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Motivations

= weather forecast
= nuclear simulation
= optimal control

PDE (Partial Differential Equation)

=

Usually too complex to solve by an exact mathematical formula
= approximated by numerical scheme over discrete grids/volumes

= mathematical proofs of the convergence of the numerical scheme
(we compute something close to the PDE solution if the size decreases)

= real program implementing the scheme/method

Let us machine-check this kind of programs!
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Motivations

http://www.ima.umn.edu/~arnold/disasters/sleipner.html

The sinking of the Sleipner A offshore
platform

Excerpted from a report of SINTEE. Civil and Environmental Engineering:

The Sleipner A platform produces oil and gas in the North Sea and is supported on the
seabed at a water depth of 82 m. It is a Condeep type platform with a concrete gravity
base structure consisting of 24 cells and with a total base area of 16 000 m2. Four cells
are elongated to shafts supporting the platform deck. The first concrete base structure
for Sleipner A sprang a leak and sank under a controlled ballasting operation during
preparation for deck mating in Gandsfjorden outside Stavanger, Norway on 23 August
1991.

Immediately after the accident, the owner of the platform, Statoil, a Norwegian oil
company appointed an investigation group, and SINTEF was contracted to be the
technical advisor for this group.

The investigation into the accident is described in 16 reports...

The conclusion of the investigation was that the loss was caused by a failure in a cell wall,
resulting in a serious crack and a leakage that the pumps were not able to cope with. The
wall failed as a result of a combination of a serious error in the finite element analysis
and insufficient anchorage of the reinforcement in a critical zone.

A better idea of what was
involved can be obtained
from this photo and sketch
of the platform. The top
deck weighs 57,000 tons,
and provides
accommodation for about
200 people and support for
drilling equipment weighing
about 40,000 tons. When
the first model sank in
Auaust 1991. the crash
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Motivations

Real life applications need solving PDE (Partial Differential Equation) on
complex 3D geometries.
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Motivations

Real life applications need solving PDE (Partial Differential Equation) on
complex 3D geometries.
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@ V. Martin

Instead of regular 2D /3D grids, we consider meshes made of
triangles/tetrahedra.
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Motivations

The Finite Element Method (FEM) is the most used method to solve
PDEs over meshes.

FEM encompasses methods for connecting many simple element
equations over many small subdomains, named finite elements, to
approximate a more complex equation over a larger domain.

(https://en.wikipedia.org/wiki/Finite_element_method)
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https://en.wikipedia.org/wiki/Finite_element_method

Motivations

The Finite Element Method (FEM) is the most used method to solve
PDEs over meshes.

FEM encompasses methods for connecting many simple element
equations over many small subdomains, named finite elements, to
approximate a more complex equation over a larger domain.

(https://en.wikipedia.org/wiki/Finite_element_method)

= mathematical proofs of the FEM
= C++ library (Felisce) implementing the FEM

Let us machine-check this program!
First, let us understand/formally prove the mathematics.
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@ more 50 pages of mathematical proofs
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Proof engineering

Let us build upon the Coquelicot library (Boldo, Lelay, Melquiond)

+ general spaces
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Proof engineering

Let us build upon the Coquelicot library (Boldo, Lelay, Melquiond)
+ general spaces

+ many existing theorems

- not always the space we need
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Summary of the work done

®© ©6 6 6 6 66 o o o o

results about functional spaces, linear and bilinear mappings
fixed-point theorem in a sub-complete normed module

decide if a space (> NormedModule) is only zero

norm on functions (operator norm) on R U {400}

8 equivalences of continuity of linear mappings

definitions of pre-Hilbert and Hilbert spaces in Coquelicot hierarchy
define clm: the set of the continuous linear mappings

prove it is a NormedModule, to consider clm E (clm E R)

prove Lax-Milgram theorem and Céa's lemma

for a total of about 10k lines of Coq and 430 lemmas/definitions
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Lax-Milgram Theorem and Céa’s Lemma

Theorem (Lax-Milgram)

Let E : Hilbert, f € E', C,a € RY. Let ¢ : E — Prop, ¢
ModuleSpace-compatible and complete. Let a be a bilinear form of E
bounded by C and a-coercive. Then:

Flu e E,p(u) AVv € E,o(v) = f(v) = a(u, v) A |lullg < —|||f|||

Lemma (Céa)

| -G‘
.

Let E : Hilbert, f € E', 0 < a. Let p: E — Prop, ¢
ModuleSpace-compatible and complete. Let a be a bilinear form of E,
bounded by C > 0 and a-coercive. Let u and u, be the solutions given by
Lax—Milgram Theorem respectively on E and on the subspace . Then:

C
Vv, € E,p(vp) = [Ju— ”«PHE < o |u— V<p“E-

v
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Where are we?

Towards the Coq formalization of the finite element method:

e Lax-Milgram theorem (v')
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@ requires the subspace to be complete
(v for finite-dimensional subspaces)

@ requires E to be a Hilbert space

@ E will be instantiated as the Sobolev space L»
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Where are we?

Towards the Coq formalization of the finite element method:

e Lax-Milgram theorem (v')

@ requires the subspace to be complete
(v for finite-dimensional subspaces)

requires E to be a Hilbert space

E will be instantiated as the Sobolev space L,

o
o
= prove that L, is an Hilbert space
= Lebesgue integration!

o
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Measurability

Given a set E— Prop, is it measurable?
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Measurability

Given a set E— Prop, is it measurable?

We chose the definition from the generator sets:

Context {E : Type}.

(* initialization sets *)
Variable gen : (E — Prop) — Prop.

Inductive measurable : (E— Prop) — Prop :=
| measurable_gen : forall omega, gen omega — measurable omega
| measurable_empty : measurable (fun _ = False)
| measurable_compl : forall omega,
measurable (fun x = not (omega x)) — measurable omega
| measurable_union_countable :
forall omegamat — (E— Prop),
(forall n, measurable (omega n)) —
measurable (fun x = exists n, omega n x).

The measurable sets are aka o-algebras.
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Measurability

Advantages of Inductive:
= induction is possible
= easy theorems
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We defined generators on R and R:
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Definition gen_Rbar_mc := (fun om = exists a, (forall x, om x <> Rbar_le a x)).
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Measurability

Advantages of Inductive:
= induction is possible
= easy theorems

We defined generators on R and R:

Definition gen_R_cc := (fun om = exists a b, (forall x, om x ¢ a <= x <= b)).
Definition gen_Rbar_mc := (fun om = exists a, (forall x, om x <> Rbar_le a x)).

But we may use other generators and prove the measurable sets are the
same. For instance a < x < b or with a and b in Q.

And we proved that it is equivalent to the usual Borel o-algebras:

Lemma measurable_R_open : forall om,
measurable gen_R_cc om <> measurable open om.
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Measurable functions

A function f : E — F is measurable if the set A(f(x)) is measurable in F

for all measurable sets A in E:

Definition measurable_fun : (E — F) — Prop :=

fun f = (forall (A: F — Prop), measurable genF A —
measurable genE (fun x = A (f x))).
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Measurable functions

A function f : E — F is measurable if the set A(f(x)) is measurable in F
for all measurable sets A in E:

Definition measurable_fun : (E — F) — Prop :=

fun f = (forall (A: F — Prop), measurable genF A —
measurable genE (fun x = A (f x))).

The sum and multiplication by a scalar of measurable functions on R and
R are measurable functions.
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Measurable functions

A function f : E — F is measurable if the set A(f(x)) is measurable in F
for all measurable sets A in E:
Definition measurable_fun : (E — F) — Prop :=

fun f = (forall (A: F — Prop), measurable genF A —
measurable genE (fun x = A (f x))).

The sum and multiplication by a scalar of measurable functions on R and
R are measurable functions.

When considering the restriction of f on the subset A.

Lemma measurable_fun_when_charac :
forall (f £:E— Rbar) (A : E— Prop),
measurable gen A —
(forallx, Ax - fx=1£x)—
measurable_fun_Rbar f' —
measurable_fun_Rbar (fun x = Rbar_mult (f x) (charac A x)).

with charac A the characteristic function 1 4.
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Measure definition

We choose to not (yet) define the Lebesgue measure, but define what a
measure is supposed to satisfy:

Context {E : Type}.
Variable gen : (E — Prop) — Prop.

Record measure := mk_measure {

meas :> (E— Prop) — Rbar ;
meas_False : meas (fun _ = False) =0 ;
meas_ge_0: forall om, Rbar_le 0 (meas om) ;
meas_sigma_additivity : forall omega :nat — (E— Prop),

(forall n, measurable gen (omega n)) —

(forallnm x, omegan x —> omegam X — 0 = m)

— meas (fun x = exists n, omega n x)

= Sup_seq (fun n = sum_Rbar n (fun m = meas (omega m)))

).

Note that we have at least a measure: the Dirac measure.

Sylvie Boldo (Inria) Lebesgue Integration January 7th, 2020 22/39



Measure properties

Many properties hold for all measures such as:

Lemma measure_Boole_ineq : forall (mu:measure) (A:nat — E— Prop) (N : nat),
(forall n, n <= N — measurable gen (A n)) —
Rbar_le (mu (fun x = exists n,n <= N A An x))
(sum_Rbar N (fun m = mu (A m))).

0 U Al < Z 1(A;)

i€[0..N] i€[0..N]
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Simple functions?

Examples of simple functions @ mathonline

Z Le1gyy

y€ef(E)
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Simple functions?

Examples of simple functions @ mathonline

Z Le1gyy

y€ef(E)

We have tried various definitions of simple functions, especially as we
prefer to sum over a finite set of values.
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Simple functions definition

Definition finite_vals : (E— R) — (list R) — Prop :=
fun f 1 = forally, In (f y) 1.

= OK, but not unique.
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Simple functions definition

Definition finite_vals : (E— R) — (list R) — Prop :=
fun f 1 = forally, In (f y) 1.

= OK, but not unique.

Definition finite_vals_canonic : (E— R) — (list R) — Prop :=
fun f 1 = (LocallySorted R1t 1) A
(forallx, Inx 1 — existsy, fy =x) A
(forally, In (f y) 1).
= unique!
We were able to construct the second list from the first.
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Simple functions integration

/fdudéf' Z ap(f1(a)) eR
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Simple functions integration

/fdudéf' Z ap(f1a)) €R

aef(X)

Definition SF_aux : (E— R) — (list R) — Prop :=
fun f 1 = finite_vals_canonic f 1 A
(forall a, measurable gen (fun x = f x = a)).

Definition SF: (E— R) — Set := fun f = { 1 | SF_aux f 1}.

Definition afl (f:E—R) :=
(fun a : Rbar = Rbar_mult a (mu (fun (x:E) = f x = a))).

Definition LInt_simple_fun_p :=
fun (f:E— R) (H:SF gen f) = let 1:= (proji_sig H) in
sum_Rbar_map 1 (afl f).

We proved the value does not depends on the proof H.
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Simple functions integration

/fdudéf' Z ap(f1(a)) eR

aef(X)

Definition SF_aux : (E— R) — (list R) — Prop :=
fun f 1 = finite_vals_canonic f 1 A
(forall a, measurable gen (fun x = f x = a)).

Definition SF: (E— R) — Set := fun f = { 1 | SF_aux f 1}.

Definition afl (f:E—R) :=
(fun a : Rbar = Rbar_mult a (mu (fun (x:E) = f x = a))).

Definition LInt_simple_fun_p :=
fun (f:E— R) (H:SF gen f) = let 1:= (proji_sig H) in
sum_Rbar_map 1 (afl f).

We proved the value does not depends on the proof H.

= theorems about sum, multiplication by a scalar and change of variable
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Lebesgue integral

/fdudéf' sup /gpdu eR
PESF 1, p<f
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Lebesgue integral

/fdudg' sup /god,u €R
PESF 4 ,p<f
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Lebesgue integral

/fdudg' sup /god,u €R
PESF 4 ,p<f

b

Riemann integral vs Lebesgue integral

@© Serge Mehl chronomath.com
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Lebesgue integral definition

/fdudéf' sup /god,u eR
PESF 4, p<f

Definition LInt_p :(E— Rbar) — Rbar := fun f =
Rbar_lub (fun x = exists (g:E— R), exists (Hg: SF gen g),
non_neg g N\
(forall (z:E), Rbar_le (g z) (f z)) A
LInt_simple_fun_p mu g Hg = x).
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Theorems (1/3)

Theorem (Beppo Levi, monotone convergence)

Let (fy)nen be a sequence of nonnegative measurable functions, that is
pointwise nondecreasing. Then, the pointwise limit of (f,)neN is
nonnegative and measurable, and we have in R

g o
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Theorems (2/3)

Theorem (Fatou—Lebesgue)

Let (fn)nen be a sequence of nonnegative measurable functions. Then, we

have in R

/lﬂi{g fodu < Iir,nl}ior;f/f,, du.

Theorem Fatou_Lebesgue : forall f: nat — E — Rbar,
(forall n, non_neg (f n)) —
(forall n, measurable_fun_Rbar gen (f n)) —
Rbar_le (LInt_p mu (fun x = LimInf_seq’ (funn = f n x)))
(LimInf_seq’ (fun n = LInt_p mu (f n))).
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Theorems (3/3): focus on a hard one
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Theorems (3/3): focus on a hard one

/(f+g):/f+/g

Lemma LInt_p_plus : forall f g,
non_neg f — non_neg g —
measurable_fun_Rbar gen f — measurable_fun_Rbar gen g —
LInt_p mu (fun x = Rbar_plus (f x) (g x))
= Rbar_plus (LInt_p mu f) (LInt_p mu g).
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Proof of [(f+g)=[f+ [g(1/2)

It needs adapted sequences:

Definition is_adapted_seq (f:E— Rbar) (phimnat— E— R) :=
(forall n, non_neg (phi n)) A
(forall (x:E) n, phin x <= phi (Sn)x) A
(forall n, exists 1, SF_aux gen (phi n) 1) A
(forall (x:E), is_sup_seq (fun n = phi n x) (£ x)).

as their limit gives the integral:

Lemma LInt_p_with_adapted_seq:
forall f phi, is_adapted_seq f phi —
is_sup_seq (fun n = LInt_p mu (phi n)) (LInt_p mu f).
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Proof of [(f+g)= [f+ [g(2/2)

Adapted sequences may be defined like that:

[27F(x))

Vx,  fa(x) T when f(x) < n,
n otherwise.
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Proof of [(f+g)= [f+ [g(2/2)

Adapted sequences may be defined like that:
[2"f(x))
Vx,  fa(x) T when f(x) < n,
n otherwise.

that may be written in Coq as:

Definition mk_adapted_seq (n:nat) (x:E) :=
match (Rbar_le_lt_dec (INR n) (f x)) with
| left _ = INRn
| right _ = round radix2 (FIX_exp (—n)) Zfloor (f x)

end.
relying on fixed-point arithmetic defined by the Flocq library!!
And then:

Lemma mk_adapted_seq_is_adapted_seq:
is_adapted_seq f mk_adapted_seq.
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Conclusion

For the Lebesgue integration:
@ mathematicians at work: 184 pages and 600 lemmas/definitions

o formal proofs at work: 11 k lines lines and 635 lemmas/definitions
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Conclusion

For the Lebesgue integration:
@ mathematicians at work: 184 pages and 600 lemmas/definitions

o formal proofs at work: 11 k lines lines and 635 lemmas/definitions

Difficult parts:
e handling subspaces (mainly with 1 here)

@ having usable simple functions
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Perspectives

@ extend to functions of varying sign

/f:/max(O, f)—/maX(O,—f)
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Perspectives

@ extend to functions of varying sign
/f:/max(O, f)—/max(O,—f)
o define the Lebesgue measure
@ merge/take advantage of mathcomp-analysis
@ write the corresponding article
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Perspectives

@ extend to functions of varying sign

/f:/max(O, f)—/maX(O,—f)

o define the Lebesgue measure
@ merge/take advantage of mathcomp-analysis

@ write the corresponding article

@ define L, and prove it is a Hilbert
o define the FEM algorithm and prove it

@ prove a real implementation (in floating-point arithmetic)
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Thank you for your attention
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