
Robustness as Remedy for
Model Checking Cyber-Physical Systems

Nima Roohi
University of Pennsylvania

Applications of Formal Methods to Control Theory and Dynamical Systems
June 23, 2018

1

Cyber-Physical Systems
What are they? Where they are?

2

Physical Environment Controller

Read through Sensors

Respond through
Actuators

Cyber-Physical Systems
What are they? Where they are?

2

Physical Environment Controller

Read through Sensors

Respond through
Actuators

•Safety
• Something bad never happens

Cyber-Physical Systems
What do we want?

3

•Safety
• Something bad never happens

•Liveness
• Something good will eventually happen

Cyber-Physical Systems
What do we want?

3

Cyber-Physical Systems
Formal Verification is a Necessity

• System failures are very expensive
• Automakers recalled a record of 51.2 million vehicles over 868 separate recalls in

2015 for safety defects (USA TODAY January 21, 2016)

• Study in University of Michigan shows self deriving cars has five times bigger
accident rate (USA TODAY October 31, 2015)

• Tesla and Uber had fatalities (2016 and 2018 - https://en.wikipedia.org/wiki/List_of_autonomous_car_fatalities)

4

Cyber-Physical Systems
Formal Verification is a Necessity

• System failures are very expensive
• Automakers recalled a record of 51.2 million vehicles over 868 separate recalls in

2015 for safety defects (USA TODAY January 21, 2016)

• Study in University of Michigan shows self deriving cars has five times bigger
accident rate (USA TODAY October 31, 2015)

• Tesla and Uber had fatalities (2016 and 2018 - https://en.wikipedia.org/wiki/List_of_autonomous_car_fatalities)

• Testing is Not Enough
• It is required, good, but not enough!

4

Cyber-Physical Systems
Formal Verification is a Necessity

• System failures are very expensive
• Automakers recalled a record of 51.2 million vehicles over 868 separate recalls in

2015 for safety defects (USA TODAY January 21, 2016)

• Study in University of Michigan shows self deriving cars has five times bigger
accident rate (USA TODAY October 31, 2015)

• Tesla and Uber had fatalities (2016 and 2018 - https://en.wikipedia.org/wiki/List_of_autonomous_car_fatalities)

• Testing is Not Enough
• It is required, good, but not enough!

•We need proof of correctness
• Cyber-Physical Systems do not compute an answer
• They are assumed to run infinitely long

• Executing all possible paths is not even possible in theory

4

Cyber-Physical Systems
Formal Verification is a Necessity

• System failures are very expensive
• Automakers recalled a record of 51.2 million vehicles over 868 separate recalls in

2015 for safety defects (USA TODAY January 21, 2016)

• Study in University of Michigan shows self deriving cars has five times bigger
accident rate (USA TODAY October 31, 2015)

• Tesla and Uber had fatalities (2016 and 2018 - https://en.wikipedia.org/wiki/List_of_autonomous_car_fatalities)

• Testing is Not Enough
• It is required, good, but not enough!

•We need proof of correctness
• Cyber-Physical Systems do not compute an answer
• They are assumed to run infinitely long

• Executing all possible paths is not even possible in theory

•Hybrid automata are used to model a cyber-physical system
• Mathematical Model
• Mathematical Proof

4

Formal Verification of Cyber-Physical Systems

Cyber-Physical
System

Model using
Hybrid Automaton

Model Check
Hybrid Automaton

Implement
Controller Part

5

Formal Verification of Cyber-Physical Systems

•Ordinary Differential Equations
“Detailed studies of the real world impel us, albeit reluctantly, to take account of
the fact that the rate of change of physical systems depend not only on their
present state, but also on their past history.”

Richard, B., Cooke, K.L.: Differential-difference equations. Technical report. P iii, 1963

Cyber-Physical
System

Model using
Hybrid Automaton

Model Check
Hybrid Automaton

Implement
Controller Part

5

Formal Verification of Cyber-Physical Systems

•Ordinary Differential Equations
“Detailed studies of the real world impel us, albeit reluctantly, to take account of
the fact that the rate of change of physical systems depend not only on their
present state, but also on their past history.”

Richard, B., Cooke, K.L.: Differential-difference equations. Technical report. P iii, 1963

•Almost Nothing is Decidable

Cyber-Physical
System

Model using
Hybrid Automaton

Model Check
Hybrid Automaton

Implement
Controller Part

5

Formal Verification of Cyber-Physical Systems

•Ordinary Differential Equations
“Detailed studies of the real world impel us, albeit reluctantly, to take account of
the fact that the rate of change of physical systems depend not only on their
present state, but also on their past history.”

Richard, B., Cooke, K.L.: Differential-difference equations. Technical report. P iii, 1963

•Almost Nothing is Decidable

•Almost Nothing is Implementable

Cyber-Physical
System

Model using
Hybrid Automaton

Model Check
Hybrid Automaton

Implement
Controller Part

5

Formal Verification of Cyber-Physical Systems

•Ordinary Differential Equations
“Detailed studies of the real world impel us, albeit reluctantly, to take account of
the fact that the rate of change of physical systems depend not only on their
present state, but also on their past history.”

Richard, B., Cooke, K.L.: Differential-difference equations. Technical report. P iii, 1963

•Almost Nothing is Decidable

•Almost Nothing is Implementable

May be the modeling and/or correctness definition is not good

Cyber-Physical
System

Model using
Hybrid Automaton

Model Check
Hybrid Automaton

Implement
Controller Part

5

Formal Verification of Cyber-Physical Systems

•Ordinary Differential Equations
“Detailed studies of the real world impel us, albeit reluctantly, to take account of
the fact that the rate of change of physical systems depend not only on their
present state, but also on their past history.”

Richard, B., Cooke, K.L.: Differential-difference equations. Technical report. P iii, 1963

•Almost Nothing is Decidable

•Almost Nothing is Implementable

May be the modeling and/or correctness definition is not good

Cyber-Physical
System

Model using
Hybrid Automaton

Model Check
Hybrid Automaton

Implement
Controller Part

5

Formal Verification of Cyber-Physical Systems

•Ordinary Differential Equations
“Detailed studies of the real world impel us, albeit reluctantly, to take account of
the fact that the rate of change of physical systems depend not only on their
present state, but also on their past history.”

Richard, B., Cooke, K.L.: Differential-difference equations. Technical report. P iii, 1963

•Almost Nothing is Decidable

•Almost Nothing is Implementable

May be the modeling and/or correctness definition is not good

Cyber-Physical
System

Model using
Hybrid Automaton

Model Check
Hybrid Automaton

Implement
Controller Part

5

Robust Model Checking of
Timed Automata
HSCC 2017

6

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

0 ≤ ! ≤ 3
0 ≤ $ ≤ 3

! ≔ 0
$ ≔ 0

Timed Automata

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!
0 1 3

1

3

2

2

$

!

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!
0 1 3

1

3

2

2

$

!

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!
0 1 3

1

3

2

2

$

!

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!
0 1 3

1

3

2

2

$

!

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!
0 1 3

1

3

2

2

$

!

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!
0 1 3

1

3

2

2

$

!

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!
0 1 3

1

3

2

2

$

!

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!
0 1 3

1

3

2

2

$

!

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!
0 1 3

1

3

2

2

$

!

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!
0 1 3

1

3

2

2

$

!

7

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!
0 1 3

1

3

2

2

$

!

7

• Trajectory: an infinite sequence of
continuous and discrete transition

! = 1
$ ≔ 0

! = 0
$ ≥ 2

! ≤ 2
! ≔ 0

$ ≥ 2
$ ≔ 0

Timed Automata

0 1 3

1

3

2

2

$

!
0 1 3

1

3

2

2

$

!

7

• Trajectory: an infinite sequence of
continuous and discrete transition
• Execution: a trajectory that starts

from the initial state
• The set of executions *

Types of Perturbation

•Only guards are perturbed by !
• "#

1 − ! ≤ ' ≤ 1 + !
) ≔ 0

−! ≤ ' ≤ !
) ≥ 2 − !

' ≤ 2 + !
' ≔ 0

) ≥ 2 − !
) ≔ 0

8

Types of Perturbation

•Only guards are perturbed by !
• "#

•Only clocks are drifted by $
• "%

1 − ! ≤) ≤ 1 + !
+ ≔ 0

−! ≤) ≤ !
+ ≥ 2 − !

) ≤ 2 + !
) ≔ 0

+ ≥ 2 − !
+ ≔ 0

) = 1
+ ≔ 0

) = 0
+ ≥ 2

) ≤ 2
) ≔ 0

+ ≥ 2
+ ≔ 0

1 − $ ≤)̇ ≤ 1 + $
1 − $ ≤ +̇ ≤ 1 + $

8

Types of Perturbation

•Only guards are perturbed by !
• "#

•Only clocks are drifted by $
• "%

•Guards are perturbed by !
Clocks are perturbed by $
• "#%

1 − ! ≤) ≤ 1 + !
+ ≔ 0

−! ≤) ≤ !
+ ≥ 2 − !

) ≤ 2 + !
) ≔ 0

+ ≥ 2 − !
+ ≔ 0

) = 1
+ ≔ 0

) = 0
+ ≥ 2

) ≤ 2
) ≔ 0

+ ≥ 2
+ ≔ 0

1 − $ ≤)̇ ≤ 1 + $
1 − $ ≤ +̇ ≤ 1 + $

8

Types of Perturbation

•Only guards are perturbed by !
• "#

•Only clocks are drifted by $
• "%

•Guards are perturbed by !
Clocks are perturbed by $
• "#%

•Only positive guards are perturbed by !
• "&#

1 − ! ≤ * ≤ 1 + !
, ≔ 0

−! ≤ * ≤ !
, ≥ 2 − !

* ≤ 2 + !
* ≔ 0

, ≥ 2 − !
, ≔ 0

* = 1
, ≔ 0

* = 0
, ≥ 2

* ≤ 2
* ≔ 0

, ≥ 2
, ≔ 0

1 − $ ≤ *̇ ≤ 1 + $
1 − $ ≤ ,̇ ≤ 1 + $

8

!-Regular Properties

•We only consider Repeated Reachability ☐◇"
• Only to simplify presentation

• Proofs directly apply to Büchi Condition

∃$:ℝ' • ∀*: +, • * ⊨ ☐◇"
∃. :ℝ' • ∀*: +/ • * ⊨ ☐◇"
∃$, . : ℝ' • ∀*: +/, • * ⊨ ☐◇"
∃. :ℝ' • ∀*: +'/ • * ⊨ ☐◇"

9

!-Regular Model Checking Results

• "# ≔ %
& 5 (+ 1 + , 2 . + ! 4 1 + 4 & 2%

• Only Exponentially Small
• Adding one location makes "# at most 12 times smaller
• Independent of Number of Edges

• M is the maximum constant in 3
• "% ≔ 45

&6
• 7% ≔ 48

&9

3:48 ⊨ ☐◇<

∃":ℝ: • 3:4 ⊨ ☐◇<

3A8 ⊨ ☐◇<

∃7: ℝ: • 3A ⊨ ☐◇< ∃7, ": ℝ: • 34A ⊨ ☐◇<

3C5
A5 ⊨ ☐◇<

2D7# + E# < "#
345 ⊨ ☐◇<

∃":ℝ: • 34 ⊨ ☐◇<

Bouyer et. al. 2011

10

!-Regular Model Checking Results

• "# ≔ %
& 5 (+ 1 + , 2 . + ! 4 1 + 4 & 2%

• Only Exponentially Small
• Adding one location makes "# at most 12 times smaller
• Independent of Number of Edges

• M is the maximum constant in 3
• "% ≔ 45

&6
• 7% ≔ 48

&9

3:48 ⊨ ☐◇<

∃":ℝ: • 3:4 ⊨ ☐◇<

3A8 ⊨ ☐◇<

∃7: ℝ: • 3A ⊨ ☐◇< ∃7, ": ℝ: • 34A ⊨ ☐◇<

3C5
A5 ⊨ ☐◇<

2D7# + E# < "#
345 ⊨ ☐◇<

∃":ℝ: • 34 ⊨ ☐◇<

Bouyer et. al. 2011

◦ All Problems are PSPACE-complete

10

Experimental Results

• Fischer Mutual Exclusion Protocol
• No two processes go to CS at the same time
• No deadlock
• Every request will eventually be answered

11

Experimental Results

• Fischer Mutual Exclusion Protocol
• No two processes go to CS at the same time
• No deadlock
• Every request will eventually be answered

•We tested it for 6 processes
• 4096 Locations

• 4032 Backward Reachable
• 30336 Edges

11

Experimental Results

• Fischer Mutual Exclusion Protocol
• No two processes go to CS at the same time
• No deadlock
• Every request will eventually be answered

•We tested it for 6 processes
• 4096 Locations

• 4032 Backward Reachable
• 30336 Edges

•!"."$ satisfies all these properties
• Less than 2 seconds

•We conclude !%& does the same
• For ' ≔ "."$

$) and * ≔ "."$
)

11

What Next?

•Robust Satisfiability/Model Checking of Metric Temporal Logic (MTL)
• Or its subclasses

•Robust Monitoring of Signal Temporal Logic
• The current robust semantics might fail even for valid formulas!

12

What Next?

•Robust Satisfiability/Model Checking of Metric Temporal Logic (MTL)
• Or its subclasses

•Robust Monitoring of Signal Temporal Logic
• The current robust semantics might fail even for valid formulas!

12

What Next?

•Robust Satisfiability/Model Checking of Metric Temporal Logic (MTL)
• Or its subclasses

•Robust Monitoring of Signal Temporal Logic
• The current robust semantics might fail even for valid formulas!

12

Similar to early
robustness def.

What Next?

•Robust Satisfiability/Model Checking of Metric Temporal Logic (MTL)
• Or its subclasses

•Robust Monitoring of Signal Temporal Logic
• The current robust semantics might fail even for valid formulas!

12

!-perturbation in every " units of time?
!-perturbation in every 0,∞ ?

Similar to early
robustness def.

Helps robust
MC of STL

What Next?

•Robust Satisfiability/Model Checking of Metric Temporal Logic (MTL)
• Or its subclasses

•Robust Monitoring of Signal Temporal Logic
• The current robust semantics might fail even for valid formulas!

12

!-perturbation in every " units of time?
!-perturbation in every 0,∞ ?

¨&' (→ à '*+,,-+ .
Similar to what
we have done

Similar to early
robustness def.

Helps robust
MC of STL

Statistical Verification of
Hybrid Automata
HSCC 2015, 2017
ADHS 2015, 2018
CDC 2016

13

Temporal Properties about CTMC

•System is expressed using a Continuous Time Markov Chains
• Rate matrix ! is given
• Initial probability distribution "# is also given

• Probability distribution at time $ is given by %&'"#

14

Temporal Properties about CTMC

•System is expressed using a Continuous Time Markov Chains
• Rate matrix ! is given
• Initial probability distribution "# is also given

• Probability distribution at time $ is given by %&'"#
•Properties are expressed using Signal Temporal Logic (STL)
• Atomic propositions are in the form of (⋅ %&'"# ≥ +

14

Temporal Properties about CTMC

•System is expressed using a Continuous Time Markov Chains
• Rate matrix ! is given
• Initial probability distribution "# is also given

• Probability distribution at time $ is given by %&'"#
•Properties are expressed using Signal Temporal Logic (STL)
• Atomic propositions are in the form of (⋅ %&'"# ≥ +

•Deterministic behavior
• Non-probabilistic
• Unique signal

14

Temporal Properties about CTMC

•Very similar problem has been solved algebraically in 2001
• Model Checking Continuous Time Markov Chains by Adnan Aziz et. al.

15

Temporal Properties about CTMC

•Very similar problem has been solved algebraically in 2001
• Model Checking Continuous Time Markov Chains by Adnan Aziz et. al.

•So problem is decidable
• They use algebraic numbers
• What is complexity of checking ln #$ ≥ & when ',), &: ℕ,?

15

Temporal Properties about CTMC

•Very similar problem has been solved algebraically in 2001
• Model Checking Continuous Time Markov Chains by Adnan Aziz et. al.

•So problem is decidable
• They use algebraic numbers
• What is complexity of checking ln #$ ≥ & when ',), &: ℕ,?

•To improve performance, we wanted to use statistical techniques
• Simulate the system enough number of times
• Provide some error guarantee

15

What can be guaranteed?

•Probability of returning wrong YES/NO is bounded

•Probability of returning UNKNOWN is also bounded

16

What is Next?

•When and how we can do this?
• Verify deterministic (non-probabilistic) system using statistical techniques?
• Much better performance

•What kind of robustness we need?

17

Reachability in
Hybrid Automata
TACAS 2016-2017
CONCUR 2018

18

CEGAR Loop Edmund Clarke, 2000

• Simpler Differential Inclusions
• Abstraction
• Finite vs. Infinite
• Merging Locations Location
• Removing Variables
• Must over-approximate

19

Input
Hybrid

Automaton

Initial
Abstraction

CEGAR Loop Edmund Clarke, 2000

• Simpler Differential Inclusions
• Abstraction
• Finite vs. Infinite
• Merging Locations Location
• Removing Variables
• Must over-approximate

19

Input
Hybrid

Automaton

Initial
Abstraction

Abstract
Model

Checker

CEGAR Loop Edmund Clarke, 2000

• Simpler Differential Inclusions
• Abstraction
• Finite vs. Infinite
• Merging Locations Location
• Removing Variables
• Must over-approximate

19

Input
Hybrid

Automaton

Initial
Abstraction

Abstract
Model

Checker

Safe

CEGAR Loop Edmund Clarke, 2000

• Simpler Differential Inclusions
• Abstraction
• Finite vs. Infinite
• Merging Locations Location
• Removing Variables
• Must over-approximate

19

Input
Hybrid

Automaton

Initial
Abstraction

Abstract
Model

Checker

Counter
Example

Validation
Safe

CEGAR Loop Edmund Clarke, 2000

• Simpler Differential Inclusions
• Abstraction
• Finite vs. Infinite
• Merging Locations Location
• Removing Variables
• Must over-approximate

19

Input
Hybrid

Automaton

Initial
Abstraction

Abstract
Model

Checker

Counter
Example

ValidationUnsafe / Unknown
Abstract and Concrete

Counter Examples
Abstract Reachable Set

Safe

CEGAR Loop Edmund Clarke, 2000

• Simpler Differential Inclusions
• Abstraction
• Finite vs. Infinite
• Merging Locations Location
• Removing Variables
• Must over-approximate

•What should be refined?

19

Input
Hybrid

Automaton

Initial
Abstraction

Abstract
Model

Checker

Counter
Example

Validation

Refinement

Unsafe / Unknown
Abstract and Concrete

Counter Examples
Abstract Reachable Set

Safe

Experimental Results (affine dynamics)

•Constraints and continuous dynamics are specified using polyhedra

20

Experimental Results (non-linear dynamics)

•Constraints are specified using polyhedra
•Continuous dynamics are specified using (non-linear) ODEs
• Whatever can be supported by dReach

21

What can be guaranteed?

• Assume every constraint uses non-strict inequality

22

What can be guaranteed?

• Assume every constraint uses non-strict inequality
• Assume there is a positive distance between reachable and unsafe regions

• System is robustly safe
• Reachable and unsafe regions are robustly separated
• Definition based on semantics of the system

22

Reachable
States

Unsafe
States

!

What can be guaranteed?

• Assume every constraint uses non-strict inequality
• Assume there is a positive distance between reachable and unsafe regions

• System is robustly safe
• Reachable and unsafe regions are robustly separated
• Definition based on semantics of the system

• Prove: every spurious counter-example will be eventually
eliminated

22

Reachable
States

Unsafe
States

!

What can be guaranteed?

• Assume every constraint uses non-strict inequality
• Assume there is a positive distance between reachable and unsafe regions

• System is robustly safe
• Reachable and unsafe regions are robustly separated
• Definition based on semantics of the system

• Prove: every spurious counter-example will be eventually
eliminated

•We use dReach

22

Reachable
States

Unsafe
States

!

What can be guaranteed?

• Assume every constraint uses non-strict inequality
• Assume there is a positive distance between reachable and unsafe regions

• System is robustly safe
• Reachable and unsafe regions are robustly separated
• Definition based on semantics of the system

• Prove: every spurious counter-example will be eventually
eliminated

•We use dReach
• dReach uses dReal

22

Reachable
States

Unsafe
States

!

What can be guaranteed?

• Assume every constraint uses non-strict inequality
• Assume there is a positive distance between reachable and unsafe regions

• System is robustly safe
• Reachable and unsafe regions are robustly separated
• Definition based on semantics of the system

• Prove: every spurious counter-example will be eventually
eliminated

•We use dReach
• dReach uses dReal
• dReal perturbs syntax of formulas

• UNSAT: the system is safe (spurious counter-example)
• !-SAT: the perturbed system is unsafe

22

Reachable
States

Unsafe
States

"

What can be guaranteed?

•What is the relation between syntactic and semantic
perturbations/robustness?
• Can they become arbitrary close?
• Syntactic perturbation is used to deal with computational complexity
• Sematic perturbation is used to represent robustness

23

What can be guaranteed?

•What is the relation between syntactic and semantic
perturbations/robustness?
• Can they become arbitrary close?
• Syntactic perturbation is used to deal with computational complexity
• Sematic perturbation is used to represent robustness
• In general NO

• Unbounded number of transitions
• Strict inequalities

23

What can be guaranteed?

•What is the relation between syntactic and semantic
perturbations/robustness?
• Can they become arbitrary close?
• Syntactic perturbation is used to deal with computational complexity
• Sematic perturbation is used to represent robustness
• In general NO

• Unbounded number of transitions
• Strict inequalities

•We proved bounded !-Simulation is possible

•Bisimulation is impossible

23

What is Next?

•We proved bounded !-Simulation is possible

•Find " for the given !
• Anything more expressive than Timed Automata

24

Thank You

25

