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The ordinal ε0

ε0 is defined to be the limit of the sequence

ω, ωω, ω(ωω), . . .

Every nonzero α < ε0 can be written in Cantor
normal form:

α = ωα1 · n1 + . . . + ωαk · nk

where α > α1 > . . . > αk and ni ∈ N.

So there is an effective (primitive recursive, or
even elementary recursive) set of notations, such
that the associated ordering is also effective.
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Ordinal recursive functions

An α-recursive function is given by elementary
functions start(~x), next(q), norm(q), result(q).

These data define a function F (~x):

clock ← α

state ← start(~x)

while norm(state) ≺ clock do

clock ← norm(state)

state ← next(state)

return result(state)
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Ordinal recursive functionals

The previous definition relativizes well.

A α-recursive functional F (~x, f1, . . . , fk) is given
by elementary functions start(~x),
next(q, u1, . . . , uk), query1(q), . . . , queryk(q),
norm(q), and result(q).

These define a functional F (~x, f1, . . . , fk):

clock ← α

state ← start(~x)

while norm(state) ≺ clock do

clock ← norm(state)

state ← next(state, f1(query1(state)), . . . ,

fk(queryk(state)))

return result(state)

4



The ordinal analysis of PA

Theorem. Suppose Peano Arithmetic proves
∀x ∃y ϕ(x, y), for a Σ1 formula ϕ. Then there is a
<ε0-recursive function F such that for every x,
ϕ(x, F (x)).

Notes:

• The statement can be relativized to a
function parameter.

• A suitable formalization can be proved in
primitive recursive arithmetic.

• This yields the usual results of the ordinal
analysis of PA.
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Embedding PA in a quantifier-free calculus

Iteratively introduce Skolem functions for
quantifier-free formulae:

ϕ(~x, y) → ϕ(~x, µϕ(~x)) ∧ µϕ(~x) ≤ y

In other words, µϕ(~x) returns a least y satisfying
ϕ(~x, y), if there is one.

Proposition. If PA proves ∀x ∃y ψ(x, y) with ψ

quantifier-free, then for each n there is a
propositional proof of ϕ(n̄, µϕ(n̄)) from closed
instances of µ axioms, the definitions of the initial
functions and relations (0, 1,+,×, <, . . .), and
axioms of equality.
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The task

Given a finite set S of closed instances of µ

axioms, finite a finite arithmetic interpretation of
the µ symbols.

Idea: assume everything returns 0 by default.
Suppose the following instance of an axiom fails
under this interpretation:

ϕ(~s, t) → ϕ(~s, µϕ(~s)) ∧ µϕ(~s) ≤ t.

Correct it by mapping µϕ(~s) = t. Iterate.

The difficulty:

• Can order µ1, µ2, . . . , µn so that the definition
of µi involves only µj with j < i.

• But the terms ~s and t above can involve any
µi.
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Overview

1. We will define the notion of a “nested system
of update procedures.”

2. By general continuity considerations, these
always have solutions.

3. The task on the previous slide amounts to
finding solutions to elementary systems of
equations.

4. Ordinals can be used in place of continuity.

This is essentially a repackaging of Ackermann’s
proof, using the Hilbert substitution method. The
emphasis on continuity dates back to Tait ’65.
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Background definitions

Let ρ, σ, τ, . . . range over finite partial functions
from N to N.

Let σ̂ to denote the extension to a total function:

σ̂(x) =





σ(x) x ∈ dom(σ)

0 otherwise.

Let σ ⊕ 〈u, v〉 to denote the modification of σ that
maps u to v:

(σ⊕〈u, v〉)(x) =





σ(x) if x ∈ dom(σ), x 6= u

v if x = u

undef. otherwise

Define σ ⊕ ∅ to be σ.

9

Update procedures

A functional F (f1, . . . , fk) is continuous if its
value depends on only finitely many values of
f1, . . . , fk.

Suppose F (g, f1, . . . , fk) is continuous with range
N× N ∪ {∅}. Consider the map

σ 7→ σ ⊕ F (σ̂, f1, . . . , fk).

F is an update procedure in g if the following
holds: whenever

• F (σ̂, f1, . . . , fk) = 〈a, b〉,
• τ extends σ ⊕ 〈a, b〉, and

• F (τ̂ , h1, . . . , hk) = 〈a, c〉,
then b = c.

In other words, once F “sets” σ(a) to b, it does
not change it, no matter how the other arguments
vary.
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Fixed points

If F (g) is a unary update procedure, a finite fixed
point of F is a σ such that

σ = σ ⊕ F (σ̂).

Lemma. F (g) has a finite fixed point.

Proof. Let σ0 = ∅, and for each i, let
σi+1 = σi ⊕ F (σ̂i). Let g =

⋃
i∈N σi. By

continuity, for some i we have F (ĝ) = F (σ̂i). ¤

The proof shows that if F (g,~h) is continuous, and
for each ~h

g 7→ F (g,~h)

is an update procedure, there is a continous
functional G(~h) returning fixed points.
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Nested update procedures

A system of nested update procedures is a
sequence of continuous functionals
F1(f1, . . . , fn), . . . , Fn(f1, . . . , fn) such that for
each i and fixed f1, . . . , fi−1, the functional

fi, fi+1, . . . , fn 7→ Fi(f1, . . . , fn)

is an update procedure for fi.

A finite fixed point of such a system is a sequence
of finite partial functions σ1, . . . , σn such that the
equations

σ1 = σ1 ⊕ F1(σ̂1, . . . , σ̂n)
...

...

σn = σn ⊕ Fn(σ̂1, . . . , σ̂n)

are all satisfied.
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Finding fixed points

Theorem. Every system of nested update
procedures has a finite fixed point.

Proof. Use induction on n. We have already taken
care of n = 1.

For the induction step, given F1, . . . , Fn+1, let
G(f1, . . . , fn) be a continuous functional returning
finite fixed points of the functional

fn+1 7→ Fn+1(f1, . . . , fn+1).

Then

f1, . . . , fn 7→ Fi(f1, . . . , fn, G(f1, . . . , fn))

for i = 1, . . . , n is a system of nested update
procedures of size n.

By the IH, the smaller system has a finite fixed
point, σ1, . . . , σn. Let σn+1 = G(σ̂1, . . . , σ̂n). ¤
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The main theorem

Now restrict to systems of nested update
procedures given by elementary functions
F1, . . . , Fn.

Theorem. The following are pairwise equivalent:

1. Every ≺ε0-recursive function is total.

2. Every system of nested elementary update
procedures has a finite fixed point.

3. Every Π2 sentence provable in PA is true.

This theorem is provable in PRA.
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Fixed-point equations and arithmetic

Remember that Peano arithmetic can be
embedded in a q.f. theory based on µ axioms:

ϕ(~x, y) → ϕ(~x, µϕ(~x)) ∧ µϕ(~x) ≤ y

Lemma. Suppose every system of nested
elementary update procedures has a finite fixed
point. Then every set of closed instances of
µ-axioms has a finite partial model.

The conclusion implies (and is in fact equivalent
to) the Π2 soundness of arithmetic.
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Finding finite partial models

Let S be a finite set of closed instances of
µ-axioms. Let µ1, . . . , µn be the µ-symbols
mentioned in S, such that if the definition of µi

involves µj , then i > j.

For each i, let Fi(f1, . . . , fn) find an instance of
the defining axiom for µi in S,

θ(~s, t) → θ(~s, µi(~s)) ∧ µi(~s) ≤ t.

that is falsified under the assignment

µ1, . . . , µn 7→ f1, . . . , fn.

Update µi(~s) 7→ µm ≤ t
~f (θ(~s,m))~f .

Then:

• This is a system of nested update procedures.

• A fixed point is a finite interpretation of
µ1, . . . , µn satisfying S.
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Finding a fixed-point

We only need to show that one can find
fixed-points using ordinal recursion (instead of
continuity).

Lemma. Suppose F (g,~h) is α-recursive, and for
each ~h, g 7→ F (g,~h) is an update procedure. Then
there is an ωα-recursive functional G(~h) that
returns finite fixed points.

Idea: start with i = 0, σ0 = ∅. Then

• Compute F (σ̂i,~h).

• Update: σi+1 = σi ⊕ F (σ̂i,~h).

• If the computation sequence for F (σ̂i,~h) is no
longer valid, revise it, and compute
F (σ̂i+1,~h).

• Repeat.

To show this converges, it suffices to assign
ordinals to steps.
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Assigning ordinals

Consider a partial computation sequence

s0, s1, . . . , sm

of F (σ̂i,~h), with norms

α0, α1, . . . , αm.

Assign to this the ordinal

ωα0 · δ0 + . . . + ωαm−1 · δm−1 + ωαm · (δm + 1),

where

δi =





2 if queryH,1(si) is not dom(σ)

0 otherwise.

Two cases:

1. Computation of F is not done. Take the next
step.

2. Computation of F is done. Update σi and
revise computation.
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First case

If the computation of F is not done,

• let sm+1 the next state in the computation of
F (σi,~h), and

• let αm+1 be the corresponding norm.

Then the ordinal drops from

ωα0 · δ0 + . . . + ωαm−1 · δm−1 + ωαm · (δm + 1),

to

ωα0 ·δ0+. . .+ωαm−1 ·δm−1+ωαm ·δm+ωαm+1 ·(δm+1+1).
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Second case

Otherwise, let σi+1 = σi ⊕ F (σ̂i,~h).

If this invalidates the computation sequence for
F (σ̂i+1,~h), let j be the first point at which the
new value is queried.

In other words, the computation sequence is cut
back from

s0, . . . , sj , . . . , sm

to
s0, . . . , sj .

The norm drops from

ωα0 · δ0 + . . . + ωαj−1 · δj−1 + ωαj · 2 + . . .

ωαm−1 · δm−1 + ωαm · (δm + 1),

to
ωα0 · δ0 + . . . + ωαj−1 · δj−1 + ωαj · 1

since δj has dropped from 2 to 0.
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Finishing it off

Theorem. Suppose every ≺ε0-recursive function
is total. Then every system of nested elementary
update procedures has a finite fixed point.

Proof. Let F1, . . . , Fn be a system of nested
update procedures.

As before, use induction (recursion) up to n; the
previous lemma handles the induction step. ¤
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Final remarks

The approach

• Yields sharp bounds for fragments of
arithmetic.

• Works for transfinite induction.

Related approaches to the OA of

• Systems with transfinite jump hierarchies
(predicative analysis)

• Admissible set theory

can be put in this framework.

Questions:

• Can one eliminate the nesting?

• Will this lead to interesting computational or
combinatorial principles?
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