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Uniform distribution

Definition. A sequence (xn)n∈N of real numbers is uniformly
distributed modulo one (UD mod 1) if for every interval I ⊆ [0, 1],

lim
n→∞

|{i < n | {xi} ∈ I}|
n

= λ(I ).

Here {x} = x − bxc, and λ is Lebesgue measure.



Weyl’s theorem

Theorem. Let (an) be any sequence of distinct integers. Then for
almost every x , (anx) is UD mod 1.

A real number x is absolutely normal if for every base b, each
pattern of digits b1b2 · · · bn occurs with with frequency b−n in the
limit.

Corollary. Almost every number x is absolutely normal to every
base.



Weyl’s criterion

Notation (Vinogradev). e(x) = e2πix .

Lemma. Given (xn), TFAE:

1. (xn) is UD mod 1

2. For any continuous f : [0, 1]→ R,

lim
n→∞

1

n

∑
j<n

f ({xj}) =

∫ 1

0
f (x).

3. For any h 6= 0,

lim
n→∞

1

n

∑
i<n

e(hxj) = 0

Corollary (Weyl). If α is irrational, (αj)j∈N is UD mod 1.



Proof of Weyl’s theorem.

Let (aj)j∈N be any sequence of distinct integers. Want to show
(ajx) is UD mod 1, a.e. x .

WLOG restrict to x ∈ [0, 1). Let Sn(x) = 1
n

∑
j<n e(ajx).

By Weyl’s criterion, we want to show that Sn(hx)→ 0 a.e. x , for
every h 6= 0. WLOG h = 1.

Fact. Given n2 ≤ m < (n + 1)2, |Sm(x)| ≤ |Sn2(x)|+ 2/
√

m.

So it suffices to show limn→∞ Sn2(x) = 0 a.e. x .



Proof of Weyl’s theorem.

Remember, Sn(x) = 1
n

∑
j<n e(ajx).

Calculate: ∫ 1

0
|Sn(x)|2 =

∫ 1

0
Sn(x)Sn(x)

=
1

n2

∑
j ,k<n

∫ 1

0
e((aj − ak)x)

= 1/n.

Or: notice that the functions e(ajx) are orthogonal in the L2 norm.

So
∫ 1
0 |Sn2(x)|2 = 1

n2
. Remember: we want Sn(x)→ 0 as n→∞,

for a.e. x



Proof of Weyl’s theorem.

From
∫ 1
0 |Sn2(x)|2 = 1

n2
and the monotone convergence theorem:∫ 1

0

∞∑
n=1

|Sn2(x)|2 =
∞∑
n=1

∫ 1

0
|Sn2(x)|2 =

∞∑
n=1

1/n2 <∞.

So
∑∞

n=1 |Sn2(x)|2 <∞ almost everywhere.

So Sn2(x)→ 0 a.e.
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Algorithmic randomness

Question: What does it mean for a sequence of 0’s and 1’s to be
random?

Kolmogorov: put a probability measure µ on the set of sequences.
“A random string has property P” means {x | P(x)} has measure
1.

So no sequence is really “random.”

Martin-Löf used computability to recapture original intuition: a
string is random if it passes all computable tests.



Algorithmic randomness

Definition. A set G ⊆ R is effectively open if there are computable
sequences (ai )i∈N, (bi )i∈N of rationals such that G =

⋃
i (ai , bi ).

Definition. A Martin-Löf test is a uniformly effective sequence (Gj)
of open sets such that for each j , λ(Gj) ≤ 2−j .

A real number fails the test if x ∈
⋂

j Gj , passes otherwise.

A real number x is Martin-Löf random if it passes every Martin-Löf
test.

So, roughly, x is Martin-Löf nonrandom if it is an element of an
effective null Gδ set.

Fact. There is a universal Martin-Löf test.



Algorithmic randomness

Definition. A Schnorr test is a Martin-Löf test (Gj) such that
λ(Gj) is uniformly computable.

Definition. A Kurtz test is an effectively closed set of measure 0.

More restrictions on the test means that it is easier to pass. So

Martin-Löf random ⇒ Schnorr random ⇒ Kurtz random.

Kurtz random is very weak. For example, every “weakly 1-generic”
real x is Kurtz random, but the fraction of 1’s in the binary
expansion doesn’t converge.



UD randomness

Definition. Say a real number x is UD random if (anx) is UD mod
1 whenever (an) is a computable sequence of distinct integers.

By Weyl’s theorem, almost every real number is UD random.

Every UD random number is absolutely normal to every base.

Even better: if x is UD random, then for any base b, block of digits
b1b2 . . . bk , and computable sequence (pi ) of distinct positions,

lim
n→∞

|{i < n | b1b2 . . . bk occurs at position pi}|
n

= b−k .



UD randomness

Question: How random is UD random?

Specifically:

What randomness hypotheses on x are sufficient to ensure
that x is UD random?

What does UD randomness imply?



Upper bounds

Theorem. Every Schnorr-random real is UD random. There are
Kurtz random reals that are not UD random.

The second claim follows easily from the observation that there are
Kurtz random reals that fail the strong law of large numbers.

Proving the first claim is straightforward: extract a Schnorr test
from the proof of Weyl’s theorem.



Upper bounds

Theorem. For each i , let (aij)j∈N be a sequence of distinct integers,

such that aij is computable from i and j . Then there is a Schnorr

test C such that for every x not in C and every integer i , (aijx)j∈N
is UD mod 1.

For each i , rational ε > 0, and n define

Ai ,ε,m = {x | ∃n ≥ m |S i
n2(x)| > ε}.

λ(Ai ,ε,m) decreases to 0 as m approaches infinity. Enumerate pairs
(ij , εj), and for each k and j choose mj ,k large enough so that
λ(Aij ,εj ,mj,k

) < 2−(j+k+1).

For each k, let
Gk =

⋃
j

Aij ,εj ,mj,k
.

Then (Gk) is the desired Schnorr test.



A consequence

Corollary. Given (aij)j∈N as above, one can compute an x such that

for every i , (aijx)j∈N is UD mod 1.



Lower bounds

Suppose x is UD random. Is x necessarily Schnorr random? Kurtz
random?

If x = 0.x1x2x3 . . . in binary notation and x is “random,” and
i 7→ ui is a computable injection, then

xu1xu2xu3 . . .

should also be “random”. In particular, a block like 010 should
occur with the expected frequency.

But the UD “tests” — scale x and check membership in an
interval — are “local”. They involve only contiguous digits.



Lower bounds

Suppose x is UD random. Is x necessarily Schnorr random? Kurtz
random?

If x = 0.x1x2x3 . . . in binary notation and x is “random,” and
i 7→ ui is a computable injection, then

xu1xu2xu3 . . .

should also be “random”. In particular, a block like 010 should
occur with the expected frequency.

But the UD “tests” — scale x and check membership in an
interval — are “local”. They involve only contiguous digits.



Lower bounds

Guess: there is a UD random real x with the following property:
for every n, digit 22n is the same as digit 22n+1.

In other words, x1 = x2, x4 = x8, x16 = x32, . . .

Such a real is not even Kurtz random.

How can we construct such a thing?

Don’t bother. Prove that almost every x with that property is UD
random!



Lower bounds

Guess: there is a UD random real x with the following property:
for every n, digit 22n is the same as digit 22n+1.

In other words, x1 = x2, x4 = x8, x16 = x32, . . .

Such a real is not even Kurtz random.

How can we construct such a thing?

Don’t bother. Prove that almost every x with that property is UD
random!



Lower bounds

Let
C = {x | for every n, (x)22n = (x)22n+1},

Let µ be the “uniform” probability measure on this set.

Theorem. Let (an) be any sequence of distinct integers. Then
(anx) is UD mod 1 for µ-a.e. x .

In other words, Weyl’s theorem holds relative to C .



Lower bounds

The proof of Weyl’s theorem relied on the fact that∫ 1
0 e(ux) dλ(x) = 0 for u 6= 0.

Now we need to consider

µ̂(u) =

∫
C

e(ux) dµ(x),

the Fourier-Stieltjes coefficients of the measure µ.

Lemma (Lyons). If the Fourier-Stieltjes coefficients of µ have the
property that

∞∑
u=1

|µ̂(u)|
u

converges, then for any sequence (an) of distinct integers, (anx) is
UD mod 1 for µ-a.e. x .



Lower bounds

To prove our main claim, then, it suffices to show that C and µ
above, we have µ̂(u) = O(1/

√
u).

For an intuition, draw a picture of C ′ = {x | x4 = x8}. C is
“fractal” version.

C ′ looks fairly uniform, except some bits are “jittered” in blocks.

We want to show
∫
C e(ux) is small every u, i.e. we cannot

“detect” the irregularity with sines and cosines of period 2π/u.

The argument varies depends on whether u is close to 4 or 8, or in
some other region.



Lower bounds

The calculation is fiddly, but follows this intuition.

If we divide the binary digits of x into blocks, C becomes a union,
and

∫
C becomes a sum.

Reindexing, expressions e(u ·
∑

ti ) become products.

In each case, certain terms have to be small.



Conclusions

One can ask lots of other questions along these lines. For example:

Is there a UD random x such that every initial segment
of the binary representation of x has at least as many 1’s
as 0’s?

Is there a real number x that is Church stochastic but
not UD random?

More generally:

Given two properties P1 and P2 that hold of “random” reals, how
do they relate?


