1 / 36

SMTCog: Cog automation and its application to formal mathematics

Chantal Keller

LRI, Université Paris-Saclay

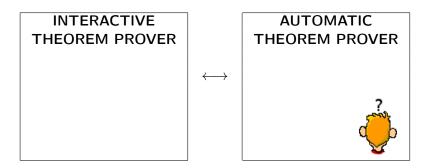
Joint work with École polytechnique, Inria, Iowa University, Université Paris-Diderot

January, 8th 2020

Skeptical interaction

Tactics

Motivation



SMT and Coq in a nutshell

	SAT/SMT solvers	Coq
Expressivity	First-order logic	CIC
Safety	Trust the whole software	Kernel for proof checking
Automation	Automatic proof	User-guided proof

Tactics

 \hookrightarrow benefit from both worlds

Application 1: combinatorial mathematics

Example: Erdős Discrepancy Conjecture

For any infinite sequence $\langle x_1, x_2, \dots \rangle$ of ± 1 integers and any integer C, there exist integers k and d such that

$$\left| \sum_{i=1}^k x_{i \times d} \right| > C$$

Proof for some C_0^1 :

Find I such that

Skeptical interaction

$$\forall \langle x_1, x_2, \dots, x_l \rangle, \forall k, \forall d, \left| \sum_{i=1}^k x_{i \times d} \right| \leqslant C_0$$

is unsatisfiable.

This conjecture has been fully solved in 2015.

Skeptical interaction

In Cog: computational reflection with efficient data-structures

```
Lemma erdos2 unsat :
   forall \rho, \sim valid \rho erdos2.
Proof
 apply (@checker correct erdos2 ("erdos2.reso")).
 native cast no check (refl equal true).
Qed.
Lemma Erdos2 (x : nat \rightarrow bool):
  exists k, exists d,
     '|(\sum_{i=1}^{n} (1 \le i \le k) [x (i * d)])| > 2.
Proof
  apply erdos2 unsat.
  . . .
Qed.
```

(Credits: École polytechnique, Inria Sophia-Antipolis)

Tactics

Application 2: tedious Cog proofs

```
Variable e : G. inv : G \rightarrow G. op : G \rightarrow G \rightarrow G.
Hvpothesis associative :
  forall a b c, op a (op b c) = op (op a b) c.
Hypothesis identity: forall a, (op e a = a).
Hypothesis inverse : forall a, (op (inv a) a = e).
Add lemmas associative identity inverse.
Lemma identity ':
  forall a, (op a e = a).
Proof. smt. Qed.
Lemma inverse'.
  forall a, (op a (inv a) = e).
Proof. smt. Qed.
                                             (Credits: Iowa University,
Lemma unique identity e':
  (forall z, op e' z = z) \rightarrow e' = e.
                                             Université Paris-Diderot,
Proof. intros pe'; smt pe'. Qed.
                                             Univ. Paris-Sud)
```

Tactics

Tactics

Example of CompCert

Skeptical interaction

"Most of the development is conducted in first-order logic, suggesting the possibility of using automated theorem provers such as SMT solvers. Preliminary experiments with using SMT solvers to prove properties of the Compcert memory model indicate that many but not all of the lemmas can be proved automatically. While fully automated verification of a program like Compcert appears infeasible with today's technology, we expect that our interactive proof scripts would shrink significantly if Cog provided a modern SMT solver as one of its tactics."

Tactics

Skeptical interaction

A fragment of CompCert revisited with SMTCoq

```
Variable block, mem: Set.
\textbf{Variable alloc} \quad \textbf{block}: \ \textbf{mem} \rightarrow \ \textbf{Z} \rightarrow \ \textbf{Z} \rightarrow \ \textbf{block} \ .
Variable alloc \overline{mem}: mem \rightarrow Z \rightarrow Z \rightarrow mem.
Variable valid block: mem \rightarrow block \rightarrow bool.
Hypothesis alloc valid block 1 m lo hi b:
  valid block (alloc mem m lo hi) b -->
     ((b =? (alloc block m lo hi)) || valid block m b).
Hypothesis alloc valid block 2 m lo hi b:
  ((b =? (alloc_block_m lo_hi)) || valid_block_m b) \rightarrow
     valid block (alloc mem m lo hi) b.
Hypothesis alloc not valid block m lo hi:
  negb (valid block m (alloc block m lo hi)).
Lemma alloc valid block inv m lo hi b :
  valid block m b→ valid block (alloc mem m lo hi) b.
Proof. intro H. smt alloc valid block 2 H. Qed.
Lemma alloc not valid block 2 m lo hi b':
  valid block m^{-}b' \rightarrow b' = ? (alloc block m lo hi) = false.
Proof. intro H. smt alloc not valid block H. Qed.
```

Challenges

Skeptical interaction

- combinatorial mathematics: efficiency
- tedious Coq proofs: expressivity, encodings
- in addition: modularity with respect to solvers and theories

SMTCoq: in one system

- provers: ZChaff, glucose, veriT, CVC4
- "theories": equality, linear arithmetic, bit vectors, arrays, quantified hypotheses
- able to handle large combinatorial proofs
- Cog tactics that can combine theories

Tactics

SMTCog: skeptical approach

Certified ATP:

- prove the correctness of the code of the ATP
- + once and for all
- + completeness possible
- not flexible nor modular; freezes an implementation
- hard

Certifying ATP:

- the ATP gives certificates that can be checked
- certificates to check each time (but efficient)
- no completeness (or at the meta-level)
- + very flexible and modular
- + easier (certified checker)

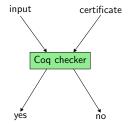
Outline

00000

Skeptical interaction

- Skeptical interaction with external provers
- Checker
- **Tactics**
- Conclusion

The heart: a certified checker for unsatisfiability



Certification:

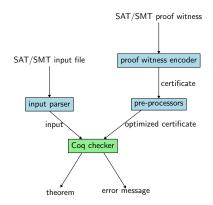
Skeptical interaction

00000

- lacktriangle checker : formula o certif o bool
- correctness: $\forall \phi$ c, checker ϕ c = true $\rightarrow \forall \rho, |\phi|_{\rho}$ = false
- $\bullet \mid_{a}$: formula \rightarrow bool is an interpretation function
- can be extracted to MI

Tactics

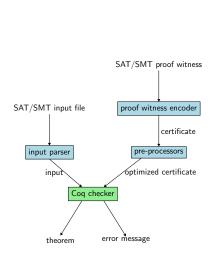
The two applications

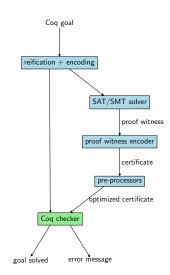


The two applications

Skeptical interaction

00000





Checker input and certificate formats

Input:

Skeptical interaction

00000

 \blacksquare a first-order formula ϕ in a combination of theories (SMT-LIB2)

Certificate:

 \blacksquare a proof of the unsatisfiability of ϕ in a combination of theories (in the large sense: modularity)

Example of a certificate

Skeptical interaction

00000

Unsatisfiability of (the conjunction of): $x \ge 7 \land y \le -4$ $\neg x > 2$

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \ \mathsf{CNF} \quad \frac{ \overline{\neg x \ge 7 \lor x \ge 2} \ \mathsf{LIA} }{ \overline{\neg x \ge 7} \ \mathsf{Reso} } \ \mathsf{Reso}$$

Skeptical interaction with external provers

Checker

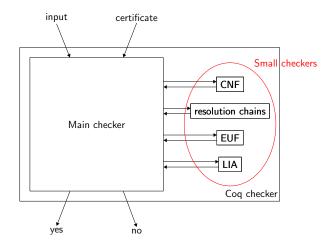
000000

- Checker
- **Tactics**
- Conclusion

Checker

000000

A modular checker



The small checkers and the main checker

A small checker:

Skeptical interaction

- takes some clauses and a piece of certificate as arguments
- returns a clause that is implied

The main checker:

- maintains a set of clauses, initialized with the input
- sequentially shares out each certificate step between the corresponding small checker
- checks that the last obtained clause is the empty clause

The correctness of each small checkers implies the correctness of the whole checker

Unsatisfiability of:

$$x \ge 7 \land y \le -4$$

Tactics

$$\neg x \ge 2$$

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \ \mathsf{CNF} \quad \frac{\neg x \ge 7 \lor x \ge 2}{\neg x \ge 7} \ \mathsf{LIA} \quad \neg x \ge 2}{\neg x \ge 7} \ \mathsf{Reso}$$

Unsatisfiability of:

$$x \ge 7 \land y \le -4$$

Tactics

$$\neg x \ge 2$$

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \ \mathsf{CNF} \quad \frac{ \overline{\neg x \ge 7 \lor x \ge 2} \ \mathsf{LIA} }{ \overline{\neg x \ge 7} \ \mathsf{Reso} } \ \mathsf{Reso}$$

Unsatisfiability of:

$$x \ge 7 \land y \le -4$$

$$\neg x \ge 2$$

$$\frac{x \ge 7 \bigwedge y \le -4}{\text{CNF}} \quad \frac{\text{LIA}}{\neg x \ge 2} \text{ Reso}$$

Unsatisfiability of:

Skeptical interaction

$$x \ge 7 \land y \le -4$$

$$\neg x \ge 2$$

$$\frac{x \ge 7 \bigwedge y \le -4}{\text{CNF}} \quad \frac{\text{LIA}}{\neg x \ge 2} \text{ Reso}$$
Reso

Unsatisfiability of:

$$x \ge 7 \land y \le -4$$

Tactics

$$\neg x \ge 2$$

$$\frac{x \ge 7 \bigwedge y \le -4}{\text{CNF}} \quad \frac{\neg x \ge 7 \lor x \ge 2}{\text{Reso}} \quad \frac{\neg x \ge 2}{\text{Reso}}$$

$$x \ge 7 \land y \le -4$$

$$\neg x \ge 2$$

Unsatisfiability of:

$$x \ge 7 \land y \le -4$$

Tactics

$$\neg x \ge 2$$

$$\frac{x \ge 7 \bigwedge y \le -4}{\text{CNF}} \quad \frac{\neg x \ge 7 \lor x \ge 2}{\text{Reso}} \quad \frac{\neg x \ge 2}{\text{Reso}}$$

$$x \ge 7 \land y \le -4 \qquad \neg x \ge 7 \lor x \ge 2$$

$$\neg x \ge 2$$

Unsatisfiability of:

Skeptical interaction

$$x \ge 7 \land y \le -4$$

$$\neg x \ge 2$$

$$\frac{x \ge 7 \bigwedge y \le -4}{\text{CNF}} \quad \frac{\overline{\neg x \ge 7 \lor x \ge 2} \quad \text{LIA}}{\neg x \ge 7} \quad \frac{\neg x \ge 2}{\text{Reso}} \quad \text{Reso}$$

$$x \ge 7 \land y \le -4 \qquad \neg x \ge 7 \lor x \ge 2$$

$$\neg x \ge 2$$

Unsatisfiability of:

$$x \ge 7 \land y \le -4$$

Tactics

$$\neg x \ge 2$$

$$\frac{x \ge 7 \bigwedge y \le -4}{\text{CNF}} \quad \frac{\overline{\neg x \ge 7 \lor x \ge 2} \quad \text{LIA}}{\neg x \ge 7} \quad \frac{\neg x \ge 2}{\text{Reso}} \quad \text{Reso}$$

$$x \ge 7 \land y \le -4 \qquad \neg x \ge 7 \lor x \ge 2$$

$$\neg x \ge 2 \qquad \neg x \ge 7$$

Unsatisfiability of:

$$x \ge 7 \land y \le -4$$

Tactics

$$\neg x \ge 2$$

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \ \mathsf{CNF} \quad \frac{\overline{\neg x \ge 7 \lor x \ge 2} \ \mathsf{LIA}}{\neg x \ge 7} \quad \frac{\neg x \ge 2}{\neg x \ge 7} \ \mathsf{Reso}$$

$$x \ge 7 \land y \le -4 \qquad \neg x \ge 7 \lor x \ge 2$$

$$\neg x \ge 2 \qquad \neg x \ge 7$$

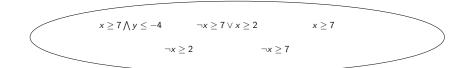
Unsatisfiability of:

$$x \ge 7 \land y \le -4$$

Tactics

$$\neg x \ge 2$$

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \ \mathsf{CNF} \quad \frac{\overline{\neg x \ge 7 \lor x \ge 2} \ \mathsf{LIA}}{\neg x \ge 7} \quad \frac{\neg x \ge 2}{\neg x \ge 7} \ \mathsf{Reso}$$



Unsatisfiability of:

$$x \ge 7 \land y \le -4$$

Tactics

$$\neg x \ge 2$$

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \ \mathsf{CNF} \quad \frac{ \overline{\neg x \ge 7 \lor x \ge 2} \ \mathsf{LIA} }{ \overline{\neg x \ge 7} \ \mathsf{Reso} } \ \mathsf{Reso}$$

Unsatisfiability of:

$$x \ge 7 \land y \le -4$$

Tactics

$$\neg x \ge 2$$

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \ \mathsf{CNF} \quad \frac{ \overline{\neg x \ge 7 \lor x \ge 2} \ \mathsf{LIA} }{ \overline{\neg x \ge 7} \ \mathsf{Reso} } \ \mathsf{Reso}$$

Unsatisfiability of:

Skeptical interaction

$$x \ge 7 \land y \le -4$$

$$\neg x \ge 2$$

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \ \mathsf{CNF} \quad \frac{ \overline{\neg x \ge 7 \lor x \ge 2} \ \mathsf{LIA} }{ \overline{\neg x \ge 7} \ \mathsf{Reso} } \ \mathsf{Reso}$$

Unsatisfiability of:

$$x \ge 7 \land y \le -4$$

Tactics

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \ \mathsf{CNF} \quad \frac{ \overline{\neg x \ge 7 \lor x \ge 2} \ \mathsf{LIA} }{ \overline{\neg x \ge 7} \ \mathsf{Reso} } \ \mathsf{Reso}$$

Unsatisfiability of:

Skeptical interaction

$$x \ge 7 \land y \le -4$$

3 clauses alive at the same time:

Unsatisfiability of:

Skeptical interaction

$$x \ge 7 \land y \le -4$$

$$\frac{x \ge 7 \bigwedge y \le -4}{\text{CNF}} \quad \frac{\text{LIA}}{\neg x \ge 2} \text{Reso}$$
Reso

3 clauses alive at the same time:

Unsatisfiability of:

Skeptical interaction

$$x \ge 7 \land y \le -4$$

$$\frac{x \ge 7 \bigwedge y \le -4}{\text{CNF}} \quad \frac{\text{LIA}}{\neg x \ge 2} \text{ Reso}$$
Reso

3 clauses alive at the same time:

$$x \ge 7 \land y \le -4 \qquad \neg x \ge 2$$

Skeptical interaction

Example of optimization

Unsatisfiability of:

$$x \ge 7 \land y \le -4$$

Tactics

$$\frac{x \ge 7 \bigwedge y \le -4}{\text{CNF}} \quad \frac{\neg x \ge 7 \lor x \ge 2}{\text{Reso}} \quad \frac{\neg x \ge 2}{\text{Reso}}$$

$$x \ge 7 \land y \le -4$$
 $\neg x \ge 2$

Tactics

Example of optimization

Unsatisfiability of:

$$x \ge 7 \land y \le -4$$

$$\frac{x \ge 7 \bigwedge y \le -4}{\text{CNF}} \quad \frac{\neg x \ge 7 \lor x \ge 2}{\text{Reso}} \quad \frac{\neg x \ge 2}{\text{Reso}}$$

$$x \ge 7 \land y \le -4 \qquad \neg x \ge 2 \qquad \neg x \ge 7 \lor x \ge 2$$

0000000

Example of optimization

Unsatisfiability of:

$$x \ge 7 \land y \le -4$$

$$\frac{x \ge 7 \bigwedge y \le -4}{\text{CNF}} \quad \frac{\neg x \ge 7 \lor x \ge 2}{\neg x \ge 7} \quad \frac{\neg x \ge 2}{\text{Reso}}$$
Reso

$x \ge 7 \land y \le -4$	$\neg x \ge 2$	$\neg x \ge 7 \lor x \ge 2$

0000000

Example of optimization

Unsatisfiability of:

$$x \ge 7 \land y \le -4$$

$$\frac{x \ge 7 \bigwedge y \le -4}{\text{CNF}} \quad \frac{\neg x \ge 7 \lor x \ge 2}{\neg x \ge 7} \quad \frac{\neg x \ge 2}{\text{Reso}} \quad \text{Reso}$$

0000000

Example of optimization

Unsatisfiability of:

$$x \ge 7 \land y \le -4$$

$$\frac{x \ge 7 \bigwedge y \le -4}{\text{CNF}} \quad \frac{\neg x \ge 7 \lor x \ge 2}{\neg x \ge 7} \quad \frac{\neg x \ge 2}{\text{Reso}}$$
Reso

Example of optimization

Unsatisfiability of:

Skeptical interaction

$$x \ge 7 \land y \le -4$$

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \text{ CNF} \quad \frac{\neg x \ge 7 \lor x \ge 2}{\neg x \ge 7} \text{ LIA} \quad \neg x \ge 2 \text{ Reso}$$
Reso

$x \ge 7 \land y \le -4$	$\neg x \geq 7$	$\neg x \ge 7 \lor x \ge 2$

0000000

Example of optimization

Unsatisfiability of:

$$x \ge 7 \land y \le -4$$

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \text{ CNF} \quad \frac{\overline{\neg x \ge 7 \lor x \ge 2} \text{ LIA}}{\neg x \ge 7} \quad \frac{\neg x \ge 2}{\neg x \ge 7} \text{ Reso}$$

$$x \ge 7 \land y \le -4 \qquad \neg x \ge 7 \qquad \neg x \ge 7 \lor x \ge 2$$

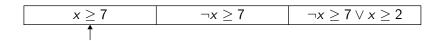
Example of optimization

Unsatisfiability of:

$$x \ge 7 \land y \le -4$$

Tactics

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \ \mathsf{CNF} \quad \frac{\overline{\neg x \ge 7 \lor x \ge 2} \ \mathsf{LIA}}{\neg x \ge 7} \quad \frac{\neg x \ge 2}{\neg x \ge 7} \ \mathsf{Reso}$$



0000000

Example of optimization

Unsatisfiability of:

$$x \ge 7 \land y \le -4$$

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \ \mathsf{CNF} \quad \frac{ \overline{\neg x \ge 7 \lor x \ge 2} \ \mathsf{LIA} }{\neg x \ge 7} \quad \frac{\neg x \ge 2}{\neg x \ge 7} \ \mathsf{Reso}$$

$x \ge 7$	$\neg x \geq 7$	$\neg x \ge 7 \lor x \ge 2$

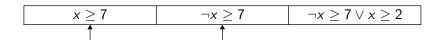
0000000

Example of optimization

Unsatisfiability of:

$$x \ge 7 \land y \le -4$$

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \ \mathsf{CNF} \quad \frac{\overline{\neg x \ge 7 \lor x \ge 2} \ \mathsf{LIA}}{\neg x \ge 7} \quad \overline{\neg x \ge 2} \ \mathsf{Reso}$$

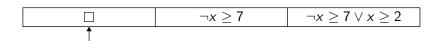


Example of optimization

Unsatisfiability of:

$$x \ge 7 \land y \le -4$$

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \ \mathsf{CNF} \quad \frac{\overline{\neg x \ge 7 \lor x \ge 2} \ \mathsf{LIA}}{\neg x \ge 7} \quad \overline{\neg x \ge 2} \ \mathsf{Reso}$$



Tactics

Pre-processing

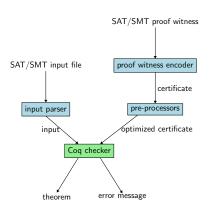
Other optimizations:

- certificates: cleaning, sharing
- formulas: hash-consing, flattening
-

Proof witness encoding (ZChaff, glucose, veriT, CVC4):

- fit into the format: encoding of nested proofs, DRUP
- recover information: arithmetic, simplifications, quantifiers, holes
- \hookrightarrow no need to certify: very easily extensible
- → SMTCog also safely combines SMT solvers

Application 1: combinatorial mathematics



Efficiency:

optimization

Tactics

- native data-structures in Cog (integers, arrays)
- VM and native computation
- for very large witnesses: file reading on the fly

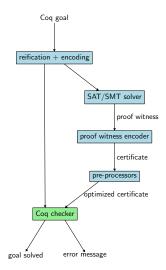
Outline

Skeptical interaction

- Skeptical interaction with external provers
- Checker
- **Tactics**
- Conclusion

Application 2: Cog tactics

Skeptical interaction



Expressivity:

- \blacksquare CIC \rightarrow first-order logic
- take advantage of supported theories and quantifier instantiation
- cope with multiple definitions of the same mathematical objects
- deal with classical logic

25 / 36

Theories currently supported by SMTCog

Current small checkers:

- extended resolution
- CNF computation
- equality

Skeptical interaction

- linear integer arithmetic
- bit vectors
- arrays
- quantifiers
- silent simplifications
- → modularity: they are independent (they only need to agree on formulae) \Rightarrow easily extensible

Problem 1: multiple representations of similar objects

Integers:

Skeptical interaction

- relative integers: Z, bigZ
- but also: nat, N, positive, bigN, . . .

Arrays:

- maps, arrays, functions, . . .
- ... and the same for most theories

... and the user may implement its own representation

A well-known problem

For integers:

Skeptical interaction

- zify, ppsimpl: does not work in combination with other theories
- transfer tactics: requires human effort, works only for isomorphic types

→ our own conversion tactics, applied before SMTCoq

Example

Skeptical interaction

$$x'$$
, y' : Z Hx': $0 < x'$ Hf'x': $0 < f'$ ($x' + 3$)

Hy':
$$0 < y'$$
 Hf'y': $0 < f'$ y'

 $((x' + 3) = y') \rightarrow ((3 < y') / (f' (x' + 3) <= f' y'))))$

Current approach

I tac code:

Skeptical interaction

- 11 add double conversions at the leaves
- rewrite them bottom-up
- rename to hide remaining conversions

Practical use:

- the user realizes a Coq module
- a functor automatically generates the tactic
- generic approach; implementation given for integers

Perspectives:

- provide implementations for all the theories
- robustness and mix with other SMTCoq features
- investigate a reflexive approach (MetaCoq)

Classical logic

Fact:

Skeptical interaction

Classical logic is not needed in general, only in particular use cases that may appear in proofs

No axiom is added:

- automatic conversion of the quantifier-free part of the goal into a Boolean expression: the user may have to prove decidability of some predicates (or assume it)
- shallow treatment of quantifiers

→ again, a conversion tactic from Prop to bool, applied before SMTCog

Quantifiers

Skeptical interaction

Expressivity of SMTCog:

- goal: $\overline{\forall \overline{x}.P\ \overline{x}} \rightarrow \forall \overline{x}.G\ \overline{x}$
- context: $\overline{\forall \overline{x}. Q \ \overline{x}}$

 $(\overline{P}, \overline{Q}, G \text{ quantifier-free})$

In a nutshell:

SMTCog can instantiate universally-quantified lemmas to prove the goal

Mixing deep and shallow embeddings in a reflexive tactic

Cog knows how to instantiate universal quantifiers!

+ let's use it

Skeptical interaction

- + no binders in the type of formulae
- + intuitionistic
 - a bit restrictive on the expressivity

Deep and shallow small checkers:

- conj elim I : formula $(* [A \land B] *) \rightarrow$ formula (* [A] *)
- forall inst : (p:Prop) (* forall x. Px*) \rightarrow (h:p) \rightarrow formula (* [P a] *)
- \hookrightarrow an original way to write reflexive tactics

33 / 36

To obtain full first-order logic

Skolemization:

Skeptical interaction

■ need to carefully exhibit "classical" requirements

but in most use cases, lemma instantiation is sufficient

Perspectives of the tactics

Expressivity:

Skeptical interaction

- inductive types and predicates (support from SMT solvers)
- dependent types (encoding)
- abduction
-

Robustness

Benchmarks:

- CompCert
- SSReflect and Mathematical Components

Tactics

Skeptical interaction

- Skeptical interaction with external provers
- Checker
- **Tactics**
- Conclusion

Play with it!

Skeptical interaction

Combinatorial problems? Tedious Cog proofs?

smtcoq.github.io

User experience (and participation) welcome!