Update procedures and the 1-consistency of arithmetic

Jeremy Avigad
Carnegie Mellon University
avigad@cmu.edu
http://www.andrew.cmu.edu/~avigad
ε_{0} is defined to be the limit of the sequence

$$
\omega, \omega^{\omega}, \omega^{\left(\omega^{\omega}\right)}, \ldots
$$

Every nonzero $\alpha<\varepsilon_{0}$ can be written in Cantor normal form:

$$
\alpha=\omega^{\alpha_{1}} \cdot n_{1}+\ldots+\omega^{\alpha_{k}} \cdot n_{k}
$$

where $\alpha>\alpha_{1}>\ldots>\alpha_{k}$ and $n_{i} \in \mathbb{N}$.

So there is an effective (primitive recursive, or even elementary recursive) set of notations, such that the associated ordering is also effective.

Ordinal recursive functionals

Ordinal recursive functions

An α-recursive function is given by elementary functions $\operatorname{start}(\vec{x}), \operatorname{next}(q), \operatorname{norm}(q), \operatorname{result}(q)$.

These data define a function $F(\vec{x})$:

```
clock }\leftarrow
state }\leftarrow\operatorname{start(\vec{x})
while norm(state) \prec clock do
    clock}\leftarrow\operatorname{norm(state)
    state}\leftarrownext(state
return result(state)
```

The previous definition relativizes well.

A α-recursive functional $F\left(\vec{x}, f_{1}, \ldots, f_{k}\right)$ is given by elementary functions $\operatorname{start}(\vec{x})$, $\operatorname{next}\left(q, u_{1}, \ldots, u_{k}\right)$, query ${ }_{1}(q), \ldots$, query $_{k}(q)$, norm (q), and result (q).

These define a functional $F\left(\vec{x}, f_{1}, \ldots, f_{k}\right)$:

```
clock \(\leftarrow \alpha\)
state \(\leftarrow \operatorname{start}(\vec{x})\)
while norm (state) \(\prec\) clock do
        clock \(\leftarrow \operatorname{norm}(\) state \()\)
        state \(\leftarrow \operatorname{next}\left(\right.\) state \(, f_{1}\left(\right.\) query \(_{1}(\) state \(\left.)\right), \ldots\),
        \(f_{k}\left(\right.\) query \(_{k}(\) state \(\left.\left.)\right)\right)\)
    return result(state)
```


The ordinal analysis of PA

Theorem. Suppose Peano Arithmetic proves $\forall x \exists y \varphi(x, y)$, for a Σ_{1} formula φ. Then there is a $<\varepsilon_{0}$-recursive function F such that for every x, $\varphi(x, F(x))$.

Notes:

- The statement can be relativized to a function parameter.
- A suitable formalization can be proved in primitive recursive arithmetic.
- This yields the usual results of the ordinal analysis of $P A$.

Embedding PA in a quantifier-free calculus

Iteratively introduce Skolem functions for quantifier-free formulae:

$$
\varphi(\vec{x}, y) \rightarrow \varphi\left(\vec{x}, \mu_{\varphi}(\vec{x})\right) \wedge \mu_{\varphi}(\vec{x}) \leq y
$$

In other words, $\mu_{\varphi}(\vec{x})$ returns a least y satisfying $\varphi(\vec{x}, y)$, if there is one.

Proposition. If $P A$ proves $\forall x \exists y \psi(x, y)$ with ψ quantifier-free, then for each n there is a propositional proof of $\varphi\left(\bar{n}, \mu_{\varphi}(\bar{n})\right)$ from closed instances of μ axioms, the definitions of the initial functions and relations $(0,1,+, \times,<, \ldots)$, and axioms of equality.

The task

Given a finite set S of closed instances of μ axioms, finite a finite arithmetic interpretation of the μ symbols.

Idea: assume everything returns 0 by default. Suppose the following instance of an axiom fails under this interpretation:

$$
\varphi(\vec{s}, t) \rightarrow \varphi\left(\vec{s}, \mu_{\varphi}(\vec{s})\right) \wedge \mu_{\varphi}(\vec{s}) \leq t
$$

Correct it by mapping $\mu_{\varphi}(\vec{s})=t$. Iterate.

The difficulty:

- Can order $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ so that the definition of μ_{i} involves only μ_{j} with $j<i$.
- But the terms \vec{s} and t above can involve any μ_{i}.

Overview

1. We will define the notion of a "nested system of update procedures."
2. By general continuity considerations, these always have solutions.
3. The task on the previous slide amounts to finding solutions to elementary systems of equations.
4. Ordinals can be used in place of continuity.

This is essentially a repackaging of Ackermann's proof, using the Hilbert substitution method. The emphasis on continuity dates back to Tait '65.

Background definitions

Let $\rho, \sigma, \tau, \ldots$ range over finite partial functions from \mathbb{N} to \mathbb{N}.

Let $\hat{\sigma}$ to denote the extension to a total function:

$$
\hat{\sigma}(x)= \begin{cases}\sigma(x) & x \in \operatorname{dom}(\sigma) \\ 0 & \text { otherwise }\end{cases}
$$

Let $\sigma \oplus\langle u, v\rangle$ to denote the modification of σ that maps u to v :
$(\sigma \oplus\langle u, v\rangle)(x)= \begin{cases}\sigma(x) & \text { if } x \in \operatorname{dom}(\sigma), x \neq u \\ v & \text { if } x=u \\ \text { undef. } & \text { otherwise }\end{cases}$

Define $\sigma \oplus \emptyset$ to be σ.

Update procedures

A functional $F\left(f_{1}, \ldots, f_{k}\right)$ is continuous if its value depends on only finitely many values of f_{1}, \ldots, f_{k}.

Suppose $F\left(g, f_{1}, \ldots, f_{k}\right)$ is continuous with range $\mathbb{N} \times \mathbb{N} \cup\{\emptyset\}$. Consider the map

$$
\sigma \mapsto \sigma \oplus F\left(\hat{\sigma}, f_{1}, \ldots, f_{k}\right)
$$

F is an update procedure in g if the following holds: whenever

- $F\left(\hat{\sigma}, f_{1}, \ldots, f_{k}\right)=\langle a, b\rangle$,
- τ extends $\sigma \oplus\langle a, b\rangle$, and
- $F\left(\hat{\tau}, h_{1}, \ldots, h_{k}\right)=\langle a, c\rangle$,
then $b=c$.
In other words, once F "sets" $\sigma(a)$ to b, it does not change it, no matter how the other arguments vary.

Fixed points

If $F(g)$ is a unary update procedure, a finite fixed point of F is a σ such that

$$
\sigma=\sigma \oplus F(\hat{\sigma})
$$

Lemma. $F(g)$ has a finite fixed point.

Proof. Let $\sigma^{0}=\emptyset$, and for each i, let $\sigma^{i+1}=\sigma^{i} \oplus F\left(\hat{\sigma}^{i}\right)$. Let $g=\bigcup_{i \in \mathbb{N}} \sigma^{i}$. By continuity, for some i we have $F(\hat{g})=F\left(\hat{\sigma}_{i}\right)$.

The proof shows that if $F(g, \vec{h})$ is continuous, and for each \vec{h}

$$
g \mapsto F(g, \vec{h})
$$

is an update procedure, there is a continous functional $G(\vec{h})$ returning fixed points.

Nested update procedures

A system of nested update procedures is a sequence of continuous functionals $F_{1}\left(f_{1}, \ldots, f_{n}\right), \ldots, F_{n}\left(f_{1}, \ldots, f_{n}\right)$ such that for each i and fixed f_{1}, \ldots, f_{i-1}, the functional

$$
f_{i}, f_{i+1}, \ldots, f_{n} \mapsto F_{i}\left(f_{1}, \ldots, f_{n}\right)
$$

is an update procedure for f_{i}.

A finite fixed point of such a system is a sequence of finite partial functions $\sigma_{1}, \ldots, \sigma_{n}$ such that the equations

$$
\begin{aligned}
\sigma_{1}= & \sigma_{1} \oplus F_{1}\left(\hat{\sigma}_{1}, \ldots, \hat{\sigma}_{n}\right) \\
\vdots & \vdots \\
\sigma_{n}= & \sigma_{n} \oplus F_{n}\left(\hat{\sigma}_{1}, \ldots, \hat{\sigma}_{n}\right)
\end{aligned}
$$

are all satisfied.

Finding fixed points

Theorem. Every system of nested update procedures has a finite fixed point.

Proof. Use induction on n. We have already taken care of $n=1$.

For the induction step, given F_{1}, \ldots, F_{n+1}, let $G\left(f_{1}, \ldots, f_{n}\right)$ be a continuous functional returning finite fixed points of the functional

$$
f_{n+1} \mapsto F_{n+1}\left(f_{1}, \ldots, f_{n+1}\right)
$$

Then

$$
f_{1}, \ldots, f_{n} \mapsto F_{i}\left(f_{1}, \ldots, f_{n}, G\left(f_{1}, \ldots, f_{n}\right)\right)
$$

for $i=1, \ldots, n$ is a system of nested update procedures of size n.

By the IH , the smaller system has a finite fixed point, $\sigma_{1}, \ldots, \sigma_{n}$. Let $\sigma_{n+1}=G\left(\hat{\sigma}_{1}, \ldots, \hat{\sigma}_{n}\right)$.

The main theorem

Now restrict to systems of nested update procedures given by elementary functions F_{1}, \ldots, F_{n}.

Theorem. The following are pairwise equivalent:

1. Every $\prec \varepsilon_{0}$-recursive function is total.
2. Every system of nested elementary update procedures has a finite fixed point.
3. Every Π_{2} sentence provable in $P A$ is true.

This theorem is provable in $P R A$.

Finding finite partial models

Fixed-point equations and arithmetic

Remember that Peano arithmetic can be embedded in a q.f. theory based on μ axioms:

$$
\varphi(\vec{x}, y) \rightarrow \varphi\left(\vec{x}, \mu_{\varphi}(\vec{x})\right) \wedge \mu_{\varphi}(\vec{x}) \leq y
$$

Lemma. Suppose every system of nested elementary update procedures has a finite fixed point. Then every set of closed instances of μ-axioms has a finite partial model.

The conclusion implies (and is in fact equivalent to) the Π_{2} soundness of arithmetic.

Let S be a finite set of closed instances of μ-axioms. Let μ_{1}, \ldots, μ_{n} be the μ-symbols mentioned in S, such that if the definition of μ_{i} involves μ_{j}, then $i>j$.

For each i, let $F_{i}\left(f_{1}, \ldots, f_{n}\right)$ find an instance of the defining axiom for μ_{i} in S,

$$
\theta(\vec{s}, t) \rightarrow \theta\left(\vec{s}, \mu_{i}(\vec{s})\right) \wedge \mu_{i}(\vec{s}) \leq t
$$

that is falsified under the assignment

$$
\begin{array}{r}
\mu_{1}, \ldots, \mu_{n} \mapsto f_{1}, \ldots, f_{n} . \\
\text { Update } \mu_{i}(\vec{s}) \mapsto \mu m \leq t^{\vec{f}}(\theta(\vec{s}, m))^{\vec{f}} .
\end{array}
$$

Then:

- This is a system of nested update procedures.
- A fixed point is a finite interpretation of μ_{1}, \ldots, μ_{n} satisfying S.

Finding a fixed-point

We only need to show that one can find fixed-points using ordinal recursion (instead of continuity).

Lemma. Suppose $F(g, \vec{h})$ is α-recursive, and for each $\vec{h}, g \mapsto F(g, \vec{h})$ is an update procedure. Then there is an ω^{α}-recursive functional $G(\vec{h})$ that returns finite fixed points.

Idea: start with $i=0, \sigma^{0}=\emptyset$. Then

- Compute $F\left(\hat{\sigma}^{i}, \vec{h}\right)$.
- Update: $\sigma^{i+1}=\sigma^{i} \oplus F\left(\hat{\sigma}^{i}, \vec{h}\right)$.
- If the computation sequence for $F\left(\hat{\sigma}^{i}, \vec{h}\right)$ is no longer valid, revise it, and compute $F\left(\hat{\sigma}^{i+1}, \vec{h}\right)$.
- Repeat.

To show this converges, it suffices to assign ordinals to steps.

Assigning ordinals

Consider a partial computation sequence

$$
s_{0}, s_{1}, \ldots, s_{m}
$$

of $F\left(\hat{\sigma}^{i}, \vec{h}\right)$, with norms

$$
\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}
$$

Assign to this the ordinal

$$
\omega^{\alpha_{0}} \cdot \delta_{0}+\ldots+\omega^{\alpha_{m-1}} \cdot \delta_{m-1}+\omega^{\alpha_{m}} \cdot\left(\delta_{m}+1\right)
$$

where

$$
\delta_{i}= \begin{cases}2 & \text { if } \text { query }_{H, 1}\left(s_{i}\right) \text { is not } \operatorname{dom}(\sigma) \\ 0 & \text { otherwise } .\end{cases}
$$

Two cases:

1. Computation of F is not done. Take the next step.
2. Computation of F is done. Update σ^{i} and revise computation.

Second case

First case

If the computation of F is not done,

- let s_{m+1} the next state in the computation of $F\left(\sigma^{i}, \vec{h}\right)$, and
- let α_{m+1} be the corresponding norm.

Then the ordinal drops from
$\omega^{\alpha_{0}} \cdot \delta_{0}+\ldots+\omega^{\alpha_{m-1}} \cdot \delta_{m-1}+\omega^{\alpha_{m}} \cdot\left(\delta_{m}+1\right)$,
to

$$
\omega^{\alpha_{0}} \cdot \delta_{0}+\ldots+\omega^{\alpha_{m-1}} \cdot \delta_{m-1}+\omega^{\alpha_{m}} \cdot \delta_{m}+\omega^{\alpha_{m+1}} \cdot\left(\delta_{m+1}+1\right)
$$

Otherwise, let $\sigma^{i+1}=\sigma^{i} \oplus F\left(\hat{\sigma}^{i}, \vec{h}\right)$.
If this invalidates the computation sequence for $F\left(\hat{\sigma}^{i+1}, \vec{h}\right)$, let j be the first point at which the new value is queried.

In other words, the computation sequence is cut back from

$$
s_{0}, \ldots, s_{j}, \ldots, s_{m}
$$

to

$$
s_{0}, \ldots, s_{j}
$$

The norm drops from

$$
\begin{aligned}
& \omega^{\alpha_{0}} \cdot \delta_{0}+\ldots+\omega^{\alpha_{j-1}} \cdot \delta_{j-1}+\omega^{\alpha_{j}} \cdot 2+\ldots \\
& \omega^{\alpha_{m-1}} \cdot \delta_{m-1}+\omega^{\alpha_{m}} \cdot\left(\delta_{m}+1\right)
\end{aligned}
$$

to

$$
\omega^{\alpha_{0}} \cdot \delta_{0}+\ldots+\omega^{\alpha_{j-1}} \cdot \delta_{j-1}+\omega^{\alpha_{j}} \cdot 1
$$

since δ_{j} has dropped from 2 to 0 .

Final remarks

Finishing it off

Theorem. Suppose every $\prec \varepsilon_{0}$-recursive function is total. Then every system of nested elementary update procedures has a finite fixed point.

Proof. Let F_{1}, \ldots, F_{n} be a system of nested update procedures.

As before, use induction (recursion) up to n; the previous lemma handles the induction step.

The approach

- Yields sharp bounds for fragments of arithmetic.
- Works for transfinite induction.

Related approaches to the OA of

- Systems with transfinite jump hierarchies (predicative analysis)
- Admissible set theory
can be put in this framework.

Questions:

- Can one eliminate the nesting?
- Will this lead to interesting computational or combinatorial principles?

