
The join construction

Egbert Rijke

Carnegie Mellon University
erijke@andrew.cmu.edu

October 28th 2017, Pittsburgh

erijke@andrew.cmu.edu


Table: The homotopy interpretation (Awodey and Warren, Voevodsky)

Type theory Homotopy theory

Types Spaces
Dependent types Fibrations
Terms Points
Dependent pair type Total space
Identity type Path fibration



Why Homotopy Type Theory?

I The univalence axiom reinforces the connection between
dependent type theory and homotopy theory.

I Isomorphisms between structures identify them, and all
constructions have to respect those.

I Constructions in homotopy type theory apply to all its models.

I Paths are primitive in HoTT, which allows for a ‘synthetic’
approach to homotopy theory that makes many constructions
more elegant.

I Homotopy Type Theory is constructive, admits a
computational interpretation, but is still compatible with
classical reasoning.

I Large scale computer formalization of mathematics becomes
feasible with HoTT... and it is indispensable!



What are some challenges in HoTT?

I All constructions have to be homotopy invariant.

I Some spaces (like the spheres, the real and complex projective
spaces) have been defined as higher inductive types, while for
many familiar spaces (e.g. the Grassmannians) it is an open
problem to define them in HoTT.

I We only know how to interpret some higher inductive types
(e.g. pushouts) in some models.

Therefore it would be interesting to know what we get from just
pushouts:

I Can we quotient a type by an equivalence relation?

I Can we define the homotopy image of a map?

I Can we ‘truncate’ types, so that all homotopy groups above
level n become trivial?



I Dependent types

x : A ` P(x) : Type

I Dependent functions

x : A ` f (x) : P(x)

` λx . f (x) :
∏

(x :A) P(x)

I Dependent pairs

` a : A ` p : P(a)

` (a, p) :
∑

(x :A) P(x)

I The universe is a type U with a type family

X : U ` X : Type

that contains 0, 1, and N, and is closed under the
type-forming operations Π, Σ, and Id.



For each type X there is an family of types

x , y : X ` IdX (x , y)

with constructor

x : X ` reflx : IdX (x , y)

The elimination principle for Id states that for any

x , y : X , p : IdX (x , y) ` P(x , y , p) : Type

one has:

x : X ` t : P(x , x , reflx)

x , y : X , p : IdX (x , y) ` indIdX (x , y , p, t) : P(x , y , p)



Definition (Voevodsky)

A type X is said to be contractible if there is a term of type

isContr(X ) :≡
∑

(x :X )

∏
(y :X ) IdX (x , y).

Theorem
For any type X and any x : X , the type∑

(y :X ) IdX (x , y)

is contractible.



Definition (Voevodsky)

A map f : X → Y is said to an equivalence if there is a term of
type

isEquiv(f ) :≡
∏

(y :Y ) isContr
(∑

(x :X ) IdY (f (x), y)
)

We write X ' Y for the type
∑

(f :X→Y ) isContr(f ).

Definition
Let f , g :

∏
(x :X ) P(x) be two dependent functions. We define the

type of homotopies from f to g

f ∼ g :≡
∏

(x :X ) IdP(x)(f (x), g(x)).

Theorem
A map is an equivalence if and only if it has both a left and a right
inverse (up to homotopy).



Definition
A type P is said to be a proposition if its identity types are
contractible.

Theorem
For any map f : A→ B the following are equivalent:

1. The fibers of f are mere propositions

2. The canonical map

apf :
∏

(x ,y :A) IdA(x , y)→ IdB(f (x), f (y))

is an equivalence.

We call such maps embeddings.



Definition
We say that a type X is a set if its identity types are propositions

Theorem
The type of natural numbers is a set.

Definition (Voevodsky)

I We say that a type is (−2)-truncated if it is contractible.

I We say that a type is (n + 1)-truncated if its identity types are
n-truncated.



The univalence axiom (Voevodsky)

The canonical map

IdU (X ,Y )→ (X ' Y )

is an equivalence for every X ,Y : U .



Consequences of the univalence axiom

I It challenges us to rethink what equality is!

I Function extensionality: for any two dependent functions
f , g :

∏
(x :X ) P(x) the canonical map

Id(f , g)→ (f ∼ g)

is an equivalence.

I Being contractible, an equivalence, and being n-truncated are
all properties, not structure.

I The universe is closed under limits.

I The universe classifies all maps between small types.

I Isomorphic structures (sets, groups, modules, . . . ) can be
identified.

I Descent for higher inductive types.

I . . .



We work in MLTT with a univalent universe U that is closed under
(homotopy) pushouts.

I for every span A
f← S

g→ B in U we can form the higher
inductive type A tS B : U with constructors

inl : A→ A tS B

inr : B → A tS B

glue :
∏

(x :S) inl(f (x)) = inr(g(x))

with the according induction principle.



Can we define the image of a map?

Can we define the n-truncations for any truncation level
n and construct their corresponding stable OFSs?

Can we characterize in the language of HoTT those types
that are a loop space?

Can we define a notion of ∞-equivalence relation, and an
effective quotient operation?



Definition
Let f : A→ X and g : B → X be maps with a common codomain.
The join f ∗ g of maps is defined by first pulling back, and then
pushing out the pullback span:∑

(a:A)

∑
(b:B) f (a) = g(b) B

A A ∗X B

X

π2

π1 inr
g

inl

f

f ∗g



The join construction

Consider the finite join-powers f ∗n of maps. This gives rise to a
sequence

A A ∗X A A ∗X (A ∗X A) · · ·

X .

inr

f

f ∗f

inr

f ∗3

inr

f ∗4

Theorem
The colimit f ∗∞ is an embedding that satisfies the universal
property of the image inclusion of f . We get the desired stable
orthogonal factorization system.



Theorem (R)

Let A : U and let X be locally small with respect to U , in the sense
that for any x , y : X there is a type x =′ y : U and an equivalence

(x = y) ' (x =′ y).

Then we can construct

I a type im′(f ) : U and an embedding i ′f : im′(f )→ X

I if : im′(f )→ X satisfies the universal property of the image
inclusion of f .

Corollary

Any connected component of the universe is essentially small



Theorem (R)

We can define, for every n ≥ −2, an n-truncation operation

‖ ‖n : U → U

and for every A : U a map

ηA : A→ ‖A‖n,

such that

I for each A : U the type ‖A‖n is an n-truncated type

I for every n-truncated type B the canonical map

◦ ηA : (‖A‖n → B)→ (A→ B)

is an equivalence.



Proof.
By induction on n : N−2.

I In the base case we simply take A 7→ 1.

I Given an n-truncation operation with the universal property,
define

‖A‖n+1 :≡ im
(
x 7→ (λy . ‖x = y‖n)

)
.

More details in ArXiv:1701.07538


