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Recap: Ordinary Differential Equations (ODEs)

Ordinary differential equations (ODEs) provide mathematical
models of real world phenomena.

ODE model:
ẋ = v , v̇ = −g

ODE solution:

x(t) = x0 + v0t −
g

2
t2

v(t) = v0 − gt

Properties of the ball’s falling motion
can be deduced from these solutions.

A model of glycolysis:

ẋ = −x + ay + x2y

ẏ = b − ay − x2y

ODE solution: ???

How can we deduce properties without
knowing the solution?
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ODEs and Dynamical Systems
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A model of glycolysis:

ẋ = −x + ay + x2y

ẏ = b − ay − x2y

Approaches:

I simulation – approximate

I rigorous numerics – finite time

I deduction directly from equations
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ẏ = b − ay − x2y

Approaches:

I simulation – approximate

I rigorous numerics – finite time

I deduction directly from equations

3



ODEs and Dynamical Systems

0 1 2 x

0

1

2

y

A model of glycolysis:
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Formalization in Isabelle/HOL
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Theorem (Rigorous Numerics)

Solution from initial value is
contained in enclosure for time
[0, tend]
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Theorem (Poincaré-Bendixson)

(Under mild assumptions)
trajectories of planar dynamical
systems are either periodic or
tend towards a periodic
trajectory.
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ODEs in Isabelle/HOL

The Poincaré-Bendixson Theorem
Formalization Challenges
The Monotonicity Lemma
Example

Conclusion
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Definition
ODE f : Rn → Rn

ẋ = f (x)

for f locally Lipschitz, autonomous/non-autonomous, C 1

Results
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ẋ = f (x)

for f locally Lipschitz, autonomous/non-autonomous, C 1

Results
existence of solution φ(x0, t)

I φ(x0, 0) = x0
I ∂

∂tφ(x0, t) = f (φ(x0, t))

challenge: functional analysis:
φ = fixed point of Picard-iteration

P : C[[t0;t1],Rn] → C[[t0;t1],Rn]

P(ψ) = (t 7→ x0 +
∫ t
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Results

flow: group action

I φ(x0, 0) = x0
I φ(φ(x0, s), t) = φ(x0, s + t)

nice:
algebraic reasoning
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t, s, t + s ∈ existence ivl(x0)
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Definition
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for f locally Lipschitz, autonomous/non-autonomous, C 1

Results

flow: differentiability

I ∂
∂x0
φ(x0, t) = A(t)

I variational equation:
Ȧ = Df |φ(x0,t) · A, A : Rn×n

challenge: module system

ODE f : Rn → Rn

φ : R→ Rn

Var.ODE (λA. Df |φ(x0,t)·A):
Rn×n → Rn×n

Var.φ : R→ Rn×n

Lemma Dφt |x0 = Var.φ(t)
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Hybrid Systems in Isabelle/HOL

hybrid = continuous + discrete

ODE model:
ẋ = v , v̇ = −g

domain: x >= 0

discrete control:
v ← −v when x = 0
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Poincaré map
The main mathematical tool to talk about discrete switches
at a Poincaré section (smooth surface)

Usual Definition
at periodic orbit

I return time of periodic
point = period

I solve return time in
neighborhood with implicit
function theorem

Formalized Definition
I first return time τ
φ(x0, τ(x0)) ∈ S
∀t < τ(x0). φ(x0, t) /∈ S

I C1 on and outside of S
(continuous above/at)

0 1 2 x

0

1

2

y

9



Poincaré map
The main mathematical tool to talk about discrete switches
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Summary of Abstract Results

I unique solution, flow φ, Poincaré map
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I applications:
I Formally Verified Differential Dynamic Logic [Bohrer et. al.]
I Verifying Hybrid Systems with Modal Kleene Algebra

[Munive, Struth]
I Towards Verification of Cyber-Physical Systems with UTP and

Isabelle/HOL [Foster, Woodcock]

Problem
I simulation provides important insights

I not (directly) amenable to formalization
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Rigorous Numerical Methods

formalize simulations?
I in principle, could verify ‖simulation(x0, t)−φ(x0, t)‖ ≤ O(et)

I overly pessimistic!

propagate error bounds on the fly

I stable systems damp errors

I like simulation, but rigorous
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A Verified ODE Solver

Guaranteed Runge-Kutta methods [Bouissou et. al.]:

x0

0 h

φ

h ·Ψ(x0, h)

O(h3)

X0

h3 · R(X0, h)

Theorem (Rigorous Euler method)

∀x0 ∈ X0. φ(x0, h) ∈ X0 + h · f (X0, h) + h2 · R(X0, h)

Algorithm

Evaluate in interval/affine arithmetic
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Affine Arithmetic

I wrapping effect of intervals:

7→

I therefore zonotopes: {`0 +
∑

i εi · `i | εi ∈ [−1; 1]}
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Verification

Techniques

I Refinement

I Refinement

I Refinement

Example

I φ(X0, h) ⊆ R

I R defined as Runge-Kutta remainder

I Runge-Kutta implemented in affine arithmetic
(on real numbers)

I Runge-Kutta implemented in affine arithmetic
(on floating point numbers)
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Smale’s 14th Problem

I
Lorenz (1963): is this chaos?

I
Tucker (2002): Yes:

I 1 paragraph combining standard
results

I normal form theory (25 pages)
I C++ Program (24 pages,

3800+8800 lines of numerical
code)

I Immler (2018):
verified numerical computations
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Summary of Rigorous Numerical Results

I Theorem: computed enclosures contain solution
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I concrete values, bounds, finite time
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The Poincaré-Bendixson Theorem
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Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.
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The Poincaré-Bendixson Theorem

In our paper/formalization:

Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.
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Formalization Challenges (the “easy” ones)

Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.

1. Has substantial prerequisite formalized mathematics, e.g.:
the Jordan curve theorem, (real) analysis, ODEs.

XIsabelle/HOL and the Archive of Formal Proofs (AFP) meet
these prerequisites.

2. Needs formalization of key dynamical systems concepts, e.g.:
limit sets of trajectories, periodic orbits.

XMostly involves formalizing of (real) analysis-type arguments
following standard presentations in textbooks.
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(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.

1. Has substantial prerequisite formalized mathematics, e.g.:
the Jordan curve theorem, (real) analysis, ODEs.

XIsabelle/HOL and the Archive of Formal Proofs (AFP) meet
these prerequisites.

2. Needs formalization of key dynamical systems concepts, e.g.:
limit sets of trajectories, periodic orbits.

XMostly involves formalizing of (real) analysis-type arguments
following standard presentations in textbooks.

20



Formalization Challenges (the “easy” ones)

Theorem (Poincaré-Bendixson)
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Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.

3. Textbook proofs rely heavily on sketches, especially for a key
lemma that is fundamental to the plane.
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Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.

3. Textbook proofs rely heavily on sketches, especially for a key
lemma that is fundamental to the plane.

Hartman:
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Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems
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3. Textbook proofs rely heavily on sketches, especially for a key
lemma that is fundamental to the plane.

Palis & de Melo:
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Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.

3. Textbook proofs rely heavily on sketches, especially for a key
lemma that is fundamental to the plane.

? How can we formalize these sketches in a proof assistant?

4. Textbook proofs argue by symmetry and present only one of
the (several) cases required.

? How can we effectively formalize these symmetries in order
to minimize duplicated proof effort?
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The Monotonicity Lemma (Textbook Proof)

Lemma (Monotonicity)

If a trajectory (also called a flow) intersects a transversal segment,
it does so monotonically in the order of the segment.

Definition (Transversal Segment)

A transversal segment is a (closed) 2D line segment where the
RHS of the ODE is nowhere zero along the segment.

Use as Poincaré section!
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The Monotonicity Lemma (Textbook Proof)

Lemma (Monotonicity)

If a trajectory (also called a flow) intersects a transversal segment,
it does so monotonically in the order of the segment.

Proof.

Suppose trajectory from x1 on the transversal touches the
transversal again at x2:
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The Monotonicity Lemma (Textbook Proof)

Lemma (Monotonicity)

If a trajectory (also called a flow) intersects a transversal segment,
it does so monotonically in the order of the segment.

Proof.

Construct the Jordan curve J formed by the trajectory and the
segment between x1, x2:
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The Monotonicity Lemma (Textbook Proof)

Lemma (Monotonicity)

If a trajectory (also called a flow) intersects a transversal segment,
it does so monotonically in the order of the segment.

Proof.

By the Jordan curve theorem, J separates the plane into an inside
I and outside O:
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The Monotonicity Lemma (Textbook Proof)

Lemma (Monotonicity)

If a trajectory (also called a flow) intersects a transversal segment,
it does so monotonically in the order of the segment.

Proof.

Any further intersection at x3 must happen inside by construction,
so the intersections are ordered x1 ≤ x2 ≤ x3:
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The Monotonicity Lemma (Textbook Proof)

Lemma (Monotonicity)

If a trajectory (also called a flow) intersects a transversal segment,
it does so monotonically in the order of the segment.

Proof.

Not quite done! There are several other cases, but the argument
for them is symmetric:
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The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:

3. Textbook proofs rely heavily on sketches, especially for a key
lemma that is fundamental to the plane.

Subtle Claim: these are the only possibilities that can occur for J.
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The Monotonicity Lemma (Formal Proof)

Three pieces of information are needed for the (Left) case:

Symmetrically for (Right) case, e.g., flow always crosses from
inside to outside between x1 to x2.
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The Monotonicity Lemma (Formal Proof)

We use a “flow region” construction, (Left) case shown here:

Key Idea: Flow regions r1, r2 must lie on opposite sides. This
implies all three pieces of information (for each case, respectively).

27



The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:

4. Textbook proofs argue by symmetry and present only one of
the (several) cases required.

Key Idea: reverse flows to obtain other cases by symmetry.
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The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:

4. Textbook proofs argue by symmetry and present only one of
the (several) cases required.

Key Idea: reverse flows to obtain other cases by symmetry.

To show:
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The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:

4. Textbook proofs argue by symmetry and present only one of
the (several) cases required.

Key Idea: reverse flows to obtain other cases by symmetry.

For any flow, we know (from previous slides):
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The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:

4. Textbook proofs argue by symmetry and present only one of
the (several) cases required.

Key Idea: reverse flows to obtain other cases by symmetry.

In particular, for the reversed flow:
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The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:

4. Textbook proofs argue by symmetry and present only one of
the (several) cases required.

Key Idea: reverse flows to obtain other cases by symmetry.

Reversing a flow twice yields the flow itself:
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The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:

4. Textbook proofs argue by symmetry and present only one of
the (several) cases required.

Key Idea: reverse flows to obtain other cases by symmetry.

Using (sub)locales

ODE f : Rn → Rn

φ, Thm P(φ(x0, t))

rev.ODE −f : Rn → Rn

φ−f , Thm P(φ−f (x0, t))

⇓
export and rewrite φ−f (x0, t) = φ(x0,−t)
⇓

rev.Thm: P(φ(x0,−t))
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Example Application
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Summary: Poincaré-Bendixson

Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.
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y
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Formalization Challenges (the “easy” ones)

Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.

1. Has substantial prerequisite formalized mathematics, e.g.:
the Jordan curve theorem, (real) analysis, ODEs.

XIsabelle/HOL and the Archive of Formal Proofs (AFP) meet
these prerequisites.

2. Needs formalization of key dynamical systems concepts, e.g.:
limit sets of trajectories, periodic orbits.

XMostly involves formalizing of (real) analysis-type arguments
following standard presentations in textbooks.
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Formalization Challenges (the “easy” ones)

Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.

1. Has substantial prerequisite formalized mathematics, e.g.:
the Jordan curve theorem, (real) analysis, ODEs.

XFor Yong Kiam (Isabelle/HOL beginner), Sledgehammer
and search features were very useful for discovering existing
lemmas.

2. Needs formalization of key dynamical systems concepts, e.g.:
limit sets of trajectories, periodic orbits.

XMostly involves formalizing of (real) analysis-type arguments
following standard presentations in textbooks.
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Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.

3. Textbook proofs rely heavily on sketches, especially for a key
lemma that is fundamental to the plane.

XWe give the first (as far as we know∗) fully rigorous
argument for this step, that is amenable to formalization.

4. Textbook proofs argue by symmetry and present only one of
the (several) cases required.

XUse Isabelle/HOL’s locale system to formally reverse flows.

∗While preparing these slides, we came across a proof in Cronin based on
indexes but we have not attempted to formalize it.
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Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.

3. Textbook proofs rely heavily on sketches, especially for a key
lemma that is fundamental to the plane.

? But our proof is rather different from the textbook sketches.
Is this unavoidable? Are there cleaner or more abstract proofs?

4. Textbook proofs argue by symmetry and present only one of
the (several) cases required.

XUse Isabelle/HOL’s locale system to formally reverse flows.
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Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.

3. Textbook proofs rely heavily on sketches, especially for a key
lemma that is fundamental to the plane.

? But our proof is rather different from the textbook sketches.
Is this unavoidable? Are there cleaner or more abstract proofs?

4. Textbook proofs argue by symmetry and present only one of
the (several) cases required.

? How easily can this (entire) formalization be done in
another proof assistant?
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The Role of the Proof Assistant

I agnostic w.r.t. foundations

I no (deeply prover specific) formalization tricks

I expose ordering on line segments
I time reversal (module system, locales!)
I filters
I generalizations

I most important: libraries
I also important: automation

I sledgehammer for library search
I SOS
I reachability analysis for approx ODE

I would have been helpful: real arithmetic
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Future Directions

Connection with Smooth Manifold Theory

1. ODEs, Poincaré-Bendixson on sphere or 2-manifold

2. Stable manifold theorem:
structure of the orbits approaching a hyperbolic fixed point

Dynamical Systems

1. Planar: Liénard’s theorem, Dulac’s criterion

2. Hartman-Grobman theorem:
linearized system predicts qualitative behavior
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Thank you. Questions?
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