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Ordinary differential equations (ODEs) provide mathematical
models of real world phenomena.

ODE model:
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A model of glycolysis:

X = —x+ ay + x°y
y=b—ay—x%

ODE solution:
x(t) = xo + vot — %tz
v(t)=wv — gt

Properties of the ball's falling motion
can be deduced from these solutions.

ODE solution: 777

How can we deduce properties without
knowing the solution?
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A model of glycolysis:

x:—x+ay+x2y
y=b—ay—x

X

» simulation -

Approaches:

approximate

» rigorous numerics — finite time
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Theorem (Rigorous Numerics) Theorem (Poincaré-Bendixson)
Solution from initial value is (Under mild assumptions)
contained in - for time trajectories of planar dynamical
[0, tend] systems are either periodic or

tend towards a periodic
trajectory.
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Definition
ODE f:R" =+ R"
x = f(x)
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Results y
existence of solution ¢(x, t)
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Definition
ODE f :R" - R"
x = f(x)

for f locally Lipschitz, autonomous/non-autonomous, C*

Results
existence of solution ¢(x, t)

> $(x0,0) = xo

> 5%, t) = f(¢(x0, 1))
challenge: functional analysis:
¢ = fixed point of Picard-iteration
p - cllto:ul R _ cllto;t],R"]
P(y) = (t = xo+ [, F(¢(7))d7)

y
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Definition
ODE f :R" - R"
x = f(x)

for f locally Lipschitz, autonomous/non-autonomous, C*
Results y
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flow: group action N
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> ¢(x0,0) = xo N
> ¢(o(x0,5),t) = d(x0,5 + t) 1k N\
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Definition
ODE f:R" =+ R"
x = f(x)
for f locally Lipschitz, autonomous/non-autonomous, C*

Results y

flow: group action \\
> ¢(X07 0) = X0 \
> ¢(¢(X075)7t) = ¢(X075+ t) 1T \

nice: ™~ )

algebraic reasoning of

tedious: o .
t,s,t + s € existence_ivl(xp)
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Definition
ODE f : R" = R"
x = f(x)

for f locally Lipschitz, autonomous/non-autonomous, C!

Results ODE f : R" — R"
¢:R—R"
flow: differentiabilit
oW drierentiabity Var.ODE (AA. Df| (g 1)-A):
> %¢(XO; t) = A(t) RAXN _y RAXN
> variational equation: Var.¢p : R — R™"
A= Df4(,e) - A A R™T
challenge: module system Lemma D¢¢|x, = Var.¢(t)
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hybrid = continuous + discrete

ODE model:
X=Vv,v=—g
domain: x >=0
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hybrid = continuous + discrete

ODE model: discrete control:
X=Vv,v=—g v+ —vwhen x=0
domain: x >=0
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Poincaré map
The main mathematical tool to talk about discrete switches
at a Poincaré section (smooth surface)

Usual Definition
at periodic orbit

» return time of periodic y
point = period NN
» solve return time in ) e

neighborhood with implicit
function theorem

Vt < 7(x0). ¢(x0,t) ¢ S of

» C! on and outside of S
(continuous above/at)

Formalized Definition 1r \ \‘ \
» first return time 7 \\ e
#(x0,7(x0)) €S
]
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Summary of Abstract Results

» unique solution, flow ¢, Poincaré map
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» applications:
» Formally Verified Differential Dynamic Logic [Bohrer et. al.]
» Verifying Hybrid Systems with Modal Kleene Algebra
[Munive, Struth]
» Towards Verification of Cyber-Physical Systems with UTP and
Isabelle/HOL [Foster, Woodcock]
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Summary of Abstract Results

» unique solution, flow ¢, Poincaré map

y

P applications:

» Formally Verified Differential Dynamic Logic [Bohrer et. al.]

» Verifying Hybrid Systems with Modal Kleene Algebra
[Munive, Struth]

» Towards Verification of Cyber-Physical Systems with UTP and
Isabelle/HOL [Foster, Woodcock]

Problem
» simulation provides important insights

» not (directly) amenable to formalization
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Rj A Rigorous (and Verified) Simulation
[0 gty (SHONE erkisbebeo0E)
o |schematic_goal g_fas:
"[(- (X!0) + 8 / 100 * (X!1) + (X!0)"2 * (X!1)),( 6 / 106 - 8 / 100 * (X!1) - (X!0)"2 * (X!1))] =
interpret_floatariths ?fas X"
by (reify floatariths)

concrete_definition g_fas uses g_fas

& |interpretation g_ode: ode_interpretation true_form UNIV g_fas
"(A(X, y). (gx Xy, gy X y)::real*real)"
"d::2" for d

gx_def gy def eval_nat_numeral
L mk_ode_ops_def eucl_of_list_prod power2_eq_square intro!: isFDERIV_I)

4 [lemma ptout: "t € {13 .. 13} — (x, y) € {(0.18, 2.51) .. (0.18, 2.51)} —
t t € g.existence ivl0 (x, y) A g.flowd (x, y) t € {(1.51, 0.51) .. (1.57, 0.58)}"
I by (tactic <ode_bnds_tac @{thms g_fas_def} 30 40 20 12 [(0, 1, "Ox000000")] "-" @{context} 1>)

11567547 5.426622¢-1 0x000000

# (151047 5198049e-1) _ (1567547 5.746059e-1); devs: 26; tdev: (2.40384e-2 2.740012e-2)
1.569999 5.799999¢-1 0x000000

1,51 5.799999¢-1 0x000000

1.5151e1 0x000000

1569999 5.1e-1 0x000000

11569999 5.799999¢-1 0x000000

# (1509999 5.099997e-1) . (157 5.800004e-1); devs: 2; tdev: (3e-2 3.500002e-2)

B by unfold_locales (auto simp: g_fas_def less_Suc_eq 0_disj nth_Basis_list_prod Basis_list_real_def

11
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Guaranteed Runge-Kutta methods [Bouissou et. al.]:
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A Verified ODE Solver

Guaranteed Runge-Kutta methods [Bouissou et. al.]:
h3 - R(Xo, h)

O(h?)

X h-W(x, h)

0 h

Theorem (Rigorous Euler method)

Vxo € Xo. ¢(x0, h) € Xo + h- f(Xo, h) + h? - R(Xo, h)
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A Verified ODE Solver

Guaranteed Runge-Kutta methods [Bouissou et. al.]:
h3 - R(Xo, h)

O(h?)

X h-W(x, h)

0 h

Theorem (Rigorous Euler method)
Vxo € Xo. ¢(x0, h) € Xo + h- f(Xo, h) + h? - R(Xo, h)

Algorithm
Evaluate in interval/affine arithmetic

12
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Affine Arithmetic

» wrapping effect of intervals:

—>

» therefore zonotopes: {lo+ > ;¢e;-¢; | i € [-1;1]}

o~
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Verification

Techniques
» Refinement
» Refinement

» Refinement

Example
> $(Xo,h) C R
» R defined as Runge-Kutta remainder
» Runge-Kutta implemented in affine arithmetic
(on real numbers)
» Runge-Kutta implemented in affine arithmetic
(on floating point numbers)

14
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Smale’s 14th Problem

50

The global properties we will prove are the following:

e The return map R exists, and it is well defined in the sense of the geometric
model.
> e There exists a compact subset of the return plane, N C X, such that N\I"
Lod is forward invariant under R, i.e., R(N\I') C N. This ensures that the flow
has an attracting set A with a large basin of attraction. We can then form a
W cross-section of the attracting set: ANE = ("))2, R"(N) = A. In particular,
1 4 A isan attracting set for R.
> N e On N, there exists a cone field € which is mapped strictly into itself by DR,
ie., forall x € N, DR(x) - €(x) C €(R(x)). The cones of € are centered
Tu along an approximation of A, and each cone has an opening of at least 5°.
p| e The tangent vectors in ¢ are eventually expanded under the action of DR:
there exists C > 0 and A > 1 such that for all v € €(x), x € N, we have
|DR" (x)v| = CA"|v],n > 0.In fact, the expansion is strong enough to ensure
Pl that Ris topologically transitive on A. This is equivalent to having a dense
P{ orbit, and therefore proves that A is an attractor.

ToqT)



Smale’s 14th Problem

>

LO" My thesis: The Lorenz attractor exists

Revision December 8, 1998:
The first version (September 24, 1998) of my Ph.D. thesi ke T cOnE Teld] Afe iolating the eror, | decided o use  different
choie for e ield. I the carlics versio,the icd was akon 1 b horzanially enteed ad vry it The e vesion usc simmer conc contered aong an pproximation of the
attractor. This requires some additional functions in the code which have now been added. The main bulk of the code, however, is unchanged. I have also added a statement concerning
the existence of a unique SRB measure for the flow,

Revison e 1,199
This time i was the expansion estimates that were affected. The fuuly algorithm has been corrected, and some global variables have been 10
climinaica The mai bk of e code and s underying mathemates s sl unchanged, hough the code i somewhat e strctured now The evised shesis, nd sl codes e, can
Tu be found here

Last modified: Tue Mar 16 20:57:01 EST 1999

[http://www2.math.uu.se/~warwick/main/pre_thesis.html]

Phormar torm tneory (20 pages)
» C++ Program (24 pages,
380048800 lines of numerical
code)
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Smale’s 14th Problem

>
Lorenz (1963): is this chaos?

f

Tucker (2002): Yes:
» 1 paragraph combining standard
results
» normal form theory (25 pages)
» C++ Program (24 pages,
380048800 lines of numerical
code)

» Immler (2018):
verified numerical computations

>
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50
z
40
> theorem lorenz_bounds:
Lof "wew-r. x returns_to &"
¥x e N - T, R(x) & N"
] ¥x € N - T, (R has_derivative DR{x)) (at x within EZ..)"
> Yioe N - T, DR(x) (€ x) © C(R{x))"
¥x e N -T. ¥ e €x). norm (DR(x) c) = &£ x * norm(c)"

Tud e N-T. ve e elx). norn (DR(X) c) = &

= Ep (R(x)) * norm(c)”
P if normal_form_correct

normar Torm theory (2o pages) T oo

» C++ Program (24 pages, 10 45
3800+8800 lines of numerical x
code)

» Immler (2018):
verified numerical computations
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Summary of Rigorous Numerical Results

» Theorem: computed enclosures contain solution
y

2

0 1 2 X

» Applications:

» Smale's 14th problem
» (motion planning for autonomous vehicles)
> (ARCH-Software Competition)

Problem

» concrete values, bounds, finite time

16
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The Poincaré-Bendixson Theorem

y {\\

/' ™ . —~" >
2 T f"\ \ ./I-Io;io we know

{ N - A

\ '.\ \ \ that the visualization

1 \\-\) \\ >‘is correct?
~ )
ok
0 1 2 X

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.
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The Poincaré-Bendixson Theorem

In our paper/formalization:

theorem poincare_bendixson: -
assumes xK: "compact K" "K C X" "x € X" /‘77\(,R5/ kd
"trapped_forward x K"
assumes "0 ¢ f ¢ (w_limit_set x)" | HOW dO “ie knf)w .

(" that the visualization )

obtains y where

"periodic_orbit y" $~\ . 2
"flowd y ¢ UNIV = w_limit_set x" ( is correct?

The final theorem (some proof steps omitted) shows that
a limit cycle exists within the trapping region gk, and thus
that Sel’kov’s model exhibits limiting periodic behavior:

theorem g_has_limit_cycle:
obtains y where
"g.limit_cycle y" "g.flowd y ¢ UNIV C gK"

Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.
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The Poincaré-Bendixson Theorem
Formalization Challenges
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Formalization Challenges (the “easy” ones)

Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.

1. Has substantial prerequisite formalized mathematics, e.g.:
the Jordan curve theorem, (real) analysis, ODEs.
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(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.

1. Has substantial prerequisite formalized mathematics, e.g.:
the Jordan curve theorem, (real) analysis, ODEs.

v'Isabelle/HOL and the Archive of Formal Proofs (AFP) meet
these prerequisites.

2. Needs formalization of key dynamical systems concepts, e.g.:
limit sets of trajectories, periodic orbits.

v'Mostly involves formalizing of (real) analysis-type arguments
following standard presentations in textbooks.
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Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.

3. Textbook proofs rely heavily on sketches, especially for a key
lemma that is fundamental to the plane.
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Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.
3. Textbook proofs rely heavily on sketches, especially for a key
lemma that is fundamental to the plane.
Hartman:

k-y 4¥t)

ct .V+’“n1/

Figure 5.
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Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.
3. Textbook proofs rely heavily on sketches, especially for a key
lemma that is fundamental to the plane.
Palis & de Melo:

Figure 10
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Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.
3. Textbook proofs rely heavily on sketches, especially for a key
lemma that is fundamental to the plane.
Perko:

(a) (b)

Figure 1. A Jordan curve defined by I' and . .



Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.
3. Textbook proofs rely heavily on sketches, especially for a key
lemma that is fundamental to the plane.

Wiggins:

FIGURE 9.0.1.
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Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.

3. Textbook proofs rely heavily on sketches, especially for a key
lemma that is fundamental to the plane.

Chicone:

Proof. The proof is left as an exercise. Hint: Reduce to the case where
t1, to, and t3 correspond to consecutive crossing points. Then, consider the
curve formed by the union of L. (p) ot <t < to} and the subset of ¥

between ¢y, (p) and ot2(p).IDraw a pi('ture.l a
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Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.

3. Textbook proofs rely heavily on sketches, especially for a key
lemma that is fundamental to the plane.

? How can we formalize these sketches in a proof assistant?
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Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.

3. Textbook proofs rely heavily on sketches, especially for a key
lemma that is fundamental to the plane.
? How can we formalize these sketches in a proof assistant?
4. Textbook proofs argue by symmetry and present only one of

the (several) cases required.

? How can we effectively formalize these symmetries in order
to minimize duplicated proof effort?

21



Outline

The Poincaré-Bendixson Theorem

The Monotonicity Lemma
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The Monotonicity Lemma (Textbook Proof)

Lemma (Monotonicity)

If a trajectory (also called a flow) intersects a transversal segment,
it does so monotonically in the order of the segment.

Definition (Transversal Segment)

A transversal segment is a (closed) 2D line segment where the
RHS of the ODE is nowhere zero along the segment.

Use as Poincaré section!
y

/.D/ )—"‘ka/TF\)/

ransversal segment
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The Monotonicity Lemma (Textbook Proof)

Lemma (Monotonicity)

If a trajectory (also called a flow) intersects a transversal segment,
it does so monotonically in the order of the segment.

Proof.
Suppose trajectory from x; on the transversal touches the
transversal again at x:
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The Monotonicity Lemma (Textbook Proof)

Lemma (Monotonicity)

If a trajectory (also called a flow) intersects a transversal segment,
it does so monotonically in the order of the segment.

Proof.
Construct the Jordan curve J formed by the trajectory and the
segment between xi, xp:

Jordan curve
@
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The Monotonicity Lemma (Textbook Proof)

Lemma (Monotonicity)

If a trajectory (also called a flow) intersects a transversal segment,
it does so monotonically in the order of the segment.

Proof.
By the Jordan curve theorem, J separates the plane into an inside
I and outside O:

. Jordan curve
S0
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The Monotonicity Lemma (Textbook Proof)

Lemma (Monotonicity)

If a trajectory (also called a flow) intersects a transversal segment,
it does so monotonically in the order of the segment.

Proof.

Any further intersection at x3 must happen inside by construction,
so the intersections are ordered x; < x» < Xx3:

~Jordan curve

M

Outside
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The Monotonicity Lemma (Textbook Proof)

Lemma (Monotonicity)

If a trajectory (also called a flow) intersects a transversal segment,
it does so monotonically in the order of the segment.

Proof.
Any further intersection at x3 must happen inside by construction,
so the intersections are ordered x; < x» < Xx3:

Impossible, by def.
transversal segment

|
I Tmpossible, by
~~=~! uniqueness

b

24



The Monotonicity Lemma (Textbook Proof)

Lemma (Monotonicity)

If a trajectory (also called a flow) intersects a transversal segment,
it does so monotonically in the order of the segment.

Proof.

Not quite done! There are several other cases, but the argument

for them is symmetric: O

____ Jordan curve .
Outside . = < () Outside
' \ ©)

\. Jordan curve X,

O

(Left) Flow stays inside past x, (Right) Flow stays outside past x,
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The Monotonicity Lemma (Textbook Proof)

Lemma (Monotonicity)

If a trajectory (also called a flow) intersects a transversal segment,
it does so monotonically in the order of the segment.

Proof.

Not quite done! There are several other cases, but the argument

for them is symmetric:

____ Jordan curve
Outside B = ~. (D

(Left) Flow stays outside before x;

O

Outside
(0)
\. Jordan curve X,

O

(Right) Flow stays inside before x;

24



The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:

3. Textbook proofs rely heavily on sketches, especially for a key
lemma that is fundamental to the plane.

Subtle Claim: these are the only possibilities that can occur for J.

~ Jordan curve

S 0 Outside

(0)
\ Jordan curve X,

)

Outside -
©

(Left) Flow stays inside past x,

25



The Monotonicity Lemma (Formal Proof)
Three pieces of information are needed for the (Left) case:

Jordan curve
< M
3. Flow is locally
inside at t > t,

©

Inside

1. Flow always crosses from
outside to inside between x to x,

Symmetrically for (Right) case, e.g., flow always crosses from
inside to outside between x; to xo.

26



The Monotonicity Lemma (Formal Proof)
We use a “flow region” construction, (Left) case shown here:

Jordan curve

< O

QOutside
(0)
Forward flow

region between
|
X, and b \

Backward flow region
between a and x,

Key Idea: Flow regions r1, » must lie on opposite sides. This
implies all three pieces of information (for each case, respectively).



The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:

4. Textbook proofs argue by symmetry and present only one of
the (several) cases required.

Key ldea: reverse flows to obtain other cases by symmetry.
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The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:

4. Textbook proofs argue by symmetry and present only one of
the (several) cases required.

Key ldea: reverse flows to obtain other cases by symmetry.

To show:
___ Jordan curve )
Outside P = Outside
g 3 0)

(©)

\Jordan curve X,

.

(Left) Flow stays outside before x, (Right) Flow stays inside before x;
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The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:

4. Textbook proofs argue by symmetry and present only one of
the (several) cases required.

Key ldea: reverse flows to obtain other cases by symmetry.

For any flow, we know (from previous slides):
___ Jordan curve |

@

Outside
©)
\ Jordan curve X,

N, @

(Left) Flow stays inside past x, (Right) Flow stays outside past x,

28



The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:

4. Textbook proofs argue by symmetry and present only one of
the (several) cases required.

Key ldea: reverse flows to obtain other cases by symmetry.

In particular, for the reversed flow:
___ Jordan curve |

S 0 Outside

(0)
\Jordan curve X,

\,

Outside -
(©)

!
i
1
!
1
!
i
1
!
i
1 v
i
1
!
i
!
i
1
!
i
!

(Left) Reverse flow stays outside past x, (Right) Reverse flow stays inside past x,
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The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:

4. Textbook proofs argue by symmetry and present only one of
the (several) cases required.

Key ldea: reverse flows to obtain other cases by symmetry.

Reversing a flow twice yields the flow itself:

~ Jordan curve

S 0 Outside

(0)
\Jordan curve X,

.

Outside -
(©)

1
1
I
1
i
I
1
I
1
i
I

)
! 1

|
i
1
i
I
1
i
1
i
I
1
i
1

(Left) Flow stays outside before x, (Right) Flow stays inside before x;
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(Recall) Formalization Challenge:
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Using (sub)locales
ODE f : R" — R"
¢, Thm P(¢(xo, t))
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The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:

4. Textbook proofs argue by symmetry and present only one of
the (several) cases required.

Key ldea: reverse flows to obtain other cases by symmetry.
Using (sub)locales

ODE f: R" — R"

¢, Thm P(¢(xo, t))

rev.ODE —f : R" = R”"
¢—¢, Thm P(¢_f(x0,t))

4

export and rewrite ¢_¢(xo, t) = ¢(xo, —t)

4
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The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:

4. Textbook proofs argue by symmetry and present only one of
the (several) cases required.

Key ldea: reverse flows to obtain other cases by symmetry.

Using (sub)locales
ODE f : R" — R"
¢, Thm P(¢(xo, t))

rev.ODE —f : R" = R”"
¢—¢, Thm P(¢_f(x0,t))

4

export and rewrite ¢_¢(xo, t) = ¢(xo, —t)

¢
rev.Thm: P(¢(xo, —t))

28



Outline

The Poincaré-Bendixson Theorem

Example
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Example Application

corollary poincare bendixson limit cycle:
assumes "compact K" "K C X"
assumes "x € K" "positively invariant K"
assumes "0 ¢ f ° K"
assumes "flowd® x t ¢ K"
obtains y where "limit cycle y" "flow® y ° UNIV C K"

. » comparison
principle,
3 barrier
Y certificate
AN

30



Example Application

<w

corollary
assumes
assumes
assumes
assumes
obtains

\
NS

poincare bendixson limit cycle:

"compact K" "K C X"

"x € K" "positively invariant K"

"0 g f B Kll

"flowd x t ¢ K"

y where "limit cycle y" "flow® y ° UNIV C K"

lemma positively invariant barrier:
fixes V :: "'a = real"
assumes "Ax. (V has derivative V' x) (at x)"
assumes "continuous on UNIV (Ax. V' x (f x))"
assumes "As. Vs =0 = V' s (fs) <0O"
shows "positively invariant {x. V x < 0}"

&S

N
>
w
IS

omparison
rinciple,
arrier
ertificate
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Example Application

<w

corollary
assumes
assumes
assumes
assumes
obtains

poincare bendixson limit cycle:

"compact K" "K C X"

"x € K" "positively invariant K"

"0 g f B Kll

"flowd x t ¢ K"

y where "limit cycle y" "flow® y ° UNIV C K"

lemma p
shows
apply

app
unfol
by (s

ositively_invariant_y_upper:
"g.positively_invariant {p. (snd p) - 751/100 < 0}"
(rule g.positively invariant_barrier)
ly (auto introl!: continuous intros derivative eq intros)
ding gy def
os "((R<l + ((R<l * (R<18775/2 * [al”2)) + ((A<=0 * R<1l) * (R<1250 * [1]72)))))")

\
\

b

\\\ e

™~

‘\\=:
1
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Example Application

corollary poincare hondixcon limit cyuclo-

lemma positively invariant trapG

shows "g.positively invariant trapG"
unfolding trapG_def

apply (rule g.positively invariant_le domain[OF positively invariant_trap6l _
of "Ap. 7108—( tp)"2+2*f5tp*snd
subgoal by (auto intro!s continuous i

ntros derivative eq_intros simp
apply (auto simp: pld_c def gx_def gy def trapGl def pos ¢ quad def p1_def)

pl_has_derivative,

pos_quad_def)

proof (prove)
goal (1 subgoal
1. Aa b

[ Ao updte | Update

Locate | Search:
<b =
0<a=

b * 100 < 751 —

a * 25+ b *25< 203 =

7 % ((2*b/25-a+a’*b)*a?)/28-
24% ((2%b/25-a+a*b) *an3) /43+
(42 /5-28*b/25-14 % (a2 * b)) /29 +

38* ((2*b/25-a+a2*b)*a)/15- (138 *b /25 - 69 *a+69* (a2 * b)) /38
2

(651 % (a* (3/5-2+b/25-a2*b)) +651* ((2*b/25-a+aZ*b)*b)) /44l +
(8554 * (a2 * (3 /5-2%b/25-a%*b))+17168 * ((2 * b /25 - a+a’*b)* (a*b))) /2209 -
(560 * (@~ 3% (3/5-2%b/25-a2*b)) +1680 * ((2%b/25-a+a2*b)* (a2 *b))) / 25 -
6% ((3/5-2%b/25-a2*b)*b) /17 -
(36 % (a* ((3/5-2%b/25-a2*b) *b)) +18* ((2*b/25-a+a?*b)*b?)) /8l -
(1240 * (a2 * ((3/5-2%Db /25 -a2*b) *b)) +1240 * ((2*b /25 - a+a?*b)* (a*hb2))) /400 +
(3/5-2%b/25-a2*b)*b?/34+
(177 * (a * ((3/5-2%b/25-a2%b) *b2)) + (2*b/25-a+a?*b)*b"3*59) /3481
< (- (27 /25) -a?+2*a*h) *
(-(21/34) -69*a/38+19*a2/15-9%a~3/28-6%a"4/43+14*b/20+31*a*b/21+18 *a2*b/ 47
35 %a~3%b/16 -
3% b2 /17 -
2%¥axbr/9-
31+ a2 * b2 /20 +
b~ 3 /102 +
a*b”3/59)
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Example Application
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corollary poincare bendixson limit cycle:
assumes "compact K" "K C X"
assumes "x € K" "positively invariant K"
assumes "0 ¢ f ° K"
assumes "flowd® x t ¢ K"
obtains y where "limit cycle y" "flow® y ° UNIV C K"
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Example Application

corollary
assumes
assumes
assumes
assumes

poincare bendixson limit cycle:
"compact K" "K C X"

"x € K" "positively invariant K"
"0 g f B Kll

"flowd x t ¢ K"

obtains y where "limit cycle y" "flow® y ° UNIV C K"
4 >
y
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2
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Example Application

corollary poincare bendixson limit cycle:
assumes "compact K" "K C X"
assumes "x € K" "positively invariant K"

assumes "0
assumes "fl
obtains y w
. omparison
l rinciple,
. 1 arrier
d ertificate
SN
, \ $pOS
ranch-and-
) \ ound affine
‘i\\ rithmetic
N ..
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Outline
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Summary: Poincaré-Bendixson

Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.

,V theorem poincare_bendixson:
assumes xK: "compact K" "K < X" "x € X"
"trapped_forward x K"

assumes "0 ¢ f ¢ (w_limit_set x)"

¢
L f\ \ .
N L.
owo y = w_limit_set x
| \\-} \ "flowd “ UNIV limi o
R

N

The final theorem (some proof steps omitted) shows that
a limit cycle exists within the trapping region gK, and thus
that Sel’kov’s model exhibits limiting periodic behavior:

ok theorem g_has_limit_cycle:
1 L L obtains y where
"g.limit_cycle y" "g.flowd y ‘ UNIV C gK"




Formalization Challenges (the “easy” ones)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.

1. Has substantial prerequisite formalized mathematics, e.g.:
the Jordan curve theorem, (real) analysis, ODEs.

v'Isabelle/HOL and the Archive of Formal Proofs (AFP) meet
these prerequisites.

2. Needs formalization of key dynamical systems concepts, e.g.:
limit sets of trajectories, periodic orbits.

v'Mostly involves formalizing of (real) analysis-type arguments
following standard presentations in textbooks.
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Formalization Challenges (the “easy” ones)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.

1. Has substantial prerequisite formalized mathematics, e.g.:
the Jordan curve theorem, (real) analysis, ODEs.

v For Yong Kiam (Isabelle/HOL beginner), Sledgehammer
and search features were very useful for discovering existing
lemmas.

2. Needs formalization of key dynamical systems concepts, e.g.:
limit sets of trajectories, periodic orbits.

v'Mostly involves formalizing of (real) analysis-type arguments
following standard presentations in textbooks.

33



Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.

3. Textbook proofs rely heavily on sketches, especially for a key
lemma that is fundamental to the plane.

v'We give the first (as far as we know™) fully rigorous
argument for this step, that is amenable to formalization.

4. Textbook proofs argue by symmetry and present only one of
the (several) cases required.

v'Use Isabelle/HOL's locale system to formally reverse flows.

*While preparing these slides, we came across a proof in Cronin based on
indexes but we have not attempted to formalize it.
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Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.

3. Textbook proofs rely heavily on sketches, especially for a key
lemma that is fundamental to the plane.

? But our proof is rather different from the textbook sketches.
Is this unavoidable? Are there cleaner or more abstract proofs?

4. Textbook proofs argue by symmetry and present only one of
the (several) cases required.

v Use Isabelle/HOL's locale system to formally reverse flows.
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Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems
are either periodic or tend towards a periodic trajectory.

3. Textbook proofs rely heavily on sketches, especially for a key
lemma that is fundamental to the plane.

? But our proof is rather different from the textbook sketches.
Is this unavoidable? Are there cleaner or more abstract proofs?

4. Textbook proofs argue by symmetry and present only one of
the (several) cases required.

? How easily can this (entire) formalization be done in
another proof assistant?

34



The Role of the Proof Assistant

P> agnostic w.r.t. foundations
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The Role of the Proof Assistant

P> agnostic w.r.t. foundations
» no (deeply prover specific) formalization tricks
P expose ordering on line segments
> time reversal (module system, locales!)
> filters
» generalizations
» most important: libraries
P also important: automation
» sledgehammer for library search

> SOS
» reachability analysis for approx ODE

» would have been helpful: real arithmetic
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Future Directions

Connection with Smooth Manifold Theory

Smooth Manifolds and Types to Sets for Linear
Algebra in Isabelle/HOL
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1. ODEs, Poincaré-Bendixson on sphere or 2-manifold
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Future Directions

Connection with Smooth Manifold Theory

Smooth Manifolds and Types to Sets for Linear
Algebra in Isabelle/HOL

n Immler
artm

1. ODEs, Poincaré-Bendixson on sphere or 2-manifold

2. Stable manifold theorem:
structure of the orbits approaching a hyperbolic fixed point

Dynamical Systems

1. Planar: Liénard’s theorem, Dulac's criterion

36



Future Directions

Connection with Smooth Manifold Theory

Smooth Manifolds and Types to Sets for Linear
Algebra in Isabelle/HOL

n Immler Bohua Zhan
artmen

1. ODEs, Poincaré-Bendixson on sphere or 2-manifold

2. Stable manifold theorem:
structure of the orbits approaching a hyperbolic fixed point

Dynamical Systems

1. Planar: Liénard’s theorem, Dulac's criterion

2. Hartman-Grobman theorem:
linearized system predicts qualitative behavior

36



Thank you. Questions?
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