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Nonlinear control working



Nonlinear control not working



Dynamical systems are simple loops

V = tanh(W2 tanh(W1x+B1) +B2), where x = [✓1 ✓2 ✓3 ✓̇1 ✓̇2 ✓̇3]T46

W1 =

2

66666664

�0.1919 0.1715 �0.0481 0.0707 0.1923 0.0548
0.0943 0.0112 0.0027 0.0102 �0.0005 0.0002
0.0942 �0.2393 0.0932 �0.0692 �0.1582 0.0002
0.0943 0.0112 0.0027 0.0102 �0.0005 �0.0221

�0.1136 �0.1927 �0.0753 �0.0407 �0.1289 0.0246
�0.1645 0.2017 0.0412 �0.1091 �0.1892 �0.1396
0.0868 0.0103 0.0030 0.0094 �0.0002 �0.0007
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77777775

T

,

47
W2 =

⇥
0.0017 0.4299 0.0023 �0.0021 0.0002 �0.5047

⇤
,

48
B1 =

⇥
�0.5246 �0.3993 �0.3698 0.1214 0.2343 0.4633

⇤
and B2 =

⇥
0.3918

⇤
,

and three neural controllers are49

u1 = �101.7856✓1 � 8.9265✓2 � 3.467✓3 � 28.5081✓̇1 � 14.0951✓̇2 � 7.3643✓̇3

u2 = 15.8736✓1 � 62.5769✓2 � 4.0104✓3 � 7.8591✓̇1 � 12.6341✓̇2 � 7.3690✓̇3

u3 = 5.1672✓1 + 7.2750✓2 � 42.4820✓3 � 2.6997✓̇1 � 4.9186✓̇2 � 11.8446✓̇3

Wheeled Vehicle Path Following. We consider the path tracking control using kinematic bicycle50

model from (see Figure 4(c)). We take the angle error ✓e and the distance error de as state variables,51

which ✓e = ✓ � ✓p, then the system can be written as the form:52

ṡ =
v cos (✓e)

1� ḋe(s)
,

ḋe = v sin (✓e),

✓̇e =
v tan (u)

L
� v(s) cos(✓e)

1� ḋe(s)
.

(4)

Assume a target path is a unit circle, then we obtain the following Lyapunov function on for53

kxk2  0.8, V = tanh(W2 tanh(W1x+B1) +B2), where x = [de ✓e]T and54

W1 =


�0.0059 0.0597 �0.0053 �0.0249 0.0021
�0.0053 �0.0008 0.0100 �0.0021 0.0001

�T

,

55
W2 =

⇥
0.5371 0.1276 0.2407 0.1228 0.3277

⇤
,

56
B1 =

⇥
�0.9597 �0.8179 �0.6969 �0.6101 1.1636

⇤
and B2 =

⇥
0.9767

⇤

and the neural controller is u = �0.8471de � 1.6414✓e.57

Appendix C: Overall Algorithm58

x = x0

t = 0
while true do

x = f(x, u(x)) · dt+ x
t = t+ dt

end while

Appendix D: More Details on Related Work59

Compared to the control-theoretic approaches, neural Lyapunov control provides a much simpler60

design process, relying purely on gradient-based methods for the learning. The saving is similar61

to the reduction of feature engineering and specific optimization methods in other areas of AI. The62

recent work of Richards et. al. [16] has also proposed and shown the effectiveness of using neural63

networks to learn safety certificates in a Lyapunov framework, but our goals and approaches are64

different. Richards et. al. focus on discrete-time polynomial systems and the use of neural networks65

to learn the region of attraction of a given controller. The Lyapunov conditions are validated in66

3

x(t) = x(0) + ∫
t

0
f(x, u(x))ds



,
W2 =

⇥
0.0563 0.0368 0.0218 �0.0158 �0.0093 �0.0186

⇤
,

B1 =
⇥
�0.6099 �0.5518 0.1146 0.1873 0.2220 0.4308

⇤
and B2 =

⇥
0.0666

⇤

and two neural controllers:
u1 = 0.5000x+ 0.000002y � 2.1339✓ + 2.7899ẋ� 0.00000003ẏ � 1.3992✓̇

u2 = 0.000001x� 1.0000y � 0.000003✓ � 0.000003ẋ� 5.0407ẏ � 0.000001✓̇

Humanoid balance. The task of balancing humanoid robot can simplify to maintain n-link pen-
dulum a vertical posture. The n-link pendulum system has n control inputs and 2n state variables
[✓1, ✓2, . . . , ✓n, ✓̇1, ✓̇2, . . . , ✓̇n], where represent the n link angle and the n angle velocity. Let each
link has mass mi and length `i, and the moments of inertia Ii are computed from the link pivots,
where i = 1, 2, . . . , n, then the dynamics has the form:

M (✓) ✓̈ + C(✓, ✓̇)✓̇ + ⌧(✓) = Bu, (3)
where

✓ = [✓1, ✓2, . . . , ✓n]
T 2 Rn, u 2 Rn

M(✓) = [aij cos (✓j � ✓i)] ,M (✓) 2 Rn⇥n

C(✓, ✓̇) =
h
�aij ✓̇j sin (✓j � ✓i)

i
, C(✓, ✓̇) 2 Rn⇥n,

⌧(✓) = [�bi sin ✓i] , G(✓) 2 Rn,

B = [1, 1, . . . , 1]T⇢
aii = Ii +mi`2ci + `2i

Pn
k=i+1 mk, 1  i  n

aij = aji = mj`i`cj + `i`j
Pn

k=j+1 mk, 1  i < j  n

bi =

 
mi`ci + `i

nX

k=i+1

mk

!
g, 1  i  n,

For the 2-link pendulum system our approach can find the following neural Lyapunov function that is
valid within domain D : kxk2  0.5 under precision � = 0.01: V = tanh(W2 tanh(W1x+B1) +

B2), where x = [✓1 ✓2 ✓̇1 ✓̇2]T

W1 =

2

64

�0.3578 �0.2339 �0.5153 �0.2648
0.4244 0.3886 0.1041 0.0195

�0.4218 �0.4314 �0.4371 �0.2353
�0.0042 �0.0020 �0.0013 �0.0077

3

75 ,

W2 =
⇥
0.1670 �0.1353 �0.2582 0.5208

⇤
,

B1 =
⇥
�0.4547 0.0263 0.6899 0.7721

⇤
and B2 =

⇥
0.7633

⇤
,

and two neural controllers are
u1 = �49.5249✓1 � 20.0854✓2 � 21.4826✓̇1 � 10.0516✓̇2

u2 = �18.2287✓1 � 19.143✓2 � 9.2905✓̇1 � 6.6695✓̇2
Also, the learning procedure finds a neural Lyapunov function for the 3-link pendulum system
on valid domain D : kxk2  0.5 under precision � = 0.01. The neural Lyapunov function:
V = tanh(W2 tanh(W1x+B1) +B2), where x = [✓1 ✓2 ✓3 ✓̇1 ✓̇2 ✓̇3]T

W1 =

2

666664

�0.1919 0.1715 �0.0481 0.0707 0.1923 0.0548
0.0943 0.0112 0.0027 0.0102 �0.0005 0.0002
0.0942 �0.2393 0.0932 �0.0692 �0.1582 �0.0221

�0.1136 �0.1927 �0.0753 �0.0407 �0.1289 0.0246
�0.1645 0.2017 0.0412 �0.1091 �0.1892 �0.1396
0.0868 0.0103 0.0030 0.0094 �0.0002 �0.0007

3

777775
,

W2 =
⇥
0.0017 0.4299 0.0023 �0.0021 0.0002 �0.5047

⇤
,

B1 =
⇥
�0.5246 �0.3993 �0.3698 0.1214 0.2343 0.4633

⇤
and B2 =

⇥
0.3918

⇤
,

and three neural controllers are
u1 = �101.7856✓1 � 8.9265✓2 � 3.467✓3 � 28.5081✓̇1 � 14.0951✓̇2 � 7.3643✓̇3

u2 = 15.8736✓1 � 62.5769✓2 � 4.0104✓3 � 7.8591✓̇1 � 12.6341✓̇2 � 7.3690✓̇3

u3 = 5.1672✓1 + 7.2750✓2 � 42.4820✓3 � 2.6997✓̇1 � 4.9186✓̇2 � 11.8446✓̇3
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• Safety: do not reach bad states 

• Stability (Liveness): eventually reach good states

Properties we care about

∀x0 ∀t∀xt(xt = Fu(x0, t) → safe(xt))



• Safety: do not reach bad states 

• Stability (Liveness-ish): eventually reach good states

Properties we care about

∀x0 ∀t∀xt(xt = Fu(x0, t) → safe(xt))

∀ε∃δ ∀x0 ∀t∀xt(∥x0∥ < δ ∧ xt = Fu(x0, t)

→ (∥xt∥ < ε ∧ lim
t→∞

xt = 0))



• Safety (core part) 

• Termination (core part)

Recall: invariants for programs

(Inv(x) ∧ T(x, x′�)) → Inv(x′�)

T(x, x′ �) → (Rank(x) > Rank(x′�))

For a discrete loop of the transition relation T(x, x′�)



• Safety: barrier functions, differential invariants

Inductive proofs over Rn

B(x) = 0 → ∇f B(x) < 0

∇f V(x) = ∑
i

∂V
∂xi

dx
dt

= ∑
i

∂V
∂xi

fi(x)

• Lie Derivative



• Stability: Lyapunov functions

Inductive proofs over Rn

Find an “energy” landscape that forces stabilization 
(same as ranking function for termination)



• Stability (Lyapunov functions)

Inductive proofs over Rn

V(x) > 0,∀x ∈ D∖{0}

V(0) = 0, ·V(0) = 0

∇fV(x) < 0,∀x ∈ D∖{0}



• Stability: Lyapunov functions

Inductive proofs over Rn

V ∇f V



• For discrete programs, finding invariants is always 
hard, but checking them is easy

Difficulty due to nonlinearity

(Inv(x) ∧ T(x, x′�)) → Inv(x′�)

T(x, x′ �) → (Rank(x) > Rank(x′�))
• Just encode the negations of these as SMT and 

hope for an unsat answer



• In the continuous case, even checking the inductive 
conditions is very hard 

• First-order theory over nonlinear real arithmetic 

∇f V(x) ≤ 0, ∀x ∈ D ⊆ ℝn

𝖳𝗁(⟨ℝ, ≤ , { + , × }⟩) is decidable but doubly-exponential

𝖳𝗁Σ1(⟨ℝ, ≤ , {sin, + , × }⟩) is undecidable

Difficulty due to nonlinearity



• FOL over reals is not that scary if we can allow 
some numerical errors in the decisions 

• Delta-decisions over reals [Gao-Avigad-Clarke, LICS’12] 

• Can deal with any formula in                  where  
is the set of all Type 2 computable functions

ℱ

Delta-decisions

⟨ℝ, ≤ , ℱ⟩



• Manipulate real numbers through natural encodings 
as functions over the integers (e.g. Cauchy sequences)  

• A real function is Type 2 computable if an algorithm 
can approximate it up to arbitrary finite precisions 
(effective continuity) 

•       contains polynomials, sin, cos, exp, ODEs, etc.

Type 2 Computability

ℱ
(pretty much all the functions we need in engineering)



• Delta-weakening: put a formula in a positive normal form 
and relax all  to  where   

• Example:  is relaxed to . 

• We say a formula is delta-satisfiable if its delta-weakening 
is satisfiable. The delta-decision problem asks if a formula 
is unsat or delta-sat. 

f(x) ≥ 0 f(x) ≥ − δ δ ∈ ℚ+

∃x(x = 0) ∃x( |x | ≤ δ)

Delta-decisions



• Theorem:  formulas are delta-decidable over any 
compact domain.  

• Theorem: The complexity of delta-deciding these formulas 
is the same as their Boolean counterparts.  

• Complexity results for free: e.g., global multi-objective 
disjunctive nonlinear optimization is -complete ( ). 

ℒℝ,ℱ

ΣP
2 𝖭𝖯𝖭𝖯

Delta-decisions



• In practice, delta-decisions are all we need for 
many problems in verification, optimization, etc.  

• Reachability/Safety questions can be encoded, 
with answers “safe” or “not robustly-safe” (a 
delta-perturbation makes the system unsafe) 

• dReal, dReach, etc. 

Delta-decisions

Reachability Analysis of Hybrid Systems

21
Matthew O'Kelly, Houssam Abbas, Sicun Gao, Shin'ichi Shiraishi, Shinpei Kato, and Rahul Mangharam ,  
“APEX: A Tool for Autonomous Vehicle Plan Verification and Execution”, In Society of Automotive Engineers (SAE) World Congress and Exhibition 2016

Can we do validated planning?

Reachability Analysis of Hybrid Systems

20

Can we do validated planning?

Matthew O'Kelly, Houssam Abbas, Sicun Gao, Shin'ichi Shiraishi, Shinpei Kato, and Rahul Mangharam ,  
“APEX: A Tool for Autonomous Vehicle Plan Verification and Execution”, In Society of Automotive Engineers (SAE) World Congress and Exhibition 2016

w
buffer



Difficulty with induction

• dReal always gives 
spurious counterexamples

B(x) = 0 → ∇f B(x) < 0

• However, induction fails under numerical errors!



• However, induction fails under numerical errors!

Difficulty with induction

V(x) > 0,∀x ∈ D∖{0}

V(0) = 0, ·V(0) = 0

∇fV(x) < 0,∀x ∈ D∖{0}
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controller, i. The system is highly nonlinear, with the following dynamics

ṗ = c1

0

@2û1

s
p
c11

�
✓

p
c11

◆2

�
�
c3 + c4c2p+ c5c2p

2 + c6c
2
2p
�
1

A

ṙ = 4

✓
c3 + c4c2p+ c5c2p

2 + c6c
2
2p

c13(c3 + c4c2pest + c5c2p2est + c6c22pest)(1 + i+ c14(r � c16))
� r

◆

ṗest = c1

 
2û1

r
p

c11
�
⇣

p
c11

⌘2
� c13

�
c3 + c4c2pest + c5c2p

2
est + c6c

2
2pest

�
!

i̇ = c15(r � c16)

which followed the detailed description of the model and the constant parameter
values in [10]. We verified that there exists a function of the form B(x) = zTPz�
0.01 (z consist of 14 monomials with a maximum degree of 2), where rfB(x) <
��, when B(x) = �".

6 Conclusion

We formulated new inductive proof rules for stability and safety for dynamical
systems. The rules are numerically robust, making them amenable to verification
using automated reasoning tools such as those based on �-decision procedures.
We presented several examples demonstrating the value of the new approach,
including safety verification tasks for highly nonlinear systems. The examples
show that the framework can be used to prove stability and safety for examples
that were out of reach for existing tools. The new framework relies on the ability
to generate reasonable candidate Lyapunov functions, which are analogous to
ranking functions from program analysis. Future work will include improved
techniques for e�ciently generating the "-Lyapunov and "-barrier functions and
related theoretical questions.
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• But again, precise checking is unrealistic (high 
nonlinearity, disturbances,…)

Difficulty with induction

(Example: powertrain control system)



Our fix to this problem

Epsilon-Lyapunov and Epsilon-Barrier functions 

• We redefine the inductive proof rules over 
continuous domains to robustify them

[Gao et al. CAV’19]



• Three robust proof rules (epsilon-inductive 
conditions) for stability and safety 

• For any epsilon, there exists a bound D, such 
that for any delta<D, delta-decision 
procedures are sound and complete for 
checking the epsilon-invariance conditions 

Our fix to this problem



Epsilon-Stability

• In practice, we can allow the system to oscillate 
within an epsilon-ball around the origin



• Relax stability to allow small perturbation 
(epsilon-stability) 

• Strengthen Lyapunov conditions to allow small 
numerical errors (epsilon-Lyapunov) 

• Prove epsilon-Lyapunov implies epsilon-stability 

• Prove epsilon-delta completeness

Relaxing Stability and Strengthening LF



Epsilon-Stability

• Relaxation: allow the system to oscillate 
within an epsilon-ball around the origin

Numerically-Robust Proof Rules for Continuous Dynamical Systems 5

– �-false : '+�
is false.

When the two cases overlap, either decision can be returned.

It follows that if ' is �-robust, then a �-complete decision procedure can
correctly determine the truth value of '.

3 Robust Proofs for Stability

We first focus on stability. We will define the notion of "-stability, as a relaxation
of the standard Lyapunov stability, and then define "-Lyapunov functions, which
are su�cient for proving "-stability in a robust way.

3.1 Stability and Lyapunov Functions

Conventionally, " and � are used to best highlight the connection with "-� con-
ditions for continuity. We will mostly reserve the use of " for defining conditions
that are robust under "-bounded numerical errors. Thus, we replace " by ⌧ in
the standard definitions to avoid confusion.

Definition 5 (Stability). We say the system in (1) is stable at the origin in

the sense of Lyapunov, i↵ for any ⌧ -ball neighborhood of the origin, there exists

a �-ball around the origin, such that, if the system starts within the �-ball then it

never escapes the ⌧ -ball. We capture the definition by the following LRF -formula:

Stable(f) ⌘df 8(0,1)⌧9(0,1)�8Dx08[0,1)t
⇣
kx0k < � ! kF (x0, t)k < ⌧

⌘

Definition 6 (Lyapunov Function). Consider a dynamical system given in

the form of (1), and let V : D ! R be a di↵erentiable function. We say V is a

non-strict Lyapunov function for the system, i↵ the following predicate is true:

LF(f, V ) ⌘df (V (0) = 0) ^ (f(0) = 0) ^ 8D\{0}x
⇣
V (x) > 0 ^rfV (x)  0

⌘

Proposition 1. For any dynamical system defined by f , if there exists a Lya-

punov function V , then the system is stable. Namely, LF(f, V ) ! Stable(f).

3.2 Epsilon-Stability

The standard definitions of stability requires a system to stabilize within arbi-
trarily small neighborhoods around the origin. However, very small neighbor-
hoods are practically indistinguishable from the origin. Thus, it is practically
su�cient to prove that a system is stable within some su�ciently small neigh-
borhood. We capture this intuition by making a minor change to the standard
definition, by simply putting a lower bound " on the ⌧ parameter in Definition 5.
As a result, the system is required to exhibit the same behavior as standard sta-
ble systems outside the "-ball, but can behave arbitrarily within the "-ball (for
instance, oscillate around the origin). The formal definition is as follows:

6 S. Gao et al.

�

⌧

(a) Stability

f = 0
V = 0

f > 0
rfV  0

(b) Lyapunov Function

�

⌧

"

(c) "-Stability

V  �

rfV  ��
V � ↵

"0
"

(d) "-Lyapunov Function

Fig. 1: Standard and "-relaxed notions of stability and Lyapunov functions

Definition 7 (Epsilon-Stability). Let " 2 R+ be arbitrary. We say a dynami-

cal system in (1) is "-stable at the origin in the sense of Lyapunov, i↵ it satisfies

the following condition:

Stable"(f) ⌘df 8[",1)⌧9(0,1)�8Dx08[0,1)t
⇣
kx0k < � ! kF (x0, t)k < ⌧

⌘

In words, for any ⌧ � ", there exists � such that all trajectories that start within

the �-ball will stay within a ⌧ -ball around the origin.

Note that the only di↵erence with the standard definition is that ⌧ is bounded
from below by a positive " instead of 0. The definition is depicted in Figure 1c,
which shows the di↵erence with the standard notion in Figure 1a. Since the only
di↵erence with the standard definition is the lower bound on the universally
quantified ⌧ , it is clear that "-stability is strictly weaker than standard stability.

Proposition 2. For any " 2 R+, Stable(f) ! Stable"(f).

Thus, any system that is stable in the standard definition is also "-stable for
any " 2 R+. On the other hand, one can always choose small enough " such
that an "-stable system is practically indistinguishable from stable systems in
the standard definition.

3.3 Epsilon-Lyapunov Function

We now define the corresponding notion of Lyapunov function that can be used
for proving "-stability. The robustness problem in the standard definition comes
from the singularity of the origin. With the relaxed notion of stability, the system
may oscillate within some "-neighborhood of the origin. With the relaxation, we
now have room for constructing a few nested neighborhoods that can trap the
trajectories in a way that is robust under su�ciently small perturbations. To
achieve this, we make use of balls of di↵erent sizes, as shown in the following
definition. We write B" to denote open "-balls around the origin.

Definition 8 (Epsilon-Lyapunov Functions). Let V : D ! R be a di↵eren-

tiable scalar function defined for the system in (1), and let " 2 R+ be an arbitrary

value. We say V is an "-Lyapunov function for the system, i↵ it satisfies the fol-

lowing conditions:

the only difference



Epsilon-Lyapunov functions

• Extend point-based requirements to neighborhoods6 S. Gao et al.

�

⌧

(a) Stability
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f > 0
rfV  0

(b) Lyapunov Function

�

⌧

"

(c) "-Stability

V  �

rfV  ��
V � ↵

"0
"

(d) "-Lyapunov Function

Fig. 1: Standard and "-relaxed notions of stability and Lyapunov functions

Definition 7 (Epsilon-Stability). Let " 2 R+ be arbitrary. We say a dynami-

cal system in (1) is "-stable at the origin in the sense of Lyapunov, i↵ it satisfies

the following condition:

Stable"(f) ⌘df 8[",1)⌧9(0,1)�8Dx08[0,1)t
⇣
kx0k < � ! kF (x0, t)k < ⌧

⌘

In words, for any ⌧ � ", there exists � such that all trajectories that start within

the �-ball will stay within a ⌧ -ball around the origin.

Note that the only di↵erence with the standard definition is that ⌧ is bounded
from below by a positive " instead of 0. The definition is depicted in Figure 1c,
which shows the di↵erence with the standard notion in Figure 1a. Since the only
di↵erence with the standard definition is the lower bound on the universally
quantified ⌧ , it is clear that "-stability is strictly weaker than standard stability.

Proposition 2. For any " 2 R+, Stable(f) ! Stable"(f).

Thus, any system that is stable in the standard definition is also "-stable for
any " 2 R+. On the other hand, one can always choose small enough " such
that an "-stable system is practically indistinguishable from stable systems in
the standard definition.

3.3 Epsilon-Lyapunov Function

We now define the corresponding notion of Lyapunov function that can be used
for proving "-stability. The robustness problem in the standard definition comes
from the singularity of the origin. With the relaxed notion of stability, the system
may oscillate within some "-neighborhood of the origin. With the relaxation, we
now have room for constructing a few nested neighborhoods that can trap the
trajectories in a way that is robust under su�ciently small perturbations. To
achieve this, we make use of balls of di↵erent sizes, as shown in the following
definition. We write B" to denote open "-balls around the origin.

Definition 8 (Epsilon-Lyapunov Functions). Let V : D ! R be a di↵eren-

tiable scalar function defined for the system in (1), and let " 2 R+ be an arbitrary

value. We say V is an "-Lyapunov function for the system, i↵ it satisfies the fol-

lowing conditions:
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Definition 7 (Epsilon-Stability). Let " 2 R+ be arbitrary. We say a dynami-

cal system in (1) is "-stable at the origin in the sense of Lyapunov, i↵ it satisfies

the following condition:

Stable"(f) ⌘df 8[",1)⌧9(0,1)�8Dx08[0,1)t
⇣
kx0k < � ! kF (x0, t)k < ⌧

⌘

In words, for any ⌧ � ", there exists � such that all trajectories that start within

the �-ball will stay within a ⌧ -ball around the origin.

Note that the only di↵erence with the standard definition is that ⌧ is bounded
from below by a positive " instead of 0. The definition is depicted in Figure 1c,
which shows the di↵erence with the standard notion in Figure 1a. Since the only
di↵erence with the standard definition is the lower bound on the universally
quantified ⌧ , it is clear that "-stability is strictly weaker than standard stability.

Proposition 2. For any " 2 R+, Stable(f) ! Stable"(f).

Thus, any system that is stable in the standard definition is also "-stable for
any " 2 R+. On the other hand, one can always choose small enough " such
that an "-stable system is practically indistinguishable from stable systems in
the standard definition.

3.3 Epsilon-Lyapunov Function

We now define the corresponding notion of Lyapunov function that can be used
for proving "-stability. The robustness problem in the standard definition comes
from the singularity of the origin. With the relaxed notion of stability, the system
may oscillate within some "-neighborhood of the origin. With the relaxation, we
now have room for constructing a few nested neighborhoods that can trap the
trajectories in a way that is robust under su�ciently small perturbations. To
achieve this, we make use of balls of di↵erent sizes, as shown in the following
definition. We write B" to denote open "-balls around the origin.

Definition 8 (Epsilon-Lyapunov Functions). Let V : D ! R be a di↵eren-

tiable scalar function defined for the system in (1), and let " 2 R+ be an arbitrary

value. We say V is an "-Lyapunov function for the system, i↵ it satisfies the fol-

lowing conditions:

Lyapunov Epsilon-Lyapunov
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– �-false : '+�
is false.

When the two cases overlap, either decision can be returned.

It follows that if ' is �-robust, then a �-complete decision procedure can
correctly determine the truth value of '.

3 Robust Proofs for Stability

We first focus on stability. We will define the notion of "-stability, as a relaxation
of the standard Lyapunov stability, and then define "-Lyapunov functions, which
are su�cient for proving "-stability in a robust way.

3.1 Stability and Lyapunov Functions

Conventionally, " and � are used to best highlight the connection with "-� con-
ditions for continuity. We will mostly reserve the use of " for defining conditions
that are robust under "-bounded numerical errors. Thus, we replace " by ⌧ in
the standard definitions to avoid confusion.

Definition 5 (Stability). We say the system in (1) is stable at the origin in

the sense of Lyapunov, i↵ for any ⌧ -ball neighborhood of the origin, there exists

a �-ball around the origin, such that, if the system starts within the �-ball then it

never escapes the ⌧ -ball. We capture the definition by the following LRF -formula:

Stable(f) ⌘df 8(0,1)⌧9(0,1)�8Dx08[0,1)t
⇣
kx0k < � ! kF (x0, t)k < ⌧

⌘

Definition 6 (Lyapunov Function). Consider a dynamical system given in

the form of (1), and let V : D ! R be a di↵erentiable function. We say V is a

non-strict Lyapunov function for the system, i↵ the following predicate is true:

LF(f, V ) ⌘df (V (0) = 0) ^ (f(0) = 0) ^ 8D\{0}x
⇣
V (x) > 0 ^rfV (x)  0

⌘

Proposition 1. For any dynamical system defined by f , if there exists a Lya-

punov function V , then the system is stable. Namely, LF(f, V ) ! Stable(f).

3.2 Epsilon-Stability

The standard definitions of stability requires a system to stabilize within arbi-
trarily small neighborhoods around the origin. However, very small neighbor-
hoods are practically indistinguishable from the origin. Thus, it is practically
su�cient to prove that a system is stable within some su�ciently small neigh-
borhood. We capture this intuition by making a minor change to the standard
definition, by simply putting a lower bound " on the ⌧ parameter in Definition 5.
As a result, the system is required to exhibit the same behavior as standard sta-
ble systems outside the "-ball, but can behave arbitrarily within the "-ball (for
instance, oscillate around the origin). The formal definition is as follows:
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1. Outside the "-ball, there is some positive lower bound on the value of V .

Namely, there exists ↵ 2 R+ such that for any x 2 D \ B", V (x) � ↵.
2. Inside the "-ball, there is a strictly smaller "0-ball in which the value of V

is bounded from above, to create a gap with its values outside the "-ball.
Formally, there exists "0 2 (0, ") and � 2 (0,↵) such that for all x 2 B"0 ,

V (x)  �.
3. The Lie derivative of V is strictly negative outside of B"0 . Formally, there

exists � 2 R+ such that for all x 2 D \ B"0 , the Lie derivative of V along f
satisfies rfV (x)  ��.

In sum, the three conditions can be expressed with the following LRF -formula:

LF"(f, V ) ⌘df 9(0,")"09(0,1)↵9(0,↵)�9(0,1)�

8D\B"x
⇣
V (x) � ↵

⌘
^ 8B"0x

⇣
V (x)  �

⌘

^ 8D\B"0x
⇣
rfV (x)  ��

⌘

It is important to note that "0, ↵, �, and �, are not fixed constants, but
existentially quantified variables. Thus the condition can hold true for infinitely
many values of these parameters, which is critical to robustness. The only free
variable in the formula is ", used in B" and the bound for "0. Note also that
neither of LF"(f, V ) and the standard definition LF(f, V ) implies the other.

Remark 1. The logical structure of LF"(f, V ) is seemingly more complex than
the standard Lyapunov conditions in Definition 6 because of the extra existen-
tial quantification. In Theorem 3, we show that it does not add computational
complexity in checking the conditions.

The key result is that the conditions for an "-Lyapunov function are su�cient
for establishing "-stability.

Theorem 1. If there exists an "-Lyapunov function V for a dynamical system

defined by f , then the system is "-stable. Namely, LF"(f, V ) ! Stable"(f).

Proof. Let ⌧ � " be arbitrary, and let ↵, � 2 R+, � 2 (0,↵), and "0 2 (0, ") be
as specified by the definition of LF"(f, V ). Let x0 2 B"0 be an arbitrary point.
For any t 2 R�0, let x(t) := F (x0, t) be the system state as defined in (2). We
use contradiction to prove for any t 2 R+, inequality kx(t)k < "  ⌧ holds.
Since "0 < " and F (x0, .) is continuous, we know t1 and t2 with the following
conditions exists (@B"0 and @B" are boundaries of the corresponding balls):

0  t1 < t2  t, x(t1) 2 @B"0 , x(t2) 2 @B", 8(t1,t2)t0
⇣
x(t0) 2 B" \ B"0

⌘

We know V (x(t1))  � < ↵  V (x(t2)) and hence V (x(t1)) < V (x(t2)) are both
true; however, this is in contradiction with the mean value theorem and the fact
that B" ⇢ D and 8D\B"0x

�
rfV (x) < ��

�
.
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Remark 2. Proof of Theorem 1 shows that once state of the system enters B"0 ,
it never leaves B". However, it would be still possible for the state to leave B"0 .
One the other hand, since closure of B" \ B"0 is bounded, and for every x in this
area, V is continuous at x and rfV (x)  ��, no trajectory can be trapped in
the closure of B" \ B"0 . Therefore, even though state of the system might leave
B"0 , it will visit inside of this ball infinitely often.

Example 1. Consider the time-reversed Van der Pol system given by the follow-
ing dynamics. Figure 3 shows the vector field of this system around the origin.


ẋ1

ẋ2

�
=


�x2

(x2
1 � 1)x2 + x1

�

A Lyapunov function zTPz, where zT is [x1, x2, x2
1, x1x2, x2

2, x
3
1, x

2
1x2, x1x2

2, x
3
2],

and P is the 9 ⇥ 9 constant matrix given in [8], is a 6-degree polynomial that
can be obtained using simulation-guided techniques from [10]. Using dReal [9]
with � := 10�25 and the Euclidean norm, we are able to prove that zTPz is a
10�12-Lyapunov function. Table 1 lists the parameters used for this proof.

3.4 Automated Proofs with Delta-Decisions

We now prove that unlike the conventional conditions, the new inductive proof
rules are numerically robust. It follows that �-decision procedures provide a
sound and relative-complete proof system for establishing the conditions in the
following sense:
– (Soundness) A �-complete decision procedure is always correct when it con-

firms the existence of an "-Lyapunov function.
– (Relative Completeness) For a given "-inductive certificate, there exists � > 0

such that a �0-complete procedure is able to verify it, for any 0 < �0  �.
To prove these properties, the key fact is that the continuity of the functions in
the induction conditions ensures that there is room for numerical errors in the
conditions. Consequently, the formulas allow �-perturbations in their parameters.
This is captured by Lemma 1, and the proof is given in [8].

Lemma 1. For any " 2 R+, there exists � 2 Q+ such that LF"(f, V ) is �-robust.

Note that if a formula � is �-robust then for every �0 2 (0, �), � is �0-robust
as well. The soundness and relative-completeness then follow naturally.

Theorem 2 (Soundness). If a �-complete decision procedure confirms that

LF"(f, V ) is true then V is indeed an "-Lyapunov function, and f is "-stable.

Proof. Using Definition 4, we know LF"(f, V ), exactly as specified in Definition 8,
is true. Therefore, V is "-Lyapunov. Using Theorem 1, f is "-stable.

Theorem 3 (Relative Completeness). For any " 2 R+, if LF"(f, V ) is true

then there exists � 2 Q+ such that any �-complete decision procedure must return

that LF"(f, V ) is true.
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Definition 7 (Epsilon-Stability). Let " 2 R+ be arbitrary. We say a dynami-

cal system in (1) is "-stable at the origin in the sense of Lyapunov, i↵ it satisfies

the following condition:

Stable"(f) ⌘df 8[",1)⌧9(0,1)�8Dx08[0,1)t
⇣
kx0k < � ! kF (x0, t)k < ⌧

⌘

In words, for any ⌧ � ", there exists � such that all trajectories that start within

the �-ball will stay within a ⌧ -ball around the origin.

Note that the only di↵erence with the standard definition is that ⌧ is bounded
from below by a positive " instead of 0. The definition is depicted in Figure 1c,
which shows the di↵erence with the standard notion in Figure 1a. Since the only
di↵erence with the standard definition is the lower bound on the universally
quantified ⌧ , it is clear that "-stability is strictly weaker than standard stability.

Proposition 2. For any " 2 R+, Stable(f) ! Stable"(f).

Thus, any system that is stable in the standard definition is also "-stable for
any " 2 R+. On the other hand, one can always choose small enough " such
that an "-stable system is practically indistinguishable from stable systems in
the standard definition.

3.3 Epsilon-Lyapunov Function

We now define the corresponding notion of Lyapunov function that can be used
for proving "-stability. The robustness problem in the standard definition comes
from the singularity of the origin. With the relaxed notion of stability, the system
may oscillate within some "-neighborhood of the origin. With the relaxation, we
now have room for constructing a few nested neighborhoods that can trap the
trajectories in a way that is robust under su�ciently small perturbations. To
achieve this, we make use of balls of di↵erent sizes, as shown in the following
definition. We write B" to denote open "-balls around the origin.

Definition 8 (Epsilon-Lyapunov Functions). Let V : D ! R be a di↵eren-

tiable scalar function defined for the system in (1), and let " 2 R+ be an arbitrary

value. We say V is an "-Lyapunov function for the system, i↵ it satisfies the fol-

lowing conditions:



Safety and epsilon-barrier functions

• Similarly, we define two robust barrier function 
conditions that are stronger, sufficient for the 
normal notion of safety 

• Prove epsilon-delta completeness



• Ensure that the system goes back into the 
invariant set “near” the boundary
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by �-complete decision procedures. The intuition behind the two definitions is
shown in Figure 2 and will be explained in detail in this section.

4.1 Safety and Barrier Functions

Before formally introducing robust safety and "-barrier functions, we define the
safety and barrier functions first. It is easy to see that the robustness problem
with the barrier functions is similar to that of Lyapunov functions: if the bound-
ary is exactly separating the safe and unsafe regions then the inductive conditions
are not robust, since deviations in the variables by even a small amount from
the barrier will make it impossible to complete the proof.

Definition 9 (Safety). Let B : D ! R be a scalar function defined for the

system in (1). We say B  0 defines a safe (or forward invariant) set for the

system, i↵ the following formula is true:

Safe(f, init, B) ⌘df 8Dx08[0,1)t
⇣
init(x0) ! B(F (x0, t))  0

⌘
.

Definition 10 (Barrier Function). Let B : X ! R be a di↵erentiable scalar

function defined for the system in (1). We say B is a barrier function for the

system, i↵ the following formula is true:

Barrier(f, init, B) ⌘df 8Dx

✓⇣
init(x) ! B(x)  0

⌘
^
⇣
B(x) = 0 ! rfB(x) < 0

⌘◆

Proposition 3. Barrier(f, init, B) ! Safe(f, init, B).

B
=
0

init

(a) Safety

B
=
0

init

rfB < 0

(b) Barrier

B
=
0

B = �"

init

rfB  ��

(c) Type 1 "-Barrier

B
=
0

B = �"⇤

B = �"

B = �"0

init

(d) Type 2 "-Barrier

Fig. 2: Type 1 and Type 2 "-Barriers

4.2 Type 1: Strict Contraction

In the standard definition, the boundary of the barrier set is typically a manifold
defined by equality, which is not numerically robust. To avoid this problem, we
need the barrier boundary to be belt-shaped in the sense that there is a clear gap
between the safe and unsafe regions. The idea is as shown in Figure 2c: we need
a second and stronger barrier defined by B = �" for some reasonable ", so that
the system is clearly separated from B = 0. The formal definition is as follows.

Safety and epsilon-barrier functions
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Definition 12 (Type 2 Barrier Functions). Let T, " 2 R+ be arbitrary. We

say a continuous scalar function B defines a (T, ")-elastic barrier function, i↵

the following conditions hold:

1. For any x, init(x) implies B(x)  �".
2. There exists "0 > " such that any state in B(x)  �" will enter B(x)  �"0

after time T .
3. During time [0, T ], the system may step outside of B(x)  �" but there

exists some "⇤ 2 (0, "] such that all states stay within B(x)  �"⇤.
In all, we define the conditions with the following formula

BarrierT,"(f, init, B) ⌘df 8Dx
⇣
init(x) ! B(x)  �"

⌘

^ 9(0,"]"⇤8Dx8[0,T ]t
⇣
(B(x) = �") ! B(F (x, t))  �"⇤

⌘

^ 9(",1)"08Dx
⇣
(B(x) = �") ! B(F (x, T ))  �"0

⌘

Theorem 6, shows that conditions in Definition 12 ensure that the system
never leaves the invariant B  0. The key is the second condition: induction
works because all states come back to the interior of the set defined by B  �".
With the third condition only, we cannot perform induction because the set may
keep growing.

Theorem 6. For any T, " 2 R+, BarrierT,"(f, init, B) ! Safe(f, init, B).

Proof. For the purpose of contradiction, suppose starting from x0 2 init, the
system is unsafe. Using continuity of the barrier B and the solution function F ,
let t 2 R�0 be a time at which B(x(t)) = 0, where x(t) is by definition F (x0, t).
By the 1st property in Definition 12, we know B(x0)  �" < 0. Using continuity
of B and F , let t0 2 [0, t) be the supremum of all times at which B(x(t0)) = �".
By the 3rd property in Definition 12, we know t�t0 > T , and by the 2nd property
in Definition 12, we know B(x(t0 + T ))  �"0 < �". Using continuity of B and
F , we know there is a time t00 2 (t0 + T, t) at which B(x(t00)) = �". However,
this is in contradiction with t0 being the supremum.

Theorem 7. For any " 2 R+, there exists � 2 Q+ such that BarrierT,"(f, init, B)
is a �-robust formula.

Example 3. We use this example to show how Type 2 "-barriers can be used to
establish safety. Consider the following system.


ẋ1

ẋ2

�
=


�0.1 �10
4 �2

� 
x1
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�

Let init be the set {x | �0.1  x1  0.1,�0.1  x2  0.1}, and let U , the unsafe
set, be the set {x | �2.0  x1  �1.1,�2.0  x2  �1.1}. The system is stable
and safe with respect to the designated unsafe set. However, the safety cannot
be shown using any invariant of the form B(x) := x2

1 +x2
2 � c  0, where c 2 Q+

is a constant, in the standard definition. This is because the vector field on the
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Definition 11 ("-Barrier Certificates). Let " 2 R+ be arbitrary. A di↵er-

entiable scalar function B : D ! R is an "-barrier function i↵ the following

conditions are true:

– For all x, init(x) implies B(x)  �".
– There exists � 2 R+ such that for all x, B(x) = �" implies rfB(x)  ��.

Formally, the condition is defined as

Barrier"(f, init, B) ⌘df 8Dx
⇣
init(x) ! B(x)  �"

⌘

^ 9(0,1)�8Dx
⇣
B(x) = �" ! rfB(x)  ��

⌘

It should be intuitively clear from the definition that the existence of "-barrier
functions is su�cient for establishing invariants and safety properties. The new
requirement is that the system stays robustly within the barrier, by the area
defined by �"  B(x)  0.

Theorem 4. For any " 2 R+, Barrier"(f, init, B) ! Safe(f, init, B).

Proof. Assume Barrier"(f, init, B) is true. It is easy to see Barrier(f, init, B+"), as
specified in Definition 10, is also true. Therefore, using Proposition 3, we know
Safe(f, init, B + ✏) and hence Safe(f, init, B) are both true.

It is clear that there is room for numerically perturbing the size of the area
and still obtaining a robust proof. The proof is similar to the one for Lemma 1
as shown in [8].

Theorem 5. For any " 2 R+, there exists � 2 Q+ such that Barrier"(f, init, B)
is a �-robust formula.

Example 2 (Type 1 "-Barrier for timed-reversed Van der Pol). Consider the
time-reversed Van der Pol system introduced in Example 1. We use the same
example to demonstrate the e↵ect of numerical errors in proving barrier certifi-
cates. The level sets of the Lyapunov functions in the stable region are barrier
certificates; however, for the barriers that are very close to the limiting cycle,
numerical sensitivity becomes a problem. In experiments, when " = 10�5 and
� = 10�4, we can verify that the level set zTPz = 90, is a Type 1 "-barrier. Ta-
ble 2 lists parameters used in this proof. Figure 3 (Left) shows the direction field
for the timed-reversed Van der Pol dynamics, the border of the set zTPz  90,
which we prove is a type 1 "-barrier, and the boundary of set zTPz  110, which
is clearly not a barrier, since it is outside of the limit cycle.

The conditions for "-Lyapunov and "-barrier functions look very similar, but
there is an important di↵erence. In the case of Lyapunov functions, we do not
evaluate the Lie derivative of the balls. Thus, the balls do not define barrier sets.
On the other hand, the level sets of Lyapunov functions always define barriers.

Remark 3. The "-barrier functions can also be used as a su�cient condition for
"-stability, if a barrier can be found within the "-ball required in "-stability.

Type 1:

Type 2:

Safety and epsilon-barrier functions
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Definition 12 (Type 2 Barrier Functions). Let T, " 2 R+ be arbitrary. We
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Theorem 6, shows that conditions in Definition 12 ensure that the system
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entiable scalar function B : D ! R is an "-barrier function i↵ the following

conditions are true:

– For all x, init(x) implies B(x)  �".
– There exists � 2 R+ such that for all x, B(x) = �" implies rfB(x)  ��.

Formally, the condition is defined as
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⇣
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It should be intuitively clear from the definition that the existence of "-barrier
functions is su�cient for establishing invariants and safety properties. The new
requirement is that the system stays robustly within the barrier, by the area
defined by �"  B(x)  0.

Theorem 4. For any " 2 R+, Barrier"(f, init, B) ! Safe(f, init, B).

Proof. Assume Barrier"(f, init, B) is true. It is easy to see Barrier(f, init, B+"), as
specified in Definition 10, is also true. Therefore, using Proposition 3, we know
Safe(f, init, B + ✏) and hence Safe(f, init, B) are both true.

It is clear that there is room for numerically perturbing the size of the area
and still obtaining a robust proof. The proof is similar to the one for Lemma 1
as shown in [8].

Theorem 5. For any " 2 R+, there exists � 2 Q+ such that Barrier"(f, init, B)
is a �-robust formula.

Example 2 (Type 1 "-Barrier for timed-reversed Van der Pol). Consider the
time-reversed Van der Pol system introduced in Example 1. We use the same
example to demonstrate the e↵ect of numerical errors in proving barrier certifi-
cates. The level sets of the Lyapunov functions in the stable region are barrier
certificates; however, for the barriers that are very close to the limiting cycle,
numerical sensitivity becomes a problem. In experiments, when " = 10�5 and
� = 10�4, we can verify that the level set zTPz = 90, is a Type 1 "-barrier. Ta-
ble 2 lists parameters used in this proof. Figure 3 (Left) shows the direction field
for the timed-reversed Van der Pol dynamics, the border of the set zTPz  90,
which we prove is a type 1 "-barrier, and the boundary of set zTPz  110, which
is clearly not a barrier, since it is outside of the limit cycle.

The conditions for "-Lyapunov and "-barrier functions look very similar, but
there is an important di↵erence. In the case of Lyapunov functions, we do not
evaluate the Lie derivative of the balls. Thus, the balls do not define barrier sets.
On the other hand, the level sets of Lyapunov functions always define barriers.

Remark 3. The "-barrier functions can also be used as a su�cient condition for
"-stability, if a barrier can be found within the "-ball required in "-stability.
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Fig. 3: (Left) Van der Pol Example (Right) Type 2 Barrier Example

Remark 4. A technical requirement for proving robustness of the "-barrier con-
ditions is that ¬init defines a simple set that can be over-approximated, such
that for every " 2 R+, there is � 2 R+ such that for any point that satisfies
¬init+� there is an "-close point that satisfies ¬init. A su�cient condition for
this restriction is that init be of the form (

V
i ai  xi  bi) ! '(x), where

ai, bi 2 Q are arbitrary constants, and ' is a quantifier-free formula with only
strict inequalities [22].

4.3 Type 2: Bounded Escape

We now introduce the second set of conditions for establishing "-invariant sets.
This set of conditions can be used only when the "-variations are considered. This
notion is inspired by the notion of k-step invariants [3] for discrete-time systems.
The "-margin that we allow at the boundary of the invariants allows us to exploit
more techniques. Using reachable set computation, we can directly check if all
states stay within the barrier set at each step. To ensure that the conditions are
inductive and useful, we need to impose the following two requirements:

– (Contraction) Similar to the strengthening in barrier certificates, we require
that the system does not sit at the boundary: the dynamics at the boundary
should be contracting. The di↵erence with Type 1 "-barriers is that, this
condition is not imposed through the vector field on the boundary. Instead,
it is a reachability condition: after some amount of time, all states should
return to the interior of an appropriate set.

– (Bounded Escape) Before reaching back to the invariant set, we allow the
system to step outside the invariant, but only up to a bounded distance from
the boundary.

The intuition is depicted in Figure 2d. In the formal definition, we parameterize
the conditions with the time for contraction and the maximum deviation from
the invariant set, as follows.

Safety and epsilon-barrier functions
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boundary of such sets do not satisfy the inductive conditions. Nevertheless, we
can show that for c = 1, B(x) is a Type 2 "-barrier. The dReal query verifies
the conditions with " = 0.1. Since U(x) ! B(x) > ✏ and init(x) ! B(x) < �"0,
we know that the system cannot reach any unsafe states. Figure 3 (Right),
illustrates the example. The green set at the center represents init, and the red
set represents unsafe set U . The B(x) = 0 level set is not invariant, as evidenced
in the figure by the forward images at t = 0.14 and t = 0.28 leaving the set;
however, as the dReal query proves, the reachable set over 0  t  10 does not
leave the B(x) = 1.0 level set and is completely contained in the B(x) = �0.1
level set by t = 0.4. Since U(x) ! B(x) > 1.0 and init(x) ! B(x) < �0.1, then
the system cannot reach any state in U .

5 Experiments

In this section, we show examples of nonlinear systems that can be verified to
be "-stable or safe with "-barriers.

Example ↵ � � " "0 Time (s)

T.R. Van der Pol 2.10⇥10�23 1.70⇥10�23 10�25 10�12 5⇥10�13 0.05

Norm. Pend. 7.07⇥10�23 3.97⇥10�23 10�50 10�12 5⇥10�13 0.01

Moore-Greitzer 2.95⇥10�19 2.55⇥10�19 10�20 10�10 5⇥10�11 0.04

Table 1: Results for the "-Lyapunov functions. Each Lyapunov function is of
the form zTPz, where z is a vector of monomials over the state variables. We
report the constant values satisfying the "-Lyapunov conditions, and the time
that verification of each example takes (in seconds).

Example ` " � degree(z) size of P Time (s)

T.R. Van der Pol 90 10�5 10�5 3 9⇥ 9 6.47

Norm. Pend. [0.1, 10] 10�2 10�2 1 2⇥ 2 0.08

Moore-Greitzer [1.0, 10] 10�1 10�1 4 5⇥ 5 13.80

PTC 0.01 10�5 10�5 2 14⇥ 14 428.75

Table 2: Results for the "-barrier functions. Each barrier function B(x) is of the
form zTPz� `, where z is a vector of monomials over x. We indicate the highest
degree of the monomials used in z, the size of the P , the level ` used for each
barrier function, and the value of " and � used to the check rfB(x) < ��.

Table 1 contains parameters we use to verify requirements of Definition 8
for "-Lyapunov functions in our examples. Table 2 contains parameters we use
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controller, i. The system is highly nonlinear, with the following dynamics
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which followed the detailed description of the model and the constant parameter
values in [10]. We verified that there exists a function of the form B(x) = zTPz�
0.01 (z consist of 14 monomials with a maximum degree of 2), where rfB(x) <
��, when B(x) = �".

6 Conclusion

We formulated new inductive proof rules for stability and safety for dynamical
systems. The rules are numerically robust, making them amenable to verification
using automated reasoning tools such as those based on �-decision procedures.
We presented several examples demonstrating the value of the new approach,
including safety verification tasks for highly nonlinear systems. The examples
show that the framework can be used to prove stability and safety for examples
that were out of reach for existing tools. The new framework relies on the ability
to generate reasonable candidate Lyapunov functions, which are analogous to
ranking functions from program analysis. Future work will include improved
techniques for e�ciently generating the "-Lyapunov and "-barrier functions and
related theoretical questions.
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we know that the system cannot reach any unsafe states. Figure 3 (Right),
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• Once the proof rules can be checked, we can 
further automate control design. 

From verification to synthesis

∃p∃q∀x Φ( f, u(p, x), V(q, x))

• Find parameters for control             and proof 
certificate             so that the inductive 
conditions in      are true over all states. 

u(p, x)
V(q, x)

Φ



From verification to synthesis

∃p∃q∀x Φ( f, u(p, x), V(q, x))

• In general we can try solving these formulas in 
the delta-decision framework. [Kong et al. CAV’18] 

• But it is very hard to scale, because p and 
especially q can be very high-dimensional. 



From verification to synthesis

∃p∃q∀x Φ( f, u(p, x), V(q, x))

• We need cheap algorithms to search for p and q.  

• We can often afford full SMT solving over x.  

• Also, the form of u and V matter a lot. 



From verification to synthesis

∃p∃q∀x Φ( f, u(p, x), V(q, x))

• The standard approach is to assume V is a 
sum-of-squares polynomial and the search can 
be done through semidefinite programming.   

• In practice, it is very brittle. (checking rarely passes)



Crazy attempt: use neural networks

∃p∃q∀x Φ( f, u(p, x), V(q, x))

• Instead of asking V to be a polynomial, let it 
be a neural network.  

• Use the verifier/falsifier to enforce the 
inductive conditions and produce training sets. 

[Chang et al. NeurIPS’19]



Crazy attempt: use neural networks

Definition 4 (Lyapunov Risk). Consider a candidate Lyapunov function V✓ for a controlled dynamical
system fu from Definition 1. The Lyapunov risk is a defined by the following function

L⇢ (✓, u) = Ex⇠⇢(D)

✓
max(0,�V✓(x)) + max(0,rfuV✓(x)) + V 2

✓ (0)

◆
, (3)

where x is a random variable over the state space of the system with a distribution ⇢. In practice, we
work with the Monte Carlo estimate named the empirical Lyapunov risk by drawing samples:

LN,⇢ (✓, u) =
1

N

NX

i=1

✓
max(�V✓(xi), 0) + max(0,rfuV✓(xi))

◆
+ V 2

✓ (0), (4)

where xi, 1  i  N are samples of the state vectors sampled according to ⇢(D).

It is clear that the empirical Lyapunov risk is an unbiased estimator of the Lyapunov risk function. It
is clear that LN,⇢ is an unbiased estimator of L⇢.

Note that L⇢ is positive semidefinite, and any (✓, u) that corresponds to a true Lyapunov function
satisfies L(✓, u)=0. Thus, Lyapunov functions define global minimizers of the Lyapunov risk function.
Proposition 2. Let V✓o be a Lyapunov function for dynamical system fuo where uo is the control
parameters. Then (✓o, uo) is a global minimizer for L⇢ and L⇢(✓o, uo) = 0.

Note that both V✓ and fu are highly nonlinear (even though u is almost always linear in practice),
and thus L(✓, u) generates a highly complex landscape. Surprisingly, multilayer feedforward tanh
networks and stochastic gradient descent can quickly produce generalizable Lyapunov functions with
nice geometric properties, as we report in detail in the experiments. In Figure 1 (b), we show an
example of how the Lyapunov risk is minimized over iterations on the inverted pendulum example.

Initialization and improvement of control performance over LQR. Because of the local nature
of stochastic gradient descent, it is hard to learn good control functions through random initialization
of control parameters. Instead, the parameters u in the control function are initialized to the LQR
solution, obtained for the linearized dynamics in a small neighborhood around the stationary point. On
the other hand, the initialization of the neural network Lyapunov functions can be completely random.
We observe that the final learned controller often delivers significantly better control solutions than
the initalization from LQR. Figure 1(a) shows how the learned control reduces oscillation of the
system behavior in the humanoid robot balancing example and achieve more stable control.

Figure 1: (a) Comparison between LQR and deep-learned controllers for humanoid balancing. (b)
The Lyapunov risk decreases quickly over iterations. (c) Counterexamples returned by falsifiers from
several epochs, which quickly guides the learner to focus on sepcial regions in the space.

3.2 Falsification and Counterexample Generation

For each control and Lyapunov function pair (V✓, u) that the learner obtains, the falsifier’s task is to
find states that violate the Lyapunov conditions in Proposition 1. We formulate the negations of the
Lyapunov conditions as a nonlinear constraint solving problem over real numbers. These falsification
constraints are defined as follows.

4

Require the neural network V to satisfy the inductive 
conditions on samples and counterexamples. Just use 
cheap gradient descent.
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Quite amazingly it worked on many hard examples.

(humanoid balancing)
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and Lyapunov functions, and a falsifier that finds counterexamples to 
quickly guide the learner towards solutions. 

• The approach significantly simplifies the process of Lyapunov control 
design, provides end-to-end correctness guarantee, and can obtain 
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Importantly, it improves previously known RoA. 

4 Experiments

We demonstrate that the proposed methods find provably stable control and Lyapunov functions on
various nonlinear robot control problems. In all the examples, we use a learning rate of 0.01 for the
learner, an " value of 0.25 and � value of 0.01 for the falsifier, and re-verify the result with smaller "
in Table 1. We emphasize that the choices of these parameters do not affect the stability guarantees
on the final design of the control and Lyapunov functions. We show that the region of attraction is
enlarged by 300% to 600% compared to LQR results in these examples. Full details of the results and
system dynamics are provided in the Appendix. Note that for the Caltech ducted fan and humanoid
balancing examples, we numerically relaxed the conditions slightly when the learning has converged,
so that the SMT solver dReal does not run into numerical issues. More details on the effect of such
relaxation can be found in the paper website [8].

Benchmarks Learning time falsification time # samples # iterations "
Inverted Pendulum 25.5 0.6 500 430 0.04

Path Following 36.3 0.2 500 610 0.01
Caltech Ducted Fan 1455.16 50.84 1000 3000 0.01

Humanoid Balancing 6000 458.27 1000 4000 0.01

Table 1: Runtime statistics of the full procedures on four nonlinear control examples.

Inverted pendulum. The inverted pendulum is a standard nonlinear control problem for testing
different control methods. This system has two state variables, the angular position ✓, angular velocity
✓̇ and one control input u. Our learning procedure finds a neural Lyapunov function that is proved
to be valid within the domain kxk2  6. In contrast, the ROA found by SOS/SDP techniques is an
ellipse with large diameter of 1.75 and short diameter of 1.2. Using LQR control on the linearized
dynamics, we obtain an ellipse with large diameter of 6 and short diameter of 0.1. We observe that
among all the examples in our experiments, this is the only one where the SOS Lyapunov function
has passed the complete check by the constraint solver, so that we can compare to it. The Lyapunov
function obtained by LQR gives a larger ROA if we ignore the linearization error. The different
regions of attractions are shown in Figure 3. These values are consistent with the approximate
maximum region of attraction reported in [24]. In particular, Figure 3 (c) shows that the SOS function
does not define a big enough ROA, as many trajectories escape its region.

Figure 3: Results of Lyapunov functions for inverted pendulum. (a) Lie derivative of learned
Lyapunov function over valid region. Its value is negative over the valid region, satisfying the
Lyapunov conditions. (b) ROA estimated by different Lyapunov functions. Our method enlarges
the ROA from LQR three times. (c) Validation of ROAs. Stars represent initial states. It shows
trajectories start near border of the ROA defined by the learned neural Lyapunov function are safely
bounded within the green region. On the contrary, many trajectories (red) starting inside the SOS
region can escape, and thus the region fails to satisfy the ROA properties.

Caltech ducted fan in hover mode. The system describes the motion of a landing aircraft in hover
mode with two forces u1 and u2. The state variables x, y, ✓ denote the position and orientation of
the centre of the fan. There are six state variables [x, y, ✓, ẋ, ẏ, ✓̇]. The dynamics, neural Lyapunov

7



Conclusion

• For core nonlinear control problems, we can 
fully automate proofs and designs through 
reasoning engines and formal tools.  

• Improve standard control methods both in 
performance and reliability guarantees.  

• Numerical and probabilistic methods are 
powerful when their formal basis is established. 



Thank you!


