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Why we do this?

+ Achieve proofs of existence of some particular solutions, that
are hard/impossible using known analytical techniques,

− Proofs are usually obtained only for a set (compact) of
parameter values in the equation.
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We base our Rigorous Methods on existing standard

numerical methods

I Runge-Kutta methods,

I Taylor method,

I Fourier spectral method,

I Chebyshev polynomials.
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Rigorous integration

non-rigorous integration rigorous integration

true solution

?

true solution
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Simplest rigorous integration procedure due to Gronwall lemma

u′(t) = F (u(t)),

Assume there exists L > 0 � global Lipshitz constant of F

u′(t) ≤ β(t)u(t) ≤ L · u(t),

then we have

u(t + h)+ ≤ u(t)+ · e
∫ t+h
t β(s)u(s) ds ≤ u(t)+ · eLh,

and
eLh > 1,
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We get exponential explosion of bounds.

But exponential explosion 6= the true solution is unbounded.

x = −1000 · x , x(0) = [−1, 1], h = 0.001, L = 1000,

hence

u(h)+ ≤ u(0)+e = e, u(2h)+ ≤ u(h)+e = e2, u(3h)+ ≤ u(2h)+e = e3,

time
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Classical Taylor method of solving ODEs

The system of ODEs

x ′(t) = F (x(t)).

Can be solved using the classic Taylor method, the solution is given
by the �nite polynomial

x(t+h) = x(t)+x ′(t)h+
x ′′(t)

2!
h2+· · ·+x (p)(t)

p!
h(p)+

x (p+1)(ξ)

(p + 1)!
h(p+1)︸ ︷︷ ︸

Remainder term

,

where ξ ∈ [t, t + h].
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In our case [x(t)] is a vector of intervals, we de�ne interval Taylor
method, but do not evaluate it directly

Φp([x(t)], h) = [x(t)]+[x ′(t)]h+
[x ′′(t)]

2!
h2+· · ·+ [x (p+1)([t, t + h])]

(p + 1)!
h(p+1)︸ ︷︷ ︸

Remainder term
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Wrapping e�ect
Consider 2D ODEs

x ′ = −y ,
y ′ = x .

Solution trajectories are circles,

as the initial condition we set use
a box,

boxes get rotated.
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Lohner algorithm � Avoiding the wrapping e�ect by proper
representation

R.J. Lohner. Computation of Guaranteed Enclosures for the Solutions of Ordinary

Initial and Boundary Value Problems, Computational Ordinary Di�erential
Equations, J.R. Cash, I. Gladwell Eds., Clarendon Press, Oxford, 1992.

* =

do not
multiply!

matrix interval boxand parallelepiped
representation

gives

(Taylor models) � Taylor series expansion in time and space

M. Berz and K. Makino. Veri�ed integration of odes and �ows using di�erential

algebraic methods on high-order Taylor models. Reliable Computing,
4(4):361�369, 1998. 13 / 33



Yet another way of reducing the wrapping e�ect

Julien Alexandre Dit Sandretto, Alexandre Chapoutot, Validated Explicit and

Implicit Runge-Kutta Methods, Reliable Computing electronic edition, 2016.

A�ne form x̂ (also called a zonotope) x̂ = α0 +
∑n

i=1 αiεi .
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Lagrangian reachability

Jacek Cyranka, Md. Ariful Islam, Scott A. Smolka, Sicun Gao, Radu
Grosu, Tight Continuous-Time Reachtubes for Lagrangian

Reachability, submitted 2018.

Figure 1: Illustration of LRT algorithm � construction of discrete tube
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In LRT the wrapping e�ect is avoided by computing the optimal
metric minimizing the stretching factor (denoted Â1).

Figure 2: SF ≡ σ1 (the largest singular value).

Illustration for F =

[
1 1
−4 1

]
. SVD decomposition of F reveals it rotates

and transforms unit disc into blue ellipse (σ1 = 4.1926, σ2 = 1.1926),
resp.
SVD of Â1FÂ

−1
1

reveals σ1 = σ2 = 2.2361.
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Example 1. Proof of the heteroclinic connections in the 1D
Ohta-Kawasaki (diblock copolymers) model, joint with Thomas
Wanner

J. Cyranka, T. Wanner. Computer-assisted proof of heteroclinic connections in

the one-dimensional Ohta-Kawasaki model. SIAM Journal on Applied Dynamical
Systems (SIADS), 2018, 17(1), 694 -731.
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Motivation I
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Case study � a heteroclinic connection

Ohta-Kawasaki diblock copolymer model

ut = −∆(∆u + λf (u))− λσ(u − µ),

µ =

∫
Ω
u(x) dx ,

∂u

∂n
=
∂∆u

∂n
= 0, x ∈ ∂Ω.

there are two monomers A,B.
u(x) ∈ [−1, 1] � monomer ratio at x ∈ Ω, where
u(x) == 1 only A(B), and u(x) == −1 only B(A),
u(x) == 0 the perfect mixture of A and B.

Fix µ = 0 means constant in time, equal total amount of A and B.
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Some related works

Introduction of the model

T. Ohta and K. Kawasaki. Equilibrium morphology of block copolymer melts.

Macromolecules, 19:2621�2632, 1986.

M. Bahiana and Y. Oono. Cell dynamical system approach to block copolymers.

Physical Review A, 41:6763�6771, 1990.

Numerical study

Ian Johnson, Evelyn Sander, and Thomas Wanner. Branch interactions and

long-term dynamics for the diblock copolymer model in one dimension. Discrete
and Continuous Dynamical Systems, 33(8):3671�3705, 2013.

Our methods

P. Zgliczy«ski, Covering relations, cone conditions and stable manifold theorem ,
J. of Di�. Equations 246 (2009) 1774�1819.

J. Cyranka, E�cient and generic algorithm for rigorous integration forward in

time of dPDEs: Part I. Journal of Scienti�c Computing, 59(1):28�52, 2014.

21 / 33



The studied problem
We study equation on interval in 1D The domain is

Ω = [0, L].

and Neumann's boundary condition

ux = uxxx = 0, x = 0, L.

And we use the cosine Fourier basis

u(t, x) = a0(t) + 2
∑
k>0

ak(t) cos
π

L
kx

The equation becomes the in�nite system of equations

dak
dt

=

[
−k2

(π
L

)2(
k2
(π
L

)2
− λ
)
− λσ

]
ak−

λk2
(π
L

)2 ∑
l ,m,n∈Z

l+m+n=k

alaman

all coe�cients {ak} are real due to the boundary condition, and
ak = a−k due to the reality constraint.
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Main result

We prove

Theorem (Existence of heteroclinic connections)

Consider the diblock copolymer equation on the one-dimensional

domain Ω = (0, 1), for interaction lengths λ = 1/ε2 = 16π2 and

σ = 16, and for total mass µ = 0. Then there exist

I heteroclinic connections between the unstable homogeneous

stationary state u ≡ 0 and each of the two local energy

minimizers,

I heteroclinic connections between the unstable homogeneous

stationary state and each of the two suspected global energy

minimizers.

In other words, for the above parameter values the diblock

copolymer equation exhibits multistability in the sense that all local

or global energy minimizers can be reached from the homogeneous

state.

23 / 33



Bifurcation diagram

24 / 33



Functional space

De�nition (Sequence space with algebraic coe�cient decay)

Let H denote the space `2(Z,R). In addition, let H̃ ⊂ H denote
the subspace of H which is de�ned by

H̃ :=

{
{ak} ∈ H : there exists a C ≥ 0 such that |ak | ≤

C

- k -6

}
,

where - x -= |x | for x 6= 0 and - 0 -= 1.
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Structure of the proof. Step 1

1. Construct Wu � an isolating block about zero (the unstable
homogenous state). Additionally verify a cone condition

finite 
dimensional
projection

infinite
dimension

1 2 3 4
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Wu ⊂ H ′

k ak interval in the form center + radius

1 0+ [−2.365, 2.365]10−16

2 0+ [−1, 1]10−12

3 [−0.075, 0.075]
. . . . . .

4− 75 small intervals of width ≤ 10
−15

≥ 76 < 1.393 · 10−46/k6

The in�nite-dimensional cone condition is satis�ed with
ε = 0.08478.
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Step 2

2. Construct Ws � an isolating block about the stable steady state.
Additionally verify the negativeness of logarithmic norm.

finite 
dimensional
projection

infinite
dimension

1 2 3 4
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k ak

1 3.321 · 10−18 + [−6.895, 6.895]10−6

2 8.18 · 10−17 + [−1.691, 1.691]10−4

3 0.2956+ [−1.031, 1.031]10−5

. . . . . .
4− 250 intervals of small width

≥ 251 < 6.947 · 10−38/k6

The in�nite-dimensional cone condition is satis�ed with
ε = 0.03816,
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Step 3

3. Rigorously integrate forward in time the face of Wu, denoted
W0.
If after a �nite time the result is mapped into Ws, the existence of
a heteroclinic connection is established.
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The in�nite-dimensional bounds at time T = 3.02 after
performing 1510 numerical integration steps (with timestep 0.002)
are

k ak

1 −1.014 · 10−8 + [−1.49, 1.49]10−7

2 1.454 · 10−7 + [−2.748, 2.748]10−7

3 0.2956 + [−8.522, 8.522]10−9

4 −1.293 · 10−7 + [−1.183, 1.183]10−7

. . . . . .
5− 200 intervals of smaller width
≥ 201 < 3.295 · 10−44/k6

The bounds above are within the set Ws, i.e., within the basin of
attraction of the stable �xed point.
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Possible applications of formal methods.

1. The numerical program performing the computations is very
long and complicated, the resulting bounds should be checked
for correctness a-posteriori using formal methods,

2. Formalize a proof that the outputted bounds contain an
approximate solution of the equation with any precision,

3. Formalize a proof that the bounds contains the
nonconstructive solution of the true PDE, realized by picking a
convergent subsequence in a Banach space.
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