
Mathematics and Language

Jeremy Avigad

Department of Philosophy and
Department of Mathematical Sciences

Carnegie Mellon University

March 2015

I learned empirically that this came
out this time, that it usually does
come out; but does the proposition of
mathematics say that? . . . The
mathematical proposition has the
dignity of a rule.

So much is true when it’s said that
mathematics is logic: its moves are
from rules of our language to other
rules of our language. And this gives it
its peculiar solidity, its unassailable
position, set apart.

— Ludwig Wittgenstein

. . . it seemed to me one of the most
important tasks of philosophers to investigate
the various possible language forms and
discover their characteristic properties. While
working on problems of this kind, I gradually
realized that such an investigation, if it is to
go beyond common-sense generalities and to
aim at more exact results, must be applied to
artificially constructed symbolic languages.. . .
Only after a thorough investigation of the
various language forms has been carried
through, can a well-founded choice of one of
these languages be made, be it as the total
language of science or as a partial language
for specific purposes.

— Rudolf Carnap

Physical objects, small and large, are
not the only posits.. . . the abstract
entities which are the substance of
mathematics. . . are another posit in
the same spirit. Epistemologically
these are myths on the same footing
with physical objects and gods, neither
better nor worse except for differences
in the degree to which they expedite
our dealings with sense experiences.

— W. V. O. Quine

“When I use a word,” Humpty
Dumpty said in rather a scornful tone,
“it means just what I choose it to
mean — neither more nor less.”

“The question is,” said Alice,
“whether you can make words mean so
many different things.”

“The question is,” said Humpty
Dumpty, “which is to be master —
that’s all.”

— Lewis Carroll

Philosophical puzzles

Mathematics tells us about the world, but not vice-versa.

Mathematical objects are not located in space or time.

Mathematics delivers (near?) certainty.

Lowbrow answers

Mathematics is governed by mathematical norms.

We learn these norms from parents, teachers, . . .

We come to have mathematical knowledge by following these
norms correctly.

But why are the norms the way they are, and why do they tell us
anything about the world?

The linguistic turn

Mathematics is part of our language.

Linguistic norms govern the way we describe the world.

We have adopted these norms because they are useful.

These themes (with variations) occur throughout Wittgenstein,
Carnap and the Logical Positivists, and Quine.

Only empirical explanation is possible
for why we have come to accept the
basic principles that we do and why we
apply them as we do—for why we
have mathematics and why it is at it
is. But it is only within the framework
of mathematics as determined by this
practice that we can speak of
mathematical necessity. In this sense,
which I believe Wittgenstein was first
to fully grasp, mathematical necessity
rides on the back of empirical
contingency.

— William Tait

The function concept

Today, we have the notion of a function f : A→ B between any
two “sets” or “domains.”

From the time of Euler (ca. 1750) through the nineteenth century,
mathematicians used the word exclusively for functions on the real
or complex numbers.

They studied

sequences and series

number-theoretic functions (“symbols”, “characters”)

geometric transformations (“affinities,” “colineations”)

permutations (“substitutions”)

and more, but these were not subsumed under a general concept.

The function concept

Nineteenth century methodological changes:

1. Unification / generalization of the function concept

2. Liberalization of the function concept

3. Extensionalization of the function concept

4. Reification of the function concept

Rebecca Morris and I focused on an illuminating case study.

Dirichlet’s theorem

Theorem
Let m and k be relatively prime. Then the arithmetic progression
m,m + k ,m + 2k , . . . contains infinitely many primes.

For example, there are no primes in the sequence

6, 15, 24, 33, 42, 51,

There are infinitely many primes in the sequence

5, 14, 23, 32, 41, 50, . . .

Dirichlet’s theorem

Legendre assumed this in 1798, in giving a purported proof of the
law of quadratic reciprocity.

Gauss pointed out this gap, and presented two proofs of quadratic
reciprocity in his Disquisitiones Arithmeticae of 1801.

He ultimately published six proofs of quadratic reciprocity, and left
two more proofs in his Nachlass. But he never proved the theorem
on primes in an arithmetic progression.

Dirichlet’s 1837 proof is notable for the sophisticated use of
analytic and algebraic methods to prove a number-theoretic
statement.

Dirichlet’s theorem

Modern presentations of Dirichlet’s proof rely on the notion of a
Dirichlet character.

Consider the sequence

3, 13, 23, 33, . . .

The common difference is 10.

The numbers relatively prime to 10, {1, 3, 7, 9} form a group, with
multiplication modulo 10.

A character on this group is a homomorphism to the complex
numbers, for example

χ(1) = 1, χ(3) = i , χ(7) = −i , χ(9) = −1.

Dirichlet’s theorem

Characters are treated as ordinary mathematical objects like the
natural numbers.

1. The characters modulo k form a group.

2. We define functions L(s, χ), called Dirichlet L-series, whose
second argument is a character.

3. We write
∑

χ χ̄(m)L(s, χ).

None of these features are present in Dirichlet’s proof.

Dirichlet’s 1837 proof

In fact, there is no notion of character there at all!

Dirichlet wrote expressions

θαϕβωγω′γ
′
. . . ,

where we would write χ(n).

Where we would write ∑
χ∈ ̂(Z/kZ)∗

χ(m) log L(s, χ),

Dirichlet wrote

1

K

∑
Θ−αma Φ−βmbΩ−γmcΩ−γ

′
mc
′ · · · log La,b,c,c′,....

A timeline

Morris and I studied a history of presentations:

Dirichlet 1837: Dirichlet’s original proof

Dirichlet 1840, 1841: extensions to Gaussian integers,
quadratic forms

Dedekind 1863: presention of Dirichlet’s theorem

Dedekind 1879, Weber 1882: characters on arbitrary abelian
groups

Hadamard 1896: presentation of Dirichlet’s theorem and
extensions

de la Vallée Poussin 1897: presentation of Dirichlet’s theorem
and extensions

Kronecker (1901, really 1870’s and 1880’s): constructive,
quantitative treatment

Landau 1909, 1927: presentation of Dirichlet’s theorem and
extensions

Summary

Over time:

The notion of a character was defined.

Authors isolated general properties of characters.

Authors got used to summing over characters, rather than
representing data.

Authors got used to functional dependences on characters,
rather than representing data.

Authors began to adopt extensional characterizations and
classifications of characters.

The use of explicit symbolic representations for the characters
diminished and was ultimately eliminated.

Methodological benefits

Turning characters into “things” brought a number of benefits:

expressions were simplified

proofs became more modular

proofs became easier to understand and check

key notations and relationships were made salient

concepts were reusable and generalizable

On the one hand, this is a metaphysical shift.

On the other, it is just “language engineering.”

The development of mathematics toward
greater precision has led, as is well known, to
the formalization of large tracts of it, so that
one can prove any theorem using nothing but a
few mechanical rules. The most comprehensive
formal systems that have been set up hitherto
are the system of Principia mathematica (PM)
on the one hand and the Zermelo-Fraenkel
axiom system of set theory (further developed
by J. von Neumann) on the other. These two
systems are so comprehensive that in them all
methods of proof used today in mathematics
are formalized, that is, reduced to a few
axioms and rules of inference. One might
therefore conjecture that these axioms and
rules of inference are sufficient to decide any
mathematical question that can at all be
formally expressed in these systems. It will be
shown below that this is not the case. . .

— Kurt Gödel

Modularity and complexity

In computer hardware: from logic gates, to bits and complex
operations, to processors and memory, to complex systems, . . .

In computer software: from simple operations, to library
operations, to subroutines, to complex programs, . . .

In formal mathematics: from basic logical operations, to definitions
and properties, to more complex theorems and proofs, to
theories. . .

Contemporary “proof assistants” now make it possible to construct
complex formal proofs.

Formal Proofs

The prime number theorem:

theorem PrimeNumberTheorem: "(λn. pi n * ln n / n) −→ 1"

where

pi n ≡ card {p. p ≤ n ∧ p ∈ prime}

The Feit-Thompson (Odd Order) Theorem:

Theorem Feit_Thompson (gT : finGroupType) (G : {group gT}) :

odd #|G| → solvable G.

Theorem simple_odd_group_prime (gT : finGroupType)

(G : {group gT}) :

odd #|G| → simple G → prime #|G|.

Formal Proofs

The Kepler conjecture (Hales’ theorem):

∀V. packing V => (∃c. ∀r. &1 <= r =>

&(CARD(V INTER ball(vec 0,r))) <=

pi * r pow 3 / sqrt(&18) + c * r pow 2))

The Blakers-Massey theorem:

blakers-massey : ∀ {x0} {y0} (r : left x0 ≡ right y0) →
is-connected (n +2+ m) (hfiber glue r)

Formal Proofs

A definition of the natural numbers:

inductive nat : Type :=

| zero : nat

| succ : nat → nat

A definition of addition:

definition add : nat → nat → nat

| add x zero := x,

| add x (succ y) := succ (add x y)

Some notation:

notation ‘N‘ := nat

notation 0 := zero

notation x ‘+‘ y := add x y

Formal Proofs

Proving the commutativity of gcd:

theorem gcd.comm (m n : N) : gcd m n = gcd n m :=

dvd.antisymm

(dvd_gcd !gcd_dvd_right !gcd_dvd_left)

(dvd_gcd !gcd_dvd_right !gcd_dvd_left)

theorem gcd_comm: "gcd (m::nat) n = gcd n m"

by (auto intro!: dvd.antisym)

Lemma gcdnC : commutative gcdn.

Proof.

move=> m n; wlog lt_nm: m n / n < m.

by case: (ltngtP n m) => [||-> //]; last symmetry; auto.

by rewrite gcdnE -{1}(ltn_predK lt_nm) modn_small.

Qed.

Formal proofs and formal languages

The point: whenever someone communicates with a computational
proof assistant, they are speaking a formal mathematical language.

This language has been designed for a specific purpose, namely, to
enable users to develop formal theories smoothly and efficiently.

Taking stock

We have discussed:

Informal mathematical language, and its evolution in the 19th
century.

Formal mathematical language, and its use in proof assistants.

In common:

Both are uses of language convey mathematical content and
support mathematical reasoning.

In both cases, the languages we use can either serve our
purposes well, or not.

Differences

Differences between informal and formal mathematical languages:

centuries vs. decades

entire mathematical community vs. a design team

implicit vs. explicit design decisions

existence / nonexistence of a “reference manual”

The central thesis

Thesis: formal mathematical languages like the ones used by proof
assistants provide informative models of informal mathematical
language.

Conversely, understanding informal mathematical language will
help us design better theorem provers.

Benefits

Understanding formal mathematical languages as models of
informal languages can help us understand:

The structure of mathematics (and the importance of
modularity).

The nature of mathematical reasoning and problem solving.

The stability and reinterpretability of mathematical language
over time.

Conclusions

Let us get over the worry that there is something inherently
mysterious or dubious about mathematical objects, and start
paying attention to the things that really matter.

We need a science that can help us understand the considerations
that bear upon our choices of mathematical norms, and the
philosophy of mathematics should be that science.

