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The story

I Johan Commelin and I are interested in formalizing the theory
of o-minimal structures.

I Book: van den Dries, Tame topology and o-minimal structures

I About 40 pages of relevant content

I Virtually no mathematical prerequisites

I Probably constructive

I I claim it is basically infeasible to formalize without some
specialized automation.
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Paths in classical algebraic topology

Let X be a topological space and a and b points of X .

Definition
A path in X from a to b is a continuous map γ : [0, 1]→ X such
that γ(0) = a and γ(1) = b.
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The reality of topological spaces

A continuous map can be quite “pathological”.

I Take X = Rn. A continuous map γ : [0, 1]→ X might be
nowhere differentiable.

I Take X = Sn, n ≥ 2. A continuous map γ : [0, 1]→ X might
be surjective (space-filling curve).

I Suppose X is the union of two closed subsets A and B.
A continuous map γ : [0, 1]→ X might “enter and leave” A
and B infinitely many times.
For example, take X = R, A = (−∞, 0], B = [0,∞),
γ(t) = t sin(1/t).

Furthermore, X itself might be “pathological” from the standpoint
of homotopy theory. For example, X = Zp (topologically a Cantor
set) has no nonconstant paths and so might as well be discrete,
but it has a nontrivial topology.
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Grothendieck on topology

After some ten years, I would now say, with hindsight,
that “general topology” was developed (during the thirties
and forties) by analysts and in order to meet the needs of
analysts, not for topology per se, i.e. the study of the
topological properties of the various geometrical shapes.
That the foundations of topology are inadequate is man-
ifest from the very beginning, in the form of “false prob-
lems” (at least from the point of view of the topological
intuition of shapes) such as the “invariance of domains”,
even if the solution to this problem by Brouwer led him to
introduce new geometrical ideas.

— Grothendieck, Esquisse d’un Programme (1984)
(translated by Schneps and Lochak)



Tame topology

Objective: Develop a setting for the homotopy theory of spaces
which is flexible enough to allow the usual sorts of constructions
but also “tame” enough to rule out the pathologies we saw earlier.



Semialgebraic sets

Fix a real closed field R (for example, R or the real algebraic
numbers).

Definition
A semialgebraic set in Rn is a finite union of sets of the form

{ x ∈ Rn | f1(x) = 0, . . . , fk(x) = 0, g1(x) > 0, . . . , gl(x) > 0 }

for polynomials f1, . . . , fk , g1, . . . , gl in the coordinates of x .

Definition
Let X ⊂ Rm and Y ⊂ Rn be semialgebraic sets. A function
f : X → Y is semialgebraic if its graph

Γ(f ) = { (x , y) | y = f (x) } ⊂ X × Y ⊂ Rm+n

is semialgebraic.
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Tameness of semialgebraic functions

Theorem
A semialgebraic function γ : [0, 1]→ Rn is differentiable at all but
finitely many points.

Theorem
There is a theory of dimension of semialgebraic sets with the
expected properties, including dim f (X ) ≤ dimX for a
semialgebraic function f : X → Y .

Theorem
If X = A ∪ B is the union of two closed semialgebraic subsets then
for any continuous semialgebraic function γ : [0, 1]→ X, the
domain [0, 1] can be decomposed into finitely many closed
intervals each of which is mapped by γ into either A or B.
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The homotopy theory of semialgebraic sets

Theorem
The homotopy category of semialgebraic sets is equivalent to the
homotopy category of finite CW complexes.

There is a more sophisticated notion of weakly semialgebraic
space; these model all homotopy types.
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O-minimal structures

The preceding theorems all follow from a few simple properties of
the class of semialgebraic sets.

More specifically, semialgebraic sets are an example of an
o-minimal structure and the preceding theorems are valid for any
“o-minimal expansion of a real closed field”.
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Structures

Fix any set R.

Definition
A structure consists of, for each n ≥ 0, a family of subsets of Rn

called the definable subsets

such that:

I For each n ≥ 0, the definable subsets of Rn form a boolean
algebra of subsets (the empty set is definable, and the
definable sets are closed under union and complementation).

I For each n ≥ 0, if A ⊂ Rn is definable, then R × A ⊂ Rn+1

and A× R ⊂ Rn+1 are definable.

I For each n ≥ 2, the set { (x1, . . . , xn) ∈ Rn | x1 = xn } is
definable.

I For each n ≥ 0, writing π : Rn+1 = Rn × R → Rn for the
projection, if A ⊂ Rn+1 is definable, then π(A) ⊂ Rn is
definable.
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O-minimal structures

Now suppose R is an ordered field.

Definition
An o-minimal structure (technically, “o-minimal expansion of
(R, <,+,×)”) is a structure satisfying the following additional
conditions:

I (Constants) The set {r} is definable for every r ∈ R.

I (Extension) The sets

{ (x , y) | x < y } ⊂ R2,

{ (x , y , z) | x + y = z } ⊂ R3,

{ (x , y , z) | x × y = z } ⊂ R3

are definable.

I (Minimality) Any definable set in R is a finite union of
singletons and open intervals.
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Examples of o-minimal structures

Example

Semialgebraic sets form an o-minimal structure Rsa (for any real
closed field R).

The hard part is to show that a projection of a semialgebraic set is
semialgebraic. (Tarski–Seidenberg theorem)

Example

Wilkie’s theorem: The smallest structure containing Rsa and the
graph of exp : R→ R is o-minimal.
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Definable functions

Fix a set R and a structure on R.

Definition
Suppose X ⊂ Rm and Y ⊂ Rn are definable sets. A function
f : X → Y is definable if its graph

Γ(f ) = { (x , y) | y = f (x) } ⊂ X × Y ⊂ Rm+n

is definable.



Proving definability

Proposition

The composition of definable functions is definable.

Proof.
For simplicity assume f : R → R and g : R → R are definable
functions. Let π : R × R × R → R × R project out the second
coordinate. Then

Γ(g ◦ f ) = { (x , z) | z = g(f (x)) }
= π({ (x , y , z) | y = f (x), z = g(y) })
= π({ (x , y , z) | y = f (x) } ∩ { (x , y , z) | z = g(y) })
= π((Γ(f )× R) ∩ (R × Γ(g)))

is definable.

This style of proof is not sustainable.
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Definability of the interior

Suppose R is totally ordered by a definable relation <. Equip R
with the order topology and Rn with the product topology.

Proposition

If A ⊂ Rn is definable, then so is the interior of A.

Proof.
We have (x1, . . . , xn) ∈ intA if and only if

∃l1, . . . , ln, u1, . . . , un, l1 < x1 < u1 ∧ · · · ∧ ln < xn < un ∧
(∀y1, . . . , yn, l1 < y1 < u1 ∧ · · · ∧ ln < yn < un =⇒

(y1, . . . , yn) ∈ A).

Therefore

intA = [some large expression involving A and <]

is definable.
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Definability by formulas

Theorem
Let ϕ(x1, . . . , xn) be any formula of first-order logic using relation
symbols ri and function symbols fj and suppose each relation and
function symbol is given an interpretation in R which is a definable
set. Then the interpretation of ϕ is a definable set in Rn.

This theorem completes the previous proof.



Automation?

Wanted: Some kind of automated procedure, probably a tactic, to
automatically apply instances of the previous theorem in order to
solve goals of the form definable S,

But maybe automation is overkill—we just prove a few dozen
lemmas about definable sets and definable functions, and we’re
done?
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The beginning of tameness

Lemma
Let f : (a, b)→ R be a definable function. Then there exists an
open interval contained in (a, b) on which f is either injective or
constant.

Proof.
Two cases.

I Suppose f −1({y}) is infinite for some y ∈ R. Then it contains
an interval, and so f is constant on this interval.

I Otherwise, f −1({y}) is finite for every y ∈ R. Define

K = { x ∈ (a, b) | ∀x ′ ∈ (a, b), f (x) = f (x ′) =⇒ x ≤ x ′ }.

Then f (K ) = f ((a, b)) and so K is infinite, and therefore
contains an interval. By definition, f is injective on K .



Is this argument constructive?

In the constructive setting, the “minimality” axiom should take the
form of a function which takes a definable set in R and outputs a
description of that set as a finite union of singletons and open
intervals. (For this to be possible, definable A should not be a
Prop but should contain data.)

Proposition

If A ⊂ R0 is definable, then A is decidable.

Proof.
Look at whether R × A ⊂ R is empty or the whole line.

In the previous proof, we need to decide the formula

∃a′, b′, y , x , a′ < x < b′ =⇒ f (x) = y .
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