ForTheL as a Controlled Natural Language for Lean

BY PETER KOEPKE University of Bonn, Germany

Lean Together 2020 Pittsburgh, 10 January 2020 Ordinary mathematical texts, e.g., from W. Rudin, Principles of Mathematical Analysis

Theorem 1. If $x \in \mathbb{R}$, $y \in \mathbb{R}$, and x < y, then there exists a $p \in \mathbb{Q}$ such that x .

Proof. Since x < y, we have y - x > 0, and (a) furnishes a positive integer n such that

 $m\left(y-x\right) > 1.$

Apply (a) again, to obtain positive integers m_1 and m_2 such that $m_1 > n x$, $m_2 > -n x$. Then

 $-m_2 < n x < m_1.$

Hence there is an integer m (with $-m_2 \le m \le m_1$) such that

 $m - 1 \le n \, x < m.$

If we combine these inequalities, we obtain

 $n \, x < m \le 1 + n \, x < n \, y.$

Since n > 0, it follows that

$$x < \frac{m}{n} < y$$

This proves (b), with p = m/n.

Ordinary mathematical texts

- Natural language with symbolic elements
- intuitive descriptions of mathematical situations, analogous to real-world situations
- exploration of situations by argumentation, with argumentative sentences and phrases
- Striving for unambiguity and exactness
- emphasizing mathematically relevant facts
- omitting routine technical details

Natural mathematical texts

- Natural language with symbolic elements
- intuitive descriptions of mathematical situations, analogous to real-world situations
- exploration of situations by argumentation, with argumentative sentences and phrases
- Striving for unambiguity and exactness
- emphasizing mathematically relevant facts
- omitting routine technical details

Approximating natural mathematical texts by ForTheL

- ForTheL = Formula Theory Language (\sim sublanguage of natural mathematical language)
- 1970 *Evidence Algorithm* (Victor Glushkov)
- 1980 System for Automated Deduction (SAD)
- 2008 Andrei Paskevich, Haskell implementation of SAD (PhD project)
- 2017 Adoption of SAD by the Bonn Natural Proof Checking project: Naproche-SAD
- ForTheL: controlled natural language (CNL) defined by a formal grammar and implementation
- Naproche-SAD: proof-checking ForTheL texts by translations to First-Order logic and a strong ATP (eprover)

Formalizing Rudin in Naproche-SAD

Theorem 2. If $x \in \mathbb{R}$, $y \in \mathbb{R}$, and x < y, then there exists a $p \in \mathbb{Q}$ such that x .

Proof. Since x < y, we have y - x > 0, and (a) furnishes a positive integer n such that

$$m\left(y-x\right) > 1.$$

Apply (a) again, to obtain positive integers m_1 and m_2 such that $m_1 > n x$, $m_2 > -n x$. Then

$$-m_2 < n x < m_1.$$

Hence there is an integer m (with $-m_2 \le m \le m_1$) such that

$$m - 1 \le n \, x < m.$$

If we combine these inequalities, we obtain

$$n \, x < m \le 1 + n \, x < n \, y$$

Since n > 0, it follows that

$$x < \frac{m}{n} < y$$

This proves (b), with p = m/n.

Theorem 3. (120b) If $x \in \mathbb{R}$ and $y \in \mathbb{R}$ and x < y then there exists a rational number p such that x .

Proof. Assume x < y. We have y - x > 0. Take a positive integer n such that $n \cdot (y - x) > 1$ (by 120a). Take an integer m such that $m - 1 \le n \cdot x < m$. Then

$$n \cdot x < m = (m - 1) + 1$$

$$\leq (n \cdot x) + 1 < (n \cdot x) + (n \cdot (y - x))$$

$$= n \cdot (x + (y - x)) = n \cdot y.$$

 $m \leq (n \cdot x) + 1 < n \cdot y.$ $\frac{m}{n} < \frac{n \cdot y}{n}.$ Indeed $m < n \cdot y$ and 1/n > 0. Then

$$x = \frac{n \cdot x}{n} < \frac{m}{n} < \frac{n \cdot y}{n} = y.$$
 Let $p = \frac{m}{n}$. Then $p \in \mathbb{Q}$ and $x .$

Formalizing Rudin in Naproche-SAD

Theorem 4. If $x \in \mathbb{R}$, $y \in \mathbb{R}$, and x < y, then there exists a $p \in \mathbb{Q}$ such that x .

Proof. Since x < y, we have y - x > 0, and (a) furnishes a positive integer \mathcal{N} such that

$$\mathcal{M}_{(y-x)>1.}$$

Apply (a) again, to obtain positive integers m_1 and m_2 such that $m_1 > n x$, $m_2 > -n x$. Then

$$-m_2 < n x < m_1.$$

Hence there is an integer m (with $-m_2 \leq m \leq m_1$) such that

$$m - 1 \le n \, x < m.$$

If we combine these inequalities, we obtain

$$n \, x < m \le 1 + n \, x < n \, y$$

Since n > 0, it follows that

$$x < \frac{m}{n} < y$$

This proves (b), with p = m/n.

Theorem 5. (120b) If $x \in \mathbb{R}$ and $y \in \mathbb{R}$ and x < y then there exists a rational number p such that x .

Proof. Assume x < y. We have y - x > 0. Take a positive integer n such that $n \cdot (y - x) > 1$ (by 120a). Take an integer m such that $m - 1 \le n \cdot x < m$. Then

$$n \cdot x < m = (m - 1) + 1$$

 $\leq (n \cdot x) + 1 < (n \cdot x) + (n \cdot (y - x))$
 $= n \cdot (x + (y - x)) = n \cdot y.$

 $m \leq (n \cdot x) + 1 < n \cdot y.$ $\frac{m}{n} < \frac{n \cdot y}{n}.$ Indeed $m < n \cdot y$ and 1/n > 0. Then

$$x = \frac{n \cdot x}{n} < \frac{m}{n} < \frac{n \cdot y}{n} = y.$$
 Let $p = \frac{m}{n}$. Then $p \in \mathbb{Q}$ and $x .$

Density of the rationals in Lean-mathlib

algebra/archimedean.lean:

```
theorem exists_rat_btwn {x y : \alpha} (h : x < y) : \exists q : <bbb-Q>, x < q \land
(q:\alpha) < y :=
begin
  cases exists_nat_gt (y - x)<sup>-1</sup> with n nh,
  cases exists_floor (x * n) with z zh,
  refine \langle (z + 1 : \langle bbb-Z \rangle) / n, _ \rangle,
  have n0 := nat.cast_pos.1 (lt_trans (inv_pos (sub_pos.2 h)) nh),
  have n0' := (Qnat.cast_pos \alpha \_ ).2 n0,
  rw [rat.cast_div_of_ne_zero, rat.cast_coe_nat, rat.cast_coe_int,
div_lt_iff n0'],
  refine ((lt_div_iff n0').2 $
    (lt_iff_lt_of_le_iff_le (zh _)).1 (lt_add_one _), _>,
  rw [int.cast_add, int.cast_one],
  refine lt_of_le_of_lt (add_le_add_right ((zh _).1 (le_refl _)) _) _,
  rwa [\leftarrow lt_sub_iff_add_lt', \leftarrow sub_mul,

    div_lt_iff' (sub_pos.2 h), one_div_eq_inv],
  { rw [rat.coe_int_denom, nat.cast_one], exact one_ne_zero },
  { intro H, rw [rat.coe_nat_num, \leftarrow coe_coe, nat.cast_eq_zero] at H,
subst H, cases n0 },
  { rw [rat.coe_nat_denom, nat.cast_one], exact one_ne_zero }
```

Can (a variant of) ForTheL be used as an input language for Lean?

- ... for natural readability of Lean formalizations?
- ... for a wider acceptance in the mathematical community?
- ForTheL is an input language for FOL, with natural language types represented by unary predicates and type guards
- Propositions in dependent type theory are close to FOL
- ForTheL statements can be translated to Lean propositions (see below)
- ForTheL proofs correspond to natural deduction and FOL calculi
- Lean proofs are type theoretic terms that type-check

Natural mathematical language is weakly typed

- $\quad \mathsf{Aarne} \ \mathsf{Ranta}$
- $\ \ \, Mohan \ \, Ganesalingam$
- The Naproche project (Natural Proof Checking)
- Marcos Cramer

Example

THEOREM 1.1 (The Kepler conjecture). No packing of congruent balls in Euclidean three space has density greater than that of the face-centered cubic packing.

Example

THEOREM 1.1 (The Kepler conjecture). No packing of congruent balls in Euclidean three space has density greater than that of the face-centered cubic packing.

[synonym number/-s] Signature. A real number is a notion. Let x,y stand for real numbers. Signature. x is greater than y is an atom. Signature. A packing of congruent balls in Euclidean three space is a notion. Signature. The face centered cubic packing is a packing of congruent balls in Euclidean three space. Let P denote a packing of congruent balls in Euclidean three space. Signature. The density of P is a real number.

Theorem The_Kepler_conjecture. No packing of congruent balls in Euclidean three space has density greater than the density of the face centered cubic packing.

Example

```
Signature. A packing of congruent balls
in Euclidean three space is a notion.
forall v0 ((HeadTerm ::
    aPackingOfCongruentBallsInEuclideanThreeSpace(v0))
implies truth)
```

Signature. The face centered cubic packing is a packing
of congruent balls in Euclidean three space.
forall v0 ((HeadTerm :: v0 = theFaceCenteredCubicPacking) implies
aPackingOfCongruentBallsInEuclideanThreeSpace(v0))

Theorem The_Kepler_conjecture. No packing of congruent balls in Euclidean three space has density greater than the density of the face centered cubic packing. forall v0 (aPackingOfCongruentBallsInEuclideanThreeSpace(v0) implies not isGreaterThan(theDensityOf(v0), theDensityOf(theFaceCenteredCubicPacking)))

Parsing of ForTheL texts

Signature and definition commands identify defining patterns of notions for further parsing and reasoning.

"Signature. A packing of congruent balls in Euclidean three space is a notion." registers the following:

- a new linguistic pattern [Wd [''packing''], Wd [''of''], Wd [''congruent''], Wd
 [''balls''], Wd [''in''], Wd [''euclidean''], Wd [''three''], Wd [''space'']]
- a new unary relation symbol aPackingOfCongruentBallsInEuclideanThreeSpace
- a new introductory axiom forall v0 ((HeadTerm :: aPackingOfCongruentBallsInEuclideanThreeSpace(v0 implies truth)

Notion parsing

 parsing in Naproche-SAD uses a hierarchy of (sub-)parsers which are combined by parser combinators

```
- new notions are introduced by a host of parsers, including
sigNotion = do
((n,h),u) <- wellFormedCheck (ntnVars . fst) sig
uDecl <- makeDecl u
return $ dAll uDecl $ Imp (Tag HeadTerm n) h
...
```

sigNotion produces the introductory axiom
 forall v0 ((HeadTerm :: aPackingOfCongruentBallsInEuclideanThreeSpace(vC implies truth)

```
— sigNotion also produces
forall v0 ((HeadTerm :: v0 = theFaceCenteredCubicPacking) implies
aPackingOfCongruentBallsInEuclideanThreeSpace(v0))
```

Notion parsing

Quantified notions are parsed by parsers like

```
quNotion = label "quantified notion" $
paren (fa <|> ex <|> no)
where
fa = do ...
ex = do ...
no = do
wdToken "no"; (q, f, v) <- notion
vDecl<- mapM makeDecl v
return (q . flip (foldr dAll) vDecl . blImp f . Not, map pVar v)</pre>
```

and lead to first-order fragments like

forall v0 (aPackingOfCongruentBallsInEuclideanThreeSpace(v0) implies not

Correspondences between languages

Semantics	classes of objects	mathematical objects	
Natural language	common noun	proper noun	quantifier
Example	real number	3	for all real numbers
Type theory	type	element	
	\mathbb{R}	$3:\mathbb{R}$	$\forall v \colon \mathbb{R}, \dots$
Lean	constant	constant	
	ℝ: Type	$3:\mathbb{R}$	$\forall v \colon \mathbb{R}, \dots$
First-order logic	unary predicate	constant	
	$\mathbb{R}(.)$	$\mathbb{R}(3)$	$\forall v \left(\mathbb{R}(v) \to \cdots \right)$
ForTheL	notion	term	
	real number	3 is a real number	for all real numbers
	aRealNumber	$\forall v(v=3 \rightarrow aRealNumber(v))$	
Set/class theory	set/class	element	bounded quantification
	\mathbb{R}	$3 \in \mathbb{R}$	$\forall v \in \mathbb{R}, \dots$

For everyday mathematics, these differences often are only notational. Here is an experiment with a simple text from mathlib

ForTheL texts and Lean texts

class monoid (α : Type u) extends semigroup α , has_one α := (one_mul : \forall a : α , 1 * a = a) (mul_one : \forall a : α , a * 1 = a)

class comm_monoid (α : Type u) extends monoid α , comm_semigroup α

class group (α : Type u) extends monoid α , has_inv α := (mul_left_inv : \forall a : α , a⁻¹ * a = 1)

class comm_group (α : Type u) extends group α , comm monoid α

lemma mul_assoc [semigroup α] : \forall a b c : α , a * b * c = a * (b * c) := semigroup.mul_assoc

Signature. A *type* is a set. Let α stand for a type. Let a: t stand for a is an element of t.

Definition 6. A monoid is a semigroup α such that α is a type with one and $\forall a : \alpha \ 1^{\alpha} *^{\alpha} a = a$ and $\forall a : \alpha \ a *^{\alpha} 1^{\alpha} = a$.

. . .

Definition 7. A commutative monoid is a monoid that is a commutative semigroup.

Definition 8. A group is a monoid α such that α is a type with inverses and for all $a: \alpha \ a^{-1,\alpha} *^{\alpha} a = 1^{\alpha}$.

Definition 9. A commutative group is a group that is a commutative monoid.

Lemma 10. [mul assoc] Let α be a semigroup. Then for all $a, b, c: \alpha \ a \ast^{\alpha} (b \ast^{\alpha} c) = a \ast^{\alpha} (b \ast^{\alpha} c)$.

Lemma 11. [mul comm] Let α be a commutative semigroup. Then for all $a, b: \alpha \ a \ast^{\alpha} b = b \ast^{\alpha} a$.

Translating from ForTheL to Lean

Modifying the FOL output of Naproche-SAD we could produce valid Lean code (FOL typeguards \mapsto type restrictions) (with Adrian De Lon and Daniel Kollert)

Signature. A prime number is a natural number.

Let p denote a prime number.

Axiom PrimeIrred. If $p \mid (b * c)$ then $p \mid b$ or $p \mid c$.

Axiom ClearDenom. There exist coprime b,c such that b * q = c.

Proposition PrimeNoSquare. q * q = p for no rational number q.

Proof. Assume the contrary. Take a rational number q such that p = q * q. Take coprime a,b such that a * q = b. Then p * (a * a) = b * b. Therefore p divides b. Take a natural number c such that b = c * p.

Then p * (a * a) = p * (c * b).

Therefore a * a is equal to p * (c * c). Hence p divides a. Contradiction. qed. axiom isPrimeNumber : NaturalNumber \rightarrow Prop

notation `PrimeNumber` := {x : NaturalNumber // isPrimeNumber x}

axiom PrimeIrred : \forall p : PrimeNumber, \forall b c : NaturalNumber, ((Div p) (m b c)) \rightarrow Div p b \lor Div p c

axiom ClearDenom : \forall q : RationalNumber, (\exists v0 v1 : NaturalNumber, Coprime v0 v1 \land (eq (m v0 q)) (v1))

theorem PrimeNoSquare : $\forall p$: PrimeNumber, $\forall v0$: RationalNumber, not ((eq (m v0 v0)) (p)) := omitted

Parsing ForTheL to type theory

The command

Signature. A packing of congruent balls in Euclidean three space is a notion.

should register

. . .

- a new linguistic pattern [Wd [''packing''], Wd [''of''], Wd [''congruent''], Wd [''balls''], Wd [''in''], Wd [''euclidean''], Wd [''three''], Wd [''space'']]
- a new type constant aPackingOfCongruentBallsInEuclideanThreeSpace
- a new introductory axiom aPackingOfCongruentBallsInEuclideanThreeSpace(v0)) : Type

```
sigNotion = do
 ((n,h),u) <- wellFormedCheck (ntnVars . fst) sig
 uDecl <- makeDecl u
 return $ dAll uDecl $ Imp (Tag HeadTerm n) h
 -- type theoretic return like (n 'member' "Type")</pre>
```

Problems and perspectives

- $-\,$ identify function terms and function types in natural language mathematics
- declarative proofs (ForTheL) versus procedural proofs (Lean)
- concentrate on declarative statements (definitions, statements of theorems)
- this corresponds to the fabstracts approach
- CNLtoLean: divide Naproche-SAD parsing into 1. linguistic parsing + 2. translation into formal logic (FOL + type theory)
- investigate declarative proofs for Lean, corresponding to Isar proofs for Isabelle
- natural language statements motivate to work towards naturally structured proofs in type theory, similar to the natural proofs in Naproche-SAD
- natural proofs require strong automatic proving for implicit simple proof obligations

General aspects

- Mathematics uses natural language with specific mathematical phrases
- The language of mathematics can be modeled by different logics
- The language of mathematics serves the communication between mathematicians and thus possesses a high degree of universality, independent of logical modeling
- Development of controlled general mathematical languages that can be projected out to several logics

General aspects

- Mathematics uses natural language with specific mathematical phrases
- The language of mathematics can be modeled by different logics
- The language of mathematics serves the communication between mathematicians and thus possesses a high degree of universality, independent of logical modeling
- Development of controlled general mathematical languages that can be projected out to several logics
- Richard Montague, 1970: I reject the contention that an important theoretical difference exists between formal and natural languages.
- Provocation 1: I reject the contention that an important theoretical difference exists between formal and natural mathematical languages.
- Provocation 2: I reject the contention that an important theoretical difference exists between formal and natural mathematics.

Thank you for your attention!