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40 Years of Successes in Computer-Aided Mathematics

1976 Four-Color Theorem

1998 Kepler Conjecture

2010 “God’s Number = 20”: Optimal Rubik’s cube strategy

2012 At least 17 clues for a solvable Sudoku puzzle

2014 Boolean Erdős discrepancy problem

2016 Boolean Pythagorean triples problem

2018 Schur Number Five

2019 Keller’s Conjecture

marijn@cmu.edu 4 / 35



40 Years of Successes in Computer-Aided Mathematics

1976 Four-Color Theorem

1998 Kepler Conjecture

2010 “God’s Number = 20”: Optimal Rubik’s cube strategy

2012 At least 17 clues for a solvable Sudoku puzzle
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Breakthrough in SAT Solving in the Last 20 Years
Satisfiability (SAT) problem: Can a Boolean formula be satisfied?

mid ’90s: formulas solvable with thousands of variables and clauses
now: formulas solvable with millions of variables and clauses

Edmund Clarke: “a key
technology of the 21st century”
[Biere, Heule, vanMaaren, Walsh ’09]

Donald Knuth: “evidently a killer

app, because it is key to the solution of

so many other problems” [Knuth ’15]
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Pythagorean Triples Problem (I) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

32 + 42 = 52 62 + 82 = 102 52 + 122 = 132 92 + 122 = 152

82 + 152 = 172 122 + 162 = 202 152 + 202 = 252 72 + 242 = 252

102 + 242 = 262 202 + 212 = 292 182 + 242 = 302 162 + 302 = 342

212 + 282 = 352 122 + 352 = 372 152 + 362 = 392 242 + 322 = 402

Best lower bound: a bi-coloring of [1, 7664] s.t. there is no
monochromatic Pythagorean Triple [Cooper & Overstreet 2015].

Myers conjectures that the answer is No [PhD thesis, 2015].
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Pythagorean Triples Problem (II) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

A bi-coloring of [1, n] is encoded using Boolean variables xi
with i ∈ {1, 2, . . . , n} such that xi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean Triple a2 + b2 = c2,
two clauses are added: (xa ∨ xb ∨ xc) and (xa ∨ xb ∨ xc).

Theorem ([Heule, Kullmann, and Marek (2016)])

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean Triple. This is impossible for [1, 7825].

4 CPU years computation, but 2 days on cluster (800 cores)

200 terabytes proof, but validated with verified checker
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Media: “The Largest Math Proof Ever”
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Computer-Aided Mathematics Technologies

Fields Medalist Timothy Gowers stated that mathematicians
would like to use three kinds of technology [Big Proof 2017]:

Proof Assistant Technology
• Prove any lemma that a graduate student can work out

Proof Checking Technology
• Mechanized validation of all details

Proof Search Technology
• Automatically determine whether a conjecture holds
• This talk: Find small counter-examples
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Chromatic Number of the Plane

The Hadwiger-Nelson problem:
How many colors are required to color the plane such that each
pair of points that are exactly 1 apart are colored differently?

The answer must be three or more because three points can
be mutually 1 apart—and thus must be colored differently.
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Bounds since the 1950s

The Moser Spindle graph shows the lower bound of 4

A coloring of the plane showing the upper bound of 7

marijn@cmu.edu 12 / 35



First progress in decades

Recently enormous progress:

Lower bound of 5 [DeGrey ’18]

based on a 1581-vertex graph

This breakthrough started a
polymath project

Improved bounds of the fractional
chromatic number of the plane

We found smaller graphs with SAT:

874 vertices on April 14, 2018

803 vertices on April 30, 2018

610 vertices on May 14, 2018
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Validation

Check 1: Are two given points exactly 1 apart? For example:(
19+3

√
5

16 , 5
√
15−7

√
3

16

)
(
135+21

√
5−7
√
33+3

√
165

96 , 33
√
15−49

√
3−21

√
11−3

√
55

96

)
Our method: An approach based on Groebner basis theory
developed by Armin Biere, Manuel Kauers, Daniela Ritirc

Check 2: Given a graph G , has it chromatic number k?

Our method: Construct two Boolean formulas: one asking
whether G can be colored with k − 1 colors (must be UNSAT)
and one asking whether G can be colored with k colors (SAT).

Validation can provide more than correctness
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Extracting Subgraphs from a Proof of Unsatisfiability

The validation method to check whether a graph has (at least)
chromatic number k construct a SAT formula asking whether
the graph G can be colored with k − 1 colors.

The resulting formula is unsatisfiable.

Most SAT solvers can emit a proof of unsatisfiability.

Proof checkers can extract an unsatisfiable core of the
problem, which represents a subgraph of G .
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Clausal Proofs of Unsatisfiability

Clause C is redundant w.r.t. formula F if F and F ∧ C are equisatisfiable

Formula

≡ ≡ ≡ ≡

⊥

⊥

Proof

Checking the redundancy of a clause in polynomial time

Clausal proofs are easy to emit from modern SAT solvers

A clausal proof usually covers many resolution proofs
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Proof Checking Techniques Advances

Proof checking techniques have improved significantly in
recent years.

Clausal proofs of petabytes is size can now be validated
reasonably efficiently, even with formally-verified checkers.

Long-standing open math problems —including the Erdős
discrepancy problem, the Boolean Pythagorean triples
problem, and Schur number five— have solved with SAT and
their proofs have been constructed and validated.
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Backward Proof Checking: Remove Redundancy

original formula

core

backward checking

forward checking

⊥
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OptimizeProof

The order of the clauses in the proof and the order of the
literals in clauses have a big impact on reduced proof.

Optimize the proof by checking it multiple times;

Each iteration uses the reduced proof; and

Clauses are literals are shuffled.

Shuffling of clauses is somewhat limited:

A clause must occur after all clauses on which it depends;

A clause must occur before all clauses that depend on it.

The OptimizeProof procedure repeats proof reduction until the
size no longer decreases.
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Quality of the Proof

The order of the clauses also influences the SAT solver

Left the smallest proof (100 random clause orders) and right
the largest proof and 20 iterations of the OptimizeProof method

103
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105

0 5 10 15 20

size of unsatisfiable core
size of proof of unsatisfiability

103

104

105

0 5 10 15 20

size of unsatisfiable core
size of proof of unsatisfiability

the size of the proof correlates with the size of the core

Solve the problem multiple times with different clause orders

Select the smallest proof for proof optimization
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TrimFormulaPlain

Input: formula F
Output: an unsatisfiable core of F

1 Fcore := F

2 do

3 P := Solve (Fcore)

4 P := OptimizeProof (P , Fcore)

5 Fcore := ExtractCore (P , Fcore)

6 while (progress)

7 return Fcore

problem: useful clauses may be removed from Fcore
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TrimFormulaInteract

Input: formula F
Output: an unsatisfiable core of F

1 Fcore := F

2 do

3 P := Solve (Fcore)

4 P := OptimizeProof (P , Fcore)

5 P := OptimizeProof (P , F )

6 Fcore := ExtractCore (P , F )

7 while (progress)

8 return Fcore

solution: useful clauses can be pulled back in Fcore
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Graph Operations

Two operations are use to construct bigger and bigger graph:

Minkowski sum of A and B (A⊕ B): {a+ b | a ∈ A, b ∈ B}
Two rotated copies of a graph with a common point

Example

Let A = {(0, 0), (1, 0)} and B = {(0, 0), (1/2,
√

3/2)}

Figure: From left to right: UD-graphs A, B, A⊕B, and the Moser Spindle.
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Small graphs in Q[
√

3,
√

11]×Q[
√

3,
√

11]

Graph Hi is the 6-wheel
with all edges of length i .

Graph H ′i is a copy of Hi

rotated by 90 degrees.

H 1
3
⊕H 1

3
⊕H 1

3
H 1

3
⊕H 1

3
⊕H 1

3
⊕H ′√3+

√
11

6
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Larger graphs in Q[
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Graph G2167
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Impact of the Trimming Algorithms

We started with G2167 and reduced it using the proof trimming
algorithms: TrimProofInteract outperforms TrimProofPlain.
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The smallest subgraph with desired properties: 375 vertices

We added 135 vertices to remove all 4-colorings
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Graph G510
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Conclusions and Future Work

Aubrey de Grey showed that the chromatic number of the
plane is at least 5 using a 1581-vertex unit-distance graph.

SAT technology can not only validate the result, but also
reduce the size of the graph.

Our proof minimization techniques were able to construct a
510-vertex unit-distance graph with chromatic number 5.

Open questions regarding unit-distance graphs:

What it is the smallest graph with chromatic number 5?

Can we compute a graph that is human-understandable?

Is there such a graph with chromatic number 6 (or even 7)?
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Improve the Upper Bound?

A 7-coloring with one color covering 0.3% of the plane.
[Pritikin 1998]

Can SAT techniques be used to improve the upper bound?
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A Page of God’s Book on Theorems

“For many years now I am convinced that the chro-
matic number will be 7 or 6. One day, Paul Erdős
said that God has an endless book that contains all
the theorems and best of their evidence, and to some
He shows it for a moment. If I had been awarded such
an honor and I would have had a choice, I would have
asked to look at the page with the problem of the
chromatic number of the plane. And you?”

Alexander Soifer
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