The ordinal ε_0

Update procedures and the 1-consistency of arithmetic

Jeremy Avigad Carnegie Mellon University avigad@cmu.edu http://www.andrew.cmu.edu/~avigad ε_0 is defined to be the limit of the sequence

 $\omega, \omega^{\omega}, \omega^{(\omega^{\omega})}, \dots$

Every nonzero $\alpha < \varepsilon_0$ can be written in *Cantor* normal form:

 $\alpha = \omega^{\alpha_1} \cdot n_1 + \ldots + \omega^{\alpha_k} \cdot n_k$

where $\alpha > \alpha_1 > \ldots > \alpha_k$ and $n_i \in \mathbb{N}$.

So there is an effective (primitive recursive, or even elementary recursive) set of notations, such that the associated ordering is also effective.

Ordinal recursive functionals

Ordinal recursive functions

An α -recursive function is given by elementary functions $start(\vec{x})$, next(q), norm(q), result(q).

These data define a function $F(\vec{x})$:

```
\begin{array}{l} clock \leftarrow \alpha \\ state \leftarrow start(\vec{x}) \\ \text{while } norm(state) \prec clock \text{ do} \\ clock \leftarrow norm(state) \\ state \leftarrow next(state) \\ \text{return } result(state) \end{array}
```

The previous definition relativizes well.

A α -recursive functional $F(\vec{x}, f_1, \ldots, f_k)$ is given by elementary functions $start(\vec{x})$, $next(q, u_1, \ldots, u_k)$, $query_1(q)$, \ldots , $query_k(q)$, norm(q), and result(q).

These define a functional $F(\vec{x}, f_1, \dots, f_k)$: $clock \leftarrow \alpha$ $state \leftarrow start(\vec{x})$ while $norm(state) \prec clock$ do $clock \leftarrow norm(state)$ $state \leftarrow next(state, f_1(query_1(state)), \dots, f_k(query_k(state)))$ return result(state)

The ordinal analysis of PA

Theorem. Suppose Peano Arithmetic proves $\forall x \exists y \ \varphi(x, y)$, for a Σ_1 formula φ . Then there is a $<\varepsilon_0$ -recursive function F such that for every x, $\varphi(x, F(x))$.

Notes:

- The statement can be relativized to a function parameter.
- A suitable formalization can be proved in primitive recursive arithmetic.
- This yields the usual results of the ordinal analysis of *PA*.

Embedding PA in a quantifier-free calculus

Iteratively introduce Skolem functions for quantifier-free formulae:

 $\varphi(\vec{x}, y) \to \varphi(\vec{x}, \mu_{\varphi}(\vec{x})) \land \mu_{\varphi}(\vec{x}) \le y$

In other words, $\mu_{\varphi}(\vec{x})$ returns a least y satisfying $\varphi(\vec{x}, y)$, if there is one.

Proposition. If *PA* proves $\forall x \exists y \ \psi(x, y)$ with ψ quantifier-free, then for each *n* there is a *propositional* proof of $\varphi(\bar{n}, \mu_{\varphi}(\bar{n}))$ from closed instances of μ axioms, the definitions of the initial functions and relations $(0, 1, +, \times, <, \ldots)$, and axioms of equality.

The task

Given a finite set S of closed instances of μ axioms, finite a finite arithmetic interpretation of the μ symbols.

Idea: assume everything returns 0 by default. Suppose the following instance of an axiom fails under this interpretation:

 $\varphi(\vec{s},t) \to \varphi(\vec{s},\mu_{\varphi}(\vec{s})) \land \mu_{\varphi}(\vec{s}) \le t.$

Correct it by mapping $\mu_{\varphi}(\vec{s}) = t$. Iterate.

The difficulty:

- Can order $\mu_1, \mu_2, \ldots, \mu_n$ so that the definition of μ_i involves only μ_j with j < i.
- But the terms \vec{s} and t above can involve any μ_i .

Overview

- 1. We will define the notion of a "nested system of update procedures."
- 2. By general continuity considerations, these always have solutions.
- 3. The task on the previous slide amounts to finding solutions to elementary systems of equations.
- 4. Ordinals can be used in place of continuity.

This is essentially a repackaging of Ackermann's proof, using the Hilbert substitution method. The emphasis on continuity dates back to Tait '65.

Background definitions

Let $\rho, \sigma, \tau, \dots$ range over finite partial functions from N to N.

Let $\hat{\sigma}$ to denote the extension to a total function:

$$\hat{\sigma}(x) = \begin{cases} \sigma(x) & x \in dom(\sigma) \\ 0 & \text{otherwise.} \end{cases}$$

Let $\sigma \oplus \langle u, v \rangle$ to denote the modification of σ that maps u to v:

 $(\sigma \oplus \langle u, v \rangle)(x) = \begin{cases} \sigma(x) & \text{if } x \in dom(\sigma), x \neq u \\ v & \text{if } x = u \\ \text{undef. otherwise} \end{cases}$

Define $\sigma \oplus \emptyset$ to be σ .

Update procedures

A functional $F(f_1, \ldots, f_k)$ is *continuous* if its value depends on only finitely many values of f_1, \ldots, f_k .

Suppose $F(g, f_1, \ldots, f_k)$ is continuous with range $\mathbb{N} \times \mathbb{N} \cup \{\emptyset\}$. Consider the map

$$\sigma \mapsto \sigma \oplus F(\hat{\sigma}, f_1, \ldots, f_k).$$

F is an *update procedure* in g if the following holds: whenever

- $F(\hat{\sigma}, f_1, \dots, f_k) = \langle a, b \rangle,$
- τ extends $\sigma \oplus \langle a, b \rangle$, and
- $F(\hat{\tau}, h_1, \dots, h_k) = \langle a, c \rangle,$

then b = c.

In other words, once F "sets" $\sigma(a)$ to b, it does not change it, no matter how the other arguments vary.

Fixed points

If F(g) is a unary update procedure, a *finite fixed* point of F is a σ such that

$$\sigma = \sigma \oplus F(\hat{\sigma}).$$

Lemma. F(g) has a finite fixed point.

Proof. Let $\sigma^0 = \emptyset$, and for each i, let $\sigma^{i+1} = \sigma^i \oplus F(\hat{\sigma}^i)$. Let $g = \bigcup_{i \in \mathbb{N}} \sigma^i$. By continuity, for some i we have $F(\hat{g}) = F(\hat{\sigma}_i)$. \Box

The proof shows that if $F(g,\vec{h})$ is continuous, and for each \vec{h}

$$g \mapsto F(g, \vec{h})$$

is an update procedure, there is a continous functional $G(\vec{h})$ returning fixed points.

Nested update procedures

A system of nested update procedures is a sequence of continuous functionals $F_1(f_1, \ldots, f_n), \ldots, F_n(f_1, \ldots, f_n)$ such that for each *i* and fixed f_1, \ldots, f_{i-1} , the functional

$$f_i, f_{i+1}, \ldots, f_n \mapsto F_i(f_1, \ldots, f_n)$$

is an update procedure for f_i .

A finite fixed point of such a system is a sequence of finite partial functions $\sigma_1, \ldots, \sigma_n$ such that the equations

$$\sigma_1 = \sigma_1 \oplus F_1(\hat{\sigma}_1, \dots, \hat{\sigma}_n)$$

$$\vdots \qquad \vdots$$

$$\sigma_n = \sigma_n \oplus F_n(\hat{\sigma}_1, \dots, \hat{\sigma}_n)$$

are all satisfied.

Finding fixed points

Theorem. Every system of nested update procedures has a finite fixed point.

Proof. Use induction on n. We have already taken care of n = 1.

For the induction step, given F_1, \ldots, F_{n+1} , let $G(f_1, \ldots, f_n)$ be a continuous functional returning finite fixed points of the functional

$$f_{n+1} \mapsto F_{n+1}(f_1, \dots, f_{n+1}).$$

Then

 $f_1,\ldots,f_n\mapsto F_i(f_1,\ldots,f_n,G(f_1,\ldots,f_n))$

for i = 1, ..., n is a system of nested update procedures of size n.

By the IH, the smaller system has a finite fixed point, $\sigma_1, \ldots, \sigma_n$. Let $\sigma_{n+1} = G(\hat{\sigma}_1, \ldots, \hat{\sigma}_n)$.

The main theorem

Now restrict to systems of nested update procedures given by *elementary* functions F_1, \ldots, F_n .

Theorem. The following are pairwise equivalent:

- 1. Every $\prec \varepsilon_0$ -recursive function is total.
- 2. Every system of nested elementary update procedures has a finite fixed point.
- 3. Every Π_2 sentence provable in *PA* is true.

This theorem is provable in PRA.

Fixed-point equations and arithmetic

Remember that Peano arithmetic can be embedded in a q.f. theory based on μ axioms:

 $\varphi(\vec{x}, y) \to \varphi(\vec{x}, \mu_{\varphi}(\vec{x})) \land \mu_{\varphi}(\vec{x}) \le y$

Lemma. Suppose every system of nested elementary update procedures has a finite fixed point. Then every set of closed instances of μ -axioms has a finite partial model.

The conclusion implies (and is in fact equivalent to) the Π_2 soundness of arithmetic.

Finding finite partial models

Let S be a finite set of closed instances of μ -axioms. Let μ_1, \ldots, μ_n be the μ -symbols mentioned in S, such that if the definition of μ_i involves μ_j , then i > j.

For each *i*, let $F_i(f_1, \ldots, f_n)$ find an instance of the defining axiom for μ_i in *S*,

 $\theta(\vec{s}, t) \to \theta(\vec{s}, \mu_i(\vec{s})) \land \mu_i(\vec{s}) \le t.$

that is falsified under the assignment

 $\mu_1, \dots, \mu_n \mapsto f_1, \dots, f_n.$ Update $\mu_i(\vec{s}) \mapsto \mu m \leq t^{\vec{f}} (\theta(\vec{s}, m))^{\vec{f}}.$

Then:

- This is a system of nested update procedures.
- A fixed point is a finite interpretation of μ_1, \ldots, μ_n satisfying S.

16

Finding a fixed-point

We only need to show that one can find fixed-points using ordinal recursion (instead of continuity).

Lemma. Suppose $F(g, \vec{h})$ is α -recursive, and for each $\vec{h}, g \mapsto F(g, \vec{h})$ is an update procedure. Then there is an ω^{α} -recursive functional $G(\vec{h})$ that returns finite fixed points.

Idea: start with $i = 0, \sigma^0 = \emptyset$. Then

- Compute $F(\hat{\sigma}^i, \vec{h})$.
- Update: $\sigma^{i+1} = \sigma^i \oplus F(\hat{\sigma}^i, \vec{h}).$
- If the computation sequence for $F(\hat{\sigma}^i, \vec{h})$ is no longer valid, revise it, and compute $F(\hat{\sigma}^{i+1}, \vec{h}).$
- Repeat.

To show this converges, it suffices to assign ordinals to steps.

Assigning ordinals

Consider a partial computation sequence

 s_0, s_1, \ldots, s_m

of $F(\hat{\sigma}^i, \vec{h})$, with norms

$$\alpha_0, \alpha_1, \ldots, \alpha_m.$$

Assign to this the ordinal

$$\omega^{\alpha_0} \cdot \delta_0 + \ldots + \omega^{\alpha_{m-1}} \cdot \delta_{m-1} + \omega^{\alpha_m} \cdot (\delta_m + 1),$$

where

$$\delta_i = \begin{cases} 2 & \text{if } query_{H,1}(s_i) \text{ is not } dom(\sigma) \\ 0 & \text{otherwise.} \end{cases}$$

Two cases:

- 1. Computation of F is not done. Take the next step.
- 2. Computation of F is done. Update σ^i and revise computation.

Second case

Otherwise, let $\sigma^{i+1} = \sigma^i \oplus F(\hat{\sigma}^i, \vec{h}).$

If this invalidates the computation sequence for $F(\hat{\sigma}^{i+1}, \vec{h})$, let j be the first point at which the new value is queried.

In other words, the computation sequence is cut back from

$$s_0,\ldots,s_j,\ldots,s_m$$

 to

$$s_0,\ldots,s_j$$

The norm drops from

$$\omega^{\alpha_0} \cdot \delta_0 + \ldots + \omega^{\alpha_{j-1}} \cdot \delta_{j-1} + \omega^{\alpha_j} \cdot 2 + \ldots$$
$$\omega^{\alpha_{m-1}} \cdot \delta_{m-1} + \omega^{\alpha_m} \cdot (\delta_m + 1),$$

 to

$$\omega^{\alpha_0} \cdot \delta_0 + \ldots + \omega^{\alpha_{j-1}} \cdot \delta_{j-1} + \omega^{\alpha_j} \cdot 1$$

since δ_i has dropped from 2 to 0.

First case

If the computation of F is not done,

- let s_{m+1} the next state in the computation of $F(\sigma^i, \vec{h})$, and
- let α_{m+1} be the corresponding norm.

Then the ordinal drops from

$$\omega^{\alpha_0} \cdot \delta_0 + \ldots + \omega^{\alpha_{m-1}} \cdot \delta_{m-1} + \omega^{\alpha_m} \cdot (\delta_m + 1),$$

 to

$$\omega^{\alpha_0} \cdot \delta_0 + \ldots + \omega^{\alpha_{m-1}} \cdot \delta_{m-1} + \omega^{\alpha_m} \cdot \delta_m + \omega^{\alpha_{m+1}} \cdot (\delta_{m+1} + 1)$$

Final remarks

The approach

- Yields sharp bounds for fragments of arithmetic.
- Works for transfinite induction.

Related approaches to the OA of

- Systems with transfinite jump hierarchies (predicative analysis)
- Admissible set theory

can be put in this framework.

Questions:

- Can one eliminate the nesting?
- Will this lead to interesting computational or combinatorial principles?

Finishing it off

Theorem. Suppose every $\prec \varepsilon_0$ -recursive function is total. Then every system of nested elementary update procedures has a finite fixed point.

Proof. Let F_1, \ldots, F_n be a system of nested update procedures.

As before, use induction (recursion) up to n; the previous lemma handles the induction step. \Box

21