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New technologies for mathematics

New reasoning technologies:

* interactive theorem proving and

formalization o
Formalization

« automated reasoning and symbolic Al

* machine learning and neural Al

Symbolic
Automated
Reasoning

Machine

Call these, collectively, “Al for Mathematics.” Learning

All three come together in neurosymbolic
theorem proving.



New technologies for mathematics

Goals of this talk:

 survey the technologies (quickly!)

* raise some concerns

| am generally optimistic, but we should also be cautious and thoughtful.



Interactive theorem proving and formalization

« There are several proof assistants in use today (Coq, Isabelle, HOL Light, Lean, ...).
« Lean’s Mathlib has more than two million lines of code.
* The Lean Zulip chat has 13K+ subscribers, 1,200+ active in any two-week period.

 There have been several notable formalizations and collaborations:

 the liquid tensor experiment

the sphere eversion theorem

the polynomial Freiman-Ruzsa conjecture

improved upper bounds on Ramsey’s theorem
Carleson’s theorem
the FLT project



FOUNDATIONS OF MATHEMATICS

Building the Mathematical Library of the
Future

W2 N A small community of mathematicians is using a software program called

Lean to build a new digital repository. They hope it represents the future of
their field.




Liguid tensor experiment

Posted on December 5, 2020 by xenaproject

This is a guest post, written by Peter Scholze, explaining a liquid real vector space mathematical
formalisation challenge. For a pdf version of the challenge, see here. For comments about

formalisation, see section 6. Now over to Peter.

1. The challenge

I want to propose a challenge: Formalize the proof of the following theorem.

Theorem 1.1 (Clausen-S.) Let ) < p’ < p < 1be real numbers, let S be a profinite set, and let |/
be a p-Banach space. Let M P! (S ) be the space of p'-measures on S. Then

EXtEond(Ab) (Mp(5),V)=0

fory > 1. B8 Comment
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Blueprint for the Liquid Tensor Experiment

1.1 Breen—Deligne data

The goal of this subsection is to a give a precise statement of a variant of the Breen—Deligne
resolution. This variant is not actually a resolution, but it is sufficient for our purposes, and is
much easier to state and prove.

We first recall the original statement of the Breen—Deligne resolution.

Theorem(Breen—Deligne)

For an abelian group A, there is a resolution, functorial in A, of the form

. — PZ[AT] — ... — Z[A®| @ Z[A?] — Z[A?%] — Z[4A] — A — 0.

T
i=1

What does a homomorphism f: Z[A™| — Z[A™"| that is functorial in A look like? We should
perhaps say more precisely what we mean by this. The idea is that mm and n are fixed, and for
each abelian group A we have a group homomorphism f4: Z[A™] — Z[A™] such that if

¢: A — B is a group homomorphism inducing ¢;: Z[A'] — Z[B'] for each natural number i
then the obvious square commutes: ¢, © f4 = fB © ¢n.

The map f 4 is specified by what it does to the generators (ay, as,as,...,a,) € A™. Itcan
send such an element to an arbitrary element of Z[A"|, but one can check that universality
implies that f4 will be a Z-linear combination of “basic universal maps”, where a “basic
universal map” is one that sends (aj, as,...,an) to (t1,...,t,), where ¢; is a Z-linear
combination ¢; 1 - @1 + + ++ + €jm * @m. SO a “basic universal map” is specified by the

T X m-matrix c.

Definition 1.1.1 ¢

A basic universal map from exponent m to n, is an n x m-matrix with coefficients in Z
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Automated reasoning and symbolic Al

» Several theorems proved with the help of SAT solvers

« Arithmetic / combinatorial problems (Schur numbers, Pythagorean
triples)

« Geometric theorems (Keller's conjecture, the happy ending theorem)
« Gardam’s refutation of the Kaplansky unit conjecture

* Decision procedures and automated reasoning used for formalization

* First-order provers and model finders used in the Equational Theories
Project

* Verified computer algebra and symbolic computation

* Verified numeric computation



GEOMETRY

mputer Search Settles 90-Year-Old
Math Problem

® w0 | N By translating Keller’s conjecture into a computer-friendly search for a type

of graph, researchers have finally resolved a problem about covering spaces

with tiles.




A counterexample to the
unit conjecture for group rings

By GILES GARDAM

To the memory of Willem Henskens

Abstract

The unit conjecture, commonly attributed to Kaplansky, predicts that
if K is a field and G is a torsion-free group, then the only units of the
group ring K|G] are the trivial units, that is, the non-zero scalar multiples
of group elements. We give a concrete counterexample to this conjecture;
the group is virtually abelian and the field is order two.
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[Submitted on 1 Mar 2024]

Happy Ending: An Empty Hexagon in Every Set of 30 Points

Marijn J.H. Heule, Manfred Scheucher

Satisfiability solving has been used to tackle a range of long-standing open math problems in
recent years. We add another success by solving a geometry problem that originated a century ago.
In the 1930s, Esther Klein's exploration of unavoidable shapes in planar point sets in general
position showed that every set of five points includes four points in convex position. For a long
time, it was open if an empty hexagon, i.e., six points in convex position without a point inside,
can be avoided. In 2006, Gerken and Nicolas independently proved that the answer is no. We
establish the exact bound: Every 30-point set in the plane in general position contains an empty
hexagon. Our key contributions include an effective, compact encoding and a search-space
partitioning strategy enabling linear-time speedups even when using thousands of cores.
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from the hip and lower spine, atrend
that if uncorrected over time could
prevent long space voyages.

Experts say a trip to Mars, a year
or two each way, carries the risk of
leaving an astronaut crippled upon
return. hd

“We’ve learned that bone loss
from selected sites on the skeleton is
a problem that we still don’t have a
solution to,”” Dr. Frank M. Sulzman,
director of life science research at
the National Aeronautics and Space
Administration, said in an interview.

But NASA and its advisers say
they are on the verge of finding what
may be a simple way to prevent a
wide range of space illnesses: noth-
ing fancy or high-tech, it boils down
to hard exercise, the orbital equiva-
lent of pumping iron.

Astronauts now tend to do endur-
ance types of exercise, including cy-
cling, rowing and walking on atread-
mill, that stress aerobics and stam-
ina. But a wide consensus is develop-
ing among space physiologists and
NASA officials that this approach is
wrong and needs to be supplemented
by strenuous workouts that increase

Built for 2

A new idea for
astronauts, a
tandem cycle,
mimics gravity and
has cams on the

N WG PPty % .

With Major Math Proof, .'
Brute Computers Show
Flash of Reasoning Power

The achievement would
have been called creative
if a human had done it.

By GINA KOLATA

OMPUTERS are whizzes when it

comes to the grunt work of mathe-

matics. But for creative and ele-

gant solutions to hard mathemati-
cal problems, nothing has been able to
beat the human mind. That is, perhaps,
until now.

A computer program written by re-
searchers at Argonne National Laborato-
ry in Illinois has come up with a major
mathematical proof that would have been
called creative if a human had thought of
it. In doing so, the computer has, for the
first time, got a toehold into pure mathe-
matics, a field described by its practition-
ers as more of an art form than a science.
And the implications, some say, are pro-
found, showing just how powerful comput-
ers can be at reasoning itself, at mimick-

ino the flachas of lacical inciaht nr auan humans think, the magnificent bursts of

those conjectures were easy to prove. The
difference this time is that the computer
has solved a conjecture that stumped
some of the best mathematicians for 60
years. And it did so with a program that
was designed to reason, not to solve a
specific problem. In that sense, the pro--
gram is very different from chess-playing
computier programs, for example, which
are intended to solve just one problem: the
moves of a chess game.

““It’s a sign of power, of reasoning pow-_
er,” said Dr. Larry Wos, the supervisor of
the computer reasoning project at Ar-
gonne. And with this result, obtained by a
colleague, Dr. Willlam McCune, he said,
‘“We’ve taken a quantum leap forward.””

Dr. Wos predicts that the result may
mark the beginning of the end for mathe-
matics research as it is now practiced,
eventually freeing mathematicians to fo-
cus on discovering new conjectures, and
leaving the proof to computers.

But the result also may challenge the
very notion of creative thinking, raising
the possibility that computers could take a
parallel path to reach the same conclu-
sions as great human thinkers. Or it may
be that since no one has any idea how-



THE EQUATIONAL THEORIES PROJECT: ADVANCING
COLLABORATIVE MATHEMATICAL RESEARCH AT SCALE

MATTHEW BOLAN, JOACHIM BREITNER, JOSE BROX, MARIO CARNEIRO, MARTIN DVORAK,
ANDRES GOENS, AARON HILL, HARALD HUSUM, ZOLTAN KOCSIS, BRUNO LE FLOCH,
LORENZO LUCCIOLI, DOUGLAS MCNEIL, ALEX MEIBURG, PIETRO MONTICONE, PACE

NIELSEN, GIOVANNI PAOLINI, MARCO PETRACCI, BERNHARD REINKE, DAVID RENSHAW,
MARCUS ROSSEL, CODY ROUX, JEREMY SCANVIC, SHREYAS SRINIVAS, ANAND RAO
TADIPATRI, TERENCE TAO, VLAD TSYRKLEVICH, DANIEL WEBER, FAN ZHENG

ABSTRACT. We report on the Equational Theories Project (ETP), an online collaborative
pilot project to explore new ways to collaborate in mathematics with machine assistance.
The project successfully determined all 22028 942 edges of the implication graph between
the 4694 simplest equational laws on magmas, by a combination of human-generated and
automated proofs, all validated by the formal proof assistant language Lean. As a result of
this project, several new constructions of magmas obeying specific laws were discovered, and
several auxiliary questions were also addressed, such as the effect of restricting attention to
finite magmas.



Machine learning and neural Al

* |ntuitions from data mining:
* knot invariants
* representation theory
* murmurations

* PDEs and physics-informed neural networks

* Neural networks constructing algebraic expressions
 antiderivatives
* Lyapunov functions

* Combinatorial constructions
« counterexamples in graph theory
« AlphaEvolve, OpenEvolve, ShinkaEvolve
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Advancing mathematics by guiding human
intuitionwith Al
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Marc Lackenby? Geordie Williamson?®, Demis Hassabis' & Pushmeet Kohli'™

The practice of mathematics involves discovering patterns and using these to
formulate and prove conjectures, resulting in theorems. Since the 1960s,
mathematicians have used computers to assist in the discovery of patterns and
formulation of conjectures’, most famously in the Birch and Swinnerton-Dyer
conjecture?, a Millennium Prize Problem?. Here we provide examples of new
fundamental results in pure mathematics that have been discovered with the
assistance of machine learning—demonstrating a method by which machine learning
can aid mathematiciansindiscovering new conjectures and theorems. We propose a
process of using machine learning to discover potential patterns and relations
between mathematical objects, understanding them with attribution techniques and
using these observations to guide intuitionand propose conjectures. We outline this
machine-learning-guided framework and demonstrate its successful applicationto
current research questionsindistinct areas of pure mathematics, ineach case
showing howit led to meaningful mathematical contributions onimportant open
problems: a new connection between the algebraic and geometric structure of knots,
and a candidate algorithm predicted by the combinatorialinvariance conjecture for
symmetric groups*. Our work may serve asa model for collaboration betweenthe
fields of mathematics and artificial intelligence (Al) that can achieve surprising results
by leveraging the respective strengths of mathematicians and machine learning.



Elliptic Curve ‘Murmurations’ Found With
Al Take Flight

6 Mathematicians are working to fully explain unusual behaviors uncovered

THEORY

using artificial intelligence.

When viewed the right way, elliptic curves can flock like birds. Paul Chaikin for Quanta Mogazine



Deep Learning Poised to ‘Blow Up’ Famed
Fluid Equations

ror centuries, matnematicians have tried to p

ns can produce nonsensical answers. £ Ich to machine
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[Submitted on 10 Oct 2024]

Global Lyapunov functions: a long-standing open problem
In mathematics, with symbolic transformers

Alberto Alfarano, Francgois Charton, Amaury Hayat

Despite their spectacular progress, language models still struggle on complex reasoning tasks, such
as advanced mathematics. We consider a long-standing open problem in mathematics: discovering a
Lyapunov function that ensures the global stability of a dynamical system. This problem has no known
general solution, and algorithmic solvers only exist for some small polynomial systems. We propose a
new method for generating synthetic training samples from random solutions, and show that
sequence-to-sequence transformers trained on such datasets perform better than algorithmic solvers
and humans on polynomial systems, and can discover new Lyapunov functions for non-polynomial
systems.



MATHEMATICAL EXPLORATION AND DISCOVERY AT SCALE

BOGDAN GEORGIEV, JAVIER GOMEZ-SERRANO, TERENCE TAO, AND ADAM ZSOLT WAGNER

ABSTRACT. AlphaEvolve [’ ']is a generic evolutionary coding agent that combines the generative capabilities of
LLMs with automated evaluation in an iterative evolutionary framework that proposes, tests, and refines algorithmic
solutions to challenging scientific and practical problems. In this paper we showcase AlphaEvolve as a tool for
autonomously discovering novel mathematical constructions and advancing our understanding of long-standing open
problems.

To demonstrate its breadth, we considered a list of 67 problems spanning mathematical analysis, combinatorics,
geometry, and number theory. The system rediscovered the best known solutions in most of the cases and discovered
improved solutions in several. In some instances, AlphaEvolve is also able to generalize results for a finite number
of input values into a formula valid for all input values. Furthermore, we are able to combine this methodology
with Deep Think [|7"] and AlphaProof [| ] in a broader framework where the additional proof-assistants and
reasoning systems provide automated proof generation and further mathematical insights.

These results demonstrate that large language model-guided evolutionary search can autonomously discover math-
ematical constructions that complement human intuition, at imes matching or even improving the best known results,
highlighting the potential for significant new ways of interaction between mathematicians and Al systems. We present
AlphaEvolve as a powerful new tool for mathematical discovery, capable of exploring vast search spaces to solve
complex optimization problems at scale, often with significantly reduced requirements on preparation and computation
time.
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The maximal length of the Erd0s—Herzog—Piranian
lemniscate in high degree

math.CV, paper Erdos, lemniscate, polynomials Terence Tao | 19
comments

I've just uploaded to the arXiv my preprint The maximal length of the Erd6s-
Herzog-Piranian lemniscate in high degree. This paper resolves (in the
asymptotic regime of sufficiently high degree) an old question about the
polynomial lemniscates

O (p) = {=: In(2)| = 1)

attached to monic polynomials P of a given degree 1, and specifically the

question of bounding the arclength E(@El (p)) of such lemniscates. For
I recently explored this problem with the optimization tool AlphaEvolve, where 1
found that when I assigned this tool the task of optimizing E(@El (p)) for a

given degree 1, that the tool rapidly converged to choosing P to be equal to Pg
(up to the rotation and translation symmetries of the problem). This suggested
to me that the conjecture was true for all 77, though of course this was far from a
rigorous proof. AlphaEvolve also provided some useful visualization code for
these lemniscates which I have incorporated into the paper (and this blog post),
and which helped build my intuition for this problem; I view this sort of “vibe-
coded visualization” as another practical use-case of present-day Al tools.



Neurosymbolic theorem proving

* AlphaProof / AlphaGeometry earn silver medal score on 2024 IMO.

* Four systems achieve gold medal score on 2025 IMO (two formal, two
informal).

» Several open-source provers are available for Lean: DeepSeek, Kimina,
Goedel Prover, ...

* Code pilots like Clause Sonnet are helpful with formalization.

« Corporate models (OpenAl, Google) are becoming good at informal
mathematics.

« Autoformalizers and provers made available to mathematicians: Aristotle
(Harmonic), AlphaProof (Google DeepMind), Gauss (Math Inc.).



ABSTRACTIONS BLOG

At the Math Olympiad, Computers
Prepare to Go for the Gold

W15 | N Computer scientists are trying to build an Al system that can win a gold
medal at the world’s premier math competition.
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SCIENCE

Al achieves silver-medal standard
solving International Mathematical
Olympiad problems

25 JU

AlphaProof and AlphaGeometry teams

< Share
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| Y| Terence Tao
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Over at the Erdos problem website, Al assistance is now becoming

routine. Here is what happened recently regarding Erdos problem
#367 erdosproblems.com /367 :

1. On Nov 20, Wouter van Doorn produced a (human-generated)
disproof of the second part of this problem, contingent on a
congruence identity that he thought was true, and was "sure
someoneone here is able to verify... does indeed hold".

2. A few hours later, | posed this problem to Gemini Deepthink, which
after about ten minutes) produced a complete proof of the identity
and confirmed the entire argument):

gemini.g e.com /share 05a... . The argument used some p-adic
algebraic number theory which was overkill for this problem. | then
spent about half an hour converting the proof by hand into a more
elementary proof, which | presented on the site. | then remarked that
the resulting proof should be within range of "vibe formalizing" in
Lean.

(
(

3. Two days later, Boris Alexeev used the Aristotle tool from
Harmonic to complete the Lean formalization, making sure to
formalize the final statement by hand to guard against Al exploits.
This process took two to three hours, and the output can be found at
borisa .com/t/Erdos367 le...

EDIT: after making this post, | decided to round things out by making
Al literature searches on this problem, which (after about fifteen
minutes) turned up some related literature on consecutive powerful
numbers, but nothing directly relating to #367.
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EXTREMAL DESCENDANT INTEGRALS ON MODULI SPACES OF

HumAN

HumMAN

CURVES: AN INEQUALITY DISCOVERED AND PROVED IN
COLLABORATION WITH Al

JOHANNES SCHMITT

ABSTRACT.

For the pure 1)-class intersection numbers D(e) = (7., - - - ¢, ), on the moduli space M, ,, of
stable curves, we determine for which choices of e = (e, ...,e,) the value of D(e) becomes
extremal. The intersection number is minimal for powers of a single i-class (i.e. all e;
but one vanish), whereas maximal values are obtained for balanced vectors (|le; —e;| <1
for all ¢,7). The proof uses the nefness of the 1-classes combined with Khovanskii—Teissier
log-concavity.

AUTHOR’S NOTE.

The question of finding extremal values of the 1-intersection numbers first occurred to the
author when looking for a toy problem to explore using the software OpenEvolve [Sha25|.
The conjecture that balanced exponents lead to the maximal values is a natural guess,
and was indeed discovered quickly by the tested model. To the author’s knowledge, this
optimization-style problem was novel and not covered by existing literature: it is a simple
and natural question, but somewhat orthogonal to the questions usually studied in enu-
merative geometry. After some experimental verification and presenting the conjecture to
several colleagues (who confirmed its open status), it was submitted as a problem to the
IMProofBench project [SBDT25]. This project collects research level mathematics questions
and tests them against a range of AI models. As part of this evaluation, the conjecture was
independently proven by several such models, without human intervention (see Appendix A

| for further details).



New technologies for mathematics

We have discussed:

* interactive theorem proving and

formalization o
Formalization

« automated reasoning and symbolic Al

* machine learning and neural Al

. . Symbolic
* neurosymbolic theorem proving. Automated
Reasoning

Machine
Learning

The technologies are still niche, but they are
promising, and likely to have an impact.



New technologies for mathematics

Goals of this talk:

 survey the technologies

* raise some concerns



Things to worry about

Al in mathematics

» changes to mathematical practice
 access to research mathematics
 access to mathematics in general

* the role of industry

Al in society

 the effects of Al on cognition
* reliability and transparency

* agency



Changes to mathematical practice

We have always been proud of the fact that mathematics relies on pure
thought.

How will the experience of doing mathematics change?

We are proud of our ability to:
« construct complex, rigorous arguments

» detect subtle patterns and connections

What will happen when Al can do those better than we can?



Changes to mathematical practice

These have to do with:

 our ability to do mathematics

* the enjoyment of mathematics

| am optimistic that we will find ways to use Al while preserving the essence
of the subject, but this is not a foregone conclusion.



Access to research mathematics

We don’t need

* expensive hardware
* large budgets
e project managers

What happens if/when mathematics requires acquiring and managing
resources?

Will this limit access to mathematical research?



Access to mathematics

New technologies offer new opportunities for learning:

* interactive systems with correction and feedback

* online communities and social media

Experience shows that taking advantage of them requires:

* money: computing resources, schools, after-school and summer actitivies

e connections: parents, teachers, mentors who know how to take advantage
of the technologies

Will technology lead to greater democratization or greater disparities?



The role of industry

Several big-tech companies and startups are working on Al for math:

applications to coding

applications to finance

applications to science, engineering, and modeling

applications to other things
advertisement and PR

They are very good at what they do.

The goals are not necessarily aligned with research mathematics.



The role of industry

What will happen if the best mathematics is coming out of corporations
rather that universities and research centers?

What will happen when companies lose interest in research mathematics?

« Will we still rely on their computational resources?

« Will we still rely on their tools?

« Will we be able to modify them and continue to develop them?
« Will we still have jobs?



Things to worry about

Al in mathematics

» changes to mathematical practice
 access to research mathematics
 access to mathematics in general

* the role of industry

Al in society

 the effects of Al on cognition
* reliability and transparency

* agency



The effects of Al on cognition

Students are using corporate models to do their homework.

It’s generally easier to ask ChatGPT or Gemini to solve a problem than to do
it ourselves.

How will this impact their lives?



The effects of Al on cognition

Compare to concerns about the effects of:

e iPhones and social media

video games

computers

calculators

television

Is the reliance on Al qualitatively different?



Reliability and transparency

Generally, when we ask Al a question, we want the answer to be

 reliable,
« aligned with our interests,
* likely to help us achieve our goals.

We worry about:

« safety and security

* values and morals.



Reliability and transparency

We want transparency:

* reasons
» explanations
e justification

This provides one role for mathematics: it provides us with artifacts we can
query and audit.



Agency

Being rational is an important part of our identity.

This involves the ability to make decisions by reasoning and deliberating with
others.

If we are not careful, Al will take us out of the deliberative process: we ask a
question, and we get an answer.



Agency

The solution is to make Al part of our deliberative process.

We should ask for explanations and reasons, process these ourselves, and
ask more questions.

Mathematics provides a language for precise reasoning and deliberation;
that’'s what it was made for.

See my essay, “Is Mathematics Obsolete?”

(The answer is no. Mathematics is as important as ever.)



Things to worry about

Al in mathematics

» changes to mathematical practice
 access to research mathematics
 access to mathematics in general

* the role of industry

Al in society

 the effects of Al on cognition
* reliability and transparency

* agency



{3 Institute for Computer-Aided

Reasoning in Mathematics

icarm.io



A new institute

The Institute for Computer-Aided Reasoning in Mathematics (ICARM) is a new
NSF MSRI on the campus of Carnegie Mellon University.

Its mission is to
« empower mathematicians to take advantage of new technologies for
mathematical reasoning and keep mathematics central to everything we do;

« unite mathematicians of all kinds, computer scientists, students, and
researchers to achieve that goal; and

* ensure that mathematics and the new technologies are accessible to
everyone.
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