
Formal verification of algorithms

Jeremy Avigad

Department of Philosophy and Department of Mathematical Sciences
Carnegie Mellon University

(currently visiting the INRIA-MSR Joint Research Centre in Orsay)

February, 2010

Formal verification

“Formal verification,” in computer science, refers to the use of
formal methods to prove correctness, for example, of:

• a circuit description, a program, or a network or security
protocol; or

• a proof of a mathematical theorem.

Let’s shift focus from “algorithms” (something abstract and
vague) to “programs” (syntactic objects – texts – in a particular
language).

What does it mean to say that a program is correct?

An example

Bowl1 ← butter
Cream(Bowl1)
Bowl1 ← whiteSugar, brownSugar
Do 2:

Bowl1 ← egg
Beat

Bowl1 ← Vanilla
Bowl2 ← Flour, BakingSoda, Salt
Mix(Bowl2)
Bowl1 ← Bowl2
Bowl1 ← ChocChips, Nuts
. . .

Fundamentals

Talk about “proving the correctness of a program” presupposes:

• A language to describe programs

• An understanding of what the programming language “means”

• A language to express specifications and properties

• An understanding of what the specification language “means”

• An understanding of the rules by which one can reason about
programs and specifications.



Outline

• Models of computation
• Turing machines
• General recursion
• The lambda calculus

• Styles of programming languages:
• Imperative
• Functional (typed, untyped)

• Specifications and specification languages

• Ways of providing semantics:
• Operational
• Denotational
• Axiomatic

Models of computation

Traditional models of computation:

• Turing machines (Turing, 1937), Register machines

• General recursive functions (Gödel 1934, Kleene 1936)

• Lambda calculus (Church, 1936)

• Production systems, grammars, abacus computability, . . .

Today:

• Imperative programming languages

• Functional programming languages

• Declarative programming languages

Turing machines

Start with: a set of symbols, states

Instructions of the form:

If in state i, scanning symbol q, do x, and go to state j

where “x” is move left, move right, or write q’.

Semantics: need to talk about halting computation sequences.

General recursive functions

These are a collection of partial functions on N.

Start with basic functions: 0, S(x), Pn
i (x1, . . . , xn) = xi .

Close under:

• Composition: f (~x) ' g(h1(~x), . . . , hk(~x))

• Primitive recursion: f (0, ~y) ' g(~y),
f (x + 1, ~y) = h(x , f (x , ~y), ~y)

• Unbounded search: f (~y) ' µx g(x , ~y) = 0.

Semantics: these denote the corresponding mathematical objects.



Lambda calculus

The idea: (λx .x + 3)4 = 4 + 3 = 7.

The pure lambda calculus: represent 3 as λxy .x(x(xy))).

Examples: S = λuxy .x(uxy), A = λxy .xSy

Theorem: normalization is confluent.

Semantics: normalize.

Imperative programming languages

class SelectionSortAlgorithm extends SortAlgorithm {
void sort(int a[]) throws Exception {

for (int i = 0; i < a.length; i++) {
int min = i; int j;
for (j = i + 1; j < a.length; j++) {

if (a[j] < a[min]) {
min = j;
}

}
int T = a[min];
a[min] = a[i];
a[i] = T;

}
}

}

Functional programming languages

<<ssort.hs>>=

min1:: (a->a->Bool)->[a]->a

min1 (<=) [] = undefined

min1 (<=) [x] = x

min1 (<=) (x:xs)

| x <= (min1 (<=) xs) = x

| otherwise = min1 (<=) xs

<<ssort.hs>>=

delete:: (Eq a) => a->[a]->[a]

delete a [] = []

delete a (x:xs)

| a==x = xs

| otherwise = x:(delete a xs)

<<ssort.hs>>=

ssort:: (Eq a) => (a->a->Bool)->[a]->[a]

ssort (<=) [] = []

ssort (<=) xs = [x] ++ ssort (<=) (delete x xs)

where x = min1 (<=) xs

Semantics

At the bare minimum: a program determines a function from input
to output.

May also care about:

• what happens in between

• interactions with the environment

Three types of semantics:

• Operational semantics: describe behavior on an abstract
machine

• Denotational semantics: assign a mathematical object as
meaning

• Axiomatic semantics: state properties that are necessarily
satisfied

Wrinkes: asynchronous behavior; nondeterminism; parallelism;
hybrid systems



Specifications and specification languages

Types of specifications:

• Input / output. Examples:
• Input: list of integers; output: sorted list.
• Input: graph; output: yes/no (is it connected?)
• Input: an integer; output: the factorial
• Input: a real number, r (with some fixed precision?); output,

ln r .

• Avoidance of errors:
• Never writes to memory locations out of range.
• Always terminates / never freezes.
• Always responds to user requests.

Specifications and specification languages

Writing specifications:

• Sometimes one uses ordinary mathematical language (formal
or informal).

• Often one uses ordinary mathematical language, with
additional operations and notations.

• Sometimes one uses restricted languages.

• Sometimes a proof a mathematical statement can be viewed
as constructing an algorithm that meets a specification!

Two major approaches to verification:

• Model checking.

• Interactive theorem proving.

Operational semantics

Need to specify the notion of a machine “state.”

Typically, one assumes that the state assigns values to memory
“locations.”

Parts of a program change the state. The rules for the semantics
explain how.

Denotational semantics

Here, programs denote a mathematical objects in an appropriate
“domain.”

For example, one can assign to programs (partial) functions on the
natural numbers.

The semantics is typically compositional: the denotation of a
complex program is determined from the denotation of its parts.

One can model operational semantics in this way, using functions
to act on the state.



Axiomatic semantics

In practice, this is the most useful.

Rather than assign a precise meaning, simply explain what
properties a program is assumed to satisfy.

One typically uses “Hoare triples”: {P} S {Q}.


