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I. Motivation
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How do we prove this?

Consider the following square.

Vect +Vectop Span(Vect)

Cospan(Vect) LinRel

This is a pushout square in the category of props.

Linear relations interpret diagrams of linear maps

←ÐÐ→←ÐÐ→←Ð

where we may compose by function composition, pullback, and
pushout.

This leads to a presentation of LinRel.
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Colimits combine systems.

Monoidal categories of cospans allow construction of all finite
colimits, via

● composition (pushout),

● monoidal product (binary coproducts), and

● monoidal unit (initial object).

Thus cospan categories provide useful language for system
interconnection.

However, combining systems using colimits indiscriminately
accumulates information.
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Consider cospans in FinSet.

X N Y

If we think about these as circuits, all we care about is the induced
equivalence relation on X + Y .
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Cospans accumulate internal structure (witnesses for ‘empty
equivalence classes’).
Corelations forget this.
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Factorisation hides internal structure.

A factorisation system (E ,M) comprises subcategories E ,M such
that

● E andM contain all isomorphisms

● every f admits factorisation f = m ○ e.

● we have the universal property:

e //

u

��

m //

∃!s
��

v

��

e′
//

m′

//

For example, epi–mono factorisation systems (like in FinSet).
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A corelation is an equivalence class of cospans, where two cospans
are equivalent if

N

N ′

X Y.

m

We may represent each corelation by a cospan such that X + Y → N
lies in E .

WhenM is stable under pushout, composition by pushout defines a
category Corel(C).
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What is the link?

Vect +Vectop Span(Vect)

Cospan(Vect) LinRel

So we claim:

I. Corelations model system interconnection and

II. A universal property is useful for computing presentations.

Does this universal construction generalise to other corelation
categories?



What is the link?

Vect +Vectop Span(Vect)

Cospan(Vect) LinRel ≅ Corel(Vect)

So we claim:

I. Corelations model system interconnection and

II. A universal property is useful for computing presentations.

Does this universal construction generalise to other corelation
categories?



What is the link?

Vect +Vectop Span(Vect)

Cospan(Vect) LinRel ≅ Corel(Vect)

So we claim:

I. Corelations model system interconnection and

II. A universal property is useful for computing presentations.

Does this universal construction generalise to other corelation
categories?



What is the link?

Vect +Vectop Span(Vect)

Cospan(Vect) LinRel ≅ Corel(Vect)

So we claim:

I. Corelations model system interconnection and

II. A universal property is useful for computing presentations.

Does this universal construction generalise to other corelation
categories?



II. A Universal Property for
Corelations



Cospan(C) Corel(C)

A functor Span(C)→ Corel(C) does not in general exist. Under what
conditions might it exist?
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Define a map SpanC(A)→ Corel(C) by taking pushouts.

When is this
functorial?

These two cospans represent the same corelation when the canonical
map lies inM.
Call this the pullback–pushout property (with respect toM).

When A obeys the pullback–pushout property, then there exists
a functor SpanC(A)→ Corel(C).
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Theorem

Suppose a category C has

● pushouts and pullbacks

● a factorisation system (E ,M) withM ⊆ monos, stable un-
der pushout

● such thatM obeys the pullback–pushout property.

Then we have a pushout square in Cat:

M +∣M∣Mop SpanC(M)

Cospan(C) Corel(C)
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Theorem: generalisingM

Suppose C has

● pushouts and pullbacks

● a factorisation system with M ⊆ monos, stable under
pushout

● a subcategory A ⊇M, stable under pullback, obeying the
pullback–pushout property.
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Corollary: abelian case

Let C be an abelian category. This has a (co)stable epi–mono
factorisation system.

We have a pushout square in Cat:

C +∣C∣ Cop Span(C)

Cospan(C) Corel(C) ≅ Rel(C)

The theorem can also be extended to monoidal categories, by
requiring that the monoidal product preserve pushouts in C and
pullbacks in A, and thatM and A are closed under the monoidal
product.
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Examples

Corelations
(Equivalence
relations):

Inj +● Injop Span(Inj)

Cospan(FinSet) Corel(FinSet)

Partial
equivalence
relations:

PInj +● PInjop Span(PInj)

Cospan(ParFunc) PER ≅ Corel(ParFunc)



Examples

Linear relations:

Vect +● Vectop Span(Vect)

Cospan(Vect) Corel(Vect) ≅ LinRel

Discrete time,
linear,
time-invariant,
dynamical
systems over k:

SpltM +● SpltMop Span(SpltM)

Cospan(Matk[s,s−1]) Corel(Matk[s,s−1])



Examples

Let T be a comonad on Set such that T and T 2 both preserve
pullbacks of regular monos. Then the category SetT of coal-
gebras over T obeys the theorem with respect to (epis, regular
monos).

This property is obeyed by the cofree comonad on the double finite
power set functor, which has been used to model logic programs.
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Theorem: dual case

Suppose a category C has

● pushouts and pullbacks

● a factorisation system (E ,M) with E ⊆ epis, stable under
pullback

● such that E obeys the pullback–pushout property.

Then we have a pushout square in Cat:

E +∣E ∣ Eop Span(C)

Cospan(E) Rel(C)



Non-example: Relations

Surj does not obey pushout–pullback property.

Surj + Surjop Span(FinSet)

Cospan(Surj) Rel(FinSet)

3

2 2

Not an epi! (We cannot construct Rel = Rel(FinSet) as a pushout.)
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To recap:

I. Corelations model system interconnection

II. Categories of corelations can be constructed as a pushout of span
and cospan categories.

III. This helps derive presentations.



I thank Fabio Zanasi for collaborating on this work.
Thank you for listening.

For more: http://www.brendanfong.com/

http://www.brendanfong.com/

	Introduction
	Pushouts
	Close

