
Combination and Augmentation Methods
for Satisfiability Modulo Theories

Cesare Tinelli

tinelli@cs.uiowa.edu

The University of Iowa

Pittsburgh, April 13, 2006 – p.1/73

Credits

Slides inspired by previous work and
presentations by:
Silvio Ghilardi, Sava Krstic, Albert Oliveras, Harald
Ruess, Roberto Sebastiani, Natarajan Shankar, Ashish
Tiwari, Calogero Zarba, and others.

Special thanks to:

Clark Barrett and Albert Oliveras (for contributing
some of the material) and

Ed Clarke (for the invitation).

Pittsburgh, April 13, 2006 – p.2/73

Propositional Satisfiability: SAT

Deciding the satisfiability of a propositional formula is a
well-studied and important problem.

Theoretical interest: first established NP-Complete
problem, phase transition, . . .

Practical interest: applications to scheduling, planning,
logic synthesis, verification, . . .

Development of algorithms and enhancements.

Implementation of extremely efficient tools.

Solvers based on the DPLL procedure have been the
most successful so far.

Pittsburgh, April 13, 2006 – p.3/73

Satisfiability Modulo Theories

Any SAT solver can be used to decide the satisfiability of
ground (i.e., variable-free) first-order formulas.

Pittsburgh, April 13, 2006 – p.4/73

Satisfiability Modulo Theories

Any SAT solver can be used to decide the satisfiability of
ground (i.e., variable-free) first-order formulas.

Often, however, one is interested in the satisfiability of
certain ground formulas in a theory:

Pittsburgh, April 13, 2006 – p.4/73

Satisfiability Modulo Theories

Any SAT solver can be used to decide the satisfiability of
ground (i.e., variable-free) first-order formulas.

Often, however, one is interested in the satisfiability of
certain ground formulas in a theory:

Pipelined microprocessors: theory of equality, atoms
like f(g(a, b), c) = g(c, a).

Pittsburgh, April 13, 2006 – p.4/73

Satisfiability Modulo Theories

Any SAT solver can be used to decide the satisfiability of
ground (i.e., variable-free) first-order formulas.

Often, however, one is interested in the satisfiability of
certain ground formulas in a theory:

Pipelined microprocessors: theory of equality, atoms
like f(g(a, b), c) = g(c, a).

Timed automata, planning: theory of integers/reals,
atoms like x− y < 2.

Pittsburgh, April 13, 2006 – p.4/73

Satisfiability Modulo Theories

Any SAT solver can be used to decide the satisfiability of
ground (i.e., variable-free) first-order formulas.

Often, however, one is interested in the satisfiability of
certain ground formulas in a theory:

Pipelined microprocessors: theory of equality, atoms
like f(g(a, b), c) = g(c, a).

Timed automata, planning: theory of integers/reals,
atoms like x− y < 2.

Software verification/model checking: combination of
theories, atoms like 5 + car(a+ 2) = cdr(a[j] + 1).

Pittsburgh, April 13, 2006 – p.4/73

Satisfiability Modulo Theories

Any SAT solver can be used to decide the satisfiability of
ground (i.e., variable-free) first-order formulas.

Often, however, one is interested in the satisfiability of
certain ground formulas in a theory:

Pipelined microprocessors: theory of equality, atoms
like f(g(a, b), c) = g(c, a).

Timed automata, planning: theory of integers/reals,
atoms like x− y < 2.

Software verification/model checking: combination of
theories, atoms like 5 + car(a+ 2) = cdr(a[j] + 1).

We refer to this general problem as (ground) Satisfiability
Modulo Theories, or SMT.

Pittsburgh, April 13, 2006 – p.4/73

Satisfiability Modulo Theories

Given a logical theory T and a formula ϕ, the SMT problem
consists of deciding whether there exists a model A of T that
satisfies ϕ.

Pittsburgh, April 13, 2006 – p.5/73

Satisfiability Modulo Theories

Given a logical theory T and a formula ϕ, the SMT problem
consists of deciding whether there exists a model A of T that
satisfies ϕ.

Some theories of interest in SMT

Equality with “Uninterpreted Function Symbols”

Arithmetic (Real and Integer)

Arrays

Bit-vectors

Sets

Inductive Datatypes

Pittsburgh, April 13, 2006 – p.5/73

Solving SMT Problems

Fact: Many theories of interest have (efficient) decision
procedures for sets of literals.

Pittsburgh, April 13, 2006 – p.6/73

Solving SMT Problems

Fact: Many theories of interest have (efficient) decision
procedures for sets of literals.

Problem: In practice, we need to deal with

1. arbitrary Boolean combinations of literals, and

2. literals over more than one theory.

Pittsburgh, April 13, 2006 – p.6/73

Solving SMT Problems

Fact: Many theories of interest have (efficient) decision
procedures for sets of literals.

Problem: In practice, we need to deal with

1. arbitrary Boolean combinations of literals, and

2. literals over more than one theory.

This talk concerns general methods to address Point 1 and 2.

Pittsburgh, April 13, 2006 – p.6/73

Structure of this Talk

Part I:
From sets of ground literals to arbitrary ground formulas.

Part II:
From a single theory T to multiple theories T1, . . . , Tn.

Pittsburgh, April 13, 2006 – p.7/73

Part I

From sets of ground literals to arbitrary ground formulas

Pittsburgh, April 13, 2006 – p.8/73

Satisfiability Modulo a Theory T

Note: The T -satisfiability of ground formulas is decidable
iff the T -satisfiability of sets of literals is decidable.

Problem: In practice, dealing with Boolean combinations
of literals is as hard as in the propositional case.

Current solution: Exploit propositional satisfiability
technology.

Pittsburgh, April 13, 2006 – p.9/73

Lifting SAT Technology to SMT

Pittsburgh, April 13, 2006 – p.10/73

Lifting SAT Technology to SMT

Eager approach [CBMC, UCLID, . . .]:

translate into an equisatisfiable propositional formula,

feed it to any SAT solver.

Pittsburgh, April 13, 2006 – p.10/73

Lifting SAT Technology to SMT

Eager approach [CBMC, UCLID, . . .]:

translate into an equisatisfiable propositional formula,

feed it to any SAT solver.

Lazy approach [Barcelogic, CVC*, ICS, MathSAT, Verifun,
Yices, Zap, . . .]:

abstract the input formula into a propositional one,

feed it to a DPLL-based SAT solver,

use a theory decision procedure to refine the formula,

use the decision procedure to guide the search of
DPLL solver.

Pittsburgh, April 13, 2006 – p.10/73

Lifting SAT Technology to SMT

Eager approach [CBMC, UCLID, . . .]:

translate into an equisatisfiable propositional formula,

feed it to any SAT solver.

Lazy approach [Barcelogic, CVC*, ICS, MathSAT, Verifun,
Yices, Zap, . . .]:

abstract the input formula into a propositional one,

feed it to a DPLL-based SAT solver,

use a theory decision procedure to refine the formula,

use the decision procedure to guide the search of
DPLL solver.

This talk will focus on the lazy approach.
Pittsburgh, April 13, 2006 – p.10/73

The Original DPLL Procedure [DLL62]

Tries to build incrementally a satisfying truth assignment
M for a CNF formula F .

M is grown by

deducing the truth value of a literal from M and F , or

guessing a truth value.

If a wrong guess for a literal leads to an inconsistency, the
procedure backtracks and tries the opposite value.

Pittsburgh, April 13, 2006 – p.11/73

An Abstract Framework for DPLL [NOT06]

Many variants and enhancements of the DPLL procedure
exist.

We can model DPLL and its enhancements abstractly
and declaratively as transition systems.

A transition system is a binary relation over states,
induced by a set of conditional transition rules.

Pittsburgh, April 13, 2006 – p.12/73

Advantages of Abstract Framework

An abstract framework helps:

Skip over implementation details and unimportant control
aspects.

Reason formally about DPLL-based solvers for SAT and
for SMT.

Model modern features such as non-chronological
bactracking, lemma learning or restarts.

Describe different strategies and prove their correctness.

Pittsburgh, April 13, 2006 – p.13/73

An Abstract Framework for DPLL

Our states:

fail or M || F

where F is a CNF formula, a set of clauses,
and
M is a sequence of annotated literals
denoting a partial truth assignment.

Pittsburgh, April 13, 2006 – p.14/73

An Abstract Framework for DPLL

Our states:

fail or M || F

Initial state:

∅ || F , where F is to be checked for satisfiability.

Expected final states:

fail , if F is unsatisfiable

M || G, where G is logically equivalent to F and M
satisfies G, otherwise.

Pittsburgh, April 13, 2006 – p.14/73

Transition Rules for the Original DPLL

Extending the assignment:

Propagate

M || F, C ∨ l → M l || F, C ∨ l if

{
M |=p ¬C,

l is undefined in M
Notation: |=p is propositional entailment

Pittsburgh, April 13, 2006 – p.15/73

Transition Rules for the Original DPLL

Extending the assignment:

Propagate

M || F, C ∨ l → M l || F, C ∨ l if

{
M |=p ¬C,

l is undefined in M
Notation: |=p is propositional entailment

Decide

M || F → M l• || F if

{
l or l occurs in F,
l is undefined in M

Notation: l• annotates l as a decision literal

Pittsburgh, April 13, 2006 – p.15/73

Transition Rules for the Original DPLL

Repairing the assignment:

Fail

M || F, C → fail if

{
M |=p ¬C,

M contains no decision literals

Pittsburgh, April 13, 2006 – p.16/73

Transition Rules for the Original DPLL

Repairing the assignment:

Fail

M || F, C → fail if

{
M |=p ¬C,

M contains no decision literals

Backtrack

M l•N || F,C → M l || F,C if

{
M l•N |=p ¬C,

l last decision literal

Pittsburgh, April 13, 2006 – p.16/73

From Backtracking to Backjumping

Backtrack

M l•N || F,C → M l || F,C if

{
M l•N |=p ¬C,

l last decision literal

Pittsburgh, April 13, 2006 – p.17/73

From Backtracking to Backjumping

Backtrack

M l•N || F,C → M l || F,C if

{
M l•N |=p ¬C,

l last decision literal

Backjump

M l•N || F,C → M k || F,C if







1. M l•N |=p ¬C,

2. for some clause D ∨ k :
F,C |=p D ∨ k,

M |=p ¬D,

k is undefined in M,

k or k occurs in
M l•N || F,C

Pittsburgh, April 13, 2006 – p.17/73

From Backtracking to Backjumping

Backtrack

M l•N || F,C → M l || F,C if

{
M l•N |=p ¬C,

l last decision literal

Backjump

M l•N || F,C → M k || F,C if







1. M l•N |=p ¬C,

2. for some clause D ∨ k :
F,C |=p D ∨ k,

M |=p ¬D,

k is undefined in M,

k or k occurs in
M l•N || F,C

Note: If (1) holds, clauses like D ∨ k are computable from C.
Pittsburgh, April 13, 2006 – p.17/73

Basic DPLL System

At the core, current DPLL-based SAT solvers are
implementations of the transition system:

Basic DPLL

Propagate

Decide

Fail

Backjump

Pittsburgh, April 13, 2006 – p.18/73

Enhancements to Basic DPLL

Pittsburgh, April 13, 2006 – p.19/73

Enhancements to Basic DPLL

Learn

M || F → M || F, C if

{
all atoms of C occur in F,
F |=p C

Pittsburgh, April 13, 2006 – p.19/73

Enhancements to Basic DPLL

Learn

M || F → M || F, C if

{
all atoms of C occur in F,
F |=p C

Forget

M || F, C → M || F if F |=p C

Pittsburgh, April 13, 2006 – p.19/73

Enhancements to Basic DPLL

Learn

M || F → M || F, C if

{
all atoms of C occur in F,
F |=p C

Forget

M || F, C → M || F if F |=p C

Usually, C is a clause identified during conflict analysis.

Pittsburgh, April 13, 2006 – p.19/73

Enhancements to Basic DPLL

Learn

M || F → M || F, C if

{
all atoms of C occur in F,
F |=p C

Forget

M || F, C → M || F if F |=p C

Restart
M || F → ∅ || F if . . . you want to

Pittsburgh, April 13, 2006 – p.19/73

Enhancements to Basic DPLL

Learn

M || F → M || F, C if

{
all atoms of C occur in F,
F |=p C

Forget

M || F, C → M || F if F |=p C

Restart
M || F → ∅ || F if . . . you want to

The DPLL system =
{Propagate,Decide, Fail,Backjump, Learn, Forget,Restart}

Pittsburgh, April 13, 2006 – p.19/73

The DPLL System – Correctness

Proposition (Termination) Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity

is finite.

Pittsburgh, April 13, 2006 – p.20/73

The DPLL System – Correctness

Proposition (Termination) Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity

is finite.

Proposition (Soundness) For every execution
∅ || F =⇒ · · · =⇒M || G with M || G irreducible wrt. Basic
DPLL, M |=p F .

Pittsburgh, April 13, 2006 – p.20/73

The DPLL System – Correctness

Proposition (Termination) Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity

is finite.

Proposition (Soundness) For every execution
∅ || F =⇒ · · · =⇒M || G with M || G irreducible wrt. Basic
DPLL, M |=p F .

Proposition (Completeness) If F is unsatisfiable, for every
execution ∅ || F =⇒ · · · =⇒ S with S irreducible wrt. Basic
DPLL, S = fail .

(For simplicity the statements above are not entirely accurate. See [NOT06] for details.)
Pittsburgh, April 13, 2006 – p.20/73

(Very) Lazy Approach for SMT – Example

g(a) = c ∧ f(g(a)) 6= f(c) ∨ g(a) = d ∧ c 6= d

Theory T : EUF

Pittsburgh, April 13, 2006 – p.21/73

(Very) Lazy Approach for SMT – Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

Simplest setting:

Off-line SAT solver

Non-incremental T -solver

Pittsburgh, April 13, 2006 – p.21/73

(Very) Lazy Approach for SMT – Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

Send {1, 2 ∨ 3, 4} to SAT solver.

Pittsburgh, April 13, 2006 – p.22/73

(Very) Lazy Approach for SMT – Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

Send {1, 2 ∨ 3, 4} to SAT solver.

SAT solver returns model {1, 2, 4}.
Theory solver finds {1, 2} T -unsatisfiable.

Pittsburgh, April 13, 2006 – p.22/73

(Very) Lazy Approach for SMT – Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

Send {1, 2 ∨ 3, 4} to SAT solver.

SAT solver returns model {1, 2, 4}.
Theory solver finds {1, 2} T -unsatisfiable.

Send {1, 2 ∨ 3, 4, 1 ∨ 2} to SAT solver.

Pittsburgh, April 13, 2006 – p.22/73

(Very) Lazy Approach for SMT – Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

Send {1, 2 ∨ 3, 4} to SAT solver.

SAT solver returns model {1, 2, 4}.
Theory solver finds {1, 2} T -unsatisfiable.

Send {1, 2 ∨ 3, 4, 1 ∨ 2} to SAT solver.

SAT solver returns model {1, 2, 3, 4}.
Theory solver finds {1, 3, 4} T -unsatisfiable.

Pittsburgh, April 13, 2006 – p.22/73

(Very) Lazy Approach for SMT – Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

Send {1, 2 ∨ 3, 4} to SAT solver.

SAT solver returns model {1, 2, 4}.
Theory solver finds {1, 2} T -unsatisfiable.

Send {1, 2 ∨ 3, 4, 1 ∨ 2} to SAT solver.

SAT solver returns model {1, 2, 3, 4}.
Theory solver finds {1, 3, 4} T -unsatisfiable.

Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.

Pittsburgh, April 13, 2006 – p.22/73

(Very) Lazy Approach for SMT – Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

Send {1, 2 ∨ 3, 4} to SAT solver.

SAT solver returns model {1, 2, 4}.
Theory solver finds {1, 2} T -unsatisfiable.

Send {1, 2 ∨ 3, 4, 1 ∨ 2} to SAT solver.

SAT solver returns model {1, 2, 3, 4}.
Theory solver finds {1, 3, 4} T -unsatisfiable.

Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.

SAT solver finds {1, 2∨ 3, 4, 1∨ 2, 1∨ 3∨ 4} unsatisfiable.
Pittsburgh, April 13, 2006 – p.22/73

Modeling the Lazy Approach

This naive combination can be greatly improved with an
on-line DPLL engine and an incremental T -solver.

Pittsburgh, April 13, 2006 – p.23/73

Modeling the Lazy Approach

This naive combination can be greatly improved with an
on-line DPLL engine and an incremental T -solver.

Both the naive and the more sophisticated integrations can be
modeled in Abstract DPLL with the following rules:

Propagate, Decide, Fail, Restart

(as in the propositional case) and

T -Backjump, T -Learn, T -Forget

Pittsburgh, April 13, 2006 – p.23/73

Modeling the Lazy Approach

This naive combination can be greatly improved with an
on-line DPLL engine and an incremental T -solver.

Both the naive and the more sophisticated integrations can be
modeled in Abstract DPLL with the following rules:

Propagate, Decide, Fail, Restart

(as in the propositional case) and

T -Backjump, T -Learn, T -Forget

Note: The first component of a state M || F is still a truth
assignment, but now for ground, first-order literals.

Pittsburgh, April 13, 2006 – p.23/73

Modeling the Lazy Approach

T -Backjump

M l•N || F,C → M k || F,C if







1. M l•N |=p ¬C,

2. for some clause D ∨ k:
F,C |=T D ∨ k,

M |=p ¬D,

k is undefined in M,

k or k occurs in
M l•N || F,C

Only change: |=T instead of |=p

Not.: F |=T G iff every model of T that satisfies F satisfies G.

Pittsburgh, April 13, 2006 – p.24/73

Modeling the Lazy Approach

T -Backjump

M l•N || F,C → M k || F,C if







1. M l•N |=p ¬C,

2. for some clause D ∨ k:
F,C |=T D ∨ k,

M |=p ¬D,

k is undefined in M,

k or k occurs in
M l•N || F,C

T -Learn

M || F → M || F, C if

{
all atoms of C occur in M || F,

F |=T C

T -Forget

M || F, C → M || F if F |=T C
Pittsburgh, April 13, 2006 – p.24/73

Modeling the Lazy Approach

The naive interaction between SAT solver and theory solver in
the previous example can be modeled with the following

Refinement of T -Learn

M || F → M || F, l1 ∨ . . . ∨ ln if

{
l1 · · · ln ⊆M

l1 ∧ · · · ∧ ln ⊢T ⊥

with Restart applied right after each application of this T -Learn.

Pittsburgh, April 13, 2006 – p.25/73

Modeling the Lazy Approach

The naive interaction between SAT solver and theory solver in
the previous example can be modeled with the following

Refinement of T -Learn

M || F → M || F, l1 ∨ . . . ∨ ln if

{
l1 · · · ln ⊆M

l1 ∧ · · · ∧ ln ⊢T ⊥

with Restart applied right after each application of this T -Learn.

However, note that

The learned blocking clause is false in M , hence either
Backjump or Fail applies.

T -Learn can be applied as early as possible, i.e., with
M = N ln.

Pittsburgh, April 13, 2006 – p.25/73

(Very) Lazy Theory Approach - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

Pittsburgh, April 13, 2006 – p.26/73

(Very) Lazy Theory Approach - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 =⇒∗ (Propagate)

1 4 || 1, 2 ∨ 3, 4 =⇒ (Decide)

1 4 2
•
|| 1, 2 ∨ 3, 4 =⇒ (T -Learn)

1 4 2
•
|| 1, 2 ∨ 3, 4, 1 ∨ 2 =⇒ (Restart)

∅ || 1, 2 ∨ 3, 4, 1 ∨ 2 =⇒∗ (Propagate)

1 4 2 3 || 1, 2 ∨ 3, 4, 1 ∨ 2 =⇒ (T -Learn)

1 4 2 3 || 1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4 =⇒ (Restart)

∅ || 1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4 =⇒∗ (Propagate)

1 4 2 3 || 1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4 =⇒ (Fail)

fail

Pittsburgh, April 13, 2006 – p.26/73

Lazy Theory Approach - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

More advanced setting:

On-line SAT solver

Incremental T -solver

Pittsburgh, April 13, 2006 – p.27/73

Lazy Theory Approach - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 =⇒∗ (Propagate)

1 4 || 1, 2 ∨ 3, 4 =⇒ (Decide)

1 4 2
•
|| 1, 2 ∨ 3, 4 =⇒ (T -Learn)

1 4 2
•
|| 1, 2 ∨ 3, 4, 1 ∨ 2 =⇒ (Backjump with 1 ∨ 2)

1 4 2 || 1, 2 ∨ 3, 4, 1 ∨ 2 =⇒ (Propagate)

1 4 2 3 || 1, 2 ∨ 3, 4, 1 ∨ 2 =⇒ (T -Learn)

1 4 2 3 || 1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4 =⇒ (Fail)

fail

Pittsburgh, April 13, 2006 – p.27/73

Lazy Approach – Strategies

Ignoring Restart (for simplicity), a common strategy is to apply
the rules using the following priorities:

1. If a clause is falsified by the current assignment M ,
apply as appropriate Fail or (Backjump + T -Learn of
backjump clause).

2. If M is T -unsatisfiable,
apply T -Learn of blocking clause and go to 1.

3. Apply Propagate.

4. Apply Decide.

Pittsburgh, April 13, 2006 – p.28/73

Theory Propagation

With the previous rules, the T -solver is used just to validate
the choices of the DPLL engine.

Pittsburgh, April 13, 2006 – p.29/73

Theory Propagation

With the previous rules, the T -solver is used just to validate
the choices of the DPLL engine.

With the new rule below, it can also be used to direct the
engine’s search.

T -Propagate

M || F → M l || F if







M |=T l

l or l occurs in F
l is undefined in M

Pittsburgh, April 13, 2006 – p.29/73

Theory Propagation - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4

Pittsburgh, April 13, 2006 – p.30/73

Theory Propagation - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 =⇒ (Propagate)

1 || 1, 2 ∨ 3, 4

Pittsburgh, April 13, 2006 – p.30/73

Theory Propagation - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 =⇒ (Propagate)

1 || 1, 2 ∨ 3, 4 =⇒ (T -Propagate)

1 2 || 1, 2 ∨ 3, 4

Pittsburgh, April 13, 2006 – p.30/73

Theory Propagation - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 =⇒ (Propagate)

1 || 1, 2 ∨ 3, 4 =⇒ (T -Propagate)

1 2 || 1, 2 ∨ 3, 4 =⇒ (Propagate)

1 2 3 || 1, 2 ∨ 3, 4

Pittsburgh, April 13, 2006 – p.30/73

Theory Propagation - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 =⇒ (Propagate)

1 || 1, 2 ∨ 3, 4 =⇒ (T -Propagate)

1 2 || 1, 2 ∨ 3, 4 =⇒ (Propagate)

1 2 3 || 1, 2 ∨ 3, 4 =⇒ (T -Propagate)

1 2 3 4 || 1, 2 ∨ 3, 4

Pittsburgh, April 13, 2006 – p.30/73

Theory Propagation - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 =⇒ (Propagate)

1 || 1, 2 ∨ 3, 4 =⇒ (T -Propagate)

1 2 || 1, 2 ∨ 3, 4 =⇒ (Propagate)

1 2 3 || 1, 2 ∨ 3, 4 =⇒ (T -Propagate)

1 2 3 4 || 1, 2 ∨ 3, 4 =⇒ (Fail)

fail

Pittsburgh, April 13, 2006 – p.30/73

Theory Propagation

With exhaustive theory propagation every assignment M
is T -satisfiable (since M l is T -unsatisfiable iff M |=T l).

For some theories, e.g., difference logic, this approach is
extremely effective.

For some others, e.g., the theory of equality, it is too
expensive to detect all T -consequences.

If T -Propagate is not applied exhaustively, T -Learn is
needed to repair T -unsatisfiable assignments.

Pittsburgh, April 13, 2006 – p.31/73

From Complete to Incomplete Theory Solvers

Abstract DPLL Modulo Theories is based on the
availability of a T -solver for determining T -entailment
(|=T).

At the very least, the T -solver must be refutationally
sound:

never calling a T -satisfiable set M of literals
T -unsatisfiable,

Ideally, it should also be refutationally complete:

always able to recognize a T -unsatisfiable set M of
literals as such.

For certain theories, it is advantageous to relax the
refutational completeness requirement.

Pittsburgh, April 13, 2006 – p.32/73

Case Splitting

For certain theories, determining that M is T -unsatisfiable
requires reasoning by cases.

Pittsburgh, April 13, 2006 – p.33/73

Case Splitting

For certain theories, determining that M is T -unsatisfiable
requires reasoning by cases.

Example: T = the theory of arrays.

M = { r(w(a, i, x), j) 6= x
︸ ︷︷ ︸

1

, r(w(a, i, x), j) 6= r(a, j)
︸ ︷︷ ︸

2

}

Pittsburgh, April 13, 2006 – p.33/73

Case Splitting

For certain theories, determining that M is T -unsatisfiable
requires reasoning by cases.

Example: T = the theory of arrays.

M = { r(w(a, i, x), j) 6= x
︸ ︷︷ ︸

1

, r(w(a, i, x), j) 6= r(a, j)
︸ ︷︷ ︸

2

}

i = j) Then, r(w(a, i, x), j) = x. Contradiction with 1.

Pittsburgh, April 13, 2006 – p.33/73

Case Splitting

For certain theories, determining that M is T -unsatisfiable
requires reasoning by cases.

Example: T = the theory of arrays.

M = { r(w(a, i, x), j) 6= x
︸ ︷︷ ︸

1

, r(w(a, i, x), j) 6= r(a, j)
︸ ︷︷ ︸

2

}

i = j) Then, r(w(a, i, x), j) = x. Contradiction with 1.

i 6= j) Then, r(w(a, i, x), j) = r(a, j). Contradiction with 2.

Pittsburgh, April 13, 2006 – p.33/73

Case Splitting

For certain theories, determining that M is T -unsatisfiable
requires reasoning by cases.

Example: T = the theory of arrays.

M = { r(w(a, i, x), j) 6= x
︸ ︷︷ ︸

1

, r(w(a, i, x), j) 6= r(a, j)
︸ ︷︷ ︸

2

}

i = j) Then, r(w(a, i, x), j) = x. Contradiction with 1.

i 6= j) Then, r(w(a, i, x), j) = r(a, j). Contradiction with 2.

Conclusion: M is T -unsatisfiable.

Pittsburgh, April 13, 2006 – p.33/73

Case Splitting

For certain theories, determining that M is T -unsatisfiable
requires reasoning by cases.

Pittsburgh, April 13, 2006 – p.34/73

Case Splitting

For certain theories, determining that M is T -unsatisfiable
requires reasoning by cases.

A complete T -solver does that with (internal) case
splitting and backtracking mechanisms.

Pittsburgh, April 13, 2006 – p.34/73

Case Splitting

For certain theories, determining that M is T -unsatisfiable
requires reasoning by cases.

A complete T -solver does that with (internal) case
splitting and backtracking mechanisms.

An alternative approach is to lift case splitting and
backtracking from the T -solver to the DPLL engine.

Pittsburgh, April 13, 2006 – p.34/73

Case Splitting

For certain theories, determining that M is T -unsatisfiable
requires reasoning by cases.

A complete T -solver does that with (internal) case
splitting and backtracking mechanisms.

An alternative approach is to lift case splitting and
backtracking from the T -solver to the DPLL engine.

Basic idea: Code the case split as a set of clauses and
send them as needed to the engine so it can split on
them.

Pittsburgh, April 13, 2006 – p.34/73

Splitting on Demand [BNOT06]

Basic idea: Code the case split as a set of clauses and send
them as needed to the engine so it can split on them.

Possible benefits:

All case-splitting is coordinated by the DPLL engine

Only have to implement case-splitting infrastructure in
one place

DPLL heuristics are not sabotaged by internal theory
splitting

Pittsburgh, April 13, 2006 – p.35/73

Splitting on Demand [BNOT06]

Basic idea: Code the case split as a set of clauses and send
them as needed to the engine so it can split on them.

Pittsburgh, April 13, 2006 – p.36/73

Splitting on Demand [BNOT06]

Basic idea: Code the case split as a set of clauses and send
them as needed to the engine so it can split on them.

Basic Scenario:

M = {. . . , s = r(w(a, i, t), j)
︸ ︷︷ ︸

s′

, . . . , }

Pittsburgh, April 13, 2006 – p.36/73

Splitting on Demand [BNOT06]

Basic idea: Code the case split as a set of clauses and send
them as needed to the engine so it can split on them.

Basic Scenario:

M = {. . . , s = r(w(a, i, t), j)
︸ ︷︷ ︸

s′

, . . . , }

DPLL Engine: “Is M T -unsatisfiable?”

Pittsburgh, April 13, 2006 – p.36/73

Splitting on Demand [BNOT06]

Basic idea: Code the case split as a set of clauses and send
them as needed to the engine so it can split on them.

Basic Scenario:

M = {. . . , s = r(w(a, i, t), j)
︸ ︷︷ ︸

s′

, . . . , }

DPLL Engine: “Is M T -unsatisfiable?”

T -solver: “I do not know yet, but it will help me if you split on
these theory lemmas:

s = s′ ∧ i = j → s = t, s = s′ ∧ i 6= j → s = r(a, j) ”

Pittsburgh, April 13, 2006 – p.36/73

Splitting on Demand in Abstract DPLL

How do we extend ADPLL Modulo Theories to handle such
theory case-splits?

Pittsburgh, April 13, 2006 – p.37/73

Splitting on Demand in Abstract DPLL

How do we extend ADPLL Modulo Theories to handle such
theory case-splits?

Recall the T -Learn rule:

M || F =⇒ M || F, C if

{
all atoms of C occur in M || F

F |=T C

Pittsburgh, April 13, 2006 – p.37/73

Splitting on Demand in Abstract DPLL

How do we extend ADPLL Modulo Theories to handle such
theory case-splits?

Recall the T -Learn rule:

M || F =⇒ M || F, C if

{
all atoms of C occur in M || F

F |=T C

This rule allows a theory solver to send clauses to the DPLL
engine as long as their atoms occur in M || F .

Pittsburgh, April 13, 2006 – p.37/73

Splitting on Demand in Abstract DPLL

How do we extend ADPLL Modulo Theories to handle such
theory case-splits?

Recall the T -Learn rule:

M || F =⇒ M || F, C if

{
all atoms of C occur in M || F

F |=T C

This rule allows a theory solver to send clauses to the DPLL
engine as long as their atoms occur in M || F .

We wish to relax this requirement to allow additional atoms,
possibly even containing new terms.

Pittsburgh, April 13, 2006 – p.37/73

Extending Abstract DPLL Modulo Theories

Given an initial state ∅ || F , let L be an extended set of literals
computed from F (see [BNOT06] for a formal definition of L).

Pittsburgh, April 13, 2006 – p.38/73

Extending Abstract DPLL Modulo Theories

Given an initial state ∅ || F , let L be an extended set of literals
computed from F (see [BNOT06] for a formal definition of L).

Clauses sent to the DPLL engine will be allowed to use any
literal in L.

Pittsburgh, April 13, 2006 – p.38/73

Extending Abstract DPLL Modulo Theories

Given an initial state ∅ || F , let L be an extended set of literals
computed from F (see [BNOT06] for a formal definition of L).

Clauses sent to the DPLL engine will be allowed to use any
literal in L.

We extend the T -Learn rule as follows:

Extended T -Learn

M || F =⇒ M || F, C if







all atoms of C are in L

F |=T ∃ v. C

v = "new" variables in C

Pittsburgh, April 13, 2006 – p.38/73

Extending Abstract DPLL Modulo Theories

Given an initial state ∅ || F , let L be an extended set of literals
computed from F (see [BNOT06] for a formal definition of L).

Clauses sent to the DPLL engine will be allowed to use any
literal in L.

We extend the T -Learn rule as follows:

Extended T -Learn

M || F =⇒ M || F, C if







all atoms of C are in L

F |=T ∃ v. C

v = "new" variables in C

Note: The set L never actually needs to be computed.

Pittsburgh, April 13, 2006 – p.38/73

Extending Abstract DPLL Modulo Theories

Given an initial state ∅ || F , let L be an extended set of literals
computed from F (see [BNOT06] for a formal definition of L).

Clauses sent to the DPLL engine will be allowed to use any
literal in L.

We extend the T -Learn rule as follows:

Extended T -Learn

M || F =⇒ M || F, C if







all atoms of C are in L

F |=T ∃ v. C

v = "new" variables in C

Fact: For many theories with a theory solver, there exists an
appropriate finite L for every input F .

Pittsburgh, April 13, 2006 – p.38/73

Extending Abstract DPLL Modulo Theories

Now we can relax the requirement on the theory solver:

In the state M || G, if M |= G, the theory solver must
either

decide whether M |=T ⊥ or

generate a new clause by T -Learn containing at
least one literal of L undefined in M .

Pittsburgh, April 13, 2006 – p.39/73

Extending Abstract DPLL Modulo Theories

Now we can relax the requirement on the theory solver:

In the state M || G, if M |= G, the theory solver must
either

decide whether M |=T ⊥ or

generate a new clause by T -Learn containing at
least one literal of L undefined in M .

Note: the T -solver is required to decide M |=T ⊥ only if all
literals in L are defined in M .

Pittsburgh, April 13, 2006 – p.39/73

Extending Abstract DPLL Modulo Theories

Now we can relax the requirement on the theory solver:

In the state M || G, if M |= G, the theory solver must
either

decide whether M |=T ⊥ or

generate a new clause by T -Learn containing at
least one literal of L undefined in M .

Note: the T -solver is required to decide M |=T ⊥ only if all
literals in L are defined in M .

Pittsburgh, April 13, 2006 – p.39/73

Extending Abstract DPLL Modulo Theories

Now we can relax the requirement on the theory solver:

In the state M || G, if M |= G, the theory solver must
either

decide whether M |=T ⊥ or

generate a new clause by T -Learn containing at
least one literal of L undefined in M .

Note: the T -solver is required to decide M |=T ⊥ only if all
literals in L are defined in M .

In practice, tdetermine if M |=T ⊥ the T -solver only needs a
small subset of L to be defined in M .

Pittsburgh, April 13, 2006 – p.39/73

Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

Pittsburgh, April 13, 2006 – p.40/73

Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F

x = {y}, x = y ∪ z, y = ∅•, x 6= z || F

Pittsburgh, April 13, 2006 – p.40/73

Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ Propagate

x = {y}, x = y ∪ z || F

x = {y}, x = y ∪ z, y = ∅•, x 6= z || F

Pittsburgh, April 13, 2006 – p.40/73

Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ Propagate

x = {y}, x = y ∪ z || F =⇒ Decide

x = {y}, x = y ∪ z, y = ∅• || F

x = {y}, x = y ∪ z, y = ∅•, x 6= z || F

Pittsburgh, April 13, 2006 – p.40/73

Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ Propagate

x = {y}, x = y ∪ z || F =⇒ Decide

x = {y}, x = y ∪ z, y = ∅• || F =⇒ Propagate

x = {y}, x = y ∪ z, y = ∅•, x 6= z || F

Pittsburgh, April 13, 2006 – p.40/73

Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ Propagate

x = {y}, x = y ∪ z || F =⇒ Decide

x = {y}, x = y ∪ z, y = ∅• || F =⇒ Propagate

x = {y}, x = y ∪ z, y = ∅•, x 6= z || F =⇒ T -Learn

x = {y}, x = y ∪ z, y = ∅•, x 6= z || F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

Pittsburgh, April 13, 2006 – p.40/73

Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ Propagate

x = {y}, x = y ∪ z || F =⇒ Decide

x = {y}, x = y ∪ z, y = ∅• || F =⇒ Propagate

x = {y}, x = y ∪ z, y = ∅•, x 6= z || F =⇒ T -Learn

x = {y}, x = y ∪ z, y = ∅•, x 6= z || F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

=⇒ Decide

x = {y}, x = y ∪ z, y = ∅•, x 6= z

w ∈ x•

|| F, (x = z ∨w ∈ x∨w ∈ z), (x = z ∨ w 6∈ x∨ w 6∈ z)

Pittsburgh, April 13, 2006 – p.40/73

Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ Propagate

x = {y}, x = y ∪ z || F =⇒ Decide

x = {y}, x = y ∪ z, y = ∅• || F =⇒ Propagate

x = {y}, x = y ∪ z, y = ∅•, x 6= z || F =⇒ T -Learn

x = {y}, x = y ∪ z, y = ∅•, x 6= z || F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

=⇒ Decide

x = {y}, x = y ∪ z, y = ∅•, x 6= z

w ∈ x•

|| F, (x = z ∨w ∈ x∨w ∈ z), (x = z ∨ w 6∈ x∨ w 6∈ z)

=⇒ Propagate

x = {y}, x = y ∪ z, y = ∅•, x 6= z

w ∈ x•, w 6∈ z
|| F, (x = z ∨w ∈ x∨w ∈ z), (x = z ∨ w 6∈ x∨ w 6∈ z)

Pittsburgh, April 13, 2006 – p.40/73

Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ Propagate

x = {y}, x = y ∪ z || F =⇒ Decide

x = {y}, x = y ∪ z, y = ∅• || F =⇒ Propagate

x = {y}, x = y ∪ z, y = ∅•, x 6= z || F =⇒ T -Learn

x = {y}, x = y ∪ z, y = ∅•, x 6= z || F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

=⇒ Decide

x = {y}, x = y ∪ z, y = ∅•, x 6= z

w ∈ x•

|| F, (x = z ∨w ∈ x∨w ∈ z), (x = z ∨ w 6∈ x∨ w 6∈ z)

=⇒ Propagate

x = {y}, x = y ∪ z, y = ∅•, x 6= z

w ∈ x•, w 6∈ z
|| F, (x = z ∨w ∈ x∨w ∈ z), (x = z ∨ w 6∈ x∨ w 6∈ z)

T -solver: w ∈ y ∪ z

Pittsburgh, April 13, 2006 – p.40/73

Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ Propagate

x = {y}, x = y ∪ z || F =⇒ Decide

x = {y}, x = y ∪ z, y = ∅• || F =⇒ Propagate

x = {y}, x = y ∪ z, y = ∅•, x 6= z || F =⇒ T -Learn

x = {y}, x = y ∪ z, y = ∅•, x 6= z || F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

=⇒ Decide

x = {y}, x = y ∪ z, y = ∅•, x 6= z

w ∈ x•

|| F, (x = z ∨w ∈ x∨w ∈ z), (x = z ∨ w 6∈ x∨ w 6∈ z)

=⇒ Propagate

x = {y}, x = y ∪ z, y = ∅•, x 6= z

w ∈ x•, w 6∈ z
|| F, (x = z ∨w ∈ x∨w ∈ z), (x = z ∨ w 6∈ x∨ w 6∈ z)

T -solver: w ∈ y ∪ z . . . w ∈ y

Pittsburgh, April 13, 2006 – p.40/73

Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ Propagate

x = {y}, x = y ∪ z || F =⇒ Decide

x = {y}, x = y ∪ z, y = ∅• || F =⇒ Propagate

x = {y}, x = y ∪ z, y = ∅•, x 6= z || F =⇒ T -Learn

x = {y}, x = y ∪ z, y = ∅•, x 6= z || F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

=⇒ Decide

x = {y}, x = y ∪ z, y = ∅•, x 6= z

w ∈ x•

|| F, (x = z ∨w ∈ x∨w ∈ z), (x = z ∨ w 6∈ x∨ w 6∈ z)

=⇒ Propagate

x = {y}, x = y ∪ z, y = ∅•, x 6= z

w ∈ x•, w 6∈ z
|| F, (x = z ∨w ∈ x∨w ∈ z), (x = z ∨ w 6∈ x∨ w 6∈ z)

T -solver: w ∈ y ∪ z . . . w ∈ y . . . w ∈ ∅

Pittsburgh, April 13, 2006 – p.40/73

Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ Propagate

x = {y}, x = y ∪ z || F =⇒ Decide

x = {y}, x = y ∪ z, y = ∅• || F =⇒ Propagate

x = {y}, x = y ∪ z, y = ∅•, x 6= z || F =⇒ T -Learn

x = {y}, x = y ∪ z, y = ∅•, x 6= z || F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

=⇒ Decide

x = {y}, x = y ∪ z, y = ∅•, x 6= z

w ∈ x•

|| F, (x = z ∨w ∈ x∨w ∈ z), (x = z ∨ w 6∈ x∨ w 6∈ z)

=⇒ Propagate

x = {y}, x = y ∪ z, y = ∅•, x 6= z

w ∈ x•, w 6∈ z
|| F, (x = z ∨w ∈ x∨w ∈ z), (x = z ∨ w 6∈ x∨ w 6∈ z)

T -solver: w ∈ y ∪ z . . . w ∈ y . . . w ∈ ∅ . . . ⊥

Pittsburgh, April 13, 2006 – p.40/73

Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ Propagate

x = {y}, x = y ∪ z || F =⇒ Decide

x = {y}, x = y ∪ z, y = ∅• || F =⇒ Propagate

x = {y}, x = y ∪ z, y = ∅•, x 6= z || F =⇒ T -Learn

x = {y}, x = y ∪ z, y = ∅•, x 6= z || F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

=⇒ Decide

x = {y}, x = y ∪ z, y = ∅•, x 6= z

w ∈ x•

|| F, (x = z ∨w ∈ x∨w ∈ z), (x = z ∨ w 6∈ x∨ w 6∈ z)

=⇒ Propagate

x = {y}, x = y ∪ z, y = ∅•, x 6= z

w ∈ x•, w 6∈ z
|| F, (x = z ∨w ∈ x∨w ∈ z), (x = z ∨ w 6∈ x∨ w 6∈ z)

T -solver: w ∈ y ∪ z . . . w ∈ y . . . w ∈ ∅ . . . ⊥

=⇒ T -Learn

. . .

Pittsburgh, April 13, 2006 – p.40/73

Correctness Results

Given the new rules, previous correctness results can be
easily extended.

Soundness: The new T -Learn rule maintains satisfiability
of the clause set.

Pittsburgh, April 13, 2006 – p.41/73

Correctness Results

Given the new rules, previous correctness results can be
easily extended.

Soundness: The new T -Learn rule maintains satisfiability
of the clause set.

Completeness: As long as the theory solver can decide
M |=T ⊥ when all literals in L are determined, the system
is still complete.

Pittsburgh, April 13, 2006 – p.41/73

Correctness Results

Given the new rules, previous correctness results can be
easily extended.

Soundness: The new T -Learn rule maintains satisfiability
of the clause set.

Completeness: As long as the theory solver can decide
M |=T ⊥ when all literals in L are determined, the system
is still complete.

Termination: The system terminates under the same
conditions as the original system. Roughly:

Any lemma is (re)learned only finitely many times

Restart is applied with increased periodicity

Pittsburgh, April 13, 2006 – p.41/73

Correctness Results

Given the new rules, previous correctness results can be
easily extended.

Soundness: The new T -Learn rule maintains satisfiability
of the clause set.

Completeness: As long as the theory solver can decide
M |=T ⊥ when all literals in L are determined, the system
is still complete.

Termination: The system terminates under the same
conditions as the original system. Roughly:

Any lemma is (re)learned only finitely many times

Restart is applied with increased periodicity
The first condition can always be satisfied as L is finite.

Pittsburgh, April 13, 2006 – p.41/73

Part II

From a single theory T to multiple theories T1, . . . , Tn.

Pittsburgh, April 13, 2006 – p.42/73

The Combined Satisfiability Problem

For i = 1, 2,

let Ti a first-order theory of signature Σi and

let LΣi be a class of Σi-formulas

such that the Ti-satisfiability problem for LΣi is decidable.

Pittsburgh, April 13, 2006 – p.43/73

The Combined Satisfiability Problem

For i = 1, 2,

let Ti a first-order theory of signature Σi and

let LΣi be a class of Σi-formulas

such that the Ti-satisfiability problem for LΣi is decidable.

Combination methods apply to languages LΣ1∪Σ2 that are
effectively purifiable for T1 and T2,

Pittsburgh, April 13, 2006 – p.43/73

The Combined Satisfiability Problem

For i = 1, 2,

let Ti a first-order theory of signature Σi and

let LΣi be a class of Σi-formulas

such that the Ti-satisfiability problem for LΣi is decidable.

Combination methods apply to languages LΣ1∪Σ2 that are
effectively purifiable for T1 and T2, i.e., such that

the (T1 ∪ T2)-satisfiability of a formula ϕ ∈ LΣ1∪Σ2

is effectively reducible to
the (T1 ∪ T2)-satisfiability of formulas of the form ϕ1 ∧ ϕ2

with ϕi ∈ LΣi for i = 1, 2.

Pittsburgh, April 13, 2006 – p.43/73

An Effectively Purifiable Language

The language of conjunctions of literals is effectively purifiable
for any T1 and T2.

Pittsburgh, April 13, 2006 – p.44/73

An Effectively Purifiable Language

The language of conjunctions of literals is effectively purifiable
for any T1 and T2.

Let ϕ be a conjunction of (Σ1 ∪ Σ2)-literals.

1. Apply to completion to ϕ (modulo AC of ∧) the following
term abstraction rule:

L[t] ∧ ψ

L[x] ∧ x ≈ t ∧ ψ
if

x is a fresh variable and

t is an alien subterm of L

2. Group the Σ1-literals in ϕ1 and the rest in ϕ2.

Pittsburgh, April 13, 2006 – p.44/73

An Effectively Purifiable Language

The language of conjunctions of literals is effectively purifiable
for any T1 and T2.

Let ϕ be a conjunction of (Σ1 ∪ Σ2)-literals.

1. Apply to completion to ϕ (modulo AC of ∧) the following
term abstraction rule:

L[t] ∧ ψ

L[x] ∧ x ≈ t ∧ ψ
if

x is a fresh variable and

t is an alien subterm of L

2. Group the Σ1-literals in ϕ1 and the rest in ϕ2.

Proposition For every (Σ1 ∪ Σ2)-structure A, ϕ is satisfiable
in A iff ϕ1 ∧ ϕ2 is satisfiable in A.

Pittsburgh, April 13, 2006 – p.44/73

Combined Satisfiability of Pure Literals

From now on, wlog we consider only

combined satisfiability problems of the form

ϕ1 ∧ ϕ2

where each ϕi is a Σi-formula.

Pittsburgh, April 13, 2006 – p.45/73

Combined Satisfiability of Pure Literals

From now on, wlog we consider only

combined satisfiability problems of the form

ϕ1 ∧ ϕ2

where each ϕi is a Σi-formula.

Observation: Such problems are really just interpolation
problems.

Pittsburgh, April 13, 2006 – p.45/73

Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi(xi) a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

Pittsburgh, April 13, 2006 – p.46/73

Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi(xi) a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

iff

(T1, ϕ1), (T2, ϕ2) |= ⊥

Pittsburgh, April 13, 2006 – p.46/73

Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi(xi) a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

iff

(T1, ϕ1), (T2, ϕ2) |= ⊥

iff (by Craig’s interpolation lemma)

there is a (Σ1 ∩ Σ2)-formula ϕ(x) with x = x1 ∩ x2 s.t.

T1, ϕ1 |= ϕ and T2, ϕ2, ϕ |= ⊥

Pittsburgh, April 13, 2006 – p.46/73

Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi(xi) a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

iff

(T1, ϕ1), (T2, ϕ2) |= ⊥

iff (by Craig’s interpolation lemma)

there is a (Σ1 ∩ Σ2)-formula ϕ(x) with x = x1 ∩ x2 s.t.

T1, ϕ1 |= ϕ and T2, ϕ2, ϕ |= ⊥

The problem then is “just” computing the interpolant ϕ.

Pittsburgh, April 13, 2006 – p.46/73

Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi(xi) a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

iff

(T1, ϕ1), (T2, ϕ2) |= ⊥

iff (by Craig’s interpolation lemma)

there is a (Σ1 ∩ Σ2)-formula ϕ(x) with x = x1 ∩ x2 s.t.

T1, ϕ1 |= ϕ and T2, ϕ2, ϕ |= ⊥

Unfortunately, Craig’s lemma provides no information on

what ϕ looks like or

how to compute ϕ without an explicit proof that
T1, T2, ϕ1, ϕ2 |= ⊥.

Pittsburgh, April 13, 2006 – p.46/73

Combined Satisfiability as Interpolation

For i = 1, 2, let Ti-be a Σi-theory and ϕi(xi) a Σi-formula.

ϕ1 ∧ ϕ2 is (T1 ∪ T2)-unsatisfiable

iff

(T1, ϕ1), (T2, ϕ2) |= ⊥

iff (by Craig’s interpolation lemma)

there is a (Σ1 ∩ Σ2)-formula ϕ(x) with x = x1 ∩ x2 s.t.

T1, ϕ1 |= ϕ and T2, ϕ2, ϕ |= ⊥

All existing combination methods are in essence ways to
compute ϕ, possibly incrementally, in finite time.

Pittsburgh, April 13, 2006 – p.46/73

The Combined Satisfiability Problem for QFFs

For i = 1, 2,

let Ti a first-order theory of signature Σi and

let Pi be a procedure that decides the Ti-satisfiability
problem for quantifier-free Σi-formulas.

Pittsburgh, April 13, 2006 – p.47/73

The Combined Satisfiability Problem for QFFs

For i = 1, 2,

let Ti a first-order theory of signature Σi and

let Pi be a procedure that decides the Ti-satisfiability
problem for quantifier-free Σi-formulas.

How to decide the (T1 ∪ T2)-satisfiability problem for
quantifier-free (Σ1 ∪ Σ2)-formulas using P1 and P2 modularly?

Pittsburgh, April 13, 2006 – p.47/73

The Combination Problem for QFFs

Problem most people mean when talking about
combining decision procedures.

Problem with the largest impact and most practical uses
so far.

Most common settings:

T1 and T2 are signature-disjoint.

Basic combination method for the problem due to Greg
Nelson and Derek Oppen [NO79].

Pittsburgh, April 13, 2006 – p.48/73

The Nelson-Oppen Method

For i = 1, 2, let Ti a first-order theory of signature Σi.

Let T = T1 ∪ T2.

Let C be a set of free constants (i.e., not in Σ1 ∪ Σ2).

Pittsburgh, April 13, 2006 – p.49/73

The Nelson-Oppen Method

For i = 1, 2, let Ti a first-order theory of signature Σi.

Let T = T1 ∪ T2.

Let C be a set of free constants (i.e., not in Σ1 ∪ Σ2).

We consider only input problems of the form

Γ1 ∪ Γ2

where each Γi is a finite set of ground Σi(C)-literals.

Pittsburgh, April 13, 2006 – p.49/73

The Nelson-Oppen Method

No loss of generality in considering ground Σi(C)-literals as:

Pittsburgh, April 13, 2006 – p.50/73

The Nelson-Oppen Method

No loss of generality in considering ground Σi(C)-literals as:

1. for each ϕ(x) ∈ QF(Σ1 ∪ Σ2, X),
ϕ(x) is T -sat iff ϕ(c) is T -sat for some c in C

Pittsburgh, April 13, 2006 – p.50/73

The Nelson-Oppen Method

No loss of generality in considering ground Σi(C)-literals as:

1. for each ϕ(x) ∈ QF(Σ1 ∪ Σ2, X),
ϕ(x) is T -sat iff ϕ(c) is T -sat for some c in C

2. for each ground ϕ(c),
ϕ(c) is T -sat iff one disjunct ψ of ϕ(c)’s DNF is T -sat

Pittsburgh, April 13, 2006 – p.50/73

The Nelson-Oppen Method

No loss of generality in considering ground Σi(C)-literals as:

1. for each ϕ(x) ∈ QF(Σ1 ∪ Σ2, X),
ϕ(x) is T -sat iff ϕ(c) is T -sat for some c in C

2. for each ground ϕ(c),
ϕ(c) is T -sat iff one disjunct ψ of ϕ(c)’s DNF is T -sat

3. for each conjunction ψ of literals,
ψ is T -sat iff its separate form ψ1 ∧ ψ2 is T -sat

Pittsburgh, April 13, 2006 – p.50/73

The Nelson-Oppen Method

No loss of generality in considering ground Σi(C)-literals as:

1. for each ϕ(x) ∈ QF(Σ1 ∪ Σ2, X),
ϕ(x) is T -sat iff ϕ(c) is T -sat for some c in C

2. for each ground ϕ(c),
ϕ(c) is T -sat iff one disjunct ψ of ϕ(c)’s DNF is T -sat

3. for each conjunction ψ of literals,
ψ is T -sat iff its separate form ψ1 ∧ ψ2 is T -sat

4. for each conjunction ψ1 ∧ ψ2 of literals,

ψ1 ∧ ψ2 is T -sat iff
Γ1 ∪ Γ2 is T -sat
where each Γi is the set of literals in ψi.

Pittsburgh, April 13, 2006 – p.50/73

The Nelson-Oppen Method

Barebone, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Pittsburgh, April 13, 2006 – p.51/73

The Nelson-Oppen Method

Barebone, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: Γ1 ∪ Γ2 with Γi a finite set of ground Σi(C)-literals.
Output: sat or unsat.

Pittsburgh, April 13, 2006 – p.51/73

The Nelson-Oppen Method

Barebone, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: Γ1 ∪ Γ2 with Γi a finite set of ground Σi(C)-literals.
Output: sat or unsat.

1. Guess an arrangement ∆, that is:

Choose any equivalence relation R on the constants
from C shared by Γ1 and Γ2.

Let ∆ = {c ≈ d | cRd} ∪ {c 6≈ d | not cRd}

Pittsburgh, April 13, 2006 – p.51/73

The Nelson-Oppen Method

Barebone, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: Γ1 ∪ Γ2 with Γi a finite set of ground Σi(C)-literals.
Output: sat or unsat.

1. Guess an arrangement ∆, that is:

Choose any equivalence relation R on the constants
from C shared by Γ1 and Γ2.

Let ∆ = {c ≈ d | cRd} ∪ {c 6≈ d | not cRd}

2. If Γi ∪ ∆ is Ti-unsatisfiable for i = 1 or i = 2, return unsat

Pittsburgh, April 13, 2006 – p.51/73

The Nelson-Oppen Method

Barebone, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: Γ1 ∪ Γ2 with Γi a finite set of ground Σi(C)-literals.
Output: sat or unsat.

1. Guess an arrangement ∆, that is:

Choose any equivalence relation R on the constants
from C shared by Γ1 and Γ2.

Let ∆ = {c ≈ d | cRd} ∪ {c 6≈ d | not cRd}

2. If Γi ∪ ∆ is Ti-unsatisfiable for i = 1 or i = 2, return unsat

3. Otherwise, return sat

Pittsburgh, April 13, 2006 – p.51/73

Total Correctness of the NO Method

The method is always terminating because there is only a
finite number of arrangements to guess.

Pittsburgh, April 13, 2006 – p.52/73

Total Correctness of the NO Method

The method is always terminating because there is only a
finite number of arrangements to guess.

When

Σ1 ∩ Σ2 = ∅ and

T1 and T2 are stably infinite,

the method is sound and complete.

Soundness:
If the answer is unsat for every arrangement,
then the input is (T1 ∪ T2)-unsatisfiable.

Completeness:
If the input is (T1 ∪ T2)-is unsatisfiable,
then the answer is unsat for every arrangement.

Pittsburgh, April 13, 2006 – p.52/73

Stably Infinite Theories

A Σ-theory T is stably infinite iff every quantifier-free
T -satisfiable formula is satisfiable in an infinite model of T .

Pittsburgh, April 13, 2006 – p.53/73

Stably Infinite Theories

A Σ-theory T is stably infinite iff every quantifier-free
T -satisfiable formula is satisfiable in an infinite model of T .

Many interesting theories are stably infinite:

Theories of an infinite structure.

Complete theories with an infinite model.

Convex theories with no trivial models (see later).

Pittsburgh, April 13, 2006 – p.53/73

Stably Infinite Theories

A Σ-theory T is stably infinite iff every quantifier-free
T -satisfiable formula is satisfiable in an infinite model of T .

Many interesting theories are stably infinite:

Theories of an infinite structure.

Complete theories with an infinite model.

Convex theories with no trivial models (see later).

But others are not stably infinite:

Theories of a finite structure.

Theories with models of bounded cardinality.

Some equational/Horn theories.
Pittsburgh, April 13, 2006 – p.53/73

The NO Calculus

Declarative, non-deterministic, incremental version
of the NO method

Pittsburgh, April 13, 2006 – p.54/73

The NO Calculus

Declarative, non-deterministic, incremental version
of the NO method

Let C0 be the free constants shared by the initial Γ0
1 and Γ0

2.

Pittsburgh, April 13, 2006 – p.54/73

The NO Calculus

Declarative, non-deterministic, incremental version
of the NO method

Let C0 be the free constants shared by the initial Γ0
1 and Γ0

2.

Apply these rules exhaustively, starting with the triple
Γ0

1; ∅; Γ0
2:

Pittsburgh, April 13, 2006 – p.54/73

The NO Calculus

Declarative, non-deterministic, incremental version
of the NO method

Let C0 be the free constants shared by the initial Γ0
1 and Γ0

2.

Apply these rules exhaustively, starting with the triple
Γ0

1; ∅; Γ0
2:

Γ1; ∆; Γ2

⊥
if Γi,∆ |=Ti

⊥ for i = 1 or i = 2

Γ1; ∆; Γ2

Γ1; ∆, c ≈ d; Γ2 Γ1; ∆, c 6≈ d; Γ2
if







c, d ∈ C0,

c ≈ d /∈ ∆,

c 6≈ d /∈ ∆

Pittsburgh, April 13, 2006 – p.54/73

Correctness of the NO Calculus

Some terminology:

A derivation tree in the NO calculus is a tree such that
every node is either a triple Γ; ∆; Γ or ⊥

a node N is a child of a M only if it is a direct
consequence of M .

A derivation tree for Γ1; ∆; Γ2 is a derivation tree with root
Γ1; ∆; Γ2.

A refutation tree is a derivation tree all of whose leaves
are ⊥.

Pittsburgh, April 13, 2006 – p.55/73

Correctness of the NO Calculus

The NO calculus is sound, complete and terminating
whenever T1 and T2 are stably infinite and signature-disjoint.

Termination:
Every derivation tree in NO is finite.

Soundness and Completeness:
Γ1 ∪ Γ2 is (T1 ∪ T2)-unsatisfiable
iff
Γ1; ∅; Γ2 has a refutation tree in NO.

Pittsburgh, April 13, 2006 – p.56/73

The d-NO Calculus

Declarative, (more) deterministic, incremental version of
the NO method (more faithful to the original [NO79])

Pittsburgh, April 13, 2006 – p.57/73

The d-NO Calculus

Declarative, (more) deterministic, incremental version of
the NO method (more faithful to the original [NO79])

Apply these rules exhaustively, starting with Γ0
1; ∅; Γ0

2:

Γ1; ∆; Γ2

⊥
if Γi,∆ |=Ti

⊥ for i = 1 or i = 2

Γ1; ∆; Γ2

Γ1; ∆, c1 ≈ d1; Γ2 · · · Γ1; ∆, cn ≈ dn; Γ2
if (∗)

(∗) =







n ≥ 1, c1, . . . , cn, d1, . . . , dn ∈ C0,

i ∈ {1, 2}, J = {1, . . . , n},

Γi,∆ |=Ti

∨

j∈J cj ≈ dj

Γi,∆ 6|=Ti

∨

j∈J ′ cj ≈ dj for any J ′ (J

Pittsburgh, April 13, 2006 – p.57/73

The d-NO Calculus and Convex Theories

The d-NO calculus becomes really deterministic when T1 and
T2 are convex.

Then, every refutation tree consists of a single branch.

Pittsburgh, April 13, 2006 – p.58/73

The d-NO Calculus and Convex Theories

The d-NO calculus becomes really deterministic when T1 and
T2 are convex.

Then, every refutation tree consists of a single branch.

A Σ-theory T is convex iff
for all finite sets Γ of Σ-literals and
for all non-empty disjunctions

∨

i∈I xi ≈ yi of variables,

Γ |=T

∨

i∈I xi ≈ yi iff Γ |=T xi ≈ yi for some i ∈ I.

Pittsburgh, April 13, 2006 – p.58/73

The d-NO Calculus and Convex Theories

The d-NO calculus becomes really deterministic when T1 and
T2 are convex.

Then, every refutation tree consists of a single branch.

A Σ-theory T is convex iff
for all finite sets Γ of Σ-literals and
for all non-empty disjunctions

∨

i∈I xi ≈ yi of variables,

Γ |=T

∨

i∈I xi ≈ yi iff Γ |=T xi ≈ yi for some i ∈ I.

Useful fact: Every convex theory T with no trivial models
(i.e., such that T |= ∃x, y.x 6≈ y) is stably infinite [BDS02b].

Pittsburgh, April 13, 2006 – p.58/73

The d-NO Calculus and Convex Theories

Many interesting theories are convex (not immediate to
show):

All Horn theories—this includes all (conditional)
equational theories.

Some non-Horn theories, like linear rational arithmetic.

Pittsburgh, April 13, 2006 – p.59/73

The d-NO Calculus and Convex Theories

Many interesting theories are convex (not immediate to
show):

All Horn theories—this includes all (conditional)
equational theories.

Some non-Horn theories, like linear rational arithmetic.

But many more are not convex:

All theories of a finite structure.

Non-linear rational arithmetic.

Linear integer arithmetic.

The theory of arrays.

Pittsburgh, April 13, 2006 – p.59/73

Extending Nelson-Oppen

The main requirements of the method:

The disjointness of Σ1 and Σ2 and

the stable infiniteness of T1 and T2

are only sufficient conditions for its correctness.

Can they be relaxed?

Pittsburgh, April 13, 2006 – p.60/73

Extending Nelson-Oppen

The main requirements of the method:

The disjointness of Σ1 and Σ2 and

the stable infiniteness of T1 and T2

are only sufficient conditions for its correctness.

Can they be relaxed?

Relaxing either of them turns out to be rather hard.

Only a few results in this direction, all very recent, and most
of them mainly of academic interest for now.

Pittsburgh, April 13, 2006 – p.60/73

Extending NO: Non-Stably Infinite Theories

The only existing results (we are aware of) are about

combining arbitrary theories with the theory of equality
(aka the empty theory, EUF, . . .) [Gan02],

about combining arbitrary theories with shiny or polite
theories [TZ05, RRZ05]

combining universal theories [Zar04].

The results in [TZ05, RRZ05] subsume those in [Gan02] but
are not comparable to those in [Zar04].

The results in [Zar04] also lift the disjointness restriction.

Pittsburgh, April 13, 2006 – p.61/73

Extending Nelson-Oppen: Non-Disjoint Theories

Three main approaches, respectively described in: [TR03],
[Ghi04], and [Zar04].

All of them need to extend the constraint sharing mechanism
beyond (dis)equalities of shared constants.

None of them is more general than the others.

[TR03] and [Ghi04] are rather technical and beyond the scope
of this talk.

[Zar04] is very general but yields weaker results both in theory
(only semi-decidability) and in practice (too much to guess).

Pittsburgh, April 13, 2006 – p.62/73

Abstract DPLL Modulo Multiple Theories

Let T1, . . . , Tn be distinct theories with respective theory
solvers S1, . . . , Sn.

How can we reason over all of them with Abstract DPLL?

Pittsburgh, April 13, 2006 – p.63/73

Abstract DPLL Modulo Multiple Theories

Let T1, . . . , Tn be distinct theories with respective theory
solvers S1, . . . , Sn.

How can we reason over all of them with Abstract DPLL?

Quick Solution:

1. Combine S1, . . . , Sn with Nelson-Oppen into a T -solver for
T = T1 ∪ · · · ∪ Tn.

2. Use Abstract DPLL Modulo T .

Pittsburgh, April 13, 2006 – p.63/73

Abstract DPLL Modulo Multiple Theories

Let T1, . . . , Tn be distinct theories with respective theory
solvers S1, . . . , Sn.

How can we reason over all of them with Abstract DPLL?

Better Solution [Bar02, Tin04, BBC+05, BNOT06]:

1. Lift Nelson-Oppen to the DPLL level.

2. Use Abstract DPLL Modulo T1, . . . , Tn.

Pittsburgh, April 13, 2006 – p.63/73

Abstract DPLL Modulo Multiple Theories

Preliminaries

Let n = 2, for simplicity.

Let Ti be of signature Σi for i = 1, 2, with Σ1 ∩ Σ2 = ∅.

Let C be a set of free constants.

Assume wlog that each input literal has signature Σ1(C)
or Σ2(C) (no mixed literals).

Let M i = {Σi(C)-literals of M}.

Let se(M) = {c ≈ d | c, d occur in C, M 1 and M 2}
(shared equalities).

Pittsburgh, April 13, 2006 – p.64/73

Abstract DPLL – Rules for Multiple Theories

Propagate (unchanged)

Fail (unchanged)

T -Backjump (unchanged, with T = T1 ∪ T2)

Decide

M || F → M l• || F if

{
l or l occurs in M || F or in se(M),

l is undefined in M

Only change: decide on (undefined) shared equalities as well.

Pittsburgh, April 13, 2006 – p.65/73

Abstract DPLL – Rules for Multiple Theories

Refined T -Learn

M || F → M || F, l1 ∨ . . . ∨ ln if







i ∈ {1, 2}

lj or lj in M i or se(M)

l1 ∧ · · · ∧ ln |=Ti
⊥

T -Propagate

M || F → M l || F if







i ∈ {1, 2}

M i |=Ti
l

l or l occurs in M || F or se(M)

l is undefined in M

Changes: (i) reason locally in Ti, (ii) theory propagate shared
equalities as well.

Pittsburgh, April 13, 2006 – p.66/73

References

[ABC+02] Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Korniłowicz, and
Roberto Sebastiani. A SAT-based approach for solving formulas over boolean and
linear mathematical propositions. In Andrei Voronkov, editor, Proceedings of the 18th
International Conference on Automated Deduction, volume 2392 of Lecture Notes in
Artificial Intelligence, pages 195–210. Springer, 2002

[ACG00] Alessandro Armando, Claudio Castellini, and Enrico Giunchiglia. SAT-based
procedures for temporal reasoning. In S. Biundo and M. Fox, editors, Proceedings of
the 5th European Conference on Planning (Durham, UK), volume 1809 of Lecture
Notes in Computer Science, pages 97–108. Springer, 2000

[Bar02] Clark W. Barrett. Checking Validity of Quantifier-Free Formulas in Combinations of
First-Order Theories. PhD dissertation, Department of Computer Science, Stanford
University, Stanford, CA, Sep 2002

[BBC+05] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junttila, Silvio
Ranise, Roberto Sebastiani, and Peter van Rossu. Efficient satisfiability modulo
theories via delayed theory combination. In K.Etessami and S. Rajamani, editors,
Proceedings of the 17th International Conference on Computer Aided Verification,
Lecture Notes in Computer Science. Springer, 2005. (To appear)

Pittsburgh, April 13, 2006 – p.67/73

References

[BCLZ04] Thomas Ball, Byron Cook, Shuvendu K. Lahiri, and Lintao Zhang. Zapato:
Automatic theorem proving for predicate abstraction refinement. In R. Alur and
D. Peled, editors, Proceedings of the 16th International Conference on Computer
Aided Verification, volume 3114 of Lecture Notes in Computer Science, pages
457–461. Springer, 2004

[BDS02a] Clark W. Barrett, David L. Dill, and Aaron Stump. Checking satisfiability of
first-order formulas by incremental translation to SAT. In J. C. Godskesen, editor,
Proceedings of the International Conference on Computer-Aided Verification, Lecture
Notes in Computer Science, 2002

[BDS02b] Clark W. Barrett, David L. Dill, and Aaron Stump. A generalization of Shostak’s
method for combining decision procedures. In A. Armando, editor, Proceedings of the
4th International Workshop on Frontiers of Combining Systems, FroCoS’2002 (Santa
Margherita Ligure, Italy), volume 2309 of Lecture Notes in Computer Science, pages
132–147, apr 2002

[BLS02] Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. Deciding CLU logic
formulas via boolean and pseudo-boolean encodings. In Proc. Intl. Workshop on
Constraints in Formal Verification, 2002

Pittsburgh, April 13, 2006 – p.68/73

References

[BNOT06] Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Splitting on
demand in sat modulo theories. In M. Hermann and A. Voronkov, editors, Proceedings
of the 13th International Conference on Logic for Programming, Artificial Intelligence
and Reasoning (LPAR’06), Phnom Penh, Cambodia, volume 4246 of Lecture Notes in
Computer Science, pages 512–526. Springer, 2006

[BT02] Franz Baader and Cesare Tinelli. Deciding the word problem in the union of
equational theories. Information and Computation, 178(2):346–390, December 2002

[BT03] Peter Baumgartner and Cesare Tinelli. The model evolution calculus. In F. Baader,
editor, Proceedings of the 19th International Conference on Automated Deduction,
CADE-19 (Miami, Florida, USA), number 2741 in Lecture Notes in Artificial
Intelligence, pages 350–364. Springer, 2003

[CKSY04] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. Predicate
abstraction of ANSI–C programs using SAT. Formal Methods in System Design
(FMSD), 25:105–127, September–November 2004

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem proving. Communications of the ACM, 5(7):394–397, July 1962

Pittsburgh, April 13, 2006 – p.69/73

References

[dMR02] Leonardo de Moura and Harald Rueß. Lemmas on demand for satisfiability solvers.
In Proc. of the Fifth International Symposium on the Theory and Applications of
Satisfiability Testing (SAT’02), May 2002

[FJOS03] Cormac Flanagan, Rajeev Joshi, Xinming Ou, and James B. Saxe. Theorem
proving using lazy proof explication. In Warren A. Hunt Jr. and Fabio Somenzi, editors,
Proceedings of the 15th International Conference on Computer Aided Verification,
volume 2725 of Lecture Notes in Computer Science, pages 355–367. Springer, 2003

[Gan02] Harald Ganzinger. Shostak light. In A. Voronkov, editor, Proceedings of the 18th
International Conference on Automated Deduction, volume 2392 of Lecture Notes in
Computer Science, pages 332–346. Springer-Verlag, jul 2002

[Ghi04] Silvio Ghilardi. Model theoretic methods in combined constraint satisfiability. Journal
of Automated Reasoning, 3(3–4):221–249, 2004

[GHN+04] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and
Cesare Tinelli. DPLL(T): Fast decision procedures. In R. Alur and D. Peled, editors,
Proceedings of the 16th International Conference on Computer Aided Verification,
CAV’04 (Boston, Massachusetts), volume 3114 of Lecture Notes in Computer Science,
pages 175–188. Springer, 2004

Pittsburgh, April 13, 2006 – p.70/73

References

[NO79] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision
procedures. ACM Trans. on Programming Languages and Systems, 1(2):245–257,
October 1979

[NO05] Robert Nieuwenhuis and Albert Oliveras. DPLL(T) with exhaustive theory
propagation and its application to difference logic. In K. Etessami and S. Rajamani,
editors, Proceedings of 17th International Conference on Computer Aided Verification,
Lecture Notes in Computer Science. Springer, 2005. (To appear)

[NOT05] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Abstract DPLL and
abstract DPLL modulo theories. In F. Baader and A. Voronkov, editors, Proceedings of
the 11th International Conference on Logic for Programming, Artificial Intelligence and
Reasoning (LPAR’04), Montevideo, Uruguay, volume 3452 of Lecture Notes in Artificial
Intelligence, pages 36–50. Springer, 2005

[Opp80] Derek C. Oppen. Complexity, convexity and combinations of theories. Theoretical
Computer Science, 12:291–302, 1980

[Rin96] Christophe Ringeissen. Cooperation of decision procedures for the satisfiability
problem. In F. Baader and K.U. Schulz, editors, Frontiers of Combining Systems:
Proceedings of the 1st International Workshop, Munich (Germany), Applied Logic,
pages 121–140. Kluwer Academic Publishers, March 1996

Pittsburgh, April 13, 2006 – p.71/73

References

[RRZ05] Silvio Ranise, Christophe Ringeissen, and Calogero G. Zarba. Combining data
structures with nonstably infinite theories using many-sorted logic. In B. Gramlich,
editor, Proceedings of the Workshop on Frontiers of Combining Systems, Lecture
Notes in Computer Science. Springer, 2005. (To appear.)

[SLB03] Sanjit A. Seshia, Shuvendu K. Lahiri, and Randal E. Bryant. A hybrid SAT-based
decision procedure for separation logic with uninterpreted functions. In Proc. 40th
Design Automation Conference, pages 425–430. ACM Press, 2003

[TH96] Cesare Tinelli and Mehdi T. Harandi. A new correctness proof of the Nelson–Oppen
combination procedure. In F. Baader and K.U. Schulz, editors, Frontiers of Combining
Systems: Proceedings of the 1st International Workshop (Munich, Germany), Applied
Logic, pages 103–120. Kluwer Academic Publishers, March 1996

[Tin02] Cesare Tinelli. A DPLL-based calculus for ground satisfiability modulo theories. In
Giovambattista Ianni and Sergio Flesca, editors, Proceedings of the 8th European
Conference on Logics in Artificial Intelligence (Cosenza, Italy), volume 2424 of Lecture
Notes in Artificial Intelligence. Springer, 2002

[Tin04] Cesare Tinelli. The DPLL(T1, . . . , Tn): modeling DPLL-based checkers for
satisfiability modulo multiple theories. (Unpublished), 2004

Pittsburgh, April 13, 2006 – p.72/73

References

[TR03] Cesare Tinelli and Christophe Ringeissen. Unions of non-disjoint theories and
combinations of satisfiability procedures. Theoretical Computer Science,
290(1):291–353, January 2003

[TZ04] Cesare Tinelli and Calogero Zarba. Combining decision procedures for sorted
theories. In J. Alferes and J. Leite, editors, Proceedings of the 9th European
Conference on Logic in Artificial Intelligence (JELIA’04), Lisbon, Portugal, volume
3229 of Lecture Notes in Artificial Intelligence, pages 641–653. Springer, 2004

[TZ05] Cesare Tinelli and Calogero Zarba. Combining nonstably infinite theories. Journal of
Automated Reasoning, 34(3):209–238, April 2005

[Zar04] Calogero G. Zarba. C-tableaux. Technical Report RR-5229, INRIA, 2004

Pittsburgh, April 13, 2006 – p.73/73

	Credits
	Propositional Satisfiability: SAT
	Satisfiability Modulo Theories
	Satisfiability Modulo Theories
	Solving SMT Problems
	Structure of this Talk
	Part I
	Satisfiability Modulo a Theory T
	Lifting SAT Technology to SMT
	The Original DPLL Procedure~cite {Davis1962a}
	An Abstract Framework for DPLL~cite {NieOT-JACM-06}
	Advantages of Abstract Framework
	An Abstract Framework for DPLL
	Transition Rules for the Original DPLL
	Transition Rules for the Original DPLL
	From Backtracking to Backjumping
	Basic DPLL System
	Enhancements to Basic DPLL
	The DPLL System -- Correctness
	(Very)
Lazy Approach for SMT -- Example
	(Very)
Lazy Approach for SMT -- Example
	Modeling the Lazy Approach
	Modeling the Lazy Approach
	Modeling the Lazy Approach
	(Very)
Lazy Theory Approach - Example
	Lazy Theory Approach - Example
	Lazy Approach -- Strategies
	Theory Propagation
	Theory Propagation - Example
	Theory Propagation
	From Complete to Incomplete Theory Solvers
	Case Splitting
	Case Splitting
	Splitting on Demand~cite {BarNOT-LPAR-06}
	Splitting on Demand~cite {BarNOT-LPAR-06}
	Splitting on Demand in Abstract DPLL
	Extending Abstract DPLL Modulo Theories
	Extending Abstract DPLL Modulo Theories
	Example: Theory of Sets
	Correctness Results
	Part II
	The Combined Satisfiability Problem
	An Effectively Purifiable Language
	Combined Satisfiability of Pure Literals
	Combined Satisfiability as Interpolation
	The Combined Satisfiability Problem for QFFs
	The Combination Problem for QFFs
	The Nelson-Oppen Method
	The Nelson-Oppen Method
	The Nelson-Oppen Method
	Total Correctness of the NO Method
	Stably Infinite Theories
	The NO Calculus
	Correctness of the NO Calculus
	Correctness of the NO Calculus
	The d-NO Calculus
	The d-NO Calculus and Convex Theories
	The d-NO Calculus and Convex Theories
	Extending Nelson-Oppen
	Extending NO: Non-Stably Infinite Theories
	Extending Nelson-Oppen: Non-Disjoint Theories
	Abstract DPLL Modulo Multiple Theories
	Abstract DPLL Modulo Multiple Theories
	Abstract DPLL -- Rules for Multiple Theories
	Abstract DPLL -- Rules for Multiple Theories
	References
	References
	References
	References
	References
	References
	References

