. It consists
of

• Types: A × B, A → B, . . . (and some basic types)

• Terms: x, y, z, . . . : A (variables for each type A)
a : A, b : B, . . . (possibly some typed constants)

〈a, b〉 : A × B (a : A, b : B)

fst(c) : A (c : A × B)

snd(c) : B (c : A × B)

ca : B (c : A → B, a : A)

λx.b : A → B (x : A, b : B)

• Equations, including at least all instances of the following:

fst(〈a, b〉) = a

snd(〈a, b〉) = b

〈fst(c), snd(c)〉 = c

(λx.b)a = b[a/x]

λx.cx = c (no x in c)

Given a particular such λ-calculus L, the associated category of types C(L)
was then defined as follows:

• Objects: the types,

• Arrows A → B: equivalence classes of closed terms [c] : A → B, identified
according to (renaming of bound variables and),

[a] = [b] iff L 
 a = b (6.5)

• Identities: 1A = [λx.x] (where x : A),

• Composition: [c] ◦ [b] = [λx.c(bx)].

We have already seen that this is a well-defined category, and that it has
binary products. It is a simple matter to add a terminal object. Now let us use
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the equational characterization of CCCs to show that it is cartesian closed. Given
any objects A,B, we set BA = A → B, and as the evaluation arrow, we take
(the equivalence class of),

ε = λz.fst(z)snd(z) : BA × A → B (z : Z).

Then for any arrow f : Z × A → B, we take as the transpose,

f̃ = λzλx.f〈z, x〉 : Z → BA (z : Z, x : A).

It is now a straightforward λ-calculus calculation to verify the two required
equations, namely,

ε ◦ (f̃ × 1A) = f,

˜(ε ◦ (g × 1A)) = g.

In detail, for the first one recall that

α × β = λw.〈αfst(w), βsnd(w)〉.

So, we have

ε ◦ (f̃ × 1A) = (λz.fst(z)snd(z)) ◦ [(λyλx.f〈y, x〉) × λu.u]

= λv.(λz.fst(z)snd(z))[(λyλx.f〈y, x〉) × λu.u]v

= λv.(λz.fst(z)snd(z))[λw.〈(λyλx.f〈y, x〉)fst(w), (λu.u)snd(w)〉]v
= λv.(λz.fst(z)snd(z))[λw.〈(λx.f〈fst(w), x〉), snd(w)〉]v
= λv.(λz.fst(z)snd(z))[〈(λx.f〈fst(v), x〉), snd(v)〉]
= λv.(λx.f〈fst(v), x〉)snd(v)

= λv.f〈fst(v), snd(v)〉
= λv.fv

= f.

The second equation is proved similarly.
Let us call a set of basic types and terms, together with a set of equations

between terms, a theory in the λ-calculus. Given such a theory L, the cartesian
closed category C(L) built from the λ-calculus over L is the CCC presented by
the generators and relations stated by L. Just as in the poset case of IPC and
Heyting algebras, there is a logical completeness theorem that follows from this
fact. To state it, we require the notion of a model of a theory L in the λ-calculus
in an arbitrary cartesian closed category C. We give only a brief sketch to give
the reader the general idea.
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Definition 6.16. A model of L in C is an assignment of the types and terms
of L to objects and arrows of C:

X basic type � [[X]] object

b : A → B basic term � [[b]] : [[A]] → [[B]] arrow

This assignment is then extended to all types and terms in such a way that the
λ-calculus operations are taken to the corresponding CCC ones:

[[A × B]] = [[A]] × [[B]]

[[〈f, g〉]] = 〈[[f ]], [[g]]〉
etc.

Finally, it is required that all the equations of L are satisfied, in the sense that

L 
 [a] = [b] : A → B implies [[a]] = [[b]] : [[A]] → [[B]] (6.6)

This is what is sometimes called “denotational semantics” for the λ-calculus.
It is essentially the conventional, set-theoretic semantics for first-order logic, but
extended to higher types, restricted to equational theories, and generalized to
CCCs.

For example, let L be the theory with one basic type X, two basic terms,

u : X

m : X × X → X

and the usual equations for associativity and units,

m〈u, x〉 = x

m〈x, u〉 = x

m〈x,m〈y, z〉〉 = m〈m〈x, y〉, z〉.

Thus, L is just the usual equational theory of monoids. Then a model of L in
a cartesian closed category C is nothing but a monoid in C, that is, an object
M = [[X]] equipped with a distinguished point

[[u]] : 1 → M

and a binary operation

[[m]] : M × M → M

satisfying the unit and associativity laws.
Note that by (6.5) and (6.6), there is a model of L in C(L) with the

property that [[a]] = [[b]] : X → Y if and only if a = b is provable in
L. In this way, one can prove the following CCC completeness theorem for
λ-calculus.
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Proposition 6.17. For any theory L in the λ-calculus, one has the following:

1. For any terms a, b, L 
 a = b iff for all models M in CCCs, [[a]]M = [[b]]M .
2. Moreover, for any type A, there is a closed t : A iff for all models M in

CCCs, there is an arrow 1 → [[A]]M .

This proposition says that the λ-calculus is deductively sound and complete
for models in CCCs. It is worth emphasizing that completeness is not true if one
restricts attention to models in the single category Sets; indeed, there are many
examples of theories in λ-calculus in which equations holding for all models in
Sets are still not provable (see the exercises for an example).

Soundness (i.e., the “only if” direction of the above statements) follows from
the following UMP of the cartesian closed category C(L), analogous to the one
for any algebra presented by generators and relations. Given any model M of L
in any cartesian closed category C, there is a unique functor,

[[−]]M : C(L) → C

preserving the CCC structure, given by

[[X]]M = M

for the basic type X, and similarly for the other basic types and terms of L. In
this precise sense, the theory L is a presentation of the cartesian closed category
C(L) by generators and relations.

Finally, let us note that the notions of λ-calculus and CCC are essentially
“equivalent,” in the sense that any cartesian closed category C also gives rise
to a λ-calculus L(C), and this construction is essentially inverse to the one just
sketched.

Briefly, given C, we define L(C) by

• Basic types: the objects of C

• Basic terms: a : A → B for each a : A → B in C

• Equations: many equations identifying the λ-calculus operations with the
corresponding category and CCC structure on C, for example,

λx.fst(x) = p1

λx.snd(x) = p2

λy.f(x, y) = f̃(x)

g(f(x)) = (g ◦ f)(x)

λy.y = 1A

This suffices to ensure that there is an isomorphism of categories,

C(L(C)) ∼= C.
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Moreover, the theories L and L(C(L)) are also “equivalent” in a suitable sense,
involving the kinds of considerations typical of comparing different presenta-
tions of algebras. We refer the reader to the excellent book by Lambek and Scott
(1986), for further details.

6.7 Variable sets

We conclude with a special kind of CCC related to the so-called Kripke models
of logic, namely categories of variable sets. These categories provide specific
examples of the “algebraic” semantics of IPC and λ-calculus just given.

6.7.1 IPC

Let us begin by very briefly reviewing the notion of a Kripke model of IPC from
our algebraic point of view; we focus on the positive fragment involving only
�, p ∧ q, p ⇒ q, and variables.

A Kripke model of this language L consists of a poset I of “possible worlds,”
which we write i ≤ j, together with a relation between worlds i and propositions
p,

i � p,

read “p holds at i.” This relation is assumed to satisfy the following conditions:

(1) i � p and i ≤ j implies j � p

(2) i � �
(3) i � p ∧ q iff i � p and i � q

(4) i � p ⇒ q iff j � p implies j � q for all j ≥ i.

One then sets
I � p iff i � p for all i ∈ I.

And finally, we have the well-known theorem,

Theorem 6.18 (Kripke completeness for IPC). A propositional formula p
is provable from the rules for IPC iff it holds in all Kripke models, that is, iff
I � p for all relations � over all posets I,

IPC 
 p iff I � p for all I.

Now let us see how to relate this result to our formulation of the semantics of
IPC in Heyting algebras. First, the relation � ⊆ I × Prop(L) between worlds I
and propositional formulas Prop(L) can be equivalently formulated as a mapping,

[[−]] : Prop(L) −→ 2I , (6.7)

where we write 2I = HomPos(I,2) for the exponential poset of monotone maps
from I into the poset 2 = {⊥ ≤ �}. This poset is a CCC, and indeed a Heyting
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algebra, the proof of which we leave as an exercise for the reader. The mapping
(6.7) is determined by the condition

[[p]](i) = � iff i � p.

Now, in terms of the Heyting algebra semantics of IPC developed in Section
6.4 (adapted in the evident way to the current setting without the coproducts
⊥, p ∨ q, and writing HA− for Heyting algebras without coproducts, i.e., poset
CCCs), the poset HA−(L) is a quotient of Prop(L) by the equivalence relation
of mutual derivability p �
 q, which clearly makes it a CCC, and the map (6.7)
therefore determines a model (with the same name),

[[−]] : HA−(L) −→ 2I .

Indeed, condition (1) above ensures that [[p]] : I → 2 is monotone, and (2)–
(4) ensure that [[−]] is a homomorphism of poset CCCs, that is, that it is
monotone and preserves the CCC structure (exercise!). Thus, a Kripke model
is just an “algebraic” model in a Heyting algebra of the special form 2I . The
Kripke completeness theorem for positive IPC above then follows from Heyting-
valued completeness theorem proposition 6.14 together with the following, purely
algebraic, embedding theorem for poset CCCs.

Proposition 6.19. For every poset CCC A, there is a poset I and an injective,
monotone map,

y : A � 2I ,

preserving CCC structure.

Proof. We can take I = Aop and y(a) : Aop → 2, the “truth-value” of x ≤ a,
that is, y(a) is determined by

y(a)(x) = � iff x ≤ a.

Clearly, y(a) is monotone and contravariant, while y itself is monotone and
covariant. We leave it as an exercise to verify that y is injective and preserves
the CCC structure, but note that 2Aop

can be identified with the collection of
lower sets S ⊆ A in A, that is, subsets that are closed downward: x ≤ y ∈ S
implies x ∈ S. Under this identification, we then have y(a) = ↓(a) = {x |x ≤ a}.

A proof is also given in Chapter 8 as a consequence of the Yoneda Lemma.

The result can be extended from poset CCCs to Heyting algebras, thus
recovering the usual Kripke completeness theorem for full IPC, by the same
argument using a more delicate embedding theorem that also preserves the
coproducts ⊥ and p ∨ q.

6.7.2 λ-calculus

We now want to generalize the foregoing from propositional logic to the λ-
calculus, motivated by the insight that the latter is the proof theory of the former
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(according to the Curry–Howard–correspondence). Categorically speaking, we
are generalizing from the poset case to the general case of a CCC. According
to the “propositions-as-types” conception behind the C–H correspondence, we
therefore should replace the poset CCC of idealized propositions 2 with the
general CCC of idealized types Sets. We therefore model the λ-calculus in
categories of the form SetsI for posets I, which can be regarded as comprised
of “I-indexed,” or “variable sets,” as we now indicate.

Given a poset I, an I-indexed set is a family of sets (Ai)i∈I together with
transition functions αij : Ai → Aj for each i ≤ j, satisfying the compatibility
conditions:

• αik = αjk ◦ αij whenever i ≤ j ≤ k,

• αii = 1Ai
for all i.

In other words, it is simply a functor,

A : I −→ Sets.

We can think of such I-indexed sets as “sets varying in a parameter” from the
poset I. For instance, if I = R thought of as time, then an R-indexed set A
may be thought of as a set varying through time: some elements a, b ∈ At may
become identified over time (the αs need not be injective), and new elements
may appear over time (the αs need not be surjective), but once an element is in
the set (a ∈ At), it stays in forever (αtt′(a) ∈ At′). For a more general poset I,
the variation is parameterized accordingly.

A product of two variable sets A and B can be constructed by taking the
pointwise products (A × B)(i) = A(i) × B(i) with the evident transition maps,

αij × βij : A(i) × B(i) → A(j) × B(j) i ≤ j

where βij : Bi → Bj is the transition map for B. This plainly gives an I-indexed
set, but to check that it really is a product we need to make SetsI into a category
and verify the UMP (respectively, the operations and equations of Section 6.5).
What is a map of I-indexed sets f : A → B? One natural proposal is this: it is
an I-indexed family of functions (fi : Ai → Bi)i∈I that are compatible with the
transition maps, in the sense that whenever i ≤ j, then the following commutes:

Ai
fi � Bi

Aj

αij

�

fj

� Bj

βij

�

We can think of this condition as saying that f takes elements a ∈ A to elements
f(a) ∈ B without regard to when the transition is made, since given a ∈ Ai it
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does not matter if we first wait until j ≥ i and then take fj(αij(a)), or go right
away to fi(a) and then wait until βij(fi(a)).

Indeed, in Chapter 7 we see that this type of map is exactly what is called
a “natural transformation” of the functors A and B. These maps f : A → B
compose in the evident way:

(g ◦ f)i = gi ◦ fi : Ai −→ Bi

to make SetsI into a category, the category of I-indexed sets. It is now an easy
exercise to confirm that the specification of the product A × B just given really
is a product in the resulting category SetsI , and the terminal object is obviously
the constant index set 1, so SetsI has all finite products.

What about exponentials? The first attempt at defining pointwise
exponentials,

(BA)i = BAi
i

fails, because the indexing is covariant in B and contravariant in A, as the reader
should confirm. The idea that maybe BA is just the collection of all index maps
from A to B also fails, because it is not indexed! The solution is a combintion of
these two ideas which generalizes the “Kripke” exponential as follows. For each
i ∈ I, let

↓(i) ⊆ I

be the lower set below i, regarded as a subposet. Then for any A : I → Sets, let
A|i be the restriction,

I
A � Sets

↓(i)
∪

�

A|i

�

This determines an indexed set over ↓(i). Given any f : A → B and i ∈ I, there
is an evident restriction f |i : A|i → B|i which is defined to be simply (f |i)j = fj

for any j ≤ i. Now we can define

(BA)i = {f : A|i → B|i | f is ↓(i)-indexed}

with the transition maps given by

f �→ f |j j ≤ i

It is immediate that this determines an I-indexed set BA. That it is actually the
exponential of A and B in SetsI is shown later, as an easy consequence of the
Yoneda Lemma. For the record, we therefore have the following (proof deferred).

Proposition 6.20. For any poset I, the category SetsI of I-indexed sets and
functions is cartesian closed.
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Definition 6.21. A Kripke model of a theory L in the λ-calculus is a model (in
the sense of definition 6.16) in a cartesian closed category of the form SetsI for
a poset I.

For instance, it can be seen that a Kripke model over a poset I of a
conventional algebraic theory such as the theory of groups is just an I-indexed
group, that is, a functor I → Group. In particular, if I = O(X)op for a
topological space X, then this is just what the topologist calls a “presheaf of
groups.” On the other hand, it also agrees with (or generalizes) the logician’s
notion of a Kripke model of a first-order language, in that it consists of a varying
domain of “individuals” equipped with varying structure.

Finally, in order to generalize the Kripke completeness theorem for IPC to
λ-calculus, it clearly suffices to sharpen our general CCC completeness theorem,
proposition 6.17, to the special models in CCCs of the form SetsI by means
of an embedding theorem analogous to proposition 6.19. Indeed, one can prove
this.

Proposition 6.22. For every CCC C, there is a poset I and a functor,

y : C � SetsI ,

that is injective on both objects and arrows and preserves CCC structure.
Moreover, every map between objects in the image of y is itself in the image
of y (y is “full”).

The full proof of this result involves methods from topos theory that are
beyond the scope of this book. But a significant part of it, to be given below, is
entirely analogous to the proof of the poset case, and will again be a consequence
of the Yoneda Lemma.

6.8 Exercises

1. Show that for all finite sets M and N ,

|NM | = |N ||M |,

where |K| is the number of elements in the set K, while NM is the
exponential in the category of sets (the set of all functions f : M → N),
and nm is the usual exponentiation operation of arithmetic.

2. Show that for any three objects A,B,C in a cartesian closed category,
there are isomorphisms:

(a) (A × B)C ∼= AC × BC

(b) (AB)C ∼= AB×C

3. Determine the exponential transpose ε̃ of evaluation ε : BA ×A → B (for
any objects in any CCC). In Sets, determine the transpose 1̃ of the identity
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1 : A × B → A × B. Also determine the transpose of ε ◦ τ : A × BA → B,
where τ : A × BA → BA × A is the “twist” arrow τ = 〈p2, p1〉.

4. Is the category of monoids cartesian closed?
5. Verify the description given in the text of the exponential graph HG for

two graphs G and H. Determine the exponential 2G, where 2 is the graph
v1 → v2 with two vertices and one edge, and G is an arbitrary graph.
Determine 2G explicitely for G the graph pictured below.

a � b � c

d

�

6. Consider the category of sets equipped with a (binary) relation, (A,R ⊆
A × A), with maps f : (A,R) → (B,S) being those functions f : A → B
such that aRa′ implies f(a)Sf(a′). Show this category is cartesian closed
by describing it as a subcategory of graphs.

7. Consider the category of sets equipped with a distinguished subset,
(A,P ⊆ A), with maps f : (A,P ) → (B,Q) being those functions
f : A → B such that a ∈ P iff f(a) ∈ Q. Show this category is cartesian
closed by describing it as a category of pairs of sets.

8. Consider the category of “pointed sets,” that is, sets equipped with a
distinguished element, (A, a ∈ A), with maps f : (A, a) → (B, b) being
those functions f : A → B such that f(a) = b. Is this category cartesian
closed?

9. Show that for any objects A,B in a cartesian closed category, there is a
bijective correspondence between points of the exponential 1 → BA and
arrows A → B.

10. Show that the category of ωCPOs is cartesian closed, but that the category
of strict ωCPOs is not (the strict ωCPOs are the ones with initial object
⊥, and the continuous maps between them are supposed to preserve ⊥).

11. (a) Show that in any cartesian closed poset with joins p∨ q, the following
“distributive” law of IPC holds:

((p ∨ q) ⇒ r) ⇒ ((p ⇒ r) ∧ (q ⇒ r))

(b) Generalize the foregoing problem to an arbitrary category (not
necessarily a poset), by showing that there is always an arrow of the
corresponding form. Text is

mismatch i
followed the
hard copy plz
confirm.

(c) If you are brave, show that the previous two arrows are isomorphisms.

12. Prove that in a CCC C, exponentiation with a fixed base object C is a
contravariant functor C(−) : Cop → C, where C(−)(A) = CA.
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13. Show that in a cartesian closed category with coproducts, the products
necessarily distribute over the coproducts,

(A × C) + (B × C) ∼= (A + B) × C.

14. In the λ-calculus, consider the theory (due to Dana Scott) of a reflexive
domain: there is one basic type D, two constants s and r of types

s : (D → D) → D

r : D → (D → D),

and two equations,

srx = x (x : D)

rsy = y (y : D → D).

Prove that, up to isomorphism, this theory has only one model M in Sets,
and that every equation holds in M .

15. Complete the proof from the text of Kripke completeness for the positive
fragement of IPC as follows:

(a) Show that for any poset I, the exponential poset 2I is a Heyting
algebra. (Hint: the limits and colimits are “pointwise,” and the Heyting
implication p ⇒ q is defined at i ∈ I by (p ⇒ q)(i) = � iff for all j ≥
i, p(j) ≤ q(j).)

(b) Show that for any poset CCC A, the map y : A → 2Aop
defined in

the text is indeed (i) monotone, (ii) injective, and (iii) preserves CCC
structure.

16. Verify the claim in the text that the products A×B in categories SetsI of
I-indexed sets (I a poset) can be computed “pointwise.” Show, moreover,
that the same is true for all limits and colimits.


