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Program: “Categorify” a quantum mechanical description of states
and processes.

We propose to represent:

@ configuration spaces of physical systems by groupoids (or
stacks), based on local symmetries

@ process relating two systems through time by a span of
groupoids, including a groupoid of “histories”
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We are “doing physics in” the f-monoidal (2-)category Span(Gpd).
This relates to more standard picture in Hilb by two representations:
@ Degroupoidification (Baez-Dolan): D : Span;(Gpd) — Hilb,

explains “Physics in Hilb”

@ 2-Linearization (Morton): captures more structure by
A : Span,(Gpd) — 2Hilb, suggests “Physics in 2Hilb.”
Both invariants rely on a pull-push process, and some form of
adjointness.
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Definition
A groupoid G is a category in which all morphisms are invertible.

Often, we consider groupoids IN spaces, manifolds, etc. (i.e. with
manifolds of objects, morphisms).

Example

Some relevant groupoids:
@ Any set S can be seen as a groupoid with only identity morphisms
@ Any group G is a groupoid with one object

@ Given a set S with a group-action G x S — Syields a
transformation groupoid S//G whose objects are elements of S; if
g(s) = s’ then there is a morphism g5 : s — &

@ Any groupoid, as a category, is a union of transformation
groupoids (represents “local symmetry”)
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@ A stack is a groupoid taken up to (Morita-)equivalence

@ this coincides with Morita equivalence for C* algebras, in the case
of groupoid algebras.

@ equivalent groupoids are “physically indistinguishable”. (E.g. full

action groupoid; skeleton, with quotient space of objects - no need
to decide which is “the” stack)

Our proposal is that configuration spaces for physical systems should
be (topological, smooth, measured, etc.) stacks.

Note: “configurations” here are roughly “pure states” E.g. energy levels
for harmonic oscillator.

Jeffrey C. Morton (IST) Groupoidification in Physics PSA, Montreal Nov 2010 5/23



Definition
A span in a category C is a diagram of the form:

A%X\NB

We'll use C = Gpd, so s and t are functors (i.e. also map morphisms,
representing symmetries).

Spans can be composed by weak pullback. (a modified “fibred
product”) Span(Gpd) gets a monoidal structure from the product in
Gpd, and has duals for morphisms and 2-morphisms.
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We can look at this two ways:

@ SpanC is the universal 2-category containing C, and for which
every morphism has a (two-sided) adjoint. The fact that arrows
have adjoints means that Span(C) is a {-monoidal category
(which our representations should preserve).

@ Physically, X will represent an object of histories leading the
system A to the system B. Maps s and t pick the starting and
terminating configurations in A and B for a given history (in the
sense internal to C).

(These reasons are closely connected: adjointness is the reversal of
time orientation of histories.)
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Degroupoidification works like this:

To linearize a (finite) groupoid, just take the free vector space on its
space of isomorphism classes of objects, C2 (or L2(A) for more
physical situations).

Then there is a pair of linear maps associatedtomap f : A— B:
o f*:CB—CA with f*(g) = g o f (precomposition)
o f.: C*—CP, with £.(9)(b) = X ¢(a)=p iﬁﬂi(ggg(a) (weighted image
of functions)

(There are also integral versions; versions with U(1)-phased
groupoids, etc. for more physical situations)

These are adjoint with respect to a naturally occurring inner product.
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Definition
The functor
D : Span(Gpd) — Vect
is defined by
D(G) = C(Q)

and
D(X,s,t)=t.os"

This gives multiplication by a matrix counting (with “groupoid
cardinality”) the number of histories from x to y:

D(X) a0 = |(s.1)"'(@. b)lg

This is a “sum over histories”. (For more physics, such as action
principle, use U(1)-groupoids.
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Degroupoidification ignores the fact that Gpd is a 2-category (with
groupoids, functors, and natural transformations).
The 2-morphisms of Span,(Gpd) are (iso. classes of) spans of span
maps:

X

N
A+——Y——B
X/

These have duals, just like the 1-morphisms.
We want a representation of Span,(Gpd) that captures more than D,
and preserves the adjointness property for both kinds of morphism.
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First, this representation lives in 2Hilb:

Definition

A finite dimensional Kapranov-Voevodsky 2-vector space is a
C-linear abelian category generated by finitely many simple objects. A
2-Hilbert space (Baez) is an abelian H*-category.

That is, 2-vector spaces have a “direct sum” &, and hom(x, y) is a
vector space for objects x and y. A 2-Hilbert space, in addition, has
hom(x, y) a Hilbert space, and a star structure:

hom(x, y) = (hom(y, x))*

which we think of as finding the “adjoint of a morphism”.
A 2-linear map is a functor preserving all this structure.
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Lemma

If B is an essentially finite groupoid, the representation category
Rep(B) is a 2-Hilbert space.

The “basis elements” (generators) of [B, Vect] are labeled by ([b], V),
where [b] € B and V an irreducible rep of Aut(b).

Baez, Freidel et. al. conjecture the following for the infinite-dimensional
case (incompletely understood):

Conjecture

Any 2-Hilbert space is of the following form: Rep(.A), the category of
representations of a von Neumann algebra A on Hilbert spaces. The
star structure takes the adjoint of a map.

This includes the example above, by way of the groupoid algebra
Ce(X).
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In this context:
@ For our physical interpretation A is the algebras of symmetries of
a system. The algebra of observables will be its commutant -
which depends on the choice of representation!

@ Basis elements are irreducible representations of the vN algebra -

physically, these can be interpreted as superselection sectors.
Any representation is a direct sum/integral of these.

@ Then 2-linear maps are functors, but can also be represented as
Hilbert bimodules between algebras. The simple components of
these bimodules are like matrix entries.
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Definition
A state for an object A in a monoidal category is a morphism from the
monoidal unit, ¢ : [ — A.

@ A € Hilb: state determines a vector by ¢ : C— H

@ A € 2Hilb: a state determines an object (e.g. a representation of
groupoid/algebra - an irreducible one is a superselection sector)

@ A € Span(Gpd), the unit is 1, the terminal groupoid, so
1—S—-A

is a “groupoid over A”, actually ¥

A state in Span(Gpd) determines either of the others, using D or A.
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Theorem

If X and B are essentially finite groupoids, a functor f : X — B gives two
2-linear maps:
f*: A(B) — A(X)

namely composition with f, with f*F = F o f and
f. : A(X) — A(B)

called “‘pushforward along f”. Furthermore, f, is the two-sided adjoint
to f* (i.e. both left-adjoint and right-adjoint).

In fact, there are left and right adjoints, f. and f,, but the Nakayama
isomorphism:

Nit.rpy : i(F)(b) — f.(F)(b)

is given by the exterior trace map (which uses a modified group
average).
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Definition
Define the 2-functor A as follows:
@ Objects: A(B) = Rep(B) := [B, Vect]
@ Morphisms A(X, s, t) = t. o s* : A(a) — A(B)
@ 2-Morphisms: A(Y,0,7) =€, 0o Nongy : (1)« o (8)* —(t')« 0 (8)*

v

Picking basis elements ([a], V) € A(A), and ([b], W) € A(B), we get
that A(X, s, ) is represented by the matrix with coefficients:

AN(X, 8, )(ja,v), (11 W) = & homgep(aut(x))(S* (V). t*(W))
[x]e(s,t) " ([4l,[8])

This is a intertwiner space is the categorified analog of the counting
done by D: this constructs a Hilbert space as a direct sum over
histories (generally, direct integral).
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In the case where source and target are 1, there is only one basis
object in A(1) (the trivial representation), so the 2-linear maps are
represented by a single vector space. Then it turns out:

Theorem
Restricting to homspan2(Gpd)(1 ; 1)

A
SN
S
1 X 1
N A
B
where 1 is the (terminal) groupoid with one object and one morphism,
A on 2-morphisms is just the degroupoidification functor D.

The groupoid cardinality comes from the modified group average in N.
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Example

In the case where A = B = FinSety (equivalently, the symmetric
groupoid [ [~ Zn - note no longer finite), we find

D(FinSeto) = C[[{]]

where t" marks the basis element for object [n]. This gets a canonical
inner product and can be treated as the Hilbert space for the quantum
harmonic oscillator (“Fock Space”).

The operators a = 9; and al = My, generate the Weyl/ algebra of
operators for the QHO. These are given under D by the span A:

FinSetg

FinSety FinSetg

and its dual Af. Composites of these give a categorification of
operators explicitly in terms of Feynman diagrams.
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The image of this picture under A involves representation theory of the
symmetric groups as A(FinSetg) = [ [, Rep(X,), and gives rise to
“paraparticle statistics”:
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Example
An Extended TQFT (ETQFT) is a (weak) monoidal 2-functor

Z : nCob, — 2Vect

where nCob, is a 2-category of cobordisms.

One construction uses gauge theory, for gauge group G (here a finite
group). Given M, the groupoid Ay(M, G) = hom(w1(M), G) /G has:
@ Objects: Flat connections on M
@ Morphisms Gauge transformations
Then Ay(—, G) : nCob, — Span,(Gpd), and there is an ETQFT
Zg = No Ag(—, G).
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This relies on the fact that cobordisms in nCob, can be transformed
into products of cospans:

nCob, Spar?(Top)

Y Y
SIS g — st

Then Ag(—, G) maps these into Spar?(Gpd).

Jeffrey C. Morton (IST) Groupoidification in Physics PSA, Montreal Nov 2010 21/23



@ View S' as the boundary around a system (e.g. particle).

@ Irreducible objects of Zg(S') ~ [G// G, Vect] are labelled by
([g], W), for [g] a conjugacy class in G and W an irrep of its
stabilizer subgroup

@ For G = SU(2), this is an angle m € [0, 27], a particle; and an
irrep of U(1) (or SU(2) for m = 0) is labelled by an integer j

@ This theory then looks like 3D quantum gravity coupled to
particles with mass and spin. with mass m and spin j

@ Under the topology change of the pair of pants, a pair of such reps
is taken to one with nontrivial representations (superselection
sectors) for all [mm’] for any representatives of [m], [m] (each
possible total mass and spin for the combined system).

Dynamics (maps between Hilbert spaces) space arises from the
2-morphisms - componentwise in each 2-linear map.
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