
ForTheL as a Controlled Natural Language for
Lean

by Peter Koepke

University of Bonn, Germany

Lean Together 2020
Pittsburgh, 10 January 2020

Ordinary mathematical texts, e.g., from W. Rudin, Principles of Mathematical Analysis

Theorem 1. If x2R, y 2R, and x< y, then there exists a p2Q such that x< p< y.

Proof. Since x< y, we have y¡x> 0, and (a) furnishes a positive integer n such that

m (y¡x)> 1:

Apply (a) again, to obtain positive integers m1 and m2 such that m1>nx, m2>¡nx. Then

¡m2<nx<m1:

Hence there is an integer m (with ¡m2�m�m1) such that

m¡ 1�nx<m:

If we combine these inequalities, we obtain

nx<m� 1+nx<ny:

Since n> 0, it follows that

x<
m
n
< y:

This proves (b), with p=m/n. �

Ordinary mathematical texts

¡ Natural language with symbolic elements

¡ intuitive descriptions of mathematical situations, analogous to real-world situations

¡ exploration of situations by argumentation, with argumentative sentences and phrases

¡ Striving for unambiguity and exactness

¡ emphasizing mathematically relevant facts

¡ omitting routine technical details

Natural mathematical texts

¡ Natural language with symbolic elements

¡ intuitive descriptions of mathematical situations, analogous to real-world situations

¡ exploration of situations by argumentation, with argumentative sentences and phrases

¡ Striving for unambiguity and exactness

¡ emphasizing mathematically relevant facts

¡ omitting routine technical details

Approximating natural mathematical texts by ForTheL

¡ ForTheL = Formula Theory Language (� sublanguage of natural mathematical language)

¡ 1970 Evidence Algorithm (Victor Glushkov)

¡ 1980 System for Automated Deduction (SAD)

¡ 2008 Andrei Paskevich, Haskell implementation of SAD (PhD project)

¡ 2017 Adoption of SAD by the Bonn Natural Proof Checking project: Naproche-SAD

¡ ForTheL: controlled natural language (CNL) de�ned by a formal grammar and implementa-
tion

¡ Naproche-SAD: proof-checking ForTheL texts by translations to First-Order logic and a
strong ATP (eprover)

Formalizing Rudin in Naproche-SAD

Theorem 2. If x 2R, y 2R, and x < y, then there
exists a p2Q such that x< p< y.

Proof. Since x< y, we have y ¡ x> 0, and (a) fur-
nishes a positive integer n such that

m (y¡ x)> 1:

Apply (a) again, to obtain positive integers m1 and
m2 such that m1>nx, m2>¡nx. Then

¡m2<nx<m1:

Hence there is an integer m (with ¡m2�m �m1)
such that

m¡ 1�nx<m:

If we combine these inequalities, we obtain

nx<m� 1+nx<ny:

Since n> 0, it follows that

x<
m

n
< y:

This proves (b), with p=m/n. �

Theorem 3. (120b) If x2R and y2R and x<y then
there exists a rational number p such that x< p< y.

Proof. Assume x < y. We have y ¡ x > 0. Take a
positive integer n such that n � (y¡x)> 1 (by 120a).
Take an integer m such thatm¡1�n �x<m. Then

n � x<m=(m¡ 1)+1

�(n � x)+ 1< (n �x)+ (n � (y¡ x))

=n � (x+(y¡ x))=n � y:

m� (n � x) + 1<n � y. m

n
<

n � y
n

. Indeed m<n � y
and 1/n> 0. Then

x=
n � x
n

<
m

n
<
n � y
n

= y:

Let p= m

n
. Then p2Q and x< p< y. �

Formalizing Rudin in Naproche-SAD

Theorem 4. If x 2R, y 2R, and x < y, then there
exists a p2Q such that x< p< y.

Proof. Since x< y, we have y ¡ x> 0, and (a) fur-

nishes a positive integern such that

m (y¡ x)> 1:

Apply (a) again, to obtain positive integers m1 and
m2 such that m1>nx, m2>¡nx. Then

¡m2<nx<m1:

Hence there is an integer m (with ¡m2�m �m1)
such that

m¡ 1�nx<m:

If we combine these inequalities, we obtain

nx<m� 1+nx<ny:

Since n> 0, it follows that

x<
m

n
< y:

This proves (b), with p=m/n. �

Theorem 5. (120b) If x2R and y2R and x<y then
there exists a rational number p such that x< p< y.

Proof. Assume x < y. We have y ¡ x > 0. Take a
positive integer n such that n � (y¡x)> 1 (by 120a).
Take an integer m such thatm¡1�n �x<m. Then

n � x<m=(m¡ 1)+1

�(n � x)+ 1< (n �x)+ (n � (y¡ x))

=n � (x+(y¡ x))=n � y:

m� (n � x) + 1<n � y. m

n
<

n � y
n

. Indeed m<n � y
and 1/n> 0. Then

x=
n � x
n

<
m

n
<
n � y
n

= y:

Let p= m

n
. Then p2Q and x< p< y. �

Density of the rationals in Lean-mathlib

algebra/archimedean.lean:

theorem exists_rat_btwn {x y : a} (h : x < y) : 9 q : <bbb-Q>, x < q ^
(q:a) < y :=
begin
cases exists_nat_gt (y - x)⁻¹ with n nh,
cases exists_floor (x * n) with z zh,
refine h(z + 1 : <bbb-Z>) / n, _i,
have n0 := nat.cast_pos.1 (lt_trans (inv_pos (sub_pos.2 h)) nh),
have n0' := (@nat.cast_pos a _ _).2 n0,
rw [rat.cast_div_of_ne_zero, rat.cast_coe_nat, rat.cast_coe_int,

div_lt_iff n0'],
refine h(lt_div_iff n0').2 $

(lt_iff_lt_of_le_iff_le (zh _)).1 (lt_add_one _), _i,
rw [int.cast_add, int.cast_one],
refine lt_of_le_of_lt (add_le_add_right ((zh _).1 (le_refl _)) _) _,
rwa [lt_sub_iff_add_lt', sub_mul,

 div_lt_iff' (sub_pos.2 h), one_div_eq_inv],
{ rw [rat.coe_int_denom, nat.cast_one], exact one_ne_zero },
{ intro H, rw [rat.coe_nat_num, coe_coe, nat.cast_eq_zero] at H,

subst H, cases n0 },
{ rw [rat.coe_nat_denom, nat.cast_one], exact one_ne_zero }

end

Can (a variant of) ForTheL be used as an input language for Lean?

¡ . . . for natural readability of Lean formalizations?

¡ . . . for a wider acceptance in the mathematical community?

¡ ForTheL is an input language for FOL, with natural language types represented by unary
predicates and type guards

¡ Propositions in dependent type theory are close to FOL

¡ ForTheL statements can be translated to Lean propositions (see below)

¡ ForTheL proofs correspond to natural deduction and FOL calculi

¡ Lean proofs are type theoretic terms that type-check

Natural mathematical language is weakly typed

¡ Aarne Ranta

¡ Mohan Ganesalingam

¡ The Naproche project (Natural Proof Checking)

¡ Marcos Cramer

Example

THEOREM 1.1 (The Kepler conjecture). No packing of congruent balls in Euclidean
three space has density greater than that of the face-centered cubic packing.

Example

THEOREM 1.1 (The Kepler conjecture). No packing of congruent balls in Euclidean
three space has density greater than that of the face-centered cubic packing.

[synonym number/-s]
Signature. A real number is a notion.
Let x,y stand for real numbers.
Signature. x is greater than y is an atom.
Signature. A packing of congruent balls
in Euclidean three space is a notion.
Signature. The face centered cubic packing is a packing
of congruent balls in Euclidean three space.
Let P denote a packing of congruent balls in
Euclidean three space.
Signature. The density of P is a real number.

Theorem The_Kepler_conjecture. No packing of congruent
balls in Euclidean three space has density greater than
the density of the face centered cubic packing.

Example

Signature. A packing of congruent balls
in Euclidean three space is a notion.
forall v0 ((HeadTerm ::
aPackingOfCongruentBallsInEuclideanThreeSpace(v0))
implies truth)

Signature. The face centered cubic packing is a packing
of congruent balls in Euclidean three space.
forall v0 ((HeadTerm :: v0 = theFaceCenteredCubicPacking) implies
aPackingOfCongruentBallsInEuclideanThreeSpace(v0))

Theorem The_Kepler_conjecture. No packing of congruent
balls in Euclidean three space has density greater than
the density of the face centered cubic packing.
forall v0 (aPackingOfCongruentBallsInEuclideanThreeSpace(v0)
implies not isGreaterThan(theDensityOf(v0),
theDensityOf(theFaceCenteredCubicPacking)))

Parsing of ForTheL texts

Signature and de�nition commands identify de�ning patterns of notions for further parsing and
reasoning.

�Signature. A packing of congruent balls in Euclidean three space is a
notion.� registers the following:

¡ a new linguistic pattern [Wd [�packing�], Wd [�of�], Wd [�congruent�], Wd
[�balls�], Wd [�in�], Wd [�euclidean�], Wd [�three�], Wd [�space�]]

¡ a new unary relation symbol aPackingOfCongruentBallsInEuclideanThreeSpace

¡ a new introductory axiom
forall v0 ((HeadTerm :: aPackingOfCongruentBallsInEuclideanThreeSpace(v0))
implies truth)

Notion parsing

¡ parsing in Naproche-SAD uses a hierarchy of (sub-)parsers which are combined by parser
combinators

¡ new notions are introduced by a host of parsers, including
sigNotion = do

((n,h),u) <- wellFormedCheck (ntnVars . fst) sig
uDecl <- makeDecl u
return $ dAll uDecl $ Imp (Tag HeadTerm n) h

. . .

¡ sigNotion produces the introductory axiom
forall v0 ((HeadTerm :: aPackingOfCongruentBallsInEuclideanThreeSpace(v0))
implies truth)

¡ sigNotion also produces
forall v0 ((HeadTerm :: v0 = theFaceCenteredCubicPacking) implies
aPackingOfCongruentBallsInEuclideanThreeSpace(v0))

Notion parsing

Quanti�ed notions are parsed by parsers like

quNotion = label "quantified notion" $
paren (fa <|> ex <|> no)
where

fa = do . . .
ex = do . . .
no = do
wdToken "no"; (q, f, v) <- notion
vDecl<- mapM makeDecl v
return (q . flip (foldr dAll) vDecl . blImp f . Not, map pVar v)

and lead to �rst-order fragments like

forall v0 (aPackingOfCongruentBallsInEuclideanThreeSpace(v0) implies not

Correspondences between languages

Semantics classes of objects mathematical objects
Natural language common noun proper noun quanti�er
Example real number 3 for all real numbers . . .
Type theory type element

R 3:R 8v:R; :::
Lean constant constant

R:Type 3:R 8v:R; :::
First-order logic unary predicate constant

R(:) R(3) 8v (R(v)!���)
ForTheL notion term

real number 3 is a real number for all real numbers . . .
aRealNumber 8v(v=3! aRealNumber(v)) . . .

Set/class theory set/class element bounded quanti�cation
R 32R 8v 2R; :::

For everyday mathematics, these di�erences often are only notational. Here is an experiment
with a simple text from mathlib

ForTheL texts and Lean texts

class monoid (a : Type u) extends semigroup a,
has_one a := (one_mul : 8 a : a, 1 * a = a)
(mul_one : 8 a : a, a * 1 = a)

class comm_monoid (a : Type u) extends monoid a,
comm_semigroup a

class group (a : Type u) extends monoid a, has_inv
a := (mul_left_inv : 8 a : a, a⁻¹ * a = 1)

class comm_group (a : Type u) extends group a,
comm_monoid a

lemma mul_assoc [semigroup a] : 8 a b c : a, a * b
* c = a * (b * c) := semigroup.mul_assoc

instance semigroup_to_is_associative [semigroup a] :
is_associative a (*) := hmul_associ

lemma mul_comm [comm_semigroup a] : 8 a b : a,
a * b = b * a := comm_semigroup.mul_comm

Signature. A type is a set. Let � stand for a type. Let
a: t stand for a is an element of t.

. . .

De�nition 6. A monoid is a semigroup � such that
� is a type with one and 8a:� 1� ��a=a and 8a:�
a �� 1�= a.

De�nition 7. A commutative monoid is a monoid that
is a commutative semigroup.

De�nition 8. A group is a monoid � such that � is a
type with inverses and for all a:� a¡1;� �� a=1�.

De�nition 9. A commutative group is a group that is
a commutative monoid.

Lemma 10. [mul assoc] Let � be a semigroup. Then
for all a; b; c:� a �� (b �� c)= a �� (b �� c).

Lemma 11. [mul comm] Let � be a commutative
semigroup. Then for all a; b :� a �� b= b �� a .

Translating from ForTheL to Lean

Modifying the FOL output of Naproche-SAD we could produce valid Lean code (FOL typeguards
7! type restrictions) (with Adrian De Lon and Daniel Kollert)

Signature. A prime number is a natural number.

Let p denote a prime number.

Axiom PrimeIrred. If p | (b * c) then p | b or p | c.

Axiom ClearDenom. There exist coprime b,c such that
b * q = c.

Proposition PrimeNoSquare. q * q = p for no rational
number q.

Proof. Assume the contrary. Take a rational number q
such that p = q * q. Take coprime a,b such that a *
q = b. Then p * (a * a) = b * b. Therefore p divides
b. Take a natural number c such that b = c * p.

Then p * (a * a) = p * (c * b).

Therefore a * a is equal to p * (c * c). Hence p divides
a. Contradiction.
qed.

axiom isPrimeNumber : NaturalNumber ! Prop

notation `PrimeNumber` := {x : NaturalNumber //
isPrimeNumber x}

axiom PrimeIrred : 8 p : PrimeNumber, 8 b c : Natu-
ralNumber, ((Div p) (m b c)) ! Div p b _ Div p c

axiom ClearDenom : 8 q : RationalNumber, (9 v0 v1 :
NaturalNumber, Coprime v0 v1 ^ (eq (m v0 q)) (v1))

theorem PrimeNoSquare : 8 p : PrimeNumber, 8 v0 :
RationalNumber, not ((eq (m v0 v0)) (p)) := omitted

Parsing ForTheL to type theory

The command

Signature. A packing of congruent balls in Euclidean three space is a
notion.

should register

¡ a new linguistic pattern [Wd [�packing�], Wd [�of�], Wd [�congruent�], Wd
[�balls�], Wd [�in�], Wd [�euclidean�], Wd [�three�], Wd [�space�]]

¡ a new type constant aPackingOfCongruentBallsInEuclideanThreeSpace

¡ a new introductory axiom
aPackingOfCongruentBallsInEuclideanThreeSpace(v0)) : Type

sigNotion = do
((n,h),u) <- wellFormedCheck (ntnVars . fst) sig
uDecl <- makeDecl u
return $ dAll uDecl $ Imp (Tag HeadTerm n) h
-- type theoretic return like (n `member` "Type")

. . .

Problems and perspectives

¡ identify function terms and function types in natural language mathematics

¡ declarative proofs (ForTheL) versus procedural proofs (Lean)

¡ concentrate on declarative statements (de�nitions, statements of theorems)

¡ this corresponds to the fabstracts approach

¡ CNLtoLean: divide Naproche-SAD parsing into 1. linguistic parsing + 2. translation into
formal logic (FOL + type theory)

¡ investigate declarative proofs for Lean, corresponding to Isar proofs for Isabelle

¡ natural language statements motivate to work towards naturally structured proofs in type
theory, similar to the natural proofs in Naproche-SAD

¡ natural proofs require strong automatic proving for implicit simple proof obligations

General aspects

¡ Mathematics uses natural language with speci�c mathematical phrases

¡ The language of mathematics can be modeled by di�erent logics

¡ The language of mathematics serves the communication between mathematicians and thus
possesses a high degree of universality, independent of logical modeling

¡ Development of controlled general mathematical languages that can be projected out to
several logics

General aspects

¡ Mathematics uses natural language with speci�c mathematical phrases

¡ The language of mathematics can be modeled by di�erent logics

¡ The language of mathematics serves the communication between mathematicians and thus
possesses a high degree of universality, independent of logical modeling

¡ Development of controlled general mathematical languages that can be projected out to
several logics

¡ Richard Montague, 1970: I reject the contention that an important theoretical di�erence
exists between formal and natural languages.

¡ Provocation 1: I reject the contention that an important theoretical di�erence exists between
formal and natural mathematical languages.

¡ Provocation 2: I reject the contention that an important theoretical di�erence exists between
formal and natural mathematics.

Thank you for your attention!

